
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DISENTANGLING THE QIGAN ENCODED BY A DNN
TOWARDS THE GO GAME

Anonymous authors
Paper under double-blind review

ABSTRACT

Given a deep neural network (DNN) that has surpassed human beings in a task,
disentangling the explicit knowledge encoded by the DNN to obtain some new
insights into the task is a new promising-yet-challenging regime in explainable
AI. In this paper, we aim to disentangle the “QiGan1” encoded by the AI model
for the Go game, which has beat top human players. Specifically, we disentangle
primitive shape patterns of stones memorized by the value network, and these
shape patterns represent the “QiGan1” used to conduct a fast situation assessment
of the current board state. The universal-matching property of interactions ensures
that human players can learn accurate and verifiable shape patterns, rather than
specious intuitive analysis. In experiments, our method explains lots of novel shape
patterns beyond traditional shape patterns in human knowledge.

1 INTRODUCTION

The explanation for AI models has gained increasing attention in recent years. However, in this paper,
we consider a new problem, i.e., if an AI model has achieved superior performance to human beings
in a task, how can we clearly disentangle exact inference patterns used by the AI model to help people
better understand new hidden rules for the task? Because AI models for the Go game have been
widely regarded to have surpassed human players (Granter et al., 2017; Fang et al., 2018; Intelligence,
2016), in this paper, let us consider the Go game as a case study, and disentangle shape patterns2 used
by AI models3 to play the Go game.

In fact, the disentanglement of shape patterns is of special values for the Go game. Because the Go
game is considered as the most difficult game with the vastest searching space of 10171 states, which
is far beyond the searching ability of human players or computers (Lee, 2004; Van Der Werf, 2004),
both people and neural network have to use “QiGan1” as a fast intuitive situation assessment. In
comparison, other games (e.g.chess and poker) primarily rely on search capacities. In the AI model
for the Go game, the value network encodes the “QiGan1,” and the policy network and the Monte
Carlo Tree Search correspond to searching capabilities (Gelly & Silver, 2011; Buesing et al., 2020).
“QiGan1” is also one of the core skills that human players need to learn.

Therefore, we aim to discover explicit new shape patterns2 of stones (i.e., QiGan1) used by the value
network to estimate the advantage score without a sophisticated search. The discovered patterns may
probably be beyond current human understanding of the Go game. As the mathematical guarantee of
the pattern discovery, Li & Zhang (2023) have discovered and Ren et al. (2024a) have proven that the
output score of a DNN can usually be decomposed into effects of interactions encoded by a DNN. For
example, given a board state x with n stones, N = {1, 2, ..., n}, the value network in Figure 1 outputs
the advantage score v(x) of white stones. Each interaction between stones in S ⊆ N represents
a shape pattern corresponding to an AND relationship between stones in S, which is equivalently
encoded by the value network. When all stones in S are present, the interaction S is activated and
contributes an effect I(S) to v(x). Removing any stone in S will remove the effect I(S) from v(x).

1In the community of the Go game, “QiGan” is widely used to refer to the fast situation assessment based on
shape patterns of stones without a sophisticated search. “QiGan” can also be replaced with “knowledge.”

2Shape patterns, refer to the various shapes formed by the arrangement of stones on the board.
3We use the KataGo (Wu, 2019) for testing, because the AlphaGo is not open-sourced.
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Figure 1: Interactions encoded by
the value network. Each interaction
S represents a specific shape pat-
tern. Because stones x6, x9, x10 are
removed (masked) from the board,
the AND interactions S3 and S4

are deactivated in the masked board
state, and interaction effects I(S3)
and I(S4) are removed from the ad-
vantage score v(xmasked). We can
label T = {1, 3, 8} as a common
coalition that represents a common
shape pattern shared by different in-
teractions S1, S2, S3.

However, the theory of the previous interaction is no longer effective for the explanation of the Go
game due to the superior complexity of the Go game from the following three perspectives.

• First, we prove that the previous interaction cannot well explain the OR relationship between stones
encoded by the DNN. The presence of any stones in S activates an OR relationship and contributes
an effect Ior(S). We prove that the OR pattern would be explained as 2|S| different AND interactions.

Therefore, we extend AND interactions to explain OR relationships between stones encoded by the
value network. More crucially, (1) Mathematical guarantee. We first prove the universal matching
property of AND-OR interactions to ensure that OR interactions faithfully explain the value network.
I.e., given a board state x, the advantage score can be accurately matched by a small number of AND
interactions and OR interactions, no matter how we randomly remove stones from the board (see
Theorem 2.4, Figure 6). (2) Experimental verification. We verify that shape patterns extracted from
one board state can also explain the network outputs on other board states.

• Second, we find that the advantage score estimated by the value network is usually shifted, when
white stones on the board are far less or far more than black stones on the board. This also hurts the
faithfulness of explaining shifted advantage scores. Therefore, we develop a method to alleviate the
shifting problem. The faithfulness of the explanation is experimentally verified in Section 2.6, so as
to improve the faithfulness/fidelity of the explanation.

• Furthermore, we notice that some shape patterns for the Go game are usually quite complex, i.e.,
containing a large number of stones. Too complex shape patterns are usually considered as the unusual
shape patterns memorized by the value network, instead of a common shape pattern shared by different
board states. This boosts the difficulty of understanding the Go game. Thus, we further identify some
common combinations of stones that are shared by different interactions/shapes, namely coalitions.
For example, in Figure 1, the interactions S1 = {1, 3, 4, 5, 8}, S2 = {1, 3, 8}, S3 = {1, 3, 8, 9} all
contain the coalition T = {1, 3, 8}. We apply the attribution method (Xinhao Zheng, 2023) to estimate
the attribution of each coalition to help people understand the DNN’s logic.

We collaborate with professional human Go players to compare interactions/coalitions encoded
by the value network with the human player’s QiGan1 of the Go game, so as to discover shape
patterns beyond human understanding. We find that some discovered shape patterns well fit human
understanding, but other discovered patterns conflict with traditional tactics of the Go game, which
provide human players with new QiGan1.

In sum, in this paper, we propose to solve distinctive challenges in explaining the Go game. We
extend the AND interaction to the OR interaction, penalize unreliable high-order interactions, and
compute attributions of common coalitions. Expert human players claim that they have learned new
QiGan1 (novel shape patterns beyond current human knowledge) encoded by the value network.

Value beyond the Go game. Discovering inference patterns encoded by a DNN is a generic AI
problem. We have also used similar techniques (1) to explain the Gobang game4 and (2) to explain
incorrect patterns used by a DNN for object detection4. Please see Appendix M.3 and M.4 for details.

4Detailed experimental results is shown in Appendix M.3 and M.4 due to the limit of page number.
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2 EXPLAINING SHAPE PATTERNS OF STONES

2.1 PRELIMINARIES: INTERACTIONS

Definition and computation of the interaction. In this paper, we use the value network v for the Go
game as an example to introduce interactions between different stones encoded by the value network.
The value network uses the current state x on the board to estimate the probability pwhite(x) ∈ [0, 1] of
white stones winning. To simplify the notation, let us use x = {x1, x2, ..., xn} to denote both positions
and colors of n stones in the current state. We consider these n stones, including both white and black
stones, as input variables5 of the value network, which are indexed by N = {1, 2, ..., n}. We set a
scalar v(x) = log( pwhite(x)

1−pwhite(x)
) ∈ R as the advantage of white stones in the game.

In this way, Harsanyi (1963) has proposed a metric I(S), namely the AND interaction. We can use
the following equation compute the interaction effect I(S) ∈ R between stones in S, which is encoded
by the value network. Given interaction effects I(S) w.r.t. all combinations S ⊆ N , only those with
none-zero effects are taken as valid interactions in v(x).

∀S ⊆ N, I(S)
def
=

∑
T⊆S

(−1)|S|−|T | · v(xT ) (1)

where xT denotes the state when we keep stones in the set T on the board, and remove stones in
N \ T . Thus, v(xT ) measures the advantage score estimated on the masked board state xT .

Physical meaning and faithfulness guarantee. The proven sparsity property and the universal-
matching property both clarify the physical meaning of interactions and ensure that interactions
faithfully represent primitive inference patterns encoded by the DNN.

