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ABSTRACT

This paper tackles the scarcity of benchmarking data in disentangled audi-
tory representation learning. We introduce SynTone, a synthetic dataset with
explicit ground truth explanatory factors for evaluating disentanglement tech-
niques. Benchmarking state-of-the-art methods on SynTone highlights its utility
for method evaluation. Our results underscore strengths and limitations in audio
disentanglement, motivating future research.

1 INTRODUCTION

Disentangled representation learning shows promise for creating useful data encodings. However, it
remains underexplored for auditory data, despite potential benefits (Locatello et al., 2019; Higgins
et al., 2017; Kim & Mnih, 2018). Disentangled representations refer to learned encodings (codes for
short) where explanatory factors are encoded in independent, compact, and informative dimensions.
These factorized representations offer an improved generalization, explainability, reduced sample
complexity, and avoidance of shortcut learning (Carbonneau et al., 2020).

Progress in auditory disentanglement is hampered by the lack of suitable benchmarking datasets for
evaluation (Hsu et al., 2017; Mo et al., 2019). Auditory signals present unique challenges due to
their high dimensionality, temporal dynamics, and rich hierarchical structure. To help address this
evaluation gap, we introduce SynTone: a basic dataset of synthetic tones curated for quantitatively
assessing disentangled representation learning techniques in the acoustic domain. We used this new
dataset to conduct a benchmarking study comparing state-of-the-art (SOTA) disentanglement frame-
works. Performance was measured using supervised disentanglement metrics. Our goals were to (i)
demonstrate SynTone’s utility for method evaluation/comparison, and (ii) highlight the strengths
and limitations of audio disentanglement algorithms to help guide future research.

2 METHODOLOGY

Following ideas from disentanglement in the vision domain (Matthey et al., 2017; Burgess & Kim,
2018), we develop SynTone - a simple synthetic audio dataset with explicit ground truth factors
to facilitate disentanglement analysis. SynTone comprises 32, 000 1-second audio samples (16kHz
sampling rate) synthesized by systematically varying three generative parameters: timbre T (sine,
triangle, square, sawtooth waveforms), amplitude A (20 discrete levels from 0 to 1), and frequency
F (400 discrete steps from 440 to 8000Hz). The dataset structure is formally: T×A× F, with each
sample having a unique (T ∈ T, A ∈ A, F ∈ F) tuple defining its generative factors. Having full
knowledge of the data generative process allows quantitative assessment of models’ effectiveness at
learning the ground truth factors from the audio samples. This dataset aims to provide a benchmark
for the analysis of disentanglement techniques on a perceptual signal domain where the factorized
generative sources are specified.

We employ four VAE-based models to disentangle SynTone’s ground truth factors: vanilla
VAE (Kingma & Welling, 2013), β-VAE (Higgins et al., 2017), Factor-VAE (Kim & Mnih, 2018),
and β-TCVAE (Chen et al., 2018). The use of VAEs offers interpretable latent spaces, and these
model variants introduce objectives specifically targeting greater independence among latent factors.
SynTone’s rich ground truth provides a basis for quantifying the success of recovering explicitly de-
fined variations. Our focus lies on testing the explanatory disentanglement capabilities afforded by
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Compactness Holistic Modularity
Model MIG SAP DCIMIG JEMMIG Mod. Score

Vanilla VAE 0.280 ± 0.0 0.045 ± 0.000 0.005 ± 0.000 0.300 ± 0.0 0.651 ± 0.031
β-VAE 0.184 ± 0.0 0.035 ± 0.000 0.004 ± 0.000 0.201 ± 0.0 0.750 ± 0.022
Factor-VAE 0.118 ± 0.0 0.035 ± 0.000 0.003 ± 0.000 0.126 ± 0.0 0.762 ± 0.014
β-TCVAE 0.166 ± 0.0 0.023 ± 0.000 0.005 ± 0.000 0.183 ± 0.0 0.747 ± 0.016

Table 1: Disentanglement metrics with standard deviation for different models over 10 evaluation
runs each. Values are presented as mean ± standard deviation.

VAE techniques, in contrast to assessing the sample quality of less interpretable GANs (Chen et al.,
2016).

