

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 COMPOSITION-GROUNDED INSTRUCTION SYNTHESIS FOR VISUAL REASONING

Anonymous authors

Paper under double-blind review

ABSTRACT

Pretrained multi-modal large language models (MLLMs) demonstrate strong performance on diverse multimodal tasks, but remain limited in reasoning capabilities for domains where annotations are difficult to collect. In this work, we focus on artificial image domains such as charts, rendered documents, and webpages, which are abundant in practice yet lack large-scale human annotated reasoning datasets. We introduce COGS (COmposition-Grounded instruction Synthesis), a data-efficient framework for equipping MLLMs with advanced reasoning abilities from a small set of seed questions. The key idea is to decompose each seed question into primitive perception and reasoning *factors*, which can then be systematically recomposed with new images to generate large collections of synthetic question-answer pairs. Each generated question is paired with subquestions and intermediate answers, enabling reinforcement learning with factor-level process rewards. Experiments on chart reasoning show that COGS substantially improves performance on unseen questions, with the largest gains on reasoning-heavy and compositional questions. Moreover, training with a factor-level mixture of different seed data yields better transfer across multiple datasets, suggesting that COGS induces generalizable capabilities rather than dataset-specific overfitting. We further demonstrate that the framework extends beyond charts to other domains such as webpages.

1 INTRODUCTION

Pretrained multi-modal large language models (MLLMs) have achieved impressive performance across a wide range of multimodal tasks (Liu et al., 2023c; Bai et al., 2025; Wang et al., 2025a; Agrawal et al., 2024; OpenAI et al., 2024; Comanici et al., 2025; Anthropic, 2024), yet advanced reasoning capabilities remain underdeveloped, especially in domains where user reasoning-intensive query-answer data is difficult to collect. In this work, we consider reasoning capability over artificial image domains, including charts, tables, information graphs, rendered documents, webpages, etc. While such images are abundant on the web, datasets containing reasoning questions over them are scarce. However, developing MLLMs that can handle these reasoning queries is critical for downstream applications, such as building agents that interpret and edit documents or take actions in digital environments.

In this paper, we aim to equip MLLMs with these missing capabilities using only a small set of *seed questions* in a target domain. Our goal is to bootstrap from these seed questions to generate a large, diverse dataset of synthetic question-answer pairs, leveraging additional unlabeled images such as online charts or webpages. The key insight of our approach is *compositionality*: although a seed question set may contain only a limited number of surface forms, each question can be decomposed into a set of smaller subquestions, which we call *factors* in this paper. Factors may capture primitive perception and reasoning steps, such as reading a number from a chart, comparing two entries in a table, or performing arithmetic. Crucially, these factors can be recombined systematically and compositionally to produce a much larger space of complex questions.

We propose a data-efficient framework, COGS (COmposition-Grounded instruction Synthesis), that operationalizes this idea in three stages. First, given a seed dataset of questions in the target domain, we decompose each question into its constituent perception and reasoning factors. Second, we recombine subsets of discovered factors with new images to generate novel compositional questions, each paired with intermediate subquestions and intermediate answers as a bonus. Finally, we

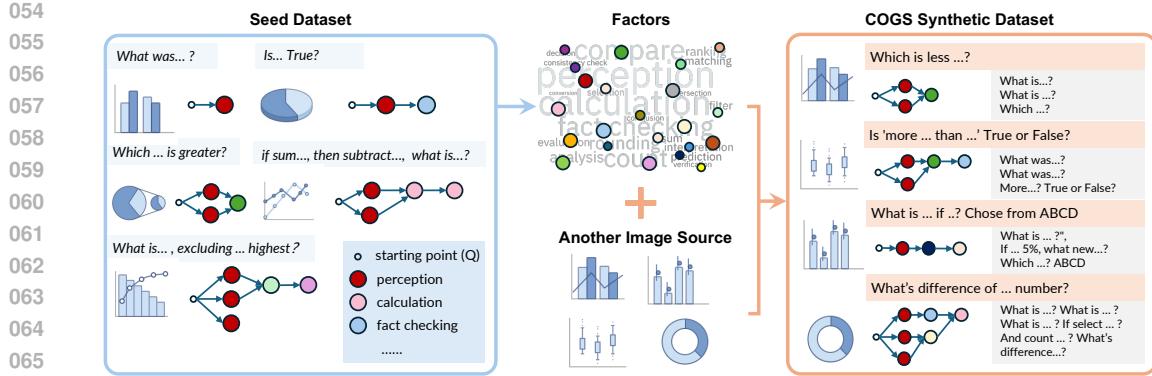


Figure 1: COGS: Starting from a small set of reasoning-intensive seed questions, COGS decomposes them into primitive perception and reasoning factors, which are then recombined with new image sources to synthesize question–answer pairs. This process expands both the quantity and diversity of reasoning types beyond the original seeds. Fig. 2 shows an illustrative example.

finetune a pretrained MLLM using Group Relative Policy Optimization (GRPO; Shao et al., 2024), augmented with process rewards derived from the factor annotations for fine-grained supervision.

We begin our evaluation on chart reasoning, a domain that exemplifies the scarcity of annotated reasoning questions despite the ubiquity of images. Our experiments show that COGS significantly improves the reasoning capabilities of base MLLMs, with the largest gains observed on reasoning-heavy and compositional questions. Moreover, our framework naturally supports mixtures of datasets: training jointly on multiple datasets yields positive transfer, demonstrating that the model acquires transferable capabilities rather than overfitting to a particular dataset. Finally, we illustrate that the same framework extends to the webpage reasoning domain, highlighting its broad applicability.

In summary, this work introduces a principled approach to bootstrapping new reasoning skills in pretrained MLLMs from a small seed query set, by exploiting the factorized structure of questions to unlock scalable synthetic data generation and process-level reinforcement learning.

2 RELATED WORK

Understanding artificial image such as charts and web GUIs demands grounded perception and substantial visual reasoning. General-purpose MLLMs make this feasible through large-scale pre-training and instruction tuning (Liu et al., 2023c; Bai et al., 2025; Wang et al., 2025a; Agrawal et al., 2024; OpenAI et al., 2024; Comanici et al., 2025; Anthropic, 2024). Prior work on automatic instruction generation (Wang et al., 2023c; Yuan et al., 2024), refinement, and evolutionary methods (Xu et al., 2024a; Zeng et al., 2024) increases the complexity of synthetic data for text reasoning. While these methods mainly search for reasoning trajectories in text space, we aim to analyze and augment the seed dataset by automatically detecting reasoning components grounded in visual features. Unlike approaches that rely on hand-crafted heuristics (Xu et al., 2024a) or strong pretrained language models (Zeng et al., 2024), COGS extracts component groups from the seed data and uses them to customize the dataset for the target task. In parallel with generalist MLLMs, specialist models have been introduced to target these domains more directly, prioritizing structured text extraction, numeric grounding, and compositional reasoning. New benchmarks and data-synthesis methods based on human-defined heuristics have followed, and specialist models have been trained accordingly.

Chart understanding including description and reasoning tasks. Benchmarks emphasize diverse image sources have been designed with different templates or task formulation to evaluate the models performance (Kahou et al., 2018; Kafle et al., 2018; Methani et al., 2020; Masry et al., 2022; Xu et al., 2024b; Xia et al., 2025; Shi et al., 2024; He et al., 2024). Recent human-curated evaluations emphasize scientific or real figures, multi-chart settings, and open-vocabulary answers, and they raise the bar with inference-heavy questions that demand reasoning before answering (Masry et al., 2025a; Liu et al., 2024a; Wang et al., 2024b; Tang et al., 2025; Huang et al., 2025). Datasets and training strategies to specialist a MLLM have been developed. Specialist pipeline methods first

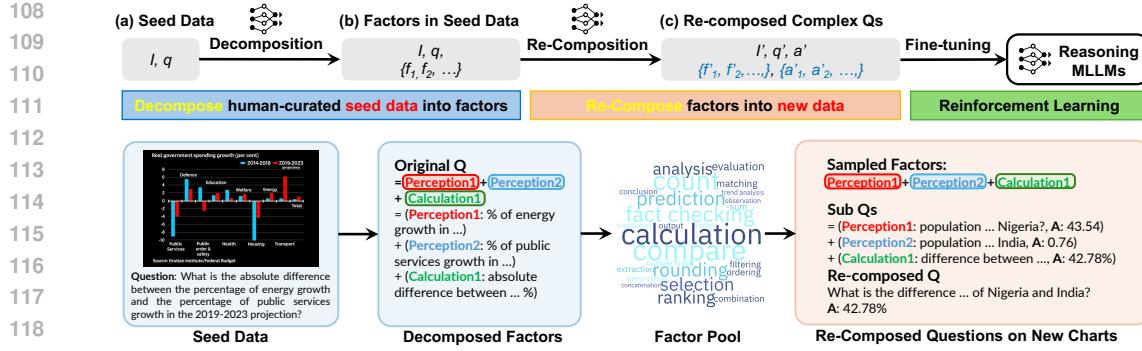


Figure 2: The framework of COGS consists of three stages: seed question decomposition, factor recomposition, and model fine-tuning.

convert charts into structured intermediates and utilize an LLM answer on top of that representation, which improves numerical fidelity when extraction is accurate (Lee et al., 2023; Liu et al., 2023b;a; Xia et al., 2025). Specialist model can also be trained end-to-end for unify perception and reasoning inside a VLM, often by aligning multi-format inputs and instruction-tuning (Han et al., 2023; Carbune et al., 2024; Meng et al., 2024; Ye et al., 2023b;c; 2024; Chen et al., 2023; Hu et al., 2024; Liu et al., 2024c; Wang et al., 2023a; Liu et al., 2024a; Zhang et al., 2024c; Yan et al., 2024; Masry et al., 2025b; Chen et al., 2024; Zhao et al., 2025; Jia et al., 2025; Wu et al., 2025; Xu et al., 2025). Data synthesis approaches including question-level template and in-context example has been designed for specialist fine-tune a pretrained model (Li et al., 2024b; Chen et al., 2025; He et al., 2023).

GUI understanding. GUI understanding has been studied through a growing set of benchmarks for page comprehension and reasoning over website and app UIs (Awal et al., 2025; Liu et al., 2024b; Chen et al., 2021; Hsiao et al., 2025; Li et al., 2020; Chang et al., 2022; Wang et al., 2024a), as well as for grounding and agentic predictions (Liu et al., 2024b; Li et al., 2025; Cheng et al., 2024). Models have been developed for specialist tasks such as information extraction (Baek et al., 2019), detection/localization of UI elements for agentic use (Hu et al., 2024; Lee et al., 2023; Hong et al., 2024; Zheng et al., 2024; Gou et al., 2025) and general-purpose UI reasoning. (Ye et al., 2023a; Baechler et al., 2024; You et al., 2024; Liu et al., 2025; Wang et al., 2025b).

3 COGS

Fig. 2 provides an overview of COGS, which consists of three stages. First, given a seed dataset of questions in the target domain, we decompose each question into its underlying perception and reasoning factors. Second, the framework collects all discovered factors across the domain and, together with an image collection, generates new questions by recomposing a randomly sampled subset of these factors. Finally, the newly generated questions are used to finetune a pretrained MLLM. During this stage, we leverage the factor decompositions associated with each generated question to define process-level rewards.