First, Theorem 2.1 shows the universal-matching property of interactions, i.e., we can use interac-
tions S ⊆ N to accurately mimic the network outputs on xT , no matter how we randomly mask
the input sample x. We can use interactions S ⊆ N to construct a surrogate logical model of AND
operations h(·), and the logical model h(xT ) can accurately mimic the network outputs on xT , no
matter how we randomly mask the input sample x.

Physically, each interaction S in Equation (2) represents a non-linear AND relationship (shape pattern)
between stones in S ⊆ N , which is equivalently encoded by the neural network v. Let us consider the
interaction I(S2 = {1, 3, 8}) ̸= 0 in Figure 1 as an example. If all stones in S2 are placed on the board,
then the interaction will make an effect I(S2) on the advantage score v(x). Thus, we can consider the
interaction as an AND relationship I(S2) = wS2 · [exist(x1) ∧ exist(x3)∧ exist(x8)] encoded by v. The
removal of any stones in S2 will remove the effect from v.
Theorem 2.1 (proved by Ren et al. (2023)). Given an input sample x, let us construct the following
logical model h(·) based on AND interactions. The output score of the DNN on all 2n randomly
masked samples xT w.r.t. ∀T ⊆ N can all be well matched by these interactions.

∀T ⊆ N,h(xT ) = v(xT ).

h(xT ) = v(∅) +
∑

S⊆N,S ̸=∅
I(S) · 1

(
xT triggers

the AND relation S

)
= v(∅) +

∑
S⊆T,S ̸=∅

I(S)
(2)

In addition, the sparsity property of interactions has been observed by Li & Zhang (2023) and proven
by Ren et al. (2024a), i.e., most DNNs only encode a small number of interactions6 between input
variables in an input sample. It means that among all 2n different subsets S1, S2, ..., S2n ⊆ N , most
interactions have negligible effects I(Si) ≈ 0, and only a few interactions in the set Ωsalient

7 have
large effects, s.t. |Ωsalient| ≪ 2n. Combining Theorem 2.1, v(xT ) is mainly determined by the small
number of salient interactions S ∈ Ωsalient

7, so these salient interactions can be considered as primitive
inference patterns encoded by the value network, namely interaction primitives.

5Although the input of the value network is a tensor (Silver et al., 2016), we use x = {x1, x2, ..., xn} to
denote the input.

6 Ren et al. (2024a) have partially proved the sparsity of interactions under three common conditions.
Although there is no strict way to directly examine whether the network inference on a given input sample satisfy
the three conditions, experimental results in Figure 2 and Figure 6 (b) verify the sparsity of interactions encoded
by the KataGo model. Please see Appendix D for more detailed introductions of common conditions.

7Unlike traditional sparsity, Ren et al. (2024a) define the sparsity as many non-salient interactions, instead
of many zero values. We set ξ = 0.15 ·maxS |I(S)| to select salient interactions, Ωsalient = {S : |I(S)| > ξ}.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

index of interactions S

in
te

ra
ct

io
n

 s
tr

en
gt

h
Salient interactions 
between n stones

Non-salient 
interactions

Game 1 Game 2 Game 3

id-1ADFE436-sample-0098 id-2F86B3DD-sample-0076

index of interactions S index of interactions S

Game 1

index of interactions S

Game 2

index of interactions S

Game 3

index of interactions S

Exclusively using 
AND interactions

Exclusively using 
AND interactions

Exclusively using 
AND interactions

Salient interactions 
between n stones

Non-salient 
interactions

Salient interactions 
between n stones

Non-salient 
interactions

Figure 2: Comparison of the sparsity of interactions7. We sort strength of all interaction effects in a
descending order. Interaction explanations generated by using both AND and OR interactions are
sparser than those generated by using exclusively AND interactions.

The sparsity of interactions universally appears on diverse DNNs with fully different architectures
(MLPs, CNNs, Transformers, RNNs) for different tasks (CV, NLP, 3D point clouds). Note that unlike
traditional techniques (Tibshirani, 1996), the sparsity here does not mean many exactly zero values
but rather many negligible interactions, subject to |I(S)| < ξ7, where ξ7 is a tiny threshold. Please
see (Ren et al., 2024a) for detailed proof.

Complexity of the interaction primitive. The complexity of an interaction primitive S is defined as
the order of the interaction, i.e., the number of stones in S, order(S) = |S|. An interaction primitive of
a higher order represents a more complex interaction with more stones.

2.2 EXTENSION TO OR INTERACTIONS8

We aim to extract interaction primitives from the value network, and use them as shape patterns that
determine the winning probability. It is widely believed that the Go game applies much more complex
logic than other applications (Shin et al., 2021). Thus, the network for the Go game is supposed to
encode both AND relationships and OR relationships between stones.

However, we find that Theorem 2.2 shows that exclusively using AND interactions to explain an OR
relationship will significantly complicate the explanation, i.e., the OR relationship can be represented
as an exponential number of specific AND operations9.

Theorem 2.2 (proved in Appendix I). Given an input sample x = [x1, x2, ..., xn]
⊤, where each input

variable xkj ∈ {0, 1} is binary to represent the presence or absence state of the variable. Let the
target function v(x) encode a m-order OR relationship, i.e., v(x) = xk1

∨ xk2
∨ ... ∨ xkm

. Then,
the function v(x) would activate 2m − 1 non-zero AND interactions, i.e. for all non-empty subset,
∅ ≠ S ⊆ {xk1

, xk2
, ..., xkm

}, Iand(S|x) = (−1)|S|−1 ̸= 0.

Definition of OR interactions. Therefore, we extend AND interactions in Equation (1) to OR
interactions. Figure 2 shows that when we simultaneously use AND and OR interactions, we usually
obtain sparser explanation than exclusively using AND interactions. Specifically, we decompose the
advantage score v(xT ) into a component vand(xT ) for AND interactions, and a component vor(xT )
for OR interactions, i.e., we set ∀T ⊆ N,T ̸= ∅, vand(xT ) = 1

2
v(xT ) + pT , vor(xT ) = 1

2
v(xT ) − pT ,

which satisfy v(xT ) = vand(xT ) + vor(xT ). pT ∈ R denotes a learnable bias term. The component
vand(xT ) is explained by AND interactions Iand(S)

def
=

∑
T⊆S(−1)|S|−|T | · vand(xT ) in Equation (1),

subject to vand(xT ) = v(∅)+
∑

S⊆T,S ̸=∅ Iand(S). The component vor(xT ) is explained by the following
OR interactions10, subject to vor(xT ) =

∑
S∩T ̸=∅,S ̸=∅ Ior(S).

∀S ⊆ N, S ̸= ∅, Ior(S)
def
= −

∑
T⊆S

(−1)|S|−|T |vor(xN\T ) (3)

Above settings for OR interactions are justified by the universal matching property (introduced in
Theorem 2.4 and experimentally verified in Figure 6(a)) and sparsity property (verified in Figure 2).

8We put the pseudo-code in Appendix A.
9For example, we represent the effect of an AND interaction S = {1, 2, 3} as Iand(S) = wand

S · [exist(x1) ∧
exist(x2)∧ exist(x3)]. In comparison, the effect of an OR interaction S = {1, 2, 3} is represented as Ior(S) =
wor

S · [exist(x1) ∨ exist(x2) ∨ exist(x3)] = wor
S · {¬[(¬exist(x1)) ∧ (¬exist(x2)) ∧ (¬exist(x3))]}, where ∨

represents the binary logical operation “OR.” The Boolean function exist(·) = false when the stone is removed.
10Please see Appendix F.1 for the proof.
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How to understand OR interactions. Just like the AND interaction, an OR interaction S is measured
to reflect the strength of an OR relationship between stones in the set S encoded by the model vor. If
any stone in S appears on the board, then the OR interaction S makes an effect Ior(S) on the score
vor(x). Only when all stones in S are removed from the board, the effect Ior(S) is removed.