To evaluate the disentanglement achieved by these different approaches, we apply various metrics
that quantify each model’s ability to recover ground truth factors, emphasizing different desired
properties of disentanglement. These properties include modularity, where variation in one fac-
tor does not affect other factors (i.e., there is no causal effect between them); compactness, where
a factor should be explained by a minimal subset of the latent space, ideally a single dimension;
and explicitness, where learned codes should be semantically meaningful. Specifically, we use the
Mutual Information Gap (MIG) (Chen et al., 2018) and Attribute Predictability Score (SAP) (Ku-
mar et al., 2017) to measure compactness. We also use Joint Entropy Minus Mutual Information
Gap (JEMMIG) (Do & Tran, 2019) and Disentanglement, Completeness, and Informativeness MIG
(DCIMIG) (Sepliarskaia et al., 2019) to assess holisticness, as they capture modularity, compact-
ness, and explicitness properties in a single score. Moreover, the code modularity is measured with
the Modularity score (Ridgeway & Mozer, 2018). For a more in-depth analysis of disentanglement
metrics, refer to Carbonneau et al. (2020).

3 EXPERIMENTS

We trained four model architectures on SynTone: vanilla VAE, β-VAE, Factor-VAE, and β-TC-
VAE. To facilitate training, the audio data is transformed into a time-frequency domain, resulting
in a 2D input for our networks (refer to appendix A.1). All variational autoencoders used the same
convolutional architecture (detailed in appendix A.2), with variations only in the objective function.
Extensive exploration of hyperparameter settings for the different models was conducted, and only
the best-performing configuration was adopted for the final experiment. Table 1 provides a summary
of these metrics for each model.

In our analysis, the vanilla VAE’s superior performance in compactness metrics (MIG, SAP) and
comparable DCIMIG to β-TCVAE was unexpected, especially as compactness is of lesser practical
importance. Its simpler structure may better isolate factors in the SynTone dataset. Factor-VAE
led in JEMMIG and Modularity, as expected from its training approach. The underperformance of
β-VAE and β-TCVAE in certain metrics suggests their loss functions might not be ideally suited for
SynTone, emphasizing the need for dataset-specific approaches in audio-disentangled representation
learning. For deeper analysis, see the qualitative results in the appendix A.3.

4 CONCLUSION

Our work addresses the unexplored realm of disentangled representation learning in audio by intro-
ducing SynTone, a dataset with explicit ground truth factors. We evaluated state-of-the-art meth-
ods, revealing the challenges in achieving comprehensive disentanglement in audio representations.
While the vanilla VAE demonstrates robust compactness, the Factor-VAE excels in modularity.
However, limitations persist, emphasizing the need for further research in audio disentanglement.
Our dataset proves valuable for method evaluation, though potential extensions to more diverse
datasets and real-world scenarios warrant exploration. Our findings provide insights for future ef-
forts in enhancing disentangled audio representation learning.
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A APPENDIX

A.1 MODEL INPUT PREPROCESSING

The input representation to each model is a mel-spectrogram transformation with a window size
of 2024 and a hop size of 512, aligning with speech processing best practices. Mel-spectrograms
efficiently encapsulate audio details into perceptually relevant frequency bands. The encoder out-
puts parameterize a multivariate Gaussian distribution over latent variables, guided by a β hyper-
parameter during training for incentivizing disentangled dimensions. Supervised by T, A, and F
generative factors, designated latent dimensions are manipulated post-convergence to control ampli-
tude, timbre, and frequency in generated samples. Performance assessment includes quantitative and
qualitative evaluations of disentanglement metrics, reconstructions, and sample quality respectively.

A.2 MODEL ARCHITECTURE

Our VAE model applies four convolutional layers to extract hierarchical spatial features from in-
put mel-spectrograms, followed by two fully connected layers to parameterize a Gaussian latent
code capturing explanatory factors of variation. The decoder mirrors this pathway using transpose
convolutions to recover the original input dimensions from sampled codes. All layers use leaky
ReLU activations (slope=0.01) for faster convergence, with no batch norm for clearer disentangle-
ment analysis. We strategically upsample in the decoder to balance reconstruction quality without
overparameterization. This convolutional VAE structure provides an interpretable latent space to
analyze captured generative factors while modeling complex mel-spectrogram dependencies. By
parameterizing the distributions, we additionally obtain useful uncertainty information.

