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Abstract

Tokenization imposes a fixed granularity on the input text, freezing how a language
model operates on data and how far in the future it predicts. Byte Pair Encoding
(BPE) and similar schemes split text once, build a static vocabulary, and leave the
model stuck with that choice. We relax this rigidity by introducing an autoregres-
sive U-Net that learns to embed its own tokens as it trains. The network reads raw
bytes, pools them into words, then pairs of words, then up to 4 words, yielding a
multi-scale representation of the sequence. At deeper stages, the model must predict
further into the future — anticipating the next few words rather than the next byte —
so deeper stages focus on broader semantic patterns while earlier stages handle fine
details. When carefully tuning and controlling pretraining compute, shallow hierar-
chies are on par with strong BPE baselines, and deeper hierarchies exhibit a promis-
ing trend. Because tokenization now lives inside the model, the same system can
handle character-level tasks and carry knowledge across low-resource languages.

1 Introduction

Language models are about uncovering patterns in a sequence so they can guess what comes next.
Before any of that happens, we must decide what the pieces of that sequence—the tokens—actually
are. That choice is usually frozen in advance by a tokeniser that chops raw text into discrete units long
before training begins. Consider the sentence “The quick brown fox.” A character-level tokeniser
feeds the model the stream {T, h, e, !, q, u} and asks it to predict the next letter i. A word-
level tokeniser, in contrast, hands over {The, quick} and expects the model to guess brown in one
shot. Finer cuts lead to larger sequences and shorten the look-ahead window, whereas coarser cuts
lead to shorter sequences but make each token rarer and harder to compare and predict. Regardless of
granularity, some form of tokenisation is unavoidable: a sequence must exist before any Transformer
can run.

Byte-Pair Encoding (BPE) followed by a simple embedding table is by far the most popular approach.
It works by repeatedly merging the most frequent byte sequences in the training text until a preset
vocabulary limit is reached. This procedure leaves practitioners with just two intuitive dials. The
first dial is the training corpus: whichever text one feeds the algorithm—English prose, source code,
or a multilingual mix—determines which patterns are merged and therefore what the final tokens
look like. The second dial is the vocabulary size: raising this limit lets the merge process run for
more steps, producing longer tokens and shorter sequences at the cost of a larger embedding table
and output softmax.

*Equal contribution
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Figure 1: Three-stage Autoregressive U-Net (AU-Net). The model executes from left to right. The contracting
path compresses the sequence in two steps: Stage 1 processes raw bytes, Stage 2 keeps only the vector at each
word boundary, and Stage 3 keeps one vector per two words. Each contraction and expansion step supports
arbitrary pooling and upsampling patterns. After the deepest stage, the expanding path reverses the contracting
path by duplicating each coarse vector and applying position-specific linear layers. These are combined with skip
connections from the contracting path, gradually restoring sequence length and blending in high-level information.
Deeper stages predict further ahead and capture broad semantics, while shallower stages refine local detail.

Most issues with tokenisation stem from the embedding operation rather than the splitting act itself.
Each token is typically mapped to an independent vector, meaning the network sees only opaque
identifiers and must rediscover, for instance, that strawberry and strawberries share nine letters. This
reliance on isolated embeddings hampers symbol-level reasoning and complicates transfer to dialects
or rare languages. Finally, this splitting is most often a preprocessing step, locking in a single level of
granularity for all subsequent model layers (see Section 2.2).

To address these limits, our Autoregressive U-Net (Section 2.1), or AU-Net (‘oh-net’, /óU nEt/),
learns to embed information directly from raw bytes, and allows for multiple stages of splitting.
The purpose of an embedding is to map tokens to vectors. Instead of using a lookup table, we use
attention directly to embed the tokens. Self-attention allows vectors at any position to summarize the
entire preceding context. This enables a simple pooling mechanism: we select these contextualized
vectors at word boundaries (AU-Net-2), then word pairs (AU-Net-3), and up to four-word chunks
(AU-Net-4), forming a multi-stage embedding hierarchy. This U-Net like architecture contracts
sequences, preserving detail with skip connections, before expanding them. During expansion,
vectors representing coarser information are injected back into more fine-grained representations.

Deeper stages operate on compressed representations, allowing them to aggregate information
over longer spans of text. While the model remains strictly autoregressive and performs next-byte
prediction, the hierarchical structure introduces an inductive bias that encourages the formation of
more abstract representations akin to multi-token prediction [1] but achieved without auxiliary losses.
This effect allows deeper stages to guide shallower stages at the semantic level, while letting them
handle finer details like spelling.

Contributions (quantified in Section 3).

C1. Adaptive multi-level hierarchy. We train up to four end-to-end embedding stages with arbitrary,
user-specified split functions, extending prior work that relies either on fixed pooling or shallow
hierarchies.

C2. Infinite vocab size. By operating directly on bytes, our model avoids predefined vocabularies
and memory-heavy embedding tables, enabling open-vocabulary modeling without increasing
memory footprint. This property is inherent to byte-level approaches, and our results validate
its effectiveness at scale.
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C3. Strong performance and scaling. Under identical pre-training budgets, a single level matches
strong BPE baselines, and a two or three-level hierarchy shows promising scaling trends. A
selection of the results is presented in Table 1

C4. Practical Efficiency. We maintain comparable GPU throughput in wall-clock time instead of
purely theoretical compute gains. Our code is available in Meta Lingua [2].