In this section, we begin with the problem formulation in Section 3.1, then describe factor decomposition in Section 3.2 and question generation via factor recomposition in Section 3.3, and finally discuss the process reward design for RL finetuning in Section 3.4. Prompts for decomposition and recomposition are presented in Appendix E.

3.1 PROBLEM FORMULATION

Our goal is to fine-tune a multimodal large language model (MLLM) to acquire new capabilities in answering complex, compositional questions in a target domain. Let \mathcal{Q} denote the set of natural language questions in this domain, and let \mathcal{I} denote the corresponding set of images. A question $q \in \mathcal{Q}$ can often be interpreted as requiring a sequence of *perception factors* (e.g., identifying a number in a chart or localizing an element by its relation to another element on a webpage) and *reasoning factors* (e.g., logic, arithmetic, or spatial reasoning). We denote the factorized representation of a question as $q \mapsto \{f_1, f_2, \dots, f_k\}$, $f_i \in \mathcal{F}$, where \mathcal{F} is the of possible factors.

Our objective is to use a small *seed question dataset* \mathcal{Q}^0 to bootstrap a process that can (i) discover the relevant set of factors \mathcal{F} in the target domain, (ii) generate novel and valid questions by recom-

162 posing subsets of factors, and (iii) use these generated questions to improve a pretrained MLLM
 163 through reinforcement learning. Notably, we do not require ground-truth answers for the seed ques-
 164 tions, which makes the data collection process more scalable.

166 3.2 SEED DATA DECOMPOSITION

167 The first stage of our framework COGS is the decomposition of seed questions into a set of inter-
 168 pretable factors. As illustrated in Fig. 2, a complex question that asks for the energy growth and pub-
 169 lic service growth can be broken down into distinct *perception factors* and *reasoning factors*. In this
 170 example, the question requires (i) identifying the percentage of energy growth (Perception1),
 171 (ii) identifying the percentage of public services growth (Perception2), and (iii) computing their
 172 absolute difference (Calculation1).

173 We obtain such decompositions by prompting a MLLM. Specifically, we provide the MLLM with a
 174 natural language description of the decomposition task, a set of in-context examples (each consists
 175 of a paired question and its list of factors), the target question to be decomposed, and the image
 176 associated with this question to ensure each factor is visual-grounded. This step essentially recovers
 177 the factorized representations of the given question $q \mapsto \{f_1, f_2, \dots, f_k\}$, $f_i \in \mathcal{F}$. For each
 178 factor, the MLLM outputs a category label (e.g., Calculation, Counting) and a corresponding
 179 *subquestion* that describes the role of this factor in the original question. These subquestions serve
 180 as exemplars of target categories that will later be used during the factor recomposition stage.

181 We then aggregate all factors discovered from \mathcal{Q}^0 to form the space of possible factors \mathcal{F} . Each
 182 factor is represented by a category name (e.g., Calculation, Counting, Comparison) and is
 183 associated with a set of exemplar subquestions extracted from the seed dataset. The obtained fac-
 184 tor set \mathcal{F} serves two purposes. First, it builds a compositional representation of the latent structure
 185 underlying complex questions, making it possible to recombine factors into new questions in the
 186 domain. Second, it provides fine-grained supervision for reinforcement learning: since each gener-
 187 ated question is associated with its underlying factors, we can define process rewards that provide
 188 intermediate signals for accomplishing individual reasoning steps.

189 3.3 QUESTION GENERATION VIA FACTOR RECOMPOSITION

190 The second stage of our framework COGS is to generate new questions by recomposing previously
 191 discovered factors. As illustrated in Fig. 2, the input to this stage includes: (i) a textual description
 192 of the recomposition task together with a single question recomposition example, (ii) a new image
 193 I from any source, (iii) a list of factors subsampled from \mathcal{F} . Each factor is specified by its category
 194 name and a sampled subset of subquestions from the seed dataset \mathcal{Q}^0 .

195 We prompt a MLLM with this input to generate new subquestions of similar kinds but grounded
 196 on the new image. The MLLM then composes these subquestions into a coherent overall question.
 197 Alongside question generation, the MLLM is also responsible for producing answers: answers to
 198 subquestions are generated first, which are then combined to form the answer to the recomposed
 199 overall question. Therefore, the generated data pairs consist of both the overall question-answer pair
 200 (q, a) and its associated factor-level subquestions and answers. Formally, each data point is as a
 201 tuple $\langle I, q, a, \{f_i\}, \{a_i\} \rangle$ where $q \mapsto \{f_1, f_2, \dots, f_k\}$ and $a_i = \text{Answer}(f_i \mid I)$.

202 An additional advantage arises in artificial domains such as charts, where images are often accom-
 203 panied by underlying metadata (e.g., tables of data associated with the figures). In such cases, we
 204 leverage this auxiliary metadata during question generation to improve answer precision. This idea
 205 is consistent with prior work in synthetic data generation for structured domains (Masry et al., 2022).

206 Overall, this recomposition procedure enables us to expand the training distribution compositionally,
 207 generating diverse questions grounded solely from a dataset of unlabeled images without requiring
 208 additional question–answer annotations.

209 3.4 REINFORCEMENT LEARNING-BASED FINE-TUNING

210 The final stage of COGS is reinforcement learning fine-tuning, where we adopt Group Relative Pol-
 211 icy Optimization (GRPO; Shao et al., 2024) to fine-tune a pretrained MLLM with the generated
 212 question–answer data. A key advantage of our recompositional design is that each complex ques-
 213 tion is automatically paired with its corresponding subquestions and sub-answers during the data
 214 generation phase. This structure enables richer reward modeling beyond final-answer correctness.

In RL-based fine-tuning for MLLMs, the most common choice of reward model is to assign rewards based on exact or approximate answer matching (e.g., F1 string score). However, since COGS generates both overall questions and their factor-level subquestions, we can define additional *process rewards* that assess whether intermediate reasoning steps are carried out correctly. Concretely, given a data point $\langle I, q, a, \{f_i\}, \{a_i\} \rangle$, for each factor f_i with subquestion s_i and ground-truth answer a_i , we prompt an LLM-based reward model to verify whether the model’s chain-of-thought reasoning produced the correct sub-answer. This yields a binary score $c_i \in \{0, 1\}$ for each factor.

Formally, let $r^{\text{final}}(y) \in \{0, 1\}$ denote the correctness of the final answer for output y , N the number of subquestions, and $\lambda > 0$ a weighting hyperparameter. We define the subquestion hit rate as $r^{\text{sub}}(y) = \frac{1}{N} \sum_{i=1}^N c_i$. In this work, we consider three reward models:

- **StandardRM:** $r(y) = r^{\text{final}}(y)$, which only evaluates final-answer correctness. This is the default option when subquestion supervision is not available.
- **ProcessRM-sum:** $r(y) = r^{\text{final}}(y) + \lambda \cdot r^{\text{sub}}(y)$, which combines correctness of the final answer with the average subquestion accuracy, encouraging faithful reasoning at the factor level.
- **ProcessRM-max:** $r(y) = \max(r^{\text{final}}(y), \lambda \cdot r^{\text{sub}}(y))$, which prioritizes the final answer but still provides reward shaping when the intermediate reasoning is largely correct.

The summation-based process reward is a common choice. However, because a question may admit multiple valid decompositions and the resulting factor-level signals are noisy, the summed reward can misrank policies. By contrast, ProcessRM-max preserves policy orders. In contrast, our analysis shows that the max-based reward is order-preserving with respect to final-answer accuracy.

Proposition 3.1 Assume $r^{\text{final}} \in \{0, 1\}^*$, $\lambda \in (0, 1)$ and $r^{\text{sub}} \in [0, 1]$. r^{sub} is a noisy shaping reward: $r^{\text{sub}} = \alpha r^{\text{final}} + \varepsilon$ and with $\alpha \in [0, 1]$. Note that $\mathbb{E}_\pi[\varepsilon]$ may vary with π . Define $V_f(\pi) = \mathbb{E}_\pi[r^{\text{final}}]$

• *ProcessRM-max preserves policy orders. For any policies π_1, π_2 ,*

$$\text{sign}(V_f(\pi_1) - V_f(\pi_2)) = \text{sign}(\mathbb{E}[r^{\text{max}} | \pi_1] - \mathbb{E}[r^{\text{max}} | \pi_2]),$$

• *ProcessRM-sum does not necessarily preserve policy orders. That is, there exist policies π_1, π_2 with $V_f(\pi_1) > V_f(\pi_2)$, $\mathbb{E}[r^\Sigma | \pi_1] - \mathbb{E}[r^\Sigma | \pi_2] < 0$.*

Proof sketch. Using $r^{\text{final}} \in \{0, 1\}$, $r^{\text{max}} = r^{\text{final}} + \lambda r^{\text{sub}}(1 - r^{\text{final}})$. With $\mathbb{E}_\pi[\varepsilon | r^{\text{final}} = 0] = c$ and $\Pr_\pi(r^{\text{final}} = 0) = 1 - V_f(\pi)$, we get $\mathbb{E}[r^{\text{max}} | \pi] = V_f(\pi) + \lambda c(1 - V_f(\pi)) = (1 - \lambda c)V_f(\pi) + \lambda c$, which is an affine, strictly increasing transform of V_f if $\lambda c < 1$.

To see that ProcessRM-sum does not preserve orders, note that

$$\mathbb{E}[r^\Sigma | \pi_1] - \mathbb{E}[r^\Sigma | \pi_2] = (1 + \lambda\alpha) \underbrace{(V_f(\pi_1) - V_f(\pi_2))}_{>0} + \lambda \underbrace{(\mathbb{E}_{\pi_1}[\varepsilon] - \mathbb{E}_{\pi_2}[\varepsilon])}_{\text{can be } < -(1 + \lambda\alpha)\Delta V_f / \lambda}$$

This theoretical insight is further empirically verified in our experiments.

4 EXPERIMENT

We evaluate COGS across multiple artificial image domains to assess its effectiveness in equipping pretrained MLLMs with new reasoning capabilities. We begin with, in Section 4.1, the chart reasoning domain. Using a small subset of questions from the ChartQAPro dataset (Masry et al., 2025a), we show that COGS substantially improves performance on held-out questions. Extending to a mixture of datasets, ChartQAPro + MMC (Liu et al., 2024a), we observe consistent improvements on both datasets, indicating that our framework enables transferable reasoning skills rather than overfitting to a single dataset. Next, in Section 4.2, we evaluate COGS on the VisualWebBench dataset (Liu et al., 2024b), demonstrating that the same approach generalizes beyond the chart domain.

Finally, in Section 4.3, we conduct a series of ablation studies to better understand the sources of these improvements. Specifically, we examine: (i) which categories of questions benefit the most, and (ii) the comparative effectiveness of different reward models.

*When r^{final} take values from $[0, 1]$, ProcessRM-max preserves policy orders iff. $\lambda \cdot r^{\text{sub}} < r^{\text{final}}$.