Learning of AND-OR interactions11. Therefore, the core task of extracting AND-OR interactions
is to learn parameters {pT }T⊆N to determine the decomposition of the AND-interaction component
vand(xT ) and the OR-interaction component vor(xT ). However, the core challenge is that the extraction
of AND interactions and OR interactions is neither stable, nor unique. Theorem F.1 in Appendix F.2
proves that small unexplainable noises in the network output usually significantly enlarge the strength
of high-order interactions. To overcome this problem, we slightly revise the original network output
v(xT ) as v(xT ) + qT , where qT ∈ R is a small scalar contained within a small range, |qT | < τ12. The
parameters {qT }T⊆N are learned to represent unavoidable noises in the network output, which cannot
be reasonably explained by AND interactions or OR interactions. We use the following loss function
to learn a sparse decomposition of AND and OR interactions, according to the Occam’s Razor.

min
{pT }T⊆N,T ̸=∅,{qT :|qT |<τ}T⊆N,T ̸=∅

∥Iand∥1 + ∥Ior∥1 (4)

where ∥·∥1 represents L-1 norm. Iand = [Iand(S1), Iand(S2), ..., Iand(S2n)]
⊤ and Ior = [Ior(S1), Ior(S2), ...,

Ior(S2n)]
⊤ denote all AND interactions and all OR interactions, respectively. AND interactions

{Iand(S)}S⊆N are computed by setting vand(xT ) =
1
2
· [v(xT ) + qT ] + pT according to Equation (1).

OR interactions {Ior(S)}S⊆N are computed by setting vor(xT ) =
1
2
· [v(xT )+ qT ]− pT in Equation (3).

Experimental results in Figure 2 have demonstrated the effectiveness of the proposed method.

Mathematical properties of OR interactions. Notably, extending AND interactions to OR interac-
tions does not hurt theoretical solidness of the interaction metric. We find that OR interactions also
satisfy desirable properties, just like AND interactions. Theorem 2.3 proves that an OR interaction
can be considered as a specific AND interaction9. Theorem 2.4 proves that we can use AND-OR in-
teractions to explain the DNN’s outputs on all 2n randomly masked samples {xT }T⊆N . Theorem 2.5
proves that we can use AND-OR interactions to explain the Shapley value (Shapley, 2016).
Theorem 2.3 (proved in Appendix E). The OR interaction effect between a set S of stones, Ior(S)
based on v(xT ), can be computed as a specific AND interaction effect I ′and(S) based on the dual
function v′(xT ). For v′(xT ), original present stones in T (based on v(xT )) are considered as being
removed, and original removed stones in N \ T (based on v(xT )) are considered as being present9.
Theorem 2.4 (universal-matching property, proved in Appendix G). Let the input sample x be
randomly masked. There are 2n masked samples {xT } w.r.t. 2n subsets T ⊆ N . The output score on
any masked sample xT can be represented as the sum of effects of AND-OR interactions.

∀T ⊆ N, v(xT ) = v(x∅) +
∑

S⊆N
Iand(S) · 1

(
xT triggers

the AND relation S

)
+

∑
S⊆N

Ior(S) · 1
(

xT triggers
the OR relation S

)
= v(x∅) +

∑
S⊆T,S ̸=∅

Iand(S) +
∑

S∩T ̸=∅,S ̸=∅
Ior(S)

Theorem 2.5 (proven in Appendix H). The Shapley value ϕ(i) of each input variable i ∈ N
can be explained as a re-allocation of AND-OR interactions, i.e., ϕ(i) =

∑
S⊆N,S∋i

1
|S|Iand(S) +∑

S⊆N,S∋i
1
|S|Ior(S).

Experimental verification of the sparsity of interactions. Although Ren et al. (2024a) have proved
that a DNN usually only encodes a small number of interactions for inference under some common
conditions6, it is still a challenge to strictly examine whether the value network fully satisfies these
conditions. Although Theorem 2.3 has proved that OR interaction can be considered as a specific
AND interaction, in real applications, we still need to verify the sparsity7 of interactions encoded by
the value network for the Go game.

Therefore, we experimentally examine the KataGo v.1.13.0 (Wu, 2019), which is a free open-source
neural network for the Go game and has defeated human players. Specifically, we use KataGo to
generate a board state by letting KataGo take turns to play m

2
moves of black stones and m

2
moves of

white stones. Note that accurately computing the interactions of all m stones is an NP-hard problem.

11Please see Algorithm 1 for the pseudo code.
12Please see Appendix L.3 for more details about setting the small threshold τ .
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Figure 3: (a) Value shifting over different orders. We show the average advantage score Ak =
ExET⊆N :∆n(T )=klog(

pwhite(xT )
1−pwhite(xT )

) over all masked states xT with the same unbalance level k. The
average advantage score Ak is saturated when |k| is large. (b) Compared to high-order interactions S4,
low-order interactions S1, S2, S3 from board x(1) are easier to be transferred to another board x(2).

We let the professional human Go player to select13 n = 10 stones (n ≤ m), including n
2

white stones
and n

2
black stones, so that we can accurately compute interactions between these n selected stones.

All other (m − n) stones are considered as constant background without being masked, and their
interactions are not computed. Figure 2 shows the strength |I(S)| of all AND interactions and OR
interactions in a descending order. It shows that only a few interactions have salient effects, 80%-85%
interactions have negligible effects7. The verification of the sparsity of interactions indicates that we
can use these sparse interactions as faithful primitive shape patterns encoded by the value network.

2.3 HOW TO OBTAIN SIMPLE AND TRANSFERABLE SHAPE PATTERNS8

Can shape patterns extracted from a board be transferred to other boards? The transferability
of interaction primitives is crucial for the explanation of the Go game.

First, Zhou et al. (2024) have found that high-order interactions are more likely to represent non-
generalizable abnormal interactions, while low-order interactions are usually more generalizable,
i.e., low-order interactions usually represent common patterns that frequently appear in different
games. For example, as Figure 3 (b) shows, 3-order interaction primitives S1, S2, S3 extracted from
the board state x(1) can be transferred to the board state x(2). However, 8-order interaction primitive
S4 extracted from the board state x(1) cannot be transferred to the board state x(2).

Second, Ren et al. (2024b) have proven that high-order interactions lead the DNN to over-fit and are
usually penalized in the training process of a DNN, because they represent unstable noise patterns.

Boosting transferability14 of interaction primitives. Therefore, in this subsection, we propose
a series of techniques to boost the transferability of interaction primitives. To this end, we find
a problem that the KataGo model extracts some high-order interaction primitives (see Figure 4).
We prove that the emergence of high-order interactions is caused by the value shift (or called the
saturation problem) of the value network in Appendix J. I.e., most training data for the value network
are usually biased/shifted to states with similar numbers of white stones and black stones, because
in real games, the board always contains similar numbers of white stones and black stones. We
use ∆n(T ) = nwhite(T )− nblack(T ) ∈ {−n

2
, −n

2
+ 1, ..., n

2
} to measure the unbalance level of the

masked state xT , where nwhite(T ) and nblack(T ) denote the number of white stones and that of black
stones on xT , respectively. As Figure3 (a) shows, we compute the average advantage score Ak =
ExET⊆N :∆n(T )=k log(

pwhite(xT )
1−pwhite(xT )

) over all masked states xT with the same unbalance level k ∈ {−n
2
,

−n
2
+ 1, ..., n

2
}. The average advantage score Ak is not roughly linear with k, but is saturated when

|k| is large. Appendix J further shows that the value shift causes more high-order interactions.

Solution11. Therefore, we propose to revise the advantage score v(xT ) in Equation (1) to remove
the value shift and thereby weaken high-order interactions. Specifically, we remove the value
shift by setting u(xT ) = v(xT ) − ak. Given a masked state xT , we compute its unbalance level
k = ∆n(T ) =nwhite(T )− nblack(T ) ∈ {−n

2
,−n

2
+ 1, ..., n

2
}. ak is initialized as the average advantage

score Ak. We extend the loss function in Equation (4) as follows to learn the parameters a =

13We admit that the selection of stones affects a bit the interactions, but empirically it does not dramatically
change the conclusion. I.e., the sparsity of interactions can be ensured no matter how we select stones. In
addition, professional human player ensures that the selected stones do have potential correlations.

14Please see Figure 7 in Appendix M.1 for experimental verification of the transferability of the new
interactions proposed in this paper.
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Figure 4: Effectiveness of reducing high-order interactions. We show average strength of effects for
interactions of different orders. For different games, the revised method extracts weaker high-order
interactions than the original method.