C5. Stable scaling laws. We show that moving from token to byte-level training demands new batch
size and learning rate formulas to get smooth optimization.

By turning a one-shot, memory-hungry embedding into a learned, multi-scale process, we offer a
flexible alternative to the rigid BPE preprocessing followed by a simple embedding table. Table 1
provides a concise overview of results obtained at the 1B scale on 370B tokens, comparing AU-Net-2
(two-stage), AU-Net-3 (three-stage), and AU-Net-4 (four-stage) variants. These results highlight the
promising performance in the heavily overtrained regime.

2 Method

2.1 Autoregressive U-Net

Table 1: 1B equivalent on 370B tokens

Model FLOP Hellaswag MMLU GSM8k

BPE 4e21 70.2 27.0 4.4
AU-Net 2 3e21 69.9 28.8 3.0
AU-Net 3 4e21 72.9 28.0 3.7
AU-Net 4 5e21 73.7 31.7 5.3

Inspired by U-Net-like architectures [3, 4], we pro-
pose an autoregressive hierarchical model for language
modelling, illustrated in figure 1. This architecture fea-
tures a contracting path, which compresses the input
sequence, and an expanding path, which reconstructs
it. Both paths are fully adaptive: they do not require
fixed pooling or upsampling sizes. Pooling and upsam-
pling operations can be designed independently, even
if we choose to make them symmetrical in this paper. The only requirement is a splitting function,
which specifies the positions in the sequence where pooling should occur. This function is detailed
in section 2.2.

Our architecture is monolithic: unlike recent approaches [5, 6] that use local models, we apply
attention globally at each stage (or within a sliding window), allowing every input to attend to
previous inputs. This ensures that words or word groups are not processed in isolation. To preserve
fine-grained information that might be lost during contraction, we introduce skip connections between
stages, following the approach in Ronneberger et al. [3] and Nawrot et al. [4]. We also increase the
hidden dimension at each stage in proportion to its contraction factor, enabling richer representations
as the sequence is contracted. To keep computation tractable at the byte-level stage (Stage 1), where
sequences are longest, we restrict attention to a window.

2.1.1 Pooling and Upsampling

Since our pooling and upsampling are adaptive, we cannot rely on fixed window sizes. To address
this, we explored several pooling and upsampling strategies. In this section, we describe the method
used in all experiments reported in the main text. A complete description of the alternatives and
ablation results can be found in the appendix C.

Figure 2: Pooling simply selects the vectors at the positions specified by the splitting function.
Upsampling then expands each pooled vector to fill the next segment, applying a separate linear
layer for each position. For instance, the pooled vector representing the word ‘SAT ’ is used to help
predict ‘ON ’. This offset lets deeper stages predict further ahead in the sequence. When using 4
stages, for example, this results in the deepest stage helping for the prediction of the next four words.
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Pooling. We adopt the simplest pooling strategy: selecting the indices identified by the splitting
function and projecting them to the next stage’s dimensionality using a linear layer. Since the
preceding layers already include attention mechanisms, we rely on these to do the pooling implicitly
instead of relying on explicit cross attention as used in Nawrot et al. [4], Pagnoni et al. [5].
Formally, let X → Rs↑din denote the sequence of hidden states, and let I = {i1 < · · · < im} ↑
{1, . . . , s} be the indices selected by the splitting function, defining the new sequence length m with
1 < m ↓ s. Let W → Rdin↑dout be a learnable projection, where din and dout correspond to the
dimensions of the current and following stages, respectively. The pooled (downsampled) sequence is
obtained by selecting the indexed rows and applying the linear projection:

Y = XIW → Rm↑dout ,

where XI = [Xi1 ; . . . ;Xim ].

Upsampling. The upsampling step maps coarse representations to finer ones for the next stage. As
illustrated in Figure 2, we duplicate each coarse vector to match the length of the following segment,
applying distinct, position-specific linear transformations to these duplicates.
Let Y → Rm↑dout and position-specific projections {Wp}Kp=1 with Wp → Rdout↑din . Given per-
segment lengths ri → {1, . . . ,K}, compute

X(i,p)=YiWp for i = 1, . . . ,m, p = 1, . . . , ri.

Stacking (i, p) in segment-major order gives X → R(
∑m

i=1 ri)↑din .
Since these transformations are shared across segments but vary by position within a segment, we
term this Multi-Linear Upsampling. In our experiments, models with multiple stages are more
sensitive to the specific choice of upsampling strategy, whereas for pooling, many strategies work
equally well.

2.1.2 Generation

During training, we process the entire input sequence in parallel, activating all stages simultaneously.
At inference, generation is autoregressive: the byte-level stage is active at every step, while deeper
stages activate less frequently according to the pooling pattern. Skip connections transmit information
upward at each stage, so deeper stages can integrate fine-grained details. This cascading, conditional
activation enables efficient inference: computationally intensive high-level stages activate rarely, but
still effectively guide detailed lower-level predictions. In practice, this means that we need to cache
the latest vector at the output of each stage to correctly propagate deeper stages’ outputs.