Model	Factoid	MCQ	Convers.	FactChk.	Hypoth.	Overall
Proprietary Models						
GPT-5-nano	45.95	63.64	49.40	63.58	49.82	50.74
GPT-4o-mini	43.63	66.43	45.48	59.88	45.20	48.32
Gemini 2.5 Flash-Lite	40.42	19.96	48.77	37.43	16.66	38.72
Claude Haiku 3.5	43.44	65.03	39.84	61.79	38.77	46.74
Opensource Models (7B+)						
Qwen2.5-VL-7B (base)	42.07	62.59	44.88	60.78	50.72	47.36
InternVL3.5-GPT-OSS	43.02	58.74	42.86	58.02	54.48	46.86
Phi-4-14B	23.18	34.27	40.93	46.91	36.31	31.61
Chart Specialist Models						
ChartLLaMA	8.11	23.08	18.37	45.06	29.55	17.19
ChartMoE	19.03	35.66	32.97	45.68	27.08	27.28
Prompting Strategies: over Qwen2.5-VL-7B						
Self-Consistency	43.44	61.54	44.00	59.82	41.76	47.22
Tree of Thoughts	40.01	57.94	41.55	54.13	53.35	44.44
Decompositional CoT	42.08	65.03	42.57	56.53	45.55	46.36
Data Synthesis Approaches: over Qwen2.5-VL-7B						
ChartQA-Train	38.77	60.14	49.72	61.11	53.12	46.64
Chart-R1	42.17	46.85	50.53	61.11	55.55	47.32
In-Context Q Example	46.33	62.94	46.91	61.11	61.72	50.58
COGS (Ours)	46.88	65.73	51.16	61.85	58.25	52.02

Table 1: Accuracy (%) on ChartQAPro grouped by question type. COGS performs the best.

4.1 CHART UNDERSTANDING

4.1.1 GENERALIZATION FROM SEED TO TARGET DATASET

Chart Question Answering (CQA) requires interpreting visual representations in charts and reasoning over their spatial relation and underlying data. The recently released ChartQAPro benchmark (Masry et al., 2025a) consists of 1,948 human-curated question–answer pairs targeting complex reasoning over diverse chart types. Unlike earlier chart QA datasets that often rely on synthetic or templated questions, ChartQAPro emphasizes natural, high-quality queries that demand multi-step reasoning and interpretation. This makes it a rigorous testbed for evaluating the visual reasoning ability of multimodal language models.

Setup. Since ChartQAPro’s training and validation sets are not publicly available, we randomly select 33% of the released test set as validation data and treat them as seed questions for data synthesis. The remaining 67% is held out as a fully unseen test set for all experiments. We compare COGS against state-of-the-art pretrained multimodal large language models (MLLMs), chart-specialist models, and recent data synthesis approaches. For all data synthesis methods, including COGS, we use the training set of ChartQA (Masry et al., 2022) as the image source, in order to avoid any contamination from the evaluation data.

Baselines. We consider the following models when evaluating COGS:

- **Proprietary Models:** We include representative proprietary models as reference baselines, focusing on small but competitive variants: GPT-5 nano, GPT-4o mini, Gemini 2.5 Flash, and Claude Haiku 3.5.
- **General MLLMs:** We compare against recent open-source general-purpose MLLMs of comparable sizes, including Qwen2.5-VL-7B (Bai et al., 2025), InternVL-3.5-GPT-oss (Wang et al., 2025a), and Pixtral-12B (Agrawal et al., 2024).
- **Chart Specialist Models** We consider models specifically designed for chart understanding, including ChartLLaMA (Han et al., 2023), which improves chart QA performance after training on high-quality synthetic instruction data, and ChartMoE (Xu et al., 2025) which integrates a Mixture-of-Experts (MoE) architecture to facilitate chart understanding.
- **Prompting Strategies** We compare against 3 prompting strategies at inference time, including self-consistency (Wang et al., 2023b) and Tree of Thoughts prompting (Yao et al., 2023). We also

324 introduce inference-time decomposition as an additional variants of our method. In this setting,
 325 the LLM is prompted at inference time to decompose a complex question into simpler percep-
 326 tion and reasoning subquestions, using the same decomposition instructions as in our factor pool
 327 construction.

328 **• Data Synthesis Approaches.** We compare COGS against other data synthesis methods in-
 329 cluding (1) the original QA pairs in ChartQA training set which is generated by machine, (2)
 330 ChartR1 (Chen et al., 2025) which programmatically synthesizes chart reasoning data and con-
 331 duct reinforcement finetuning; and (3) In-Context Question Examples where we follow question
 332 synthesis convention to generate questions with in-context question examples. Example questions
 333 are sampled from the seed dataset. Notably, all baselines are fine-tuned with GRPO using the same
 334 base model, Qwen2.5-VL-7B (Bai et al., 2025), and image source (the training set of ChartQA)
 335 for same training effort, to enable fair comparisons. We used StandardRM due to the absent of
 336 subquestions and corresponding answer in these datasets.

337 **Result.** Table 1 shows the performance on different question types on ChartQAPro. Among open-
 338 source MLLMs, Qwen2.5-VL-7B achieves the strongest overall accuracy (47.36%). Proprietary
 339 models such as GPT models and Haiku 3.5 perform reasonably well, but remain slightly below the
 340 our fine-tuned Qwen2.5-VL-7B using the COGS framework. Chart-specialist models, while tailored
 341 to chart understanding, perform poorly compared to COGS. This is largely because they are typically
 342 constrained by specially designed architecture and trained on relatively narrow datasets, which do
 343 not fully cover the distribution of ChartQAPro and therefore suffer from domain gaps.

344 All data synthesis approaches demonstrate minor benefits over the base model likely due to domain
 345 gaps as well. COGS achieves the highest overall accuracy of 52.02%, outperforming both base-
 346 lines and all open-source MLLMs by a significant margin. We provide in-depth analysis of the
 347 performance gains in Section 4.3.

348 We observe a substantial performance gap between inference-time decomposition and COGS,
 349 largely due to error accumulation across sub-questions. Instead, COGS mitigates this issue by
 350 rewarding correct intermediate substitutions in training, reducing error compounding. Moreover,
 351 RL training in COGS enables the model to flexibly integrate decomposition signals without being
 352 constrained to a single reasoning path, unlike inference-time decomposition where the provided
 353 examples in the context may restrict the model’s ability to explore novel reasoning paths.

354 4.1.2 GENERALIZATION OVER MIXTURE OF DATASETS

356 **Setup.** We extend COGS to a multi-dataset setting by incorporating the MultiModal Chart Bench-
 357 mark (MMC-Bench) (Liu et al., 2024a), a recent CQA dataset with reasoning-intensive, human-
 358 annotated QA pairs. Similar to our ChartQAPro (noted as *seed A*) setup, we split the MMC-Bench
 359 test set into 33% validation questions (used as *seed B*) and 67% held-out test questions.

360 **Variants.** We compare two strategies for synthesizing data across domains: 1. **Data-level mix-
 361 ture:** decompose and recompose A and B independently, then combine the synthesized data, i.e.,
 362 $\text{Recompose}(\text{Decompose}(A)) + \text{Recompose}(\text{Decompose}(B))$. 2. **Factor-level mixture:** decompose
 363 A and B separately, merge all extracted factors into a joint pool, and recompose using this combined
 364 pool, i.e., $\text{Recompose}(\text{Decompose}(A) \cup \text{Decompose}(B))$. In addition, we include two “specialist
 365 models” trained only with augmented data from a single domain (e.g., trained on augmented A and
 366 evaluated on A). These serve as “upper-bound references” for in-domain data augmentation. All
 367 methods use Qwen2.5-VL-7B as the base model and are trained with GRPO and ProcessRM-max.

368 COGS shows transferrable benefits across datasets.

369 As shown in Table 2, both data-level and factor-level mix-
 370 tures substantially improve performance in both domains,
 371 demonstrating that COGS facilitates positive transfer
 372 across datasets rather than simply overfitting to one. Cru-
 373 cially, the factor-level mixture consistently outperforms
 374 the data-level mixture, suggesting that factor recomposi-
 375 tion better captures shared structures between domains.

Model	ChartQAPro	MMC
Qwen2.5VL	47.36	85.65
+ ChartQAPro	52.02	85.69
+ MMC	49.93	88.10
+ Data-level Mix	50.72	86.99
+ Factor-level Mix	52.33	87.55

376 Table 2: Multi-data co-training results.

377 **Factor-level mixture is a better strategy for data mixing.** We observe that factor-level mixture
 378 consistently outperforms data-level mixture, and achieves performance on both domains compa-
 379 rable to specialist models trained exclusively in-domain. This suggests that factorization offers a

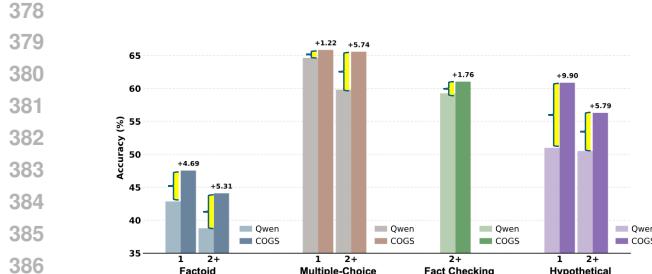


Figure 3: Accuracy (%) on ChartQAPro by reasoning factor numbers and question types. COGS generally yields the larger gains on questions with more factors.

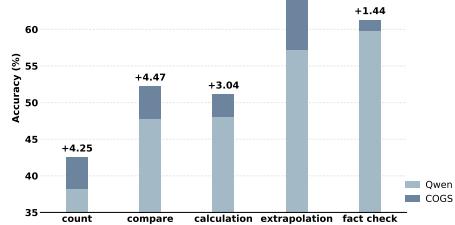


Figure 4: Accuracy (%) on ChartQAPro by reasoning factor types with complexity from low to high.

more effective way to leverage multiple datasets. Prior research on *data mixing* and *multi-dataset training* has shown that simply combining heterogeneous datasets often fails to yield the best generalization, as models may overfit to dominant distributions or under-utilize complementary signals. By breaking down questions into primitive factors before recomposition, COGS provides a common representational ground across datasets, enabling more transferable training. This suggests a promising direction for the long-standing challenge of data mixture in foundation model training.

4.2 WEBPAGE GUI UNDERSTANDING

To demonstrate the generality of COGS, we also evaluate it on the webpage question answering domain, which requires visual, semantic, and structural reasoning over graphical user interfaces (GUIs). We adopt VisualWebBench (Liu et al., 2024b), a benchmark consisting of diverse real-world webpages paired with reasoning-intensive, human-curated questions. We use questions from VisualWebBench as seeds and screenshots from MultiUI (Liu et al., 2025) as the image source.

Setup. We evaluate the same set of proprietary and general-purpose MLLMs as in the chart understanding experiments. In addition, we compare against the GUI specialist UIX-Qwen2 and data synthesis approach in Liu et al. (2025). We sampled 10k webpage QA data from MultiUI (Liu et al., 2025), and fine-tuned Qwen2.5-VL-7B (Bai et al., 2025) with GRPO (Shao et al., 2024). The results are reported as MultiUI-WQA in Table 3.