Building upon this, the full implementation details, including the architecture, training procedures,
and hyperparameters used in our VAE models, are meticulously documented. This comprehensive
resource is designed to assist in replicating or building upon our work. The provided link offers
access to our codebase VAE Models Full Implementation.

A.3 RECONSTRUCTION AND SAMPLING

We visually assess models’ performance through reconstructions of held-out mel-spectrograms and
novel samples synthesized by decoding random codes. Reconstructions indicate how effectively the
data compression is captured. Sampling assesses generative modeling abilities when guided solely
by the learned latent distributions. Comparing the similarity of reconstructions and coherence of
samples provides intuitive insight into encoding quality between models, complementing metric-
based evaluation.
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Figure 1: Time-domain representation (left), Fourier transforms (middle), and Time-Frequency
(Mel-spectrogram) representation (right) for original and reconstructed samples using the VAE
model. This model shows a lower reconstruction quality as indicated in all plots due to the ad-
dition of noise frequencies around 7000Hz as well as lower harmonic partials as portrayed in the
mel-spectrogram.

Figure 2: Visualization of generated audio samples using the VAE model. The left column depicts
the time-domain representation, the middle column illustrates the Fourier transforms, and the right
column showcases the Time-Frequency (Mel-spectrogram) representation. This plot shows that the
model can isolate is single major frequency band close to 3000Hz as illustrated by the Fourier
domain periodogram.
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Figure 3: Time-domain representation (left), Fourier transforms (middle), and Time-Frequency
(Mel-spectrogram) representation (right) for original and reconstructed samples using the β-VAE
model. This model achieved a suitable reconstruction quality compared to the vanilla VAE as shown
in both the Fourier space where the frequency factor of 4248.42Hz is correctly isolated.

Figure 4: Visualization of generated audio samples using the β-VAE model. The left column de-
picts the time-domain representation, the middle column illustrates the Fourier transforms, and the
right column showcases the Time-Frequency (Mel-spectrogram) representation. This figure, how-
ever, shows minor harmonic partials close to 1000Hz while the major frequency component is also
predominant in both the periodogram and mel-spectrogram plots.
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Figure 5: Time-domain representation (left), Fourier transform (middle), and Time-Frequency (Mel-
spectrogram) representation (right) for original and reconstructed samples using the FactorVAE
model. This model achieved the best reconstruction quality for an assessment of audio represen-
tation in both the Fourier space where the frequency factor of 4248.42Hz is correctly isolated.

Figure 6: Visualization of generated audio samples using the Factor-VAE model. The left col-
umn depicts the time-domain representation, the middle column illustrates the Fourier transforms,
and the right column showcases the Time-Frequency (Mel-spectrogram) representation. The model
can decode a complex latent code that is smoothly represented in both the Fourier plot and mel-
spectrograms with minimal noise levels.
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Figure 7: Time-domain representation (left), Fourier transforms (middle), and Time-Frequency
(Mel-spectrogram) representation (right) for original and reconstructed samples using the β-TCVAE
model. Like the vanilla VAE, this model also suffers from low-frequency noise in encoding and de-
coding the audio signal.

Figure 8: Visualization of generated audio samples using the β-TCVAE model. The left column de-
picts the time-domain representation, the middle column illustrates the Fourier transforms, and the
right column showcases the Time-Frequency (Mel-spectrogram) representation. Like the Factor-
VAE decoder, this model is also able to decode complex waveforms however, it has more predomi-
nate noise levels as indicated in the plots where minor frequency contributions are visible.
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Figure 9: Latent space interpolation for the vanilla VAE model, showcasing variations in a single
latent code while others are fixed. Each row represents 10 discrete samples per latent code.
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Figure 10: Latent space interpolation for the β-VAE model, showcasing variations in a single latent
code while others are fixed. Each row represents 10 discrete samples per latent code.
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Figure 11: Latent space interpolation for the Factor-VAE model, showcasing variations in a single
latent code while others are fixed. Each row represents 10 discrete samples per latent code.

11



Published as a Tiny Paper at ICLR 2024

Figure 12: Latent space interpolation for the β-TCVAE model, showcasing variations in a single
latent code while others are fixed. Each row represents 10 discrete samples per latent code.
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