2.2 Splitting Function

The AU-Net architecture supports flexible splitting strategies to define pooling points at each hierar-
chical stage. The primary constraint is that any chosen splitting function must be stable to rightward

insertion: appending bytes should not alter prior pooling decisions, ensuring consistent autoregressive
generation. Various methods (e.g., fixed windows [4], entropy [5], learned rules) are possible. Our
current work splits on spaces using different regular expressions at each stage (details in Appendix B).

This strategy defines a hierarchy: Stage 1 processes raw bytes; Stage 2 pools at word boundaries
(identified by the regex); Stage 3 pools after every two words (or sentence end); and Stage 4 after every
four words (or sentence end). This rule-based approach, inspired by pre-tokenization in systems like
GPT-4o’s [7], is effective for Latin scripts. Extending robustly to languages without clear delimiters
remains future work. Unlike prior approaches [5, 6, 8] that used similar splits mainly to replace
BPE in a single-stage context, AU-Net uses these user-defined splits for its multi-stage hierarchical
processing.

2.3 Evaluating on different scales

Large language models scale very predictably [9–11]. This allows us to estimate the performance
of a model for a large compute budget. But more surprisingly, it allows us to predict the optimal
hyperparameters for models way beyond our ablation budget. Bi et al. [11] described a method
for sweeping learning rates (LR) and batch sizes (BSZ) across a range of small models, and they
demonstrated that these results can be used to predict optimal hyperparameters for larger models.
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Following their methodology, we show a different evolution of hyperparameters, both due to the data
in our setup and to the hierarchical model. These hyperparameters are then used to do scaling laws
for a bigger range of compute budgets to compare the baseline architecture and AU-Net. Throughout
this paper, the scale of a run is its total pre-training compute C measured in Floating Point Operation
(FLOP):

C = Fmodel / input-unit︸ ︷︷ ︸
FLOPs per (forward+backward) pass per input unit

↔ Ninput-unit︸ ︷︷ ︸
number of units of training input

.

Following Bi et al. [11], we define model size as the number of FLOPs per input unit instead of
relying on the number of parameters. This allows us to compare models with different architectures
fairly. The formula for the number of FLOP per input-unit for a decoder-only transformer is given by:

Fmodel / input-unit = 6N no-embed
params︸ ︷︷ ︸

linear term

+ 6dLS︸ ︷︷ ︸
attention term

.

where, N no-embed
params is the number of parameters, excluding the embeddings. d is the dimension, S the

sequence length and L the number of layers. To scale up, one can either make the model bigger
(Fmodel / input-unit ↗), give it more data (Ninput-unit ↗), or do both. Gadre et al. [12] showed that keeping
the data-to-model ratio ωinput-unit constant is key to getting smooth scaling laws and predictable
performance, where:

ωinput-unit =
Ninput-unit

Fmodel / input-unit
.

We adopt this convention in all experiments and report the data-to-model ratio ωinput-unit used in the
experiments.

Bytes versus tokens. On DCLM [13], a token sequence is on average k ↘ 4.56 times shorter than its
byte sequence when using the LLaMa 3 tokenizer.

Given some compression factor k between bytes and tokens, we want to express the equivalent ωbytes.
To do this, we note that Nbyte = k ↔Ntoken and Fmodel/byte = Fmodel/token/k. Therefore,

ωbyte = k2
Ntoken

Fmodel/token
= k2ωtoken.

Note that this scaling relationship is architecture-agnostic. The factor 1
k follows directly from the

difference in sequence length between tokens and bytes under a given tokenizer. While different
architectures may have distinct FLOPs/byte, the conversion between token- and byte-level compute
is determined solely by the compression ratio k. This factor allows us to compare the performance
of our model with the baseline on the same scale, as they will have seen the same amount of data
and spent the same amount of FLOPs per token. Throughout the paper, we always express the
data-to-model ratio in LLaMa 3 tokens (ωtoken).

FLOPS per byte for AU-Net. In the case of AU-Net, we cannot use the same formula as the baseline
because of the contraction and expansion happening in the model. However, we can still use the same
formulas as long as we account for the contraction at each stage. So the total FLOPs per byte for
AU-Net is simply the sum of each stage divided by the contraction factor.

Fmodel/byte =
L∑

i=1

F i
model/byte

ki
,

where ki is the contraction factor at stage i.

This property allows us to have models with a higher number of parameters for the same compute
budget and data-to-model ratio.

Hyperparameter scaling laws Bi et al. [11] showed that the regularity of scaling laws can be
exploited to tune very large models from a sweep over much smaller ones. We replicate their protocol
on six miniature versions of each architecture (baseline Transformer and AU-Net): we perform a
quasi-random search over batch size and learning rate, keep the configurations within 1% of the
best validation loss, and fit BSZ(C) = ACω and LR(C) = BCε to those points, with parameters
A,ε, B and ϑ. We find the following formulas at the byte level for AU-Net:

BSZAU-Net(C) = 0.66↔ C0.321 LRAU-Net(C) = 6.6↔ C↓0.176.