Result. Table 3 shows the result. Qwen2.5-VL-7B achieves 85.65% accuracy, outperforming most open-source baselines, while specialist models such as UIX-Qwen2 lag behind. Inference-time decomposition yields minor gain (86.12%). Among these, COGS achieves the best non-proprietary result at 88.04%. These findings confirm that COGS generalizes beyond charts, effectively boosting reasoning capability over complex webpages.

4.3 ADDITIONAL ANALYSIS

In this section, we attribute the reasoning capability gains of COGS to two factors: (1) enhanced performance on reasoning-intensive questions, including multi-hop reasoning (Fig. 3) and complex reasoning factors (Fig. 4), and (2) the impact of different reward models.

COGS improves multi-hop reasoning. Fig. 3 shows model performance grouped by the number of factors. Overall, the performance improvement becomes more pronounced as questions have longer reasoning chains. This trend holds across factoid, multiple-choice, and fact-checking questions. For hypothetical questions, however, the trend is less salient: we conjecture that their difficulty is already dominated by the first counterfactual reasoning factor (“*if xxx happens, ...*”). Therefore, adding more factors does not compound the hardness in the same way.

Model	WebQA
<i>Proprietary Models</i>	
GPT-5-nano	89.47
GPT-4o-mini	81.34
Gemini 2.5 Flash-Lite	81.85
Claude Haiku 3.5	80.86
<i>OpenSource Models (~7B)</i>	
Qwen2.5-VL-7B (base model)	85.65
InternVL3.5-GPT-OSS	74.64
Phi-4-14B	74.16
<i>Specialist Models</i>	
UIX-Qwen2	68.90
<i>Inference-time decomposition</i>	
Decompositional CoT	86.12
<i>Data Synthesis Approaches</i>	
MultiUI-WQA	86.60
COGS (Ours)	88.04

Table 3: Accuracy (%) on VisualWebBench. COGS performs the best among all non-proprietary models.

432	a. Factoid	Question: How many project phase stage requires less than 60 hours? Answer: 3 Decomposition: <ul style="list-style-type: none">(perception: project phase stages and their corresponding hours)(comparison: each stage < 60 hours)(count: number of stages where hours < 60)	Qwen2.5VL <ul style="list-style-type: none">perception: 1. Project Plan: 144 (> 60) 2. Project Init: 40 (< 60) 3. M&C: 36 (< 60) 4. Exec: 164 (> 60) 5. Closure: 56 (> 60)count: the phases that require < 60 hours: - Project Init : 40 hours - M&C: 36, 2 phases total The answer is 2	COGS <ul style="list-style-type: none">perception: 1. Project Plan: 144 2. Project Init: 40 3. M&C: 36 4. Exec: 164 5. Closure: 56comparison: 144 (> 60), 40 (< 60), 36 (< 60), 164 (> 60), 56 (< 60)count: 3 The answer is 3
437	b. Hypothetical	Question: If the average age of the athletes was 1 year lower, how many Japanese athletes would have been younger than the average of all the athletes? Answer: 5 Decomposition: <ul style="list-style-type: none">(perception: current average age of all athletes) (calculation: new average age - 1)(comparison: each Japanese athlete's age < new average age)(count: number of Japanese athletes younger than the new average age)	Qwen2.5VL <ul style="list-style-type: none">perception: The current average age of the Japanese athletes is 27.08 years.calculation: If the average age were 1 year lower, the new average would be 26.08 years.count: H Watanabe (22) - G Edwards (23) - D Tanaka (29) - ... - Y Baba (25) - Y Togashi (24) - Y Watanabe (24). Counting these, we see that 6 athletes are younger than 26.08 years. The answer is 6	COGS <ul style="list-style-type: none">perception: The current team age is 27.08.calculation: New average age = 27.08 - 1 = 26.08.comparison: Among A Schafer: 23 - D Tanaka: 29 ... Athletes younger than 26.08: - A Schafer (23) - H Watanabe (22) ...count: There are 5 athletes younger than 26.08. The answer is 5
443	c. Multi-Choice	Question: If the trend from 2010 to 2020 continues, what would be the projected UK greenhouse gas emissions in 2030? a) 200 b) 310 c) 340 d) 370 Answer: a Decomposition: <ul style="list-style-type: none">(perception: UK greenhouse gas emissions trend from 2010 to 2020)(extrapolation: continuation of the trend to estimate 2030 emissions)(comparison: match with the given options)	Qwen2.5VL <ul style="list-style-type: none">perception: Decreased by approximately 150 million tonnes (from ~600 to ~450)extrapolation: Over 10 years, the decrease is about 15 per year. If the trend continues, we can project for 2030 by subtracting another 15 from the 2020 level: 450 - 15 = 435comparison: The closest option to 435 is 370 The answer is d	COGS <ul style="list-style-type: none">perception: From 2010 to 2020, the emissions decreased from approximately 600 million tonnes to about 400 million tonnes. The total decrease is 200 over 10 yearsextrapolation: From 2020 to 2030 is another 10 years, the emissions would decrease by another 200 million tonnes. The projected emissions in 2030 would be 400 - 200 = 200comparison: a) 200 The answer is a
450	d. Factoid	Question: Between 2013 and 2017, what was the average annual growth of the immigrant population in thousands? Answer: 800 Decomposition: <ul style="list-style-type: none">(perception: immigrant population values for years 2013 to 2017)(calculation: average annual growth those yrs)	Qwen2.5VL <ul style="list-style-type: none">perception: immigrant population for each year: - 2013: 41.3 ... - 2016: 43.7 - 2017: 44.5calculation: - Total growth = 44.5 (2017) - 41.3 (2013) = 3.2, Average annual growth = 3.2 million / 5 years = 0.64 million = 640 thousands The answer is 640	COGS <ul style="list-style-type: none">perception: immigrant population for each year: - 2013: 41.3 ... - 2016: 43.7 - 2017: 44.5calculation: difference between each consecutive year: - 2014 - 2013 = 42.4 - 41.3 = 1.1, 2015 - 2014, ... 2017 - 2016... Sum and divide: 3.2 / 4 = 0.8 million = 800 thousands The answer is 800

Figure 5: Qualitative evaluation examples. COGS-RL improved base models on questions that contain multiple factors and from different question types in ChartQAPro.

This observation is further illustrated by the substantial gains on the *Count* (+4.25%) and *Compare* (+4.47%) factors in Figure 4. These two factors frequently co-occur as essential steps in multi-hop reasoning, such as *Counting* values based on results of *Comparison* operations. As illustrated in Figure 5 (Rows **a** and **b**), models trained with COGS better capture such compositional structures, whereas baseline models tend to shortcut the process and directly produces the answer (which can be flawed, e.g., being number-insensitive and incorrectly concluding $56 > 60$, as shown in Row **a**).

COGS supports advanced reasoning factors. At the factor level, we also observe strong gains on advanced reasoning factors such as *Extrapolation* (+7.62%) and *Calculation* (+3.04%) in Figure 4. These factors require models not only to execute operations but also to decide which operations are appropriate (e.g., whether to add, divide, or apply another function). The complexity is illustrated in Figure 5 (Rows **c** and **d**). By training models on diverse reasoning trajectories with our compositional data generation framework, we can improve factor-level reasoning performances. For example, in Row **d**, COGS correctly identifies that the average annual growth should be computed over 4 intervals, rather than mistakenly dividing the difference between the first and last year by 5.

Ablation: reward model. We conduct an ablation study on the reward models under three settings proposed in Section 3.4, with GRPO and COGS data seeded from ChartQAPro. As shown in Table 4: ProcessRM-sum slightly worsens performance, while ProcessRM-max consistently improves it compared to StandardRM. This is consistent with our theoretical analysis in Proposition 3.1, which shows that ProcessRM-max preserves policy order under noisy sub-reward signals, whereas ProcessRM-sum does not.

We further ablate the training strategy by an additional supervised fine-tuning (SFT) phase with 35k COGS examples prior to GRPO. To mitigate overfitting, the datasets for SFT and GRPO are non-overlapping. Results show that while SFT helps regulate output format, it does not enhance reasoning ability, consistent with findings from Chu et al. (2025).

Reward Model	Overall Acc.
StandardRM	50.96
ProcessRM-sum	50.35
ProcessRM-max	52.02
Alt. Training Setting	
SFT+ProcessRM-max	46.62

Table 4: Ablation study on reward models shows that ProcessRM-max maximally boosts the model performance.

486
 487 **Ablation: size of seed questions.** We also ablate
 488 the seed set size used for COGS data synthesis on
 489 ChartQAPro. We held out 67% of ChartQAPro as
 490 a fixed evaluation set for fair comparison and sam-
 491 pled 1%, 5%, 15%, 25%, and 33% of the original
 492 data size from the remaining 33%. We then trained
 493 Qwen2.5-VL-7B on data generated from each seed
 494 set. As shown in Fig. 6, performance increases with
 495 seed size. Questions generated from very small seed
 496 sets are less representative, resulting in relatively
 497 poor performance, whereas a reasonable subset such
 498 as 33% already yields a substantial boost.
 499

5 CONCLUSION

500 We have introduced COGS, a data-efficient framework for equipping pretrained multi-modal large
 501 language models with new reasoning capabilities in domains where annotated question–answer data
 502 is scarce. The key idea is to decompose seed questions into primitive factors, and then systematically
 503 recompose these factors with new images to generate diverse, compositional training data.

504 **Future Work.** This work opens several future directions. First, our experiments focus on single
 505 charts and single webpage screenshots; extending COGS to long-context reasoning over visually
 506 rich documents will broaden its scope. Second, it is important to study how our data synthesis can
 507 be integrated into the pretraining stage of MLLMs or combined with search algorithms to further
 508 boost process reward guidance (Zhang et al., 2024a; Park et al., 2025). Third, future work may
 509 consider investigating how the reasoning capabilities acquired through COGS transfer to downstream
 510 tasks—such as chart code editing or web agent applications.

512 ETHICS STATEMENT

514 The primary contribution of this work is an efficient data augmentation pipeline that factorizes a
 515 small set of seed data into diverse reasoning question–answer pairs. All data used in our work that
 516 are already publicly released and open-sourced under their respective licenses, which we carefully
 517 followed. Our method does not generate new images or introduce additional modalities. We make
 518 sure that the synthesized question–answer pairs focus only on reasoning over charts and web pages,
 519 avoiding offensive, biased, or sensitive content. As such, the ethical considerations remain consistent
 520 with those already established for the underlying datasets and models. We hope we further promote
 521 reproducibility and transparency through the release of code and augmented data.

523 REPRODUCIBILITY STATEMENT

525 To ensure transparency, we rely solely on publicly available resources: all open-source LLM weights
 526 are downloaded from their official repositories, and proprietary models are accessed via their doc-
 527 umented code and APIs. We describe all experimental configurations, including prompt templates,
 528 hyperparameter choices, and software/hardware environments, in Section 3, Section 4, and the Ap-
 529 pendix D. Our experiments do not involve any private or sensitive data. We release the code and
 530 data at <https://cogsynthesis.github.io>.