{a−n
2
,a−n

2
+1, ..., an

2
}, {pT }T⊆N , {qT }T⊆N .

min
a,{pT }T⊆N,T ̸=∅,{qT :|qT |<τ}T⊆N,T ̸=∅

∥Iand∥1 + ∥Ior∥1 (5)

We learn parameters to obtain the sparse decomposition of AND interactions Iand = [Iand(S1),
Iand(S2), ..., Iand(S2n)]

⊤ and OR interactions Ior = [Ior(S1), Ior(S2), ..., Ior(S2n)]
⊤. AND interactions

{Iand(S)}S⊆N are computed by setting vand(xT ) =
1
2
· [u(xT )+ qT ] + pT , according to the paradigm of

Equation (1). OR interactions {Ior(S)}S⊆N are computed by setting vor(xT ) =
1
2
· [u(xT ) + qT ]− pT

in Equation (3). Appendix L.3 shows details about setting the threshold τ . Experimental results in
Figure 4 have verified the effectiveness of our method in penalizing high-order interactions.

Penalizing high-order interactions. Besides, we can add a loss to Equation (5) to penalize high-
order interactions, i.e., Loss = ∥Iand∥1 + ∥Ior∥1 + r · (∥Ihigh

and ∥1 + ∥Ihigh
or ∥1), where Ihigh

and and Ihigh
or denote

the shorter vectors corresponding to high-order AND interactions and OR interactions, respectively.
We empirically set Ihigh

and as a 386-dimensional vector that corresponds to all interactions between the
6-th order to the 10-th order, according the suggestions of professional human players15. We set
r = 5.0 to boost the penalty of high-order interactions. Experimental results in Figure 4 have verified
the effectiveness of our method in penalizing high-order interactions.

High-order shape patterns ̸= global shape patterns. Human Go players typically use global shape
patterns to play the Go game, rather than use high-order shape patterns. A global shape means that
stones in the shape locate across different regions of the board, but it does not require that all stones
be contained within the shape. In contrast, the high-order shape means most of the n stones are
contained within the shape, rather than require all selected stones to locate in different regions.

Experiments. (1) We conduct the first experiment to check whether above methods can reduce the
complexity (order) of the extracted interactions, compared with the original methods in Equation (4).
Specifically, we follow experimental settings in Section 2.2 to generate a board, and compute AND-
OR interactions between selected n stones. Then, we compute the average strength of AND-OR
interactions of different orders, ES:|S|=m[|Iand(S)|] and ES:|S|=m[|Ior(S)|], respectively. Figure 4 shows
the average strength of interaction effects. For both AND interactions and OR interactions, we observe
that the revised method extracts much weaker high-order interactions than the original method in
Equation (4). It verifies that our method can reduce the complexity of interactions. (2) We conduct the
second experiment to show that our method successfully ensure a high transferability of interactions
between stones through different boards. Please see Figure 7 in Appendix M.1 for details.

2.4 DISCOVERING NOVEL SHAPE PATTERNS8

In the above section, we have extracted sparse and simple interaction primitives from the value
network. In this section, we aim to discover novel shape patterns from these interaction primitives
beyond human understanding of the Go game. Please see Algorithm 1 for the pseudo code.

We have examined the sparsity of interaction primitives in experiments. We can usually extract about
100–250 interaction primitives to explain the output of a single board state. However, the number
of primitives is still too large, and we need a more efficient way to discover novel shape patterns.
Therefore, we visualize all primitives, and then identify some specific combinations of stones that

15This is a fully empirical setting. We set the sixth order as the high order, because it is difficult for
professional human players to find any meaningful shape patterns from interactions of more than the 6-th order.
Anyway, users can also set other orders when they extend this method to explain other games.
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frequently appear in different interaction primitives. We refer to these combinations as “common
coalitions.” For example, in Figure 1, given a board state x with n stones, N = {1, 2, ..., n}, we can
extract some salient interactions from the board state x, such as S1 = {1, 3, 4, 5, 8}, S2 = {1, 3, 8},
S3 = {1, 3, 8, 9}, etc. The coalition T = S1 ∩ S2 ∩ S3 = {1, 3, 8} participates in different interactions
T ⊆ S1, S2, S3. We can consider this coalition T as a shape pattern encoded by the value network.

Therefore, we further compute the attribution φ(T ) of each coalition T to the advantage score v(x)
estimated by the value network. In this way, φ(T ) > 0 means that the shape pattern of the coalition
T tends to enhance the advantage of white stones. In comparison, φ(T ) < 0 means that the shape
pattern of the coalition T tends to decrease the advantage score. φ(T ) ≈ 0 means that although the
coalition T is well modeled by the value network, the coalition T has contradictory effects when it
appears in different interactions, thereby not making a significant effect on the advantage score.

There are many attribution methods (Lundberg & Lee, 2017; Selvaraju et al., 2017; Zhou et al., 2016;
Zintgraf et al., 2017) to estimate the attribution/importance score of different input variables of an AI
model, e.g., estimating attributions of different image patches to the image-classification score, or the
attributions of different tokens in natural language processing. However, there is no a widely accepted
method to estimate the attribution of a coalition of input variables, because most attribution methods
cannot generate self-consistent attribution values16. Therefore, we apply the attribution method in
(Xinhao Zheng, 2023) to define the attribution of a coalition T . This method extends the theory of the
Shapley value and well explains the above inconsistency problem. Specifically, the attribution score
φ(T ) of the coalition T is formulated as the weighted sum of effects of AND-OR interactions.

φ(T ) =
∑

S⊇T
(|T |/|S|) · [Iand(S) + Ior(S)] (6)

φ(T )−
∑

i∈T
ϕ(i) =

∑
S∩T ̸=∅,S∩T ̸=T

(|S ∩ T |/|S|) · [Iand(S) + Ior(S)] (7)

Let there be some AND interactions and OR interactions containing the coalition T . Then, Equa-
tion (6) shows that for each interaction S ⊇ T containing the coalition T , we must allocate a ratio |T |

|S|
of its interaction effect as a numerical component of φ(T ). In addition, Appendix K shows a list of
desirable theorems and properties of the attribution of the coalition defined in Equation (6),
which theoretically guarantee the faithfulness of the attribution metric φ(T ). For example,
Equation (7) explains φ(T )−

∑
i∈T ϕ(i), i.e., the difference between the coalition’s attribution φ(T )

and the sum of Shapley values ϕ(i) for all input variables i in T , where the input variable i’s Shapley
value (defined as ϕ(i) =

∑
S⊆N\{i}

|S|!(n−|S|−1)!
n!

[u(xS∪i)− u(xS)]) can also be proved/explained as
ϕ(i) =

∑
S∋i

1
|S| [Iand(S) + Ior(S)]. The difference comes from those interactions that only contain

partial variables in T , not all variables in T . Please see Appendix K for more theorems.

Experiments. Given a board state, we extract interaction primitives encoded by the value network,
i.e., {S : |I(S)| > ξ}, where ξ = 0.15 · maxS |I(S)|. Then, we manually annotate 50 coalitions based
on the guidance from professional human Go players. Figure 5 visualizes sixteen coalitions selected
from four game states. We compute the attribution of contextual stones to a target coalition S, and
visualize attribution values of contextual stones in Figure 8 of Appendix L.4. Please see Appendix
L.4 for more details about the computation and visualization of the interaction context’s attribution.

2.5 HUMAN INTERPRETATION OF THE CLASSIC SHAPE PATTERNS (QIGAN1)

In order to explain shape patterns (coalitions) encoded by the value network, we collaborate with
professional human Go player17. Based on Figure 5, they find both shape patterns that fit QiGan1 of
human players and shape patterns that conflict with human understandings (QiGan1).

Cases that fit traditional human understandings (traditional QiGan1). For the Game 1 in
Figure 5 (1.a - 1.d), φ({1, 2, 3, 8}) < φ({2, 3, 8}) and φ({1, 2, 3, 7}) < φ({2, 3, 7}). It means that

16We use the following example to introduce the inconsistency problem. We can simply consider a coalition
T (e.g., T = {1, 2, 3}) of input variables as a singleton variable [T ], then we have a total of n−2 input variables
in N ′ = {[T ], 4, 5, ..., n}. Let φ([T ]) denote the attribution of [T ] computed on the new partition N ′ of the
n− 2 variables. Alternatively, we can also consider x1, x2, x3 as three individual variables, and compute their
attributions φ(1), φ(2), φ(3) given the original partition of input variables N = {1, 2, ..., n}. However, for
most attribution methods, φ([T ]) ̸= φ(1) + φ(2) + φ(3). This is the inconsistency problem of attributions.