And we run the same tuning for the BPE baseline, for which we find:
BSZBPE(C) = 29.9↔ C0.231 LRBPE(C) = 19.3↔ C↓0.177.
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3 Experimental Results

3.1 Experimental Setup

Data. For all experiments, DCLM [13] served as the pretraining dataset, with a small portion held
out for validation, totalling around 4T tokens (of GPTNeoXTokenizer). The corpus is mostly English
and focuses on natural language understanding, i.e. it contains a marginal amount of code and maths.
Baselines. We compare our approach to different three baselines: Transformers equipped with the
BPE tokenizer of LLaMa 3, Transformers and Mamba [14] trained directly on bytes, AU-Net variants
using a fixed-size pooling window (denoted Transformer bytes[::w], where w is the window size),
similar to the Hourglass architecture [4]. To keep the comparison fair, we trained each baseline with
the same amount of data or compute. For example, if a data budget of 273B bytes is used to train the
bytes level or AU-Net model, this budget is converted to 60B training tokens for a transformer with
LLaMa 3 tokenizer [15] because of the 4.56 compression rate measured on the DCLM corpus.
AU-Net Architecture. AU-Net-2, -3, and -4 progressively increase embedding dimensionality across
stages (512 → 2048 → 3072 → 4608 for deeper variants at the 1B scale), with layer allocation
guided by the ablation results in appendix C.2. The AU-Net-2 architecture at 1B scale is illustrated in
figure 1, showing stage dimensions, layer distribution, and total FLOP allocation per stage. The first
byte-level stage does not require high dimensionality, as it primarily encodes local information before
compression, whereas later stages capture increasingly abstract representations that benefit from
greater capacity. Contraction rates are chosen so that when representations are merged, information
density remains approximately constant (e.g., a sequence compressed by a factor of two doubles its
hidden dimension). At the 1B scale, AU-Net-4 uses 6 + 25 layers with a maximum hidden size of
4608, while the 8B-scale configuration expands to 6 + 33 layers and a final hidden size of 4096. This
setup reflects the model’s compression rationale while keeping compute distribution flexible. For
comparison, the BPE Transformer employs 25 layers with a hidden size of 2048 at the 1B scale and
33 layers with a hidden size of 4096 at the 8B scale.

Full architectural specifications, such as embedding sizes, layer counts, are detailed in appendix C.2.
Also, note that, due to compute constraints, AU-Net-3 and AU-Net-4 were not trained at the 8B scale.
Hyperparameters. For a detailed overview of the hyperparameters, see appendix D. As explained
in section 2.3, we sweep batch size and learning rate values across model scales ranging from 25M to
500M. Then, we extrapolate the best learning rate and batch size for any given compute budget.
Evaluation Metrics. All models are evaluated on a broad set of downstream tasks in a zero-shot
setting, occasionally including a few in-context examples directly in the prompt. These tasks fall into
two categories: (i) multiple-choice (MCQ) tasks, where the correct answer is selected as the option
with the lowest normalized negative log-likelihood (divided by the number of characters) [16]; and
(ii) open-ended generation tasks, where the model is allowed to freely generate its answer.

To highlight the strengths of AU-Net, we include specialized benchmarks targeting character-level
manipulation (CUTE [17] appendix E) and low-resource language translation (FLORES-200, [18]
section 3.4).

For clarity, we report a selection of key benchmark results in the main tables, including Hellaswag,
ARC-Easy, ARC-Challenge, MMLU, NQ, TQA, and GSM8K. Also, we report 95% confidence
intervals for all tables using bootstrap. A full breakdown of all evaluation results is provided in the
appendix F.

In addition to task performance, the total training FLOPs and training throughput are provided for
each model, measured in bytes per second per GPU (bps) on H100 80GB GPUs (internal cluster)
during the actual training.
Implementation Details. As scaling is key to the success of large language models, our imple-
mentation balances efficiency and simplicity. We use sequence packing along with full attention,
a strategy shown to have little to no impact on downstream performance ([13]). To reduce GPU
memory pressure, all our experiments rely on Fully Sharded Data Parallelism (FSDP).

For additional speed-ups, the entire model is compiled with torch.compile. Compilation, however,
requires a static computation graph, which clashes with the variable-length outputs produced by our
adaptive pooling: the number of bytes per word (and thus per stage) naturally varies across sentences.
We resolve this by fixing a maximum sequence length at every stage: sequences that exceed the limit
are truncated abruptly, and shorter ones are padded. This compromise yields a graph that is static for
compilation while still supporting adaptive hierarchical pooling in practice.
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Table 2: Downstream results comparing AU-Net to BPE and byte-level baselines. We report
accuracy on key benchmarks with 95% confidence intervals where applicable. Literature models are
shown in italics; all models are trained on the same corpus, unless specified. AU-Net variants differ
in the number of stages. We also report compute budget and empirical training speeds in bytes/sec.