532 REFERENCES

534 Pravesh Agrawal, Szymon Antoniak, Emma Bou Hanna, Baptiste Bout, Devendra Chaplot, Jes-
 535 sica Chudnovsky, Diogo Costa, Baudouin De Monicault, Saurabh Garg, Theophile Gervet, et al.
 536 Pixtral 12b. *arXiv preprint arXiv:2410.07073*, 2024. 1, 2, 6
 537
 538 Anthropic. The claude 3 model family: Opus, sonnet, haiku. https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf, 2024. URL <https://www.anthropic.com/news/claude-3-family>. Model card. 1, 2

540 Rabiul Awal, Mahsa Massoud, Aarash Feizi, Zichao Li, Suyuchen Wang, Christopher Pal, Aish-
 541 warya Agrawal, David Vazquez, Siva Reddy, Juan A Rodriguez, et al. Webmmu: A bench-
 542 mark for multimodal multilingual website understanding and code generation. *arXiv preprint*
 543 *arXiv:2508.16763*, 2025. 3

544 Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir Zubach, Hassan Mansoor, Vincent Etter, Vic-
 545 tor Cărbune, Jason Lin, Jindong Chen, and Abhanshu Sharma. Screenai: a vision-language model
 546 for ui and infographics understanding. In *Proceedings of the Thirty-Third International Joint Con-
 547 ference on Artificial Intelligence*, pp. 3058–3068, 2024. 3

548 Youngmin Baek, Bado Lee, Dongyo Han, Sangdoo Yun, and Hwalsuk Lee. Character region
 549 awareness for text detection. In *Proceedings of the IEEE/CVF conference on computer vision and*
 550 *pattern recognition*, pp. 9365–9374, 2019. 3

552 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 553 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
 554 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
 555 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025.
 556 URL <https://arxiv.org/abs/2502.13923>. 1, 2, 6, 7, 8

557 Victor Carbune, Hassan Mansoor, Fangyu Liu, et al. Chart-based reasoning: Transferring capabili-
 558 ties from llms to vlms. In *proceedings of NAACL*, 2024. 3

560 Yingshan Chang, Mridu Narang, Hisami Suzuki, Guihong Cao, Jianfeng Gao, and Yonatan Bisk.
 561 Webqa: Multihop and multimodal qa. In *Proceedings of the IEEE/CVF conference on computer*
 562 *vision and pattern recognition*, pp. 16495–16504, 2022. 3

563 Jinyue Chen, Lingyu Kong, Haoran Wei, Chenglong Liu, Zheng Ge, Liang Zhao, Jianjian Sun,
 564 Chunrui Han, and Xiangyu Zhang. Onechart: Purify the chart structural extraction via one auxil-
 565 iary token. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 147–
 566 155, 2024. 3

567 Jun Chen, Deyao Zhu, Xiaoqian Shen, et al. Minigpt-v2: large language model as a unified interface
 568 for vision-language multi-task learning. *arXiv preprint:2310.09478*, 2023. 3

569 Lei Chen, Xuanle Zhao, Zhixiong Zeng, Jing Huang, Yufeng Zhong, and Lin Ma. Chart-r1: Chain-
 570 of-thought supervision and reinforcement for advanced chart reasoner, 2025. URL <https://arxiv.org/abs/2507.15509>. 3, 7

571 Xingyu Chen, Zihan Zhao, Lu Chen, JiaBao Ji, Danyang Zhang, Ao Luo, Yuxuan Xiong, and Kai
 572 Yu. WebSRC: A dataset for web-based structural reading comprehension. In *Proceedings of the*
 573 *2021 Conference on Empirical Methods in Natural Language Processing*, pp. 4173–4185, Online
 574 and Punta Cana, Dominican Republic, 2021. Association for Computational Linguistics. doi:
 575 10.18653/v1/2021.emnlp-main.343. URL <https://aclanthology.org/2021.emnlp-main.343>. 3

576 Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Li YanTao, Jianbing Zhang, and Zhiyong
 577 Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. In *Proceedings of the*
 578 *62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 579 pp. 9313–9332, 2024. 3

580 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
 581 Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
 582 model post-training. In *Forty-second International Conference on Machine Learning*, 2025. 9

583 Gheorghe Comanici, Eric Bieber, and et al. Gemini 2.5: Pushing the frontier with advanced
 584 reasoning, multimodality, long context, and next generation agentic capabilities, 2025. URL
 585 <https://arxiv.org/abs/2507.06261>. 1, 2

586 Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
 587 Yu Su. Navigating the digital world as humans do: Universal visual grounding for GUI agents.
 588 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=kxnoqaisCT>. 3

594 Yucheng Han, Chi Zhang, Xin Chen, Xu Yang, Zhibin Wang, Gang Yu, Bin Fu, and Hanwang
 595 Zhang. Chartllama: A multimodal llm for chart understanding and generation, 2023. URL <https://arxiv.org/abs/2311.16483>. 3, 6
 596
 597

598 Wei He, Zhiheng Xi, Wanxu Zhao, Xiaoran Fan, Yiwen Ding, Zifei Shan, Tao Gui, Qi Zhang, and
 599 Xuanjing Huang. Distill visual chart reasoning ability from llms to mllms. *CoRR*, 2024. 2
 600
 601

602 Zexue He, Marco Tulio Ribeiro, and Fereshte Khani. Targeted data generation: Finding and fixing
 603 model weaknesses. In *The 61st Annual Meeting Of The Association For Computational Linguistics*, 2023. 3
 604
 605

606 Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
 607 Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
 608 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 609 14281–14290, 2024. 3
 610
 611

612 Yu-Chung Hsiao, Fedir Zubach, Gilles Baechler, Srinivas Sunkara, Victor Cărbune, Jason Lin, Maria
 613 Wang, Yun Zhu, and Jindong Chen. Screenqa: Large-scale question-answer pairs over mobile app
 614 screenshots. In *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of
 615 the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
 616 Papers)*, pp. 9427–9452, 2025. 3
 617
 618

619 Anwen Hu, Haiyang Xu, Jiabo Ye, Ming Yan, Liang Zhang, Bo Zhang, Ji Zhang, Qin Jin, Fei
 620 Huang, and Jingren Zhou. mplug-docowl 1.5: Unified structure learning for ocr-free document
 621 understanding. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp.
 622 3096–3120, 2024. 3
 623
 624

625 Muye Huang, Han Lai, Xinyu Zhang, Wenjun Wu, Jie Ma, Lingling Zhang, and Jun Liu. Evochart:
 626 A benchmark and a self-training approach towards real-world chart understanding. In *Proceedings
 627 of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 3680–3688, 2025. 2
 628
 629

630 Caijun Jia, Nan Xu, Jingxuan Wei, Qingli Wang, Lei Wang, Bihui Yu, and Junnan Zhu. Chartrea-
 631 soner: Code-driven modality bridging for long-chain reasoning in chart question answering, 2025.
 632 URL <https://arxiv.org/abs/2506.10116>. 3
 633
 634

635 Kushal Kafle, Brian Price, Scott Cohen, and Christopher Kanan. Dvqa: Understanding data visual-
 636 izations via question answering. In *Proceedings of the IEEE conference on computer vision and
 637 pattern recognition*, pp. 5648–5656, 2018. 2
 638
 639

640 Samira Ebrahimi Kahou, Vincent Michalski, Adam Atkinson, Akos Kadar, Adam Trischler, and
 641 Yoshua Bengio. Figureqa: An annotated figure dataset for visual reasoning, 2018. URL <https://arxiv.org/abs/1710.07300>. 2
 642
 643

644 Kenton Lee, Mandar Joshi, Iulia Raluca Turc, et al. Pix2struct: Screenshot parsing as pretraining
 645 for visual language understanding. In *proceedings of ICML*, pp. 18893–18912, 2023. 3
 646
 647

648 Bo Li, Peiyuan Zhang, Kaichen Zhang, Fanyi Pu, Xinrun Du, Yuhao Dong, Haotian Liu, Yuanhan
 649 Zhang, Ge Zhang, Chunyuan Li, and Ziwei Liu. Lmms-eval: Accelerating the development of
 650 large multimoal models, March 2024a. URL <https://github.com/EvolvingLMMs-Lab/lmms-eval>.
 651 18
 652
 653

654 Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and
 655 Tat-Seng Chua. Screenspot-pro: Gui grounding for professional high-resolution computer use,
 656 2025. URL <https://arxiv.org/abs/2504.07981>. 3
 657
 658

659 Yang Li, Gang Li, Luheng He, Jingjie Zheng, Hong Li, and Zhiwei Guan. Widget captioning: Gen-
 660 erating natural language description for mobile user interface elements. In *Proceedings of the 2020
 661 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 5495–5510,
 662 Online, 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.
 663 443. URL <https://aclanthology.org/2020.emnlp-main.443>. 3
 664

648 Zhuowan Li, Bhavan Jasani, Peng Tang, and Shabnam Ghadar. Synthesize step-by-step: Tools tem-
 649 plates and llms as data generators for reasoning-based chart vqa. In *Proceedings of the IEEE/CVF*
 650 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 13613–13623, June 2024b.
 651 3
 652

653 Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, et al. Deplot: One-
 654 shot visual language reasoning by plot-to-table translation. In *Findings of ACL*, pp. 10381–10399,
 655 2023a. 3

656 Fangyu Liu, Francesco Piccinno, Syrine Krichene, et al. Matcha: Enhancing visual language pre-
 657 training with math reasoning and chart derendering. In *proceedings of ACL*, pp. 12756–12770,
 658 2023b. 3
 659

660 Fuxiao Liu, Xiaoyang Wang, Wenlin Yao, Jianshu Chen, Kaiqiang Song, Sangwoo Cho, Yaser
 661 Yacoob, and Dong Yu. Mmc: Advancing multimodal chart understanding with large-scale in-
 662 struction tuning. In *Proceedings of the 2024 Conference of the North American Chapter of the*
 663 *Association for Computational Linguistics: Human Language Technologies (Volume 1: Long*
 664 *Papers)*, pp. 1287–1310, 2024a. 2, 3, 5, 7

665 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 666 *in neural information processing systems*, 36:34892–34916, 2023c. 1, 2
 667

668 Junpeng Liu, Yifan Song, Bill Yuchen Lin, Wai Lam, Graham Neubig, Yuanzhi Li, and Xiang
 669 Yue. Visualwebbench: How far have multimodal llms evolved in web page understanding and
 670 grounding?, 2024b. URL <https://arxiv.org/abs/2404.05955>. 3, 5, 8
 671

672 Junpeng Liu, Tianyue Ou, Yifan Song, Yuxiao Qu, Wai Lam, Chenyan Xiong, Wenhui Chen, Graham
 673 Neubig, and Xiang Yue. Harnessing webpage UIs for text-rich visual understanding. In *The*
 674 *Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=IIsto4P3Ag>. 3, 8
 675