17During the review phase, the Go players are anonymous, because they are also authors.
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when the white stone x1 participates in the combination of white stones x2, x3, the advantage of
white stones become lower, i.e., the stone x1 is a low-value move. Go players also consider that the
effect of the combination of white stones x1, x2, x3 is low. For the Game 2 in Figure 5 (2.a, 2.b),
φ({1, 2, 8}) < φ({1, 5, 8}) means that the value network considers that the white stone x2 has lower
value than x5. Go players consider that in this game state, the white stone x5 protects the white
stones x1, x2, x3, x4, and the white stones x1, x3 attack the black stones x6, x7, but the white stone
x2 has much less value than other stones. For the Game 3 in Figure 5 (3.a - 3.c), φ(S1 = {1, 3, 8})
> φ(S3 = {1, 2, 3, 8}) and φ(S2 = {2, 3, 8}) > φ(S3 = {1, 2, 3, 8}), subject to S3 = S1 ∪ S2. It means
that given the context S1, the stone x2 wastes a move, and given the context S2, the stone x1 wastes a
move. Go players also consider that the combination of stones x1, x2 is of low value.

Cases that conflict with human understandings (QiGan1). For the Game 3 in Figure 5 (3.d),
φ({6, 7, 8}) = 1.00. Go players are confused that the coalition {6, 7, 8} is advantageous for white
stones. Since there are 3 black stones and no white stones in {6, 7, 8}, they believe this coalition is
advantageous for black stones. For the Game 4 in Figure 5 (4.a, 4.b), φ({1, 2, 3, 9}) = −1.71 and
φ({1, 2, 3, 4}) = 1.34. It means that the coalition {1, 2, 3, 4} is advantageous for white stones, and the
coalition {1, 2, 3, 9} is advantageous for black stones, which are contrary to Go players’ QiGan1.

Please see Appendix M.2 and Figure 9 for analysis on more boards.

2.6 DO WE REALLY DISCOVER NOVEL SHAPE PATTERNS OR JUST WRONG PATTERNS?

An core issue is distinguishing whether extracted shape patterns that conflict with human understand-
ings represent novel shape patterns or incorrect explanations. Thus, we conduct three examinations
to check if the interactions act as primitive inference patterns encoded by the value network.

First, let us examine the sparsity7 of interactions, i.e., checking whether the revised method
can still provide a few representative shape patterns, instead of many noisy patterns. We follow
experimental settings in Section 2.2 to generate 50 game states, and visualize the strength of all AND
interactions and all OR interactions of all these 50 game states in a descending order. Figure 6 (b)
shows that only a few interactions have salient effects, and more than 90% interactions have small
effects, which verifies the sparsity7 of interactions extracted by the revised method.

Second, let us examine the universal-matching property of the revised method. Theoretically, the
AND-OR interactions extracted by our revised method still satisfy the universal matching property
in Theorem 2.4. To verify this, we conduct experiments on a given board state x, and we check
if the extracted AND-OR interactions can accurately mimic the network outputs u(xT ) on all 2n
randomly masked board states {xT }T⊆N . To this end, for each masked board states xT , we measure
the approximation error ∆uT = |ureal(xT )− uapprox(xT )| of using AND-OR interactions to mimic the
real output ureal(xT ), where uapprox(xT ) = u(x∅) +

∑
S⊆T,S ̸=∅ Iand(S) +

∑
S∩T ̸=∅,S ̸=∅ Ior(S) represents

the score approximated by AND-OR interactions according to Theorem 2.4. In Figure 6 (a), the
solid curve shows the real network outputs on all 2n randomly masked board states in an ascending
order. The shade area shows the smoothed approximation error, which is computed by averaging
approximation errors of neighboring 50 masked board states. Figure 6 (a) shows that the approximated
outputs uapprox(xT ) can well match with the real outputs ureal(xT ) over different randomly masked
states. It means that the output of the value network can be explained as AND-OR interactions.

Third, experiments in Appendix M.1 shows the transferability of shape patterns, i.e., shape
patterns extracted from a board can also explain u(xT ) in another board.

3 CONCLUSION AND DISCUSSIONS

In this paper, we extract sparse interactions between stones memorized by the value network for the
game of Go. Then, we examine both the fitness and conflicts between the automatically extracted
shape patterns and conventional human understanding of the game of Go, so as to help human players
learn novel shape patterns from the value network as the new QiGan1 to play the Go game. We
collaborate with professional human Go players to analyze the QiGan1 that is automatically extracted
from the value network. Note that our explanation method is a generic method of disentangling
inference patterns encoded by the DNN. We also show how to use interactions to explain the Gobang
game and to debug representation flaws for object detection in Appendices M.3 and M.4.
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Game 1 Game 2

Game 3

(3.a) (3.b) (3.c) (3.d)

(4.a) (4.b) (4.c) (4.d)

Game 4

(1.a) (1.b) (1.c) (1.d)

(2.a) (2.b) (2.c) (2.d)

𝜑 1,2,3,8 = 0.63 𝜑 2,3,8 = 0.88 𝜑 1,2,3,7 = 0.52 𝜑 2,3,7 = 1.11

𝜑 1,5,8 = 1.27 𝜑 1,2,8 = 0.71 𝜑 2,8,9,10 = −0.62 𝜑 2,8,10 = −0.80

𝜑 2,3,8 = 2.18 𝜑 1,3,8 = 1.81 𝜑 1,2,3,8 = 1.63 𝜑 6,7,8 = 1.00

𝜑 1,2,3,9 = −1.71 𝜑 1,2,3,4 = 1.34 𝜑 1,4,10 = −1.40 𝜑 3,4,10 = −1.26

Figure 5: Estimated attributions of different coalitions (shape patterns).
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Figure 6: (a) Examination of using the revised interactions to mimic the output of the value network.
Outputs of the value network on all 2n masked board states u(xT ) (the red full line) are arranged in
ascending order. The height of the blue shade represents the smoothed approximation error, computed
by averaging the approximation errors ∆uT = |ureal(xT ) − uapprox(xT )| of neighboring 50 masked
states. (b) Sparsity7 of the revised interactions. We show strength of all revised AND and OR
interactions of 50 games in a descending order. Only a few interactions have salient effects.

Game3

(1.a) (1.b) (1.c) (1.d)

𝜑 1,2,9 = 1.58 𝜑 1,5,9 = 1.31 𝜑 1,8,9 = −1.56 𝜑 2,8,9 = −1.27

Game1

Game2

𝜑 2,9,10 = −1.89

(1.e)

(2.a) (2.b) (2.c) (2.d)

𝜑 1,2,9 = 1.49 𝜑 1,5,9 = 1.40 𝜑 1,8,9 = −1.20 𝜑 2,8,9 = −1.32 𝜑 2,9,10 = −1.89

(2.e)

(3.a) (3.b) (3.c) (3.d)

𝜑 1,2,9 = 1.50 𝜑 1,5,9 = 1.30 𝜑 1,8,9 = −1.53 𝜑 2,8,9 = −1.12 𝜑 2,9,10 = −1.89

(3.e)

𝑐𝑜𝑚𝑚𝑜𝑛 𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛
{1,2,9}

𝑐𝑜𝑚𝑚𝑜𝑛 𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛
{1,5,9}

𝑐𝑜𝑚𝑚𝑜𝑛 𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛
{1,8,9}

𝑐𝑜𝑚𝑚𝑜𝑛 𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛
{2,8,9}

𝑐𝑜𝑚𝑚𝑜𝑛 𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛
{2,9,10}

Figure 7: Transferability of interactions over different boards (with different contextual stones).
Shape patterns extracted from one board can also explain the network outputs on other boards, i.e.,
the same interaction contributes similar interaction effects to the advantage scores of different boards.
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A PSEUDOCODE OF OUR METHODS

To clarify how we explain the shape patterns encoded by the value network, we show the pseudocode
of our algorithm.

Algorithm 1 Disentangling the shape patterns encoded by the value network v(·)
Input: a board state x, a value network v(·)
Output: All AND interactions Iand(S) and all OR interactions Ior(S), w.r.t. ∀S ⊆ N , and the
attributions φ(T ) of each coalition T
Step 1: initializing parameters.