Model Params Emb. Flops bps Hellaswag ARC_E ARC_C MMLU NQ TQA GSM8k

Dim=2048 (1B model), 60B tokens (data-to-model ratio of 10)

Mamba Byte 1.3B 1M 3e21 32k 63.0 ±0.9 60.3 ±2.0 33.6 ±2.8 25.1 ±0.7 8.2 ±0.9 21.2 ±0.7 2.1 ±0.8

Transformer Byte 1.3B 1M 4e21 47k 63.0 ±1.0 61.2 ±1.9 34.7 ±2.7 24.7 ±0.7 8.8 ±0.9 21.4 ±0.8 2.5 ±0.9

Transformer Byte[::4] 1.3B 1M 6e20 180k 63.5 ±0.9 63.0 ±1.9 36.0 ±2.7 25.1 ±0.7 6.8 ±0.8 17.2 ±0.7 2.6 ±0.9

Transformer Byte[::5] 1.3B 1M 5e20 218k 60.0 ±1.0 60.0 ±2.0 34.8 ±2.8 23.9 ±0.7 5.6 ±0.7 14.7 ±0.7 2.0 ±0.8

Transformer Byte[::6] 1.3B 1M 4e20 255k 58.6 ±1.0 59.5 ±2.0 32.4 ±2.7 24.9 ±0.7 4.6 ±0.7 12.3 ±0.6 2.3 ±0.8

AU-Net 2 1.3B 1M 5e20 225k 64.2 ±0.9 64.4 ±1.9 35.2 ±2.8 24.8 ±0.7 8.8 ±0.9 20.4 ±0.7 2.7 ±0.9

AU-Net 3 2.5B 1M 7e20 180k 67.4 ±0.9 65.9 ±1.9 36.7 ±2.7 26.3 ±0.7 9.6 ±1.0 22.6 ±0.8 2.3 ±0.8

AU-Net 4 4.2B 1M 8e20 155k 66.4 ±0.9 67.4 ±1.9 37.0 ±2.8 26.3 ±0.7 5.1 ±0.7 15.5 ±0.7 3.5 ±1.0

Transformer BPE 1.8B 525M 7e20 210k 63.6 ±1.0 62.8 ±1.9 36.5 ±2.7 26.2 ±0.7 8.8 ±0.9 26.3 ±0.8 2.3 ±0.8

Dim=2048 (1B model), 370B tokens (data-to-model ratio of 40)

AU-Net 2 1.3B 1M 3e21 225k 69.9 ±0.9 68.6 ±1.9 38.9 ±2.7 28.8 ±0.7 13.0 ±1.1 32.5 ±0.9 3.0 ±0.9

AU-Net 3 2.5B 1M 4e21 180k 72.9 ±0.9 72.3 ±1.8 43.3 ±2.8 28.0 ±0.7 15.3 ±1.2 39.1 ±0.9 3.7 ±1.0

AU-Net 4 4.2B 1M 5e21 155k 73.7 ±0.9 72.6 ±1.8 43.2 ±2.9 31.7 ±0.7 14.0 ±1.1 35.5 ±0.9 5.3 ±1.2

Transformer BPE 1.8B 525M 4e21 210k 70.2 ±0.9 68.6 ±1.9 38.5 ±2.8 27.0 ±0.7 13.5 ±1.1 37.2 ±0.9 4.4 ±1.1

DCLM-1B-5!(145B)[13] 1B 207M 1e21 - 66.1 70.2 40.6 26.4 - 29.3 1.1
MegaByte (263B)[19] 1.1B - - 73k 38.9 54.9 23.4 25.1 - 9.6

Hierarchical (263B)[6] 1.1B - 1e21 - 46.5 65.0 30.5 26.0 - 9.6 -

Dim=4096 (8B model), 200B tokens (data-to-model ratio of 5)

AU-Net 2 7.9B 1M 1e22 41k 79.1 ±0.8 80.0 ±1.6 51.2 ±2.9 51.1 ±0.8 22.1 ±1.3 50.9 ±0.9 10.0 ±1.6

Transformer BPE 7.5B 1B 9e21 43k 77.2 ±0.8 74.5 ±1.8 49.2 ±2.8 49.6 ±0.8 21.1 ±1.4 51.1 ±0.9 10.7 ±1.7

DCLM-7B-2!(276B)[13] 7B 413M 1e22 - 77.8 78.1 52.6 50.8 - 50.9 4.3
Hierarchical (263B)[6] 9.2B - 1e22 15k 56.3 76.6 44.2 32.0 - 33.1 -

BLT (220B)
→[5] 8B - 1e22 - 72.2 66.8 38.8 25.2 - - -

BLT (1T)
↑[5] 8B - 5e22 - 80.6 79.6 52.1 57.4 - - -

DCLM-7B (2.5T)
↑[15] 7B 413M 1e23 - 80.4 82.2 59.9 63.7 - 52.7 2.5

LLaMa 3.1 (15T)
→[15] 8B 1B 6e23 - 83.3 ±0.8 80.7 ±1.5 54.8 ±2.9 66.4 ±0.8 29.1 ±1.5 64.4 ±0.9 54.7 ±2.7

↑ Trained on mix of DCLM and other datasets
→ Trained on different corpus than DCLM

3.2 Equal Data Budget Results

We evaluate the effectiveness of hierarchical pooling by fixing the model’s primary hidden dimension
to 2048 and maintaining a constant total training-data budget. The hidden dimension at each stage is
scaled proportionally to its contraction ratio as described in section 2.1. For instance, the byte-level
stage uses a dimension of 2048/4 = 512, the word-level stage uses 2048, and the 2-word level
uses 1.5 ↔ 2048 = 3072, continuing in this manner for deeper stages. We assess the downstream
performance of language models with 2, 3, and 4 stages at the 1B parameter scale. For the 8B model,
we evaluate only the 1-stage configuration for now. All variants are compared against a Transformer
baseline using the LLaMA 3 tokenizer of the same main hidden dimension. More ablations regarding
pooling and the number of layers per stage can be found in the appendix C.