676 Mengsha Liu, Daoyuan Chen, Yaliang Li, Guiyan Fang, and Ying Shen. Chartthinker: A con-
 677 textual chain-of-thought approach to optimized chart summarization. In *Proceedings of the 2024*
 678 *Joint International Conference on Computational Linguistics, Language Resources and Evalua-
 679 tion (LREC-COLING 2024)*, pp. 3057–3074, 2024c. 3
 680

681 Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A bench-
 682 mark for question answering about charts with visual and logical reasoning. In *Findings of the*
 683 *Association for Computational Linguistics: ACL 2022*, pp. 2263–2279, 2022. 2, 4, 6
 684

685 Ahmed Masry, Mohammed Saidul Islam, Mahir Ahmed, Aayush Bajaj, Firoz Kabir, Aaryaman
 686 Kartha, Md Tahmid Rahman Laskar, Mizanur Rahman, Shadikur Rahman, Mehrad Shahmo-
 687 hammadi, Megh Thakkar, Md Rizwan Parvez, Enamul Hoque, and Shafiq Joty. Chartqapro:
 688 A more diverse and challenging benchmark for chart question answering, 2025a. URL <https://arxiv.org/abs/2504.05506>. 2, 5, 6
 689

690 Ahmed Masry, Megh Thakkar, Aayush Bajaj, Aaryaman Kartha, Enamul Hoque, and Shafiq Joty.
 691 Chartgemma: Visual instruction-tuning for chart reasoning in the wild. In *Proceedings of the 31st*
 692 *International Conference on Computational Linguistics: Industry Track*, pp. 625–643, 2025b. 3
 693

694 Fanqing Meng, Wenqi Shao, Quanfeng Lu, Peng Gao, Kaipeng Zhang, Yu Qiao, and Ping Luo.
 695 Chartassistant: A universal chart multimodal language model via chart-to-table pre-training and
 696 multitask instruction tuning. *CoRR*, 2024. 3
 697

698 Nitesh Methani, Pritha Ganguly, Mitesh M Khapra, and Pratyush Kumar. Plotqa: Reasoning over
 699 scientific plots. In *Proceedings of the ieee/cvf winter conference on applications of computer*
 700 *vision*, pp. 1527–1536, 2020. 2

701 OpenAI, Josh Achiam, Steven Adler, and et al. Gpt-4 technical report, 2024. URL <https://arxiv.org/abs/2303.08774>. 1, 2

702 Sungjin Park, Xiao Liu, Yeyun Gong, and Edward Choi. Ensembling large language models with
 703 process reward-guided tree search for better complex reasoning. In *Proceedings of the 2025 Con-*
 704 *ference of the Nations of the Americas Chapter of the Association for Computational Linguistics:*
 705 *Human Language Technologies (Volume 1: Long Papers)*, pp. 10256–10277, 2025. 10
 706

707 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 708 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 709 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024. 2, 4, 8, 18
 710

711 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 712 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In *Proceedings*
 713 *of the Twentieth European Conference on Computer Systems*, pp. 1279–1297, 2025. 18
 714

715 Chufan Shi, Cheng Yang, Yaxin Liu, Bo Shui, Junjie Wang, Mohan Jing, Linran Xu, Xinyu Zhu,
 716 Siheng Li, Yuxiang Zhang, et al. Chartmimic: Evaluating lmm’s cross-modal reasoning capability
 717 via chart-to-code generation. *CoRR*, 2024. 2

718 Liyan Tang, Grace Kim, Xinyu Zhao, Thom Lake, Wenxuan Ding, Fangcong Yin, Prasann Singhal,
 719 Manya Wadhwa, Zeyu Leo Liu, Zayne Sprague, Ramya Namuduri, Bodun Hu, Juan Diego Ro-
 720 driguez, Puyuan Peng, and Greg Durrett. Chartmuseum: Testing visual reasoning capabilities of
 721 large vision-language models, 2025. URL <https://arxiv.org/abs/2505.13444>. 2

722 Maria Wang, Srinivas Sunkara, Gilles Baechler, Jason Lin, Yun Zhu, Fedir Zubach, Lei Shu, and
 723 Jindong Chen. Webquest: A benchmark for multimodal qa on web page sequences. *arXiv preprint*
 724 *arXiv:2409.13711*, 2024a. 3

725 Peifang Wang, Olga Golovneva, Armen Aghajanyan, et al. DOMINO: A dual-system for multi-step
 726 visual language reasoning. *arXiv preprint:2310.02804*, 2023a. 3

727 Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xinguang Wei, Zhaoyang
 728 Liu, Linglin Jing, Shenglong Ye, Jie Shao, Zhaokai Wang, Zhe Chen, Hongjie Zhang, Ganlin
 729 Yang, Haomin Wang, Qi Wei, Jinhui Yin, Wenhao Li, Erfei Cui, Guanzhou Chen, Zichen Ding,
 730 Changyao Tian, Zhenyu Wu, Jingjing Xie, Zehao Li, Bowen Yang, Yuchen Duan, Xuehui Wang,
 731 Zhi Hou, Haoran Hao, Tianyi Zhang, Songze Li, Xiangyu Zhao, Haodong Duan, Nianchen Deng,
 732 Bin Fu, Yinan He, Yi Wang, Conghui He, Botian Shi, Junjun He, Yingtong Xiong, Han Lv, Lijun
 733 Wu, Wenqi Shao, Kaipeng Zhang, Huipeng Deng, Biqing Qi, Jiaye Ge, Qipeng Guo, Wenwei
 734 Zhang, Songyang Zhang, Maosong Cao, Junyao Lin, Kexian Tang, Jianfei Gao, Haian Huang,
 735 Yuzhe Gu, Chengqi Lyu, Huanze Tang, Rui Wang, Haijun Lv, Wanli Ouyang, Limin Wang, Min
 736 Dou, Xizhou Zhu, Tong Lu, Dahua Lin, Jifeng Dai, Weijie Su, Bowen Zhou, Kai Chen, Yu Qiao,
 737 Weihai Wang, and Gen Luo. Internvl3.5: Advancing open-source multimodal models in versatil-
 738 ity, reasoning, and efficiency, 2025a. URL <https://arxiv.org/abs/2508.18265>. 1, 2, 6
 739

740 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
 741 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
 742 models. In *The Eleventh International Conference on Learning Representations*, 2023b. 6
 743

744 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
 745 Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
 746 *Proceedings of the 61st annual meeting of the association for computational linguistics (volume*
 747 *1: long papers)*, pp. 13484–13508, 2023c. 2

748 Zirui Wang, Mengzhou Xia, Luxi He, Howard Chen, Yitao Liu, Richard Zhu, Kaiqu Liang, Xindi
 749 Wu, Haotian Liu, Sadhika Malladi, et al. Charxiv: Charting gaps in realistic chart understand-
 750 ing in multimodal llms. *Advances in Neural Information Processing Systems*, 37:113569–113697,
 751 2024b. 2

752 Ziwei Wang, Weizhi Chen, Leyang Yang, Sheng Zhou, Shengchu Zhao, Hanbei Zhan, Jiongchao
 753 Jin, Liangcheng Li, Zirui Shao, and Jiajun Bu. Mp-gui: Modality perception with mllms for gui
 754 understanding. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
 755 29711–29721, 2025b. 3

756 Yifan Wu, Lutao Yan, Leixian Shen, Yinan Mei, Jiannan Wang, and Yuyu Luo. Chartcards:
 757 A chart-metadata generation framework for multi-task chart understanding. *arXiv preprint*
 758 *arXiv:2505.15046*, 2025. 3

759

760 Renqiu Xia, Bo Zhang, Hancheng Ye, Xiangchao Yan, Qi Liu, Hongbin Zhou, Zijun Chen, Peng Ye,
 761 Min Dou, Botian Shi, Junchi Yan, and Yu Qiao. Chartx & chartvlm: A versatile benchmark and
 762 foundation model for complicated chart reasoning, 2025. URL <https://arxiv.org/abs/2402.12185>.
 763 2, 3

764

765 Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
 766 Lin, and Dixin Jiang. Wizardlm: Empowering large pre-trained language models to follow com-
 767 plex instructions. In *The Twelfth International Conference on Learning Representations*, 2024a.
 768 2

769 Zhengzhuo Xu, Sinan Du, Yiyan Qi, Chengjin Xu, Chun Yuan, and Jian Guo. Chartbench: A
 770 benchmark for complex visual reasoning in charts, 2024b. URL <https://arxiv.org/abs/2312.15915>.
 771 2

772 Zhengzhuo Xu, Bowen Qu, Yiyan Qi, SiNan Du, Chengjin Xu, Chun Yuan, and Jian Guo. Chart-
 773 moe: Mixture of diversely aligned expert connector for chart understanding. In *The Thirteenth*
 774 *International Conference on Learning Representations*, 2025. 3, 6

775

776 Pengyu Yan, Mahesh Bhosale, Jay Lal, Bikhyat Adhikari, and David Doermann. Chartreformer:
 777 Natural language-driven chart image editing. In *International Conference on Document Analysis*
 778 and *Recognition*, pp. 453–469. Springer, 2024. 3

779

780 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
 781 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Ad-*
 782 *vances in neural information processing systems*, 36:11809–11822, 2023. 6

783

784 Jiabo Ye, Anwen Hu, Haiyang Xu, Qinghao Ye, Ming Yan, Guohai Xu, Chenliang Li, Junfeng Tian,
 785 Qi Qian, Ji Zhang, et al. Ureader: Universal ocr-free visually-situated language understanding
 786 with multimodal large language model. In *Findings of the Association for Computational Lin-*
 787 *guistics: EMNLP 2023*, pp. 2841–2858, 2023a. 3

788

789 Jiabo Ye, Anwen Hu, Haiyang Xu, et al. Ureader: Universal ocr-free visually-situated language
 790 understanding with multimodal large language model. In *Findings of ACL*, 2023b. 3

791

792 Qinghao Ye, Haiyang Xu, Guohai Xu, et al. mplug-owl: Modularization empowers large language
 793 models with multimodality. *arXiv preprint:2304.14178*, 2023c. 3

794

795 Qinghao Ye, Haiyang Xu, Jiabo Ye, Ming Yan, Anwen Hu, Haowei Liu, Qi Qian, Ji Zhang, and Fei
 796 Huang. mplug-owl2: Revolutionizing multi-modal large language model with modality collabora-
 797 tion. In *Proceedings of the ieee/cvf conference on computer vision and pattern recognition*, pp.
 798 13040–13051, 2024. 3

799

800 Keen You, Haotian Zhang, Eldon Schoop, Floris Weers, Amanda Swearngin, Jeffrey Nichols, Yinfei
 801 Yang, and Zhe Gan. Ferret-ui: Grounded mobile ui understanding with multimodal llms. In
 802 *European Conference on Computer Vision*, pp. 240–255. Springer, 2024. 3

803

804 Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu,
 805 and Jason E Weston. Self-rewarding language models. In *Forty-first International Conference on*
 806 *Machine Learning*, 2024. 2

807

808 Weihao Zeng, Can Xu, Yingxiu Zhao, Jian-Guang Lou, and Weizhu Chen. Automatic instruction
 809 evolving for large language models. In *Proceedings of the 2024 Conference on Empirical Methods*
 810 *in Natural Language Processing*, pp. 6998–7018, 2024. 2