∀k ∈ {−n
2 ,−

n
2 + 1, ..., n

2 }, set ak = ExET⊆N :∆n(T )=k log(
pwhite(xT )

1−pwhite(xT ) ).

∀T ⊆ N , set pT = qT = 0.
Step 2: iteratively updating parameters a = {a−n

2
, a−n

2 +1, ..., an
2
}, {pT }T⊆N , {qT }T⊆N

min
a,{pT }T⊆N ,{qT :|qT |<τ}T⊆N

∥Iand∥1 + ∥Ior∥1 based on Equation (5).

Step 3: determining a set of salient interaction primitives Ωsalient.
Ωsalient = {S : |I(S)| > ξ}, where ξ = 0.15 ·maxS |I(S)|.

Step 4: manually annotating common coalitions.
Manually annotate 50 common coalitions T based on interaction primitives Ωsalient.

Step 5: computing coalition attributions.
for each annotated coalition T , φ(T ) =

∑
S⊇T

|T |
|S| [Iand(S) + Ior(S)].

B RELATED WORK

Many methods have been proposed to visualize the feature/patterns encoded by the DNN (Simonyan
et al., 2014; Dosovitskiy & Brox, 2016; Yosinski et al., 2015; Zeiler & Fergus, 2014), or to estimate the
attribution/attention on each input variable (Lundberg & Lee, 2017; Selvaraju et al., 2017; Zhou et al.,
2016; Zintgraf et al., 2017). However, the complexity of the Go game presents a new requirement, i.e.,
accurately extracting exact shape patterns encoded by the DNN, instead of providing a vague heatmap
of attention. Clarifying exact inference patterns is of significant values in knowledge discovery from
DNNs towards various tasks. For example, our method can also be used to discover novel patterns
for medical diagnosis.

However, explaining exact shape patterns encoded by a DNN proposes higher requirements for
the faithfulness/fidelity of the explanation. The faithfulness is even supposed to be theoretically
guaranteed and experimentally verified, beyond a specious understanding. To this end, (1) Ren
et al. (2023) and Li & Zhang (2023) have found that a well-trained DNN usually encodes a small
number of interactions, and the output score of the DNN on a certain input sample can always be
well mimicked by numerical effects of a few salient interactions, no matter how the input sample
is randomly masked6. (2) Li & Zhang (2023) have further found the considerable transferability of
interactions over different samples and over different DNNs. (3) Interaction primitives (the AND
interaction) can explain the elementary mechanism of previous explanation metrics, e.g., the Shapley
value (Shapley, 2016), the Shapley interaction index (Grabisch & Roubens, 1999), and the Shapley
Taylor interaction index (Sundararajan et al., 2020).

Despite of above findings, explaining the DNN for the Go game still proposes new challenges. To this
end, we extend the AND interaction to the OR interaction, alleviate high-order interactions caused
by the value shift of the advantage score, and compute attributions of common coalitions shared by
different interactions, thereby obtaining concise and accurate explanation for shape patterns in the
value network.

C PROPERTIES FOR THE HARSANYI DIVIDEND

In this paper, we follow Ren et al. (2023) to use the Harsanyi dividend (or Harsanyi interaction) to
measure the numerical effect I(S) of the interaction primitive S. Ren et al. (2023) have proved that
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the Harsanyi dividend satisfied the following properties, including the efficiency, linearity, dummy,
symmetry, anonymity, recursive, interaction distribution properties.

(1) Efficiency property: The inference score of a well-trained model v(x) can be disentangled into
the numerical effects of different interaction primitives I(S), S ⊆ N , i.e., v(x) =

∑
S⊆N I(S).

(2) Linearity property: If the inference score of the model w is computed as the sum of the inference
score of the model u and the inference score of the model v, i.e., ∀S ⊆ N,w(xS) = u(xS) + v(xS),
then the interactive effect of S on the model w can be computed as the sum of the interaction effect
of S on the model u and that on the model v, i.e., ∀S ⊆ N, Iw(S) = Iu(S) + Iv(S).

(3) Dummy property: If the input variable i is a dummy variable, i.e., ∀S ⊆ N \ {i}, v(xS∪{i}) =
v(xS) + v(x{i}), then the input variable i has no interaction with other input variables, i.e., ∀∅ ̸=
S ⊆ N \ {i}, I(S ∪ {i}) = 0.

(4) Symmetry property: If the input variable i ∈ N and the input variable j ∈ N cooperate with
other input variables in S ⊆ N \ {i, j} in the same way, i.e., ∀S ⊆ N \ {i, j}, v(xS∪{i}) =
v(xS∪{j}), then the input variable i and the input variable j have the same interactive effect, i.e.,
∀S ⊆ N \ {i, j}, I(S ∪ {i}) = I(S ∪ {j}).
(5) Anonymity property: If a random permutation π is added to N , then ∀S ⊆ N, Iv(S) = Iπv(πS)
is always guaranteed, where the new set of input variables πS is defined as πS = {π(i), i ∈ S}, the
new model πv is defined as (πv)(xπS) = v(xS). This suggests that permutation does not change
the interactive effects.

(6) Recursive property: The interactive effects can be calculated in a recursive manner. For ∀i ∈
N,S ⊆ N\{i}, the interactive effect of S ∪ {i} can be computed as the difference between the
interactive effect of S with the presence of the variable i and the interactive effect of S with the absence
of the variable i. I.e., ∀i ∈ N,S ⊆ N\{i}, I(S ∪ {i}) = I(S|i is consistently present) − I(S),
where I(S|i is consistently present) =

∑
L⊆S(−1)|S|−|L|v(xL∪{i}).

(7) Interaction distribution property: This property describes how an interaction function (Sundarara-
jan et al., 2020) distributes interactions. An interaction function vT parameterized by a context T is
defined as follows. ∀S ⊆ N , if T ⊆ S, then vT (xS) = c; if not, vT (xS) = 0. Then, the interactive
effects for an interaction function vT can be computed as, I(T ) = c, and ∀S ̸= T, I(S) = 0.

D COMMON CONDITIONS FOR THE SPARSITY OF INTERACTIONS ENCODED BY
A DNN

Ren et al. (2024a) have proved that under some common conditions, a DNN usually only encodes a
small number of interactions for inference6. I.e., (1) The high-order derivatives of the model output
with respect to the input variables are all zero. (2) The AI model can be used on masked/occluded
samples, and when the input sample is less masked/occluded, the AI model will yield a higher
confidence score on this sample. (3) The confidence score of the AI model on masked/occluded
samples does not significantly degrade.

E PROVING THAT THE OR INTERACTIONS CAN BE CONSIDERED AS A
SPECIFIC AND INTERACTION

Theorem 2.3 The OR interaction effect between a set S of stones, Ior(S) based on v(xT ), can be
computed as a specific AND interaction effect I ′and(S) based on the dual function v′(xT ). For v′(xT ),
original present stones in T (based on v(xT )) are considered as being removed, and original removed
stones in N \ T (based on v(xT )) are considered as being present.

• proof: The effect Ior(S) of an OR interaction S is defined as follows.

∀S ⊆ N,S ̸= ∅, Ior(S) = −
∑

T⊆S
(−1)|S|−|T |v(xN\T )

Here, xN\T denotes the masked board state where stones in the set N \ T are placed on the board,
and stones in the set T are removed. We reconsider the definition of the masked board state x as the
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definition of x′. In comparison, x′
T denotes the masked board state where stones in the set T are

removed (based on the definition of xT , stones in the set T are placed on the board), and stones in
the set N \ T are placed on the board (based on xT , stones in the set N \ T are removed).

In this way, xN\T denotes the same board state as x′
T . The effect Ior(S|x) of an OR interaction

based on the definition of x can be reformulated as the effect I ′and(S|x′) of an AND interaction based
on the definition of x′ as follows.

Ior(S|x) = −
∑

T⊆S
(−1)|S|−|T |v(xN\T ), S ̸= ∅

= −
∑

T⊆S
(−1)|S|−|T |v(x′

T ), S ̸= ∅

= −I ′and(S|x′), S ̸= ∅

Therefore, we consider the OR interaction as a specific AND interaction.