As shown in table 2, hierarchical models consistently match or outperform their BPE-based coun-
terparts. This trend holds across various configurations and becomes especially pronounced as
we introduce more hierarchical stages. Notably, multi-stage AU-Net models (e.g., AU-Net 3 and
AU-Net 4) outperform BPE baselines on several benchmarks. An interesting exception to this pattern
is the TQA benchmark, which is a knowledge-intensive task evaluating the generation of the model.
AU-Net models along with byte-level baselines consistently underperform on TQA compared to
BPE-based models. This suggests that the performance gap may not stem solely from the hierarchical
structure. However, as model size and training data scale (e.g., at the 8B or 1B, 370B tokens scale),
this discrepancy seems to vanish. When examining the Transformer Bytes[::w] models, we clearly
observe the effect of pooling at word boundaries. As the pooling window size w increases, the
resulting increasing compression comes at the cost of a consistent drop in performance. In contrast,
using a more principled pooling strategy, as in AU-Net, achieves better compression while main-
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taining strong downstream performance, enabling more robust and faster training. This effect is
particularly pronounced on generative tasks such as TQA, where performance declines sharply for
larger window sizes and remains below both AU-Net and BPE baselines. This is further emphasised
in the subsequent section 3.4 where the same pattern emerges. For languages where space-based
pooling does not align well with word boundaries, performance also decreases significantly.

We observe early signs of diminishing returns beyond a certain number of stages. While AU-Net 4
improves on reasoning-heavy tasks such as ARC-C and GSM8k, gains on benchmarks like Hellaswag
and TQA are less consistent. However, this effect may stem not from hierarchy itself, but from
data efficiency: deeper hierarchies might require more training data to reach their full potential.
Supporting this interpretation, AU-Net 2 and AU-Net 4 benefit significantly from additional training
data, and that MMLU and GSM8k scores continue to improve with more stage, even at fixed scale.

Finally, when comparing our models to similarly sized baselines from the literature (italicized in the
table), we find that AU-Net remains competitive, even while using significantly less training data.
For instance, BLT (1T) uses approximately 5! more compute than our 8B model, while only being
better on MMLU. Importantly, comparisons with literature models are fair, as all were trained on the
same corpus: DCLM (except for BLT (220B) and LLAMA 3.1 (15T)).

To further evaluate our approach, we now turn to scaling laws (figure 3) to better quantify how our
architecture compares to a standard Transformer with BPE. We focus on AU-Net 2 and AU-Net 3,
using a data-to-model ratio of 2. This choice is motivated by the diminishing returns observed when
moving from AU-Net 3 to AU-Net 4 under the same data-to-model ratio.

3.3 Scaling laws

Using the learning rate and batch size formulas (Section 2.3), we run pretraining for a range of
compute budgets ranging from 1e19 to 1e22 flops (corresponding to models from 150M to 5.3B
non embedding parameters) for the baseline, with a data-to-model ratio of 10. This is roughly 2↔
the optimal data-to-model ratio found by Kaplan et al. [9]. Compared to table 2 and the 8B-scale
experiments, the scaling-law runs use a higher data-to-model ratio (data-to-model ratio = 10 instead

Figure 3: Downstream task performance scaling with compute (1e19-1e22 FLOPs) under data-to-model
ratio of 10. AU-Net (2/3 stages) generally tracks a strong BPE Transformer baseline, which itself performs
competitively against much larger models (e.g., LLaMa 3.1 8B on 15T tokens 100→ compute). While AU-Net
matches the baseline on tasks like Hellaswag and ARC Easy, and catches up on TQA at higher compute, its
performance improvement phase on MMLU and GSM8K appears to start later. The general underperformance
on GSM8K is also linked to limited math data in the DCLM pretraining corpus.
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Table 3: Multilingual evaluation. Left: BLEU scores on the FLORES-200 benchmark across multiple
languages. Higher scores indicate better translation quality. Right: MMLU Exact Match (%) across
26 non-English languages. Results are averaged per language across all tasks.