811

812 Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
 813 self-training via process reward guided tree search. *Advances in Neural Information Processing*
 814 *Systems*, 37:64735–64772, 2024a. 10

810 Kaichen Zhang, Bo Li, Peiyuan Zhang, Fanyi Pu, Joshua Adrian Cahyono, Kairui Hu, Shuai Liu,
811 Yuanhan Zhang, Jingkang Yang, Chunyuan Li, and Ziwei Liu. Lmms-eval: Reality check on the
812 evaluation of large multimodal models, 2024b. URL <https://arxiv.org/abs/2407.12772>. 18
813

814 Liang Zhang, Anwen Hu, Haiyang Xu, Ming Yan, Yichen Xu, Qin Jin, Ji Zhang, and Fei Huang.
815 Tinychart: Efficient chart understanding with visual token merging and program-of-thoughts
816 learning. *CoRR*, 2024c. 3

817 Xuanle Zhao, Xianzhen Luo, Qi Shi, Chi Chen, Shuo Wang, Zhiyuan Liu, and Maosong Sun. Chart-
818 coder: Advancing multimodal large language model for chart-to-code generation, 2025. URL
819 <https://arxiv.org/abs/2501.06598>. 3

820 Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist web
821 agent, if grounded. In *International Conference on Machine Learning*, pp. 61349–61385. PMLR,
822 2024. 3

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864
865

APPENDIX

866
867

A THE USE OF LARGE LANGUAGE MODELS (LLMs)

868
869
870
871
872

We use ChatGPT as a grammar checker for the writing of this paper. We also use small proprietary language models as evaluation baselines to compare performance in our experiments as described in Section 4. We use open-sourced MLLM in our synthetic data generation pipeline follow corresponding license.

873
874

B QUALITATIVE EVALUATION ON VISUALWEBBENCH

875
876
877

We provide some visualization examples of evaluation on VisualWebBench. COGS has been largely improved in questions involving reasoning like comparison, as well as spatial relation.

<p>Question: Which team has the most losses in the NFC West division as per the standings shown? Answer: ARI</p> <p>Decomposition: (perception: the NFC West division standings) (comparison: the team with the highest number of losses)</p>	<p>Qwen2.5VL • perception: Los Angeles Rams (LAC) The answer is LAC</p> <p>COGS • perception: SFO: 5 - LAR: 7 - SEA: 8 - ARI: 13 • comparison: ARI has the highest number of losses at 13. The answer is ARI</p>
<p>Question: What is the shortest trail length among the local favorites near Los Angeles? Answer: ['1.9 mi', '1.9 miles']</p> <p>Decomposition: (perception: local favorites near Los Angeles) (comparison: compare the trail lengths of the listed trails) (minimum: identify the shortest trail length)</p>	<p>Qwen2.5VL • perception: Elysian Park Short Loop The answer is Elysian Park Short Loop</p> <p>COGS-RL • perception: the lengths of the trails listed: 1. Elysian Park West Loop Trail: 2.4 mi 2. Elysian Park Short Loop: 1.9 mi 3. Silver Lake Reservoir Trail: 2.2 mi 4. Portola Trail Loop: 2.8 mi • comparison: The shortest length is 1.9 miles for the Elysian Park Short Loop. The answer is 1.9</p>
<p>Question: What type of deals is offered next to 'Small Pet Deals' Answer: Bird Deals</p> <p>Decomposition: (identification: the section labeled 'Small Pet Deals') (spatial relation: find the deal type next to 'Small Pet Deals') (identification: the type of deals offered next to 'Small Pet Deals')</p>	<p>Qwen2.5VL The answer is Dog Deals</p> <p>COGS-RL The answer is Bird Deals</p>

Figure 7: Example of evaluation on VisualWebBench.

895
896
897

C ABLATION STUDY ON BASE MODELS

898
899
900
901
902
903
904
905
906

We evaluate whether the gains from COGS depend on model capacity within a family or on the choice of model family at a fixed parameter scale. Concretely, we fine-tune Qwen2.5-VL-3B (same family as our main experiments but smaller size) and LLaVA-1.5-7B (different family at 7B scale) using the same COGS dataset and the same RL configuration as in the main experiments. All training hyperparameters, reward settings, and evaluation protocols are kept identical to isolate the effect of the base model. We then evaluate on the fixed ChartQAPro test split using the same metrics reported in the main table.

907
908
909
910
911

Across both comparisons, COGS consistently improves the corresponding base model. These results indicate that the benefit of COGS is not specific to a particular parameter count or to a single model family, and that the decomposition-guided synthesis remains effective under changes in backbone capacity and architecture. Full results are reported in Table 5.

912
913
914
915

Model	Overall (Base)	Overall (+COGS)
Qwen2.5-VL-3B	36.22	38.68
LLaVA-v1.5-7B	13.47	22.04

916
917

Table 5: Accuracy (%) on ChartQAPro comparing base models and +COGS.

918 D MORE DETAILS ABOUT COGS IMPLEMENTATION AND REPRODUCIBILITY
919920 **Hyper-parameters** We use verl(Sheng et al., 2025) for GRPO training. We ran with epoch = 4
921 using a large-scale distributed setup with 8 GPUs per node across 4 nodes. The model was trained
922 with batch size = 1024 and maximum input/output lengths = 4096 tokens for prompts and 2048
923 tokens for responses, respectively. Optimization used a learning rate = 1e-6, with GRPO updates
924 performed on mini-batches of 256. To stabilize training, we applied a KL -penalty loss with a
925 coefficient = 0.001, while disabling KL in the reward. Gradient checkpointing was enabled for
926 memory efficiency, and tensor model parallelism was set to size 2. Rollouts used 16 samples per
927 step, with GPU memory utilization capped at 0.6.928 **Running Software/Hardware Environment and Training Time** Our implementation is based
929 on Python, with Transformers v4.51.3, PyTorch v2.6.0, and CUDA 12.4. We use VERL v0.5.0.dev0
930 to fine-tune models with Reinforcement Learning via GRPO Shao et al. (2024). All experiments
931 are distributed across 4 nodes, each equipped with 8 NVIDIA H100 GPUs (80GB). Training data is
932 generated using Qwen2.5-vl-72B. Fine-tuning the base Qwen2.5-vl-7B model takes approximately
933 10 hours with GRPO and 2 hours with SFT on the Chart Understanding task with 10k reasoning
934 examples, while the WebGUI QA task (also 10k examples, but web images are larger) requires
935 about 21 hours of GRPO.936 **Evaluation** We sampled 67% from each benchmark dataset for evaluation. For evaluation on chart
937 question answering benchmarks, We adopted official prompt templates for each question category
938 under the chain of thought setup released in original paper. For webpage GUI question answering,
939 we enable the chain of thought by following prompt: You will be given an image and a question
940 that you need to answer based on the provided image. You need to think step-by-step and format the
941 final answer in a separate sentence like “The answer is X”. The final answer should be in the fewest
942 words possible. We use lmms-eval for evaluation(Zhang et al., 2024b; Li et al., 2024a).943 **Prompt for Seed Question Decomposition and New Question Recomposition are included in
944 the next section.**945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 **E PROMPTS**
973974 This section specifies the prompt templates we use to decompose questions from seed dataset for the
975 factor pool and re-composition of questions for COGS dataset.
976977 **E.1 PROMPTS FOR QUESTION DECOMPOSITION**
978979 **Decomposition Prompt.**
980981 We can decompose each question into subquestions from one of the general types. Here are
982 some examples:
983 [in-context example: Chart/Web]984 Please do the same for the following questions in the same format without explanation.
985986 Check the information in the attached image carefully. If the question can be easily answered
987 with a simple identification step, avoid unnecessary decomposition.
988989 Remember to strictly follow the format of the example, and don't provide the answer.
990 <image>
991 Question: {query}992 **In-context question-decomposition example: Chart** for both ChartQAPro and MMC in this paper
993994 (Question: How many times has the satisfied rate been above 25%) = (identification: satisfied
995 rate of each year) + (comparison: each instance > 25%) + (count: number of instances
996 where satisfied rate > 25%)997 (Question: Is the following statement True or False? Gen X has experienced a steeper pop-
998 ulation increase than baby boomers did between 1990 and 2015.) = (identification: Gen X's
999 population increase curve) + (identification: baby boomers' increase curve) + (comparison:
1000 which one has a steeper curve) + (fact checking: given the finding from the previous step, is
1001 the statement true?)1002 (Question: if a multi-college district served 10,000 students, how many students were de-
1003 termined eligible using EFC criteria?) = (identification: percentage of students determined
1004 eligible using EFC criteria in a multi-college district) + (calculation: number of students
based on that percentage)1005 (Question: if the actual Avg ACA Premium in 2017 had turned out to be \$5,000, and the
1006 +30% label accurately reflected the difference compared to the Low Est. projection for that
1007 hypothetical \$5,000 value, what would be the implied Avg Individual Mrkt Premium Without
1008 ACA - Low Est. - in 2017?) = (identification: Avg ACA Premium in 2017) + (identification:
1009 +30% label that reflects the difference of Avg ACA Premium in 2017 compared to Low Est.)
1010 + (calculation: implied Low Est. value based on the given 30% difference and hypothetical
1011 \$5,000 ACA Premium)1012 **In-context question-decomposition example: Webpage GUI** for VisualWebBench in this paper
10131014 (Question: How many times has the satisfied rate been above 25%) = (identification: satisfied
1015 rate of each year) + (comparison: each instance > 25%) + (count: number of instances
1016 where satisfied rate > 25%)1017 (Question: Is the following statement yes or no? Gen X has experienced a steeper population
1018 increase than baby boomers did between 1990 and 2015.) = (identification: Gen X's popula-
1019 tion increase curve) + (identification: baby boomers' increase curve) + (comparison: which
1020 one has a steeper curve) + (fact checking: given the finding from the previous step, decide
1021 yes or no)1022 (Question: According to this chart, what is the revenue of Retailer D at Month 6?) = (identi-
1023 fication: revenue of Retailer D at Month 6)1024
1025

1026 E.2 PROMPTS FOR QUESTION RE-COMPOSITION
10271028 Given the following chart:
1029

1030 chart: <image>

1031 Your Task is to generate 5 sets of question-answer pairs for instruction tuning. In each set
1032 of QA pairs, you need to first identify **{perception_count}** entities, and then compose
1033 **{reasoning_count}** level of reasoning questions related to them. The 2-nd order rea-
1034 soning questions should be based on the answers of the 1-st order reasoning questions, and
1035 so on. Each question must meet ALL these conditions:

1036 1. Content Source: Only use data present in the given chart.