F PROOFS RELATED TO OR INTERACTIONS

F.1 PROVING THAT THE MODEL OUTPUT CAN BE REPRESENTED AS OR INTERACTIONS

According to Appendix E, we reconsider the definition of the masked board state xT as x′
T . xT

denotes the masked board state where stones in the set T are placed on the board, and stones in the
set N \ T are removed. In comparison, x′

T denotes the masked board state where stones in the set T
are removed, and stones in the set N \ T are placed on the board.

In this way, the effect of an OR interaction based on the definition of x can be represented as the
effect I ′and(S|x′) of an AND interaction based on the definition of x′.

Ior(S|x) = wor
S · [−

∏
i∈S

¬exist(xi)]

= −wor
S ·

∏
i∈S

¬exist(xi)

= − wor
S

wand
S

· I ′and(S|x′)

where the function exist(xi) represents that the stone xi is placed on the board, the function ¬exist(xi)
represents that the stone xi is removed from the board.

F.2 PROVING THAT UNAVOIDABLE NOISES IN NETWORK OUTPUT WILL BE ENLARGED IN
INTERACTIONS

Actually, the real data inevitably contains some small noises/variations, such as texture variations and
the shape deformation in object classification. Therefore, the network output v(xT ) also contains
some unavoidable noises.

Theorem F.1. Let Var[v(xT )] denote the variance of the network output v(xT ), and let Var[v(xN\T )]
denote the variance of the network output v(xN\T ). If we assume that different masked input samples
are independent of each other and have no correlation, then we can derive the variance of the AND
interaction and the variance of the OR interactions will be enlarged.

Var[Iand(S)] = Var[
∑

T⊆S
(−1)|S|−|T |v(xT )] =

∑
T⊆S

Var[v(xT )]

Var[Ior(S)] = Var[−
∑

T⊆S
(−1)|S|−|T |v(xN\T )] =

∑
T⊆S

Var[v(xN\T )]

As Theorem F.1 shows, the variance of the masked input sample will enlarged the variance of the
AND interactions and the variance of the OR interactions. Therefore, we prove that unavoidable
noises in network output will enlarged in interactions.
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G PROVING THAT THE NETWORK OUTPUT CAN BE REPRESENTED AS
AND-OR INTERACTIONS

Theorem 2.4. Let the input sample x be randomly masked. There are 2n possible masked samples
{xT } w.r.t. 2n subsets T ⊆ N . The output score on any masked sample xT can be represented as the
sum of effects of both AND interactions and OR interactions.

∀T ⊆ N, v(xT ) = v(x∅) + vand(xT ) + vor(xT ) = v(x∅) +
∑

S⊆T,S ̸=∅
Iand(S) +

∑
S∩T ̸=∅,S ̸=∅

Ior(S)

• proof: We derive that for all 2n randomly masked sample xT , the output score v(xT ) of the
DNN on xT can be approximated by the sum of effects of AND-OR interactions, i.e., v(xT ) =
v(x∅) +

∑
S⊆T,S ̸=∅ Iand(S) +

∑
S∩T ̸=∅,S ̸=∅ Ior(S)∑

S⊆T
Iand(S) =

∑
S⊆T

∑
L⊆S

(−1)|S|−|L|vand(xL)

=
∑

L⊆T

∑
S:L⊆S⊆T

(−1)|S|−|L|vand(xL)

= vand(xT )︸ ︷︷ ︸
L=T

+
∑

L⊆T,L ̸=T
vand(xL) ·

∑|T |−|L|

m=0
(−1)m︸ ︷︷ ︸

=0

= vand(xT )∑
S∩T ̸=∅,S ̸=∅

Ior(S) = −
∑

S∩T ̸=∅,S ̸=∅

∑
L⊆S

(−1)|S|−|L|vor(xN\L)

= −
∑

L⊆N

∑
S:S∩T ̸=∅,S⊇L

(−1)|S|−|L|vor(xN\L)

= − vor(x∅)︸ ︷︷ ︸
L=N

− vor(xT )︸ ︷︷ ︸
L=N\T

·
|T |∑

|S2|=1

C
|S2|
|T | (−1)|S2|

︸ ︷︷ ︸
=−1

−
∑

L∩T ̸=∅,L̸=N

vor(xN\L) ·
∑

S1⊆N\T\L

|T |∑
|S2|=|T∩L|

C
|S2|−|T∩L|
|T |−|T∩L| (−1)|S1|+|S2|

︸ ︷︷ ︸
=0

−
∑

L∩T=∅,L̸=N\T

vor(xN\L) ·
∑
S2⫋T

∑
S1⊆N\T\L

(−1)|S1|+|S2|

︸ ︷︷ ︸
=0

= vor(xT )− vor(x∅)

Therefore, vor(xT ) =
∑

S∩T ̸=∅,S ̸=∅ Ior(S) + vor(x∅). In this way, we can derive that the output
score v(xT ) of the DNN on xT can be approximated by the sum of effects of AND-OR interactions.

v(xT ) = vand(xT ) + vor(xT )

=
∑

S⊆T
Iand(S) +

∑
S∩T ̸=∅,S ̸=∅

Ior(S) + vor(x∅)

=
∑

S⊆T,S ̸=∅
Iand(S) + vand(x∅) +

∑
S∩T ̸=∅,S ̸=∅

Ior(S) + vor(x∅)

=
∑

S⊆T,S ̸=∅
Iand(S) +

∑
S∩T ̸=∅,S ̸=∅

Ior(S) + v(x∅)

H PROVING THAT THE SHAPLEY VALUE CAN BE EXPLAINED AS AND-OR
INTERACTIONS

Theorem 2.5. The Shapley value ϕ(i) of each input variable i ∈ N can be explained as a re-allocation
of AND-OR interactions, i.e., ϕ(i) =

∑
S⊆N,S∋i

1
|S|Iand(S) +

∑
S⊆N,S∋i

1
|S|Ior(S).
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• proof: The Shapley value of the input varibale i is defined as follows. ϕ(i) =
ES⊆N\{i}[v(xS∪{i})− v(xS)]. For simplicity, we use v(S) to represent the advantage score v(xS)
on the masked board state xS .

According to Theorem 2.4, ∀S ⊆ N, v(S) = v(∅) +
∑

T⊆S,T ̸=∅ Iand(T ) +
∑

T∩S ̸=∅ Ior(T ). Thus,

v(S ∪ {i})− v(S)

=

v(∅) + ∑
T⊆(S∪{i}),T ̸=∅

Iand(T ) +
∑

T∩(S∪{i})̸=∅

Ior(T )


−

v(∅) + ∑
T⊆S,T ̸=∅

Iand(T ) +
∑

T∩S ̸=∅

Ior(T )


=

 ∑
T⊆(S∪{i}),T ̸=∅

Iand(T )−
∑

T⊆S,T ̸=∅

Iand(T )

+

 ∑
T∩(S∪{i})̸=∅

Ior(T )−
∑

T∩S ̸=∅

Ior(T )


=

∑
T⊆S

Iand(T ∪ {i})︸ ︷︷ ︸
A

+
∑

T∩S=∅

Ior(T ∪ {i})︸ ︷︷ ︸
B

In this way, we can decompose the Shapley value ϕ(i) into two terms, i.e., ϕ(i) = ES⊆N\{i}[X +
Y] = ES⊆N\{i}[X ] + ES⊆N\{i}[Y]. Next, we first analyze the sum of AND interactions
ES⊆N\{i}[X ], and then analyze the sum of OR interactions ES⊆N\{i}[Y].