FLORES-200
(BLEU)

Lang. → Eng. Eng. → Lang.
BPE AU-Net 2 BPE AU-Net 2

German 34.4±1.2 33.9±1.2 16.7±0.8 15.6±0.7

Dutch 24.7±1.0 25.0±1.0 12.3±0.6 11.7±0.6

Afrikaans 32.0±1.3 35.7±1.3 14.8±0.8 16.1±0.8

Faroese 8.7±0.7 9.9±0.8 1.8±0.3 2.9±0.4

Icelandic 7.8±0.6 9.0±0.7 1.7±0.3 2.5±0.3

Limburgish 15.3±0.9 19.9±1.0 5.7±0.4 6.7±0.5

Luxembourgish 11.4±0.8 14.7±0.9 2.6±0.3 4.0±0.3

Italian 29.1±1.0 30.1±1.0 15.1±0.7 15.3±0.6

Friulian 14.6±0.8 19.1±1.0 3.2±0.3 4.0±0.3

Ligurian 16.5±0.9 21.8±1.0 3.4±0.3 3.9±0.3

Lombard 12.9±0.9 19.2±1.0 5.2±0.4 4.2±0.3

Sardinian 14.3±0.8 18.2±1.0 4.3±0.4 4.5±0.4

Sicilian 11.7±0.8 16.8±0.9 3.9±0.4 4.7±0.4

Venetian 19.8±1.0 25.4±1.1 5.8±0.4 5.6±0.4

Spanish 28.2±1.0 29.3±1.0 20.2±0.7 19.8±0.7

Asturian 24.0±1.1 28.6±1.1 10.3±0.6 8.2±0.5

Catalan 28.1±1.1 33.0±1.2 9.6±0.5 10.7±0.6

Occitan 28.0±1.2 35.5±1.2 4.8±0.4 6.2±0.4

Portuguese 42.0±1.3 43.6±1.3 25.3±1.0 25.4±1.0

Galician 29.6±1.1 34.0±1.2 9.9±0.5 10.2±0.6

Papiamento 17.3±0.9 22.1±1.1 2.5±0.3 6.3±0.4

Kabuverdianu 13.7±0.9 20.8±1.1 2.4±0.3 5.1±0.4

Esperanto 15.9±1.0 19.3±1.0 3.6±0.4 5.9±0.4

Average 20.9±0.2 24.6±0.2 8.0±0.1 8.7±0.1

MMLU BPE AU-Net 2

English 49.6±0.8 51.1±0.8

Arabic 29.1±0.8 29.5±0.8

Bengali 27.5±0.7 27.6±0.8

Chinese 33.0±0.8 28.0±0.7

Czech 30.7±0.8 32.2±0.8

Dutch 34.5±0.8 37.1±0.8

Finnish 29.0±0.7 29.3±0.7

French 37.3±0.8 40.7±0.8

German 36.0±0.8 37.6±0.8

Greek 29.2±0.8 30.5±0.8

Hindi 27.9±0.7 27.5±0.7

Hungarian 29.0±0.8 30.1±0.8

Indonesian 34.9±0.8 37.3±0.8

Italian 36.2±0.8 39.0±0.8

Japanese 29.5±0.7 28.2±0.7

Korean 28.4±0.7 28.2±0.8

Persian 28.7±0.7 28.6±0.7

Polish 30.3±0.8 32.0±0.8

Portuguese 37.2±0.8 40.9±0.8

Romanian 34.0±0.8 36.9±0.8

Russian 30.9±0.8 31.2±0.8

Spanish 37.6±0.8 41.4±0.8

Swahili 28.8±0.7 29.9±0.8

Swedish 33.5±0.8 36.0±0.8

Telugu 26.8±0.7 27.4±0.7

Thai 28.0±0.7 27.5±0.7

Turkish 29.1±0.7 30.0±0.7

Vietnamese 31.4±0.8 30.7±0.7

Average 31.4±0.1 32.4±0.1

of 5) and the latest hyperparameters described at the end of section 2.3. These differences can explain
the variation in peak performance across the two experiments.

The list of models chosen for each budget is detailed in the appendix G. Figure 3 shows the evolution
of performance on 6 downstream tasks for AU-Net and the BPE baseline. Here we mainly notice
that 2 and 3 stage AU-Net models can match the performance of the BPE baseline when carefully
controlling for compute budget. This is the case for Hellaswag, Arc Easy, and NQ. For TQA, AU-Net
both for 2 and 3 stages starts with a performance gap, but the 3 stage model catches up at 1e22 flops.
However, both 2-stage and 3-stage AU-Net models are still behind the BPE baseline at 1e22 flops for
GSM8K and MMLU. Most downstream tasks follow a sigmoid pattern: performance is near chance at
low compute, then rapidly improves before plateauing. For AU-Net models, this transition appears to
occur slightly later on tasks like GSM8K and MMLU, suggesting that the benefits of a deep hierarchy
may become more pronounced at larger scales. Nevertheless, on many benchmarks, both our AU-Net
variants and our BPE baseline achieve results remarkably close to those of considerably larger models
like LLaMa 3.1 8B (pretrained on 15T tokens, representing 100 times more compute than our largest
run shown here). This proximity underscores the strength of our BPE baseline, making AU-Net’s
ability to match or trend towards it particularly noteworthy. The primary exception where this close
tracking is less apparent is GSM8K; however, this underperformance across all our models is likely
due to the pretraining corpus, as DCLM contains very little math data.

3.4 Extended Evaluations

We present results highlighting two specific advantages of byte-level training with AU-Net over
BPE-based Transformers: improved performance on multilingual benchmarks (Table 3) and character-
level manipulation tasks (Table 7 in the appendix E). Table 3 show surprisingly strong non-English
performance of both model, despite DCLM being heavily filtered toward English.