1037 2. Structure: Each question must include exactly **{count1} {factor1}**, ... , and
1038 **{countN} {factorN}**. Each identification question should ask about one and only one
1039 entity/concept, the following **{reasoning_factors}** subquestions should be the question
1040 related and only related to the entities/concept mentioned in the previous subquestions. The
1041 specific example of each subquestion type will be provided in the following text.1042 3. Content: Each question must be based on the chart data, and can be answered using natural
1043 language. Avoid asking about the size of an object that is not relevant to the data (e.g., font
1044 size of a label).1045 4. Relevance: If there is a reasoning subquestion, it must operate on the entities or values
1046 identified in the observation subquestion. [in-context example 1]1047 5. Conciseness: After writing the detailed question, provide a natural concise version. This
1048 concise version should still look like a question, and can be asked independently without the
1049 previous question. [in-context example 2]

1050 6. Answer: Provide a step-by-step reasoning for how you found the answer.

1051 7. Final Answer: Provide just the concise final answer to the concise question, without any
1052 explanation or reasoning.1053 Reference Examples: **{factors} {sampled_subquestion_of_the_factor}**1054 Here are some examples of the concise questions: **{sampled_concise_questions}**1055 Expected Output Format for the generated questions: Use the following structure for
1056 each pair:

1057 [in-context example 3]

1058 Instructions:

1059 1. Follow the example strictly. If the question contains reasoning subquestions, make sure it
1060 is relevant to the observation questions.

1061 2. Use only the given data in the chart.

1062 3. Provide exactly 5 unique Q&A pairs. [question_types]

1063 4. Validate each answer. The answer must be grounded to the data shown in the chart.

1064 5. Each pair must include both detailed step-by-step reasoning and the final result.

1065 Generate Now:

1066 Please proceed with generating your 5 question-answer pairs now.

1067 **In-Context Example 1**1068
1069 For example, if the observation subquestion asked about the value of A and B, and you are
1070 asked to generate a calculation subquestion after them, it must be some calculation between
1071 A and B. If there are multiple levels of reasoning questions, the later reasoning subques-
1072 tions should be based on the answers of the previous subquestions. Do not ask irrelevant
1073 questions. For example, if the first subquestion is “what’s the difference between A and B”,
1074 an acceptable next-level reasoning question would be “what’s the difference between A and
1075 B compared to C”. You should avoid an unacceptable question like “what’s the difference
1076 between A and B and what’s the difference between A and C”.

1077

1078

1079

1080

In-Context Example 2

1081

1082

1083

1084

1085

1086

1087

1088

1089

For example, if the detailed question asks about a new value if A is changed, the concise question cannot simply refer to a “new value” without mentioning it depends on A being changed. An explicit example: detailed question: “What is A, what is B, what is the new value of A+B if A is changed to 10, what is the difference between the new value and C?” A bad concise question is: “What is the difference between new value and C?”, because it does not mention A is changed to 10, and it does not mention A+B is the new value. A correct concise question should be: “What is the difference between the new value of A+B and C, if A is changed to 10?”

1090

1091

In-Context Example 3

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

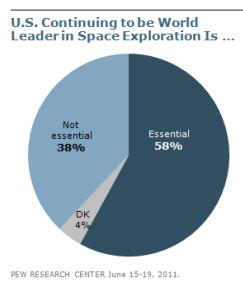
1133

```

{
  1: {
    "Question": "<Full question with two identifications and one
                 comparison>",
    "Concise question": "<Concise version of the question>",
    "Answer": "<Step-by-step reasoning and calculation>",
    "Final Answer": "<The final answer to the concise question>"
  },
  2: {
    "Question": "...",
    "Concise question": "...",
    "Answer": "...",
    "Final Answer": "..."
  },
  ...
}

Example (not actual data):
{
  1: {
    "Question": "What was the percentage for Technology, what was the
                percentage for Finance, and what is the difference between
                them?",
    "Concise question": "What is the difference between Technology
                        and Finance's percentages?",
    "Answer": "Step 1: Technology's percentage is 23.7%. Step 2:
              Finance's percentage is 26.3%. Step 3: The difference is
              |23.7% - 26.3%| = 2.6%.",
    "Final Answer": "2.6%"
  }
}

```

1134 **F COGS DATA EXAMPLE**
11351136 **F.1 VISUALIZATION OF SELECTED COGS-CHARTQAPRO**
11371138 We provide visualization examples of COGS-ChartQAPro Datasets.
1139**Complex Question:**

Which is the correct answer to the following question: if the percentage of 'DK' respondents was added to 'Not essential', what would be the new total percentage of 'Not essential'?
a) 42% b) 44% c) 46% d) 48%

Answer:

a) 42%

Sub-Questions:

Q1: What is the percentage of respondents who responded 'DK'?

A1: 4

Q2: What is the percentage of respondents who think it is not essential?

A2: 38

Q3: The percentage of 'DK' respondents is 4%, and the percentage of those who think it is not essential is 38%. What would be the new total percentage of 'Not essential' if the percentage of 'DK' respondents was added to 'Not essential'?
A3: a) 42%

Complex Question:

Is the following statement True or False: the score of Republicans in Dec 2008 is higher than the score of Democrats in Jan 2010?

Answer:

True

Sub-Questions:

Q1: What was the perception score of Republicans in Dec 2008?

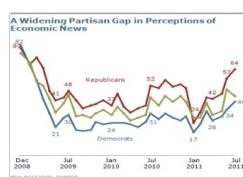
A1: 82

Q2: What was the perception score of Democrats in Jan 2010?

A2: 24

Q3: Is the score of Republicans in Dec 2008 higher than the score of Democrats in Jan 2010?

A3: True

**Complex Question:**

Which country has a higher adjusted net attendance rate in 2006, Brazil or Djibouti?

Answer:

Brazil

Sub-Questions:

Q1: What was the adjusted net attendance rate for Brazil in 2006?

A1: 97.91

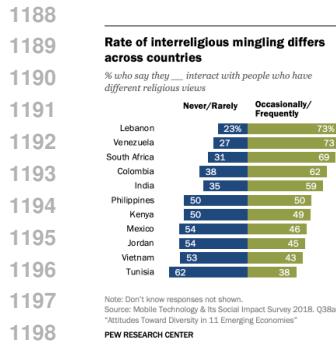
Q1: What was the adjusted net attendance rate for Djibouti in 2006?

A2: 79.87

Q3: Which country has a higher adjusted net attendance rate, Brazil or Djibouti?

A3: Brazil

Figure 8: Example of complex questions with 3 subquestions.

**Complex Question:**

Is the following statement True or False? The result of subtracting the swapped 'Never/Rarely' percentage from the swapped 'Occasionally/Frequency' percentage is positive for South Africa.

Answer:
False

Sub-Questions:

Q1: What is the percentage of people who interact 'Never/Rarely' in South Africa?

A1: 31

Q2: What is the percentage of people who interact 'Occasionally/Frequently' in South Africa?

A2: 69

Q3: Swap the two percentages identified. The percentage of people who interact 'Never/Rarely' in South Africa becomes 69%, and the percentage of people who interact 'Occasionally/Frequently' in South Africa becomes 31%. What is the result of subtracting the swapped 'Never/Rarely' percentage from the swapped 'Occasionally/Frequency' percentage?

A3: -38

Q4: Is the following statement True or False? The result of subtracting the swapped 'Never/Rarely' percentage from the swapped 'Occasionally/Frequency' percentage is positive for South Africa.

A4: False

Complex Question:

What is the new sum of Sweden and Czechia's shares of population with alcohol or drug use disorders, if the share in Sweden decreases by 10%?

Answer:
4.703

Sub-Questions:

Q1: What is the share of the population with alcohol or drug use disorders in Sweden?

A1: 2.57

Q2: What is the share of the population with alcohol or drug use disorders in Czechia?

A2: 2.39

Q3: If the share in Sweden decreases by 10%, what is the new share in Sweden?

A3: 2.313

Q4: What is the new sum of Sweden and Czechia's shares of population with alcohol or drug use disorders, if the share in Sweden decreases by 10%?

A4: 4.703

Complex Question:

Does the adjusted value of Google's share surpass Facebook's share after a 5% increase?

Answer:
False

Sub-Questions:

Q1: What is the share of mobile display ad revenues for Facebook?

A1: 35.7

Q2: What is the share of mobile display ad revenues for Google?

A2: 15.4

Q3: What is the difference between the shares of mobile display ad revenues for Facebook and Google?

A3: 20.3

Q4: Apply a 5% increase in Google's share and check if the adjusted value surpasses Facebook's share

A4: The adjusted value of Google's share is 16.17, which does not surpass Facebook's share of 35.7

Figure 9: Example of complex questions with 4 subquestions.

1242

1243 **Feeling the Recovery Blahs**

1244

1245 *Which best describes your opinion: The economy is...*

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Complex Question:
Is the combined percentage of 'Not recovering at all' and 'Recovering strongly' more than double the 'DK/refused' percentage?

Answer:
True

Sub-Questions:

Q1: What is the percentage of people who think the economy is 'Not recovering at all'?
A1: 26

Q2: What is the percentage of people who think the economy is 'Recovering strongly'?
A2: 6

Q3: The combined percentage of those who think the economy is either 'Not recovering at all' or 'Recovering strongly'?
A3: 32

Q4: What is the percentage of people who think the economy is 'DK/refused' doubled?
A4: 4

Q5: Is the combined percentage of 'Not recovering at all' and 'Recovering strongly' more than double the 'DK/refused' percentage?
A5: True

Complex Question:
Is the difference between Tertiary and Primary GPI greater or smaller than the difference between Primary and Secondary GPI?

Answer:
Greater

Sub-Questions:

Q1: What is the GPI for Tertiary education?
A1: 1.01

Q2: What is the GPI for Primary education?
A2: 0.98

Q3: What is the GPI for Secondary education?
A3: 0.98

Q4: The GPI for Tertiary education is 1.01 and the GPI for Primary education is 0.98. What is the difference between these two values?
A4: 0.03

Q5: The GPI for Primary education is 0.98 and the GPI for Secondary education is 0.98. What is the difference between these two values?
A5: 0

Q6: The difference between Tertiary and Primary GPI is 0.03, and the difference between Primary and Secondary GPI is 0. Is the difference between Tertiary and Primary GPI greater or smaller than the difference between Primary and Secondary GPI?
A: Greater

Figure 10: Example of complex questions with more than 4 subquestions.

1296
1297

F.2 VISUALIZATION OF SELECTED COGS-VISUALWEBBENCH

1298
1299

We provide visualization examples of COGS-VisualWebBench Datasets.

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Complex Question:

What would be the total cost of Kryptek and Trucker hats if the quantity is increased by 2?

Answer:

78

Subquestions:

Q1: What is the price of the Kryptek and Trucker hats?

A1: 26

Q2: Calculate the total cost if the quantity is increased by 2?

A2: 78

Complex Question:

What is the full zip code of the city where James Kutten's office is located?

Answer:

63017

Subquestions:

Q1: Find the city next to the address.

A1: Chesterfield

Q1: What is the full zip code of this city?

A2: 63017

Legal Disclaimers

Complex Question:

What is the difference in years between the publication dates of the first and third articles listed under Related Articles?

Answer:

0

Subquestions:

Q1: What is the publication dates of the first articles listed under Related Articles?

A1: 2013

Q2: What is the publication dates of the third articles listed under Related Articles?

A2: 2013

Q3: What is the difference

A3: 0

Figure 11: Example of complex questions seeded from 33% VisualWebBench.