Cross-lingual generalization within language families. On the multilingual MMLU benchmark
(Table 3 right), languages using Latin scripts consistently benefit from byte-level modeling. We
observe strong positive transfer between related languages. Concretely, Germanic languages (German,
Swedish, Dutch, etc.) show an average gain of +3.0 points, while Romance languages (Italian, Spanish,
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Portuguese, French, etc.) improve by +4.0 points. These results suggest that operating at the byte level
helps the model to capture shared orthographic and morphological patterns across related languages.

Transfer to low-resource languages. The FLORES-200 benchmark (Table 3 left) includes many
low-resource languages that are underrepresented or absent in the training data. This setting allows
us to test the model’s ability to generalize based on subword morphology and shared linguistic roots.
Byte-level modeling provides the flexibility to construct meaningful representations without requiring
the presence of these languages in the tokenizer or training corpus. We observe consistent gains
in translation tasks into English, where the model must primarily understand the source language.
The advantage is particularly clear for languages that share syntactic or morphological traits with
more dominant relatives in the same family. This also highlights the robustness of our model: it can
produce meaningful translations even with out-of-vocabulary words or forms unseen during training.
In the reverse direction (English to low-resource), generation remains more challenging.

4 Related Work

Traditional tokenization methods are important for computational efficiency [20–23], but impose fixed
granularities. Early attempts to overcome this rigidity explored adaptive vocabularies [24], n-gram
combinations [25], or alternative splitting criteria like entropy [5]. Our work, AU-Net, advances
this by integrating tokenization and representation learning into a multi-level, autoregressive U-Net
architecture that operates directly on bytes.

This hierarchical, adaptive-pooling design distinguishes AU-Net from prior works. For instance,
Megabytes [19] introduce a two stage LLM using local models but with fixed-size token blocks,
unlike AU-Net’s input-adaptive pooling. Neitemeier et al. [6], Byte Latent Transformers (BLT) [5],
Dynamic Pooling Transformer (DPT) [26] and SpaceByte [8] also process bytes or use specialized
splitting functions. However, they typically aim to replace BPE for a single effective processing
stage or use local attention mechanisms. In contrast, AU-Net leverages user-defined splits within
a multi-stage architecture featuring distinct pooling strategies that differ from the cross-attention
methods in Nawrot et al. [4], Pagnoni et al. [5]. Nawrot et al. [4] defined a similar U-Net architecture
but with fixed pooling, much smaller models, and their evaluations mainly focus on perplexity.

Concurrent to our work, H-Net [27] introduces a hierarchical sequence model based on learnable,
data-dependent dynamic chunking. Like AU-Net, H-Net operates directly on bytes and constructs
up to three stages network. While both models share similar high-level goals, they differ in key
mechanisms: H-Net employs a learned dynamic split function, whereas AU-Net relies on predefined,
rule-based splitting functions for hierarchical pooling and upsampling.

5 Conclusion

This paper introduces AU-Net, an autoregressive U-Net that processes raw bytes and learns hierarchi-
cal token representations. By dynamically pooling bytes into words and multi-word chunks, AU-Net
eliminates the need for predefined vocabularies and large embedding tables while preserving BPE
performance with higher compression. Experiments show that AU-Net matches strong BPE baselines
under controlled compute budgets, with deeper hierarchies demonstrating promising scaling trends.
Furthermore, its byte-level operation leads to improved performance on character-level tasks and bet-
ter generalization to low-resource languages. This approach offers a flexible and efficient alternative
to traditional tokenization methods, paving the way for more adaptable and versatile language models.

Limitations and further work

Our work relies on DCLM, an English-only corpus, and currently supports only space-delimited
languages with a predefined splitting function. For example, this affects, Chinese, where MMLU
scores are lower than the BPE baseline. Another limitation is the lack of evaluation on code and math
benchmarks. Since the DCLM corpus contains very little code abd mathematical data, models trained
on it perform poorly on these tasks, yielding low and noisy results close to random performance. One
extension could be to learn directly the splitting function. On the software side, as the number of
parameters increases with the number of stages, FSDP already struggles to overlap computation and
communication even at 3/4 stages, it needs a minimum amount of inputs to be fully overlapped.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We report results on multiple benchmarks in section 3 and more specific
benchmarks in section 3.4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See “limitations” in the conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: no theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our experiments use standard measures, experimental setup is described in
section 3 and hyperparameters in appendix D. Our experiments are run on a public code,
namely meta Lingua[2].
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: data are standard public datasets. We work with an open-sourced codebase for
LLM, namely meta Lingua [2], and our code will be open-sourced on acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: we specify all training sets and models, including pretraining data. All details
about our scaling laws and the downstream performances are specified and standard.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
We report 95% confidence interval using bootstraping in all tables.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
We use the number of flops in the x-axis of our scaling laws and specify budgets of all
experiments. Section 3 we specify the type of GPUs, we are using
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
We read the ethics guidelines and did not violate anything.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: the paper is rather technical than application oriented. Though the improve-
ments on rare languages can be positive societal impacts. We see no potential negative
societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: N/A
Justification: No models or data are released.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets are cited and properly credited in appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Code will be release at later date.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our work is about the training of LLM, so LLM are at the core of the present
research. We use standard, open-sourced methodologies for evaluating LLM, using [2].
There is no other usage of LLM.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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