ES⊆N\{i}[X ]

= ES⊆N\{i}
∑
T⊆S

Iand(T ∪ {i})

=
1

n

n−1∑
m=0

1(
n−1
m

) ∑
S⊆N\{i},
|S|=m

∑
T⊆S

Iand(T ∪ {i})

=
1

n

∑
T⊆N\{i}

n−1∑
m=0

1(
n−1
m

) ∑
S⊇T,

S⊆N\{i},
|S|=m

Iand(T ∪ {i})

=
1

n

∑
T⊆N\{i}

n−1∑
m=|T |

1(
n−1
m

) ∑
S⊇T,

S⊆N\{i},
|S|=m

Iand(T ∪ {i})

=
1

n

∑
T⊆N\{i}

n−1∑
m=|T |

1(
n−1
m

)(n− 1− |T |
m− |T |

)
Iand(T ∪ {i})

=
1

n

∑
T⊆N\{i}

n−1−|T |∑
k=0

1(
n−1
|T |+k

)(n− 1− |T |
k

)
︸ ︷︷ ︸

αT

Iand(T ∪ {i})

=
∑

T⊆N\{i}

1

|T |+ 1
Iand(T ∪ {i})

=
∑

S⊆N,i∈S

1

|S|
Iand(S) // Let S = T ∪ {i}.
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Then, for the sum of OR interactions, we have

ES⊆N\{i}[B]

= ES⊆N\{i}
∑

T∩S ̸=∅

Ior(T ∪ {i})

=
1

n

n−1∑
m=0

1(
n−1
m

) ∑
S⊆N\{i},
|S|=m

∑
T∩S ̸=∅

Ior(T ∪ {i})

=
1

n

∑
T⊆N\{i}

n−1∑
m=0

1(
n−1
m

) ∑
S∩T ̸=∅,

S⊆N\{i},
|S|=m

Ior(T ∪ {i})

=
1

n

∑
T⊆N\{i}

n−1∑
m=0

1(
n−1
m

) ∑
S⊆N\{i}\T,

|S|=m

Ior(T ∪ {i})

=
1

n

∑
T⊆N\{i}

n−1−|T |∑
m=0

1(
n−1
m

) ∑
S⊆N\{i}\T,

|S|=m

Ior(T ∪ {i}) // Since S ⊆ N \ {i} \ T , |S| ≤ n− 1− |T |.

=
1

n

∑
T⊆N\{i}

n−1−|T |∑
m=0

1(
n−1
m

)(n− 1− |T |
m

)
Ior(T ∪ {i})

=
1

n

∑
T⊆N\{i}

n−1−|T |∑
k=0

1(
n−1

n−1−|T |−k

)( n− 1− |T |
n− 1− |T | − k

)
Ior(T ∪ {i}) // Let k = n− 1− |T | −m.

=
1

n

∑
T⊆N\{i}

n−1−|T |∑
k=0

1(
n−1
|T |+k

)(n− 1− |T |
k

)
︸ ︷︷ ︸

αT

Ior(T ∪ {i})

=
1

n

∑
T⊆N\{i}

n

|T |+ 1
Ior(T ∪ {i})

=
∑

T⊆N\{i}

1

|T |+ 1
Ior(T ∪ {i})

=
∑

S⊆N,i∈S

1

|S|
Ior(S) // Let S = T ∪ {i}.

Therefore, ϕ(i) =
∑

S⊆N\{i}[X ]+
∑

S⊆N\{i}[Y] =
∑

S⊆N,S∋i
1
|S|Iand(S)+

∑
S⊆N,S∋i

1
|S|Ior(S).

I PROVING THAT EXCLUSIVELY USING AND INTERACTIONS TO EXPLAIN THE
OR RELATIONSHIP WILL SIGNIFICANTLY COMPLICATE THE EXPLANATION

Theorem 2.2. Given an input sample x = [x1, x2, ..., xn]
⊤, where each input variable xkj

∈
{0, 1} is binary to represent the presence or absence state of the variable. Let the target function
v(x) encode a m-order OR relationship, i.e., v(x) = xk1

∨ xk2
∨ ... ∨ xkm

. Then, the function
v(x) would activate 2m − 1 non-zero AND interactions, i.e. for all non-empty subset, ∅ ≠ S ⊆
{xk1

, xk2
, ..., xkm

}, Iand(S|x) = (−1)|S|−1 ̸= 0.

On one hand, incorrect baseline values generate an exponential number of incorrect interactions.
Let us construct a toy function v(x) = wS

∏
j∈S(xj − αj) for analysis. In the constructed toy

function, we can consider αj as the ground-truth baseline value for the input variable xj . We use
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U(S) =
∑

T⊆S(−1)|S|−|T |v(xT ) to compute the effect of the interaction S. Based on the ground-truth
baseline values {αj}j∈S , there is only one interaction primitive with non-zero effect U(S). In
comparison, if we use m incorrect baseline values {βj} to compute the effect of the interaction
primitives, subject to

∑
j∈S 1βj ̸=αj = m, then the function will be explained to contain at most 2m

salient primitives. In other words, incorrect baseline values will generate an exponential number
of incorrect interactions, which complicate the explanation.

• proof: Without loss of generality, we consider an input sample x, with ∀j ∈ S, xj ̸= αj . Based on
the ground-truth baseline value {αj}.

(1) First, we have v(xS) = wS

∏
j∈S(xj − αj) ̸= 0.

(2) Second, we have ∀T ⊊ S, v(xT ) = wS

∏
j∈T (xj − αj)

∏
k∈S\T (αk − αk) = 0. Then,

we have ∀T ⊊ S, we have U(T ) =
∑

L⊆T (−1)|T |−|L|v(xL) =
∑

L⊆T 0 = 0, and we have
U(S) =

∑
T⊆S(−1)|S|−|T |v(xT ) = v(xS) ̸= 0.

(3) Third, ∀T ̸= S, let T = L ∪M , where L ⊆ S and M ∩ S = ∅. Then, we have

U(T ) =
∑
S′⊆T

(−1)|T |−|S′|v(xS′)

=
∑
L′⊆L
L′ ̸=∅

(−1)|T |−|L′|v(xL′) +
∑

M′⊆M
M′ ̸=∅

(−1)|T |−|M′| v(xM′)︸ ︷︷ ︸
=v(x∅)=0

+
∑

L′⊆L,M′⊆M
L′ ̸=∅,M′ ̸=∅

(−1)|S|−|L′|−|M′| v(xL′∪M′)︸ ︷︷ ︸
=v(L′)

+(−1)|T | v(x∅)︸ ︷︷ ︸
=0

=
∑
L′⊆L
L′ ̸=∅

(−1)|T |−|L′|v(xL′) +
∑

L′⊆L,M′⊆M
L′ ̸=∅,M′ ̸=∅

(−1)|S|−|L′|−|M′|v(xL′)

= (−1)|T |−|S|v(xS) +
∑

M′⊆M
M′ ̸=∅

(−1)|T |−|S|−|M′|v(xS) % v(xL′) ̸= 0 only if L′ = S

=
∑

M′⊆M

(−1)|T |−|S|−|M′|v(xS) = 0

Therefore, there is only one interaction primitive with non-zero effect U(S).

In comparison, if we use m incorrect baseline values {βj} to compute the effect of the interaction
primitives, where

∑
j∈S 1βj ̸=αj = m, then the function will be explained to contain at most 2m

interaction primitives with salient effects. For the simplicity of notations, let S = {1, 2, ...,m}, and
β1 = α1 + ϵ1, ..., βm = αm + ϵm, where ϵ1, ..., ϵm ̸= 0. Let T = {1, 2, . . . ,m}.

In the case of using m incorrect baseline values,
(1) First, we have v(xS) ̸= 0
(2) Second, we have ∀T ⊊ S, |T | < n − m, v(xT ) = wS

∏
j∈T (xj − αj)

∏
l∈S\T (βl − αl). Because

|S| − |T | > m, there is at least one variable with ground-truth baseline value in S \ T . Therefore,
v(xT ) = 0. Furthermore, U(T ) =

∑
L⊆T (−1)|T |−|L|v(xL) = 0

(3) ∀T ⊊ S, |T | = k ≥ n − m, v(xT ) = wS

∏
j∈T (xj − αj)

∏
l∈S\T (βl − αl). If S \ S′ ⊆ T , then

S \ T ⊆ S′ and v(xT ) ̸= 0. Otherwise, v(xT ) = 0. Then,

U(T ) =
∑
L⊆T

(−1)|T |−|L|v(xL)

=
∑

L⊆T,|L|<n−m

(−1)|T |−|L|v(xL) +
∑

L⊆T,L≥n−m

(−1)|T |−|L|v(xL)

= 0 +
∑

L⊆T,L≥n−m,L⊇S\S′

(−1)|T |−|L|v(xL) +
∑

L⊆T,L≥n−m,L⊉S\S′

(−1)|T |−|L|v(xL)

=
∑

L⊆T,L≥n−m,L⊇S\S′

(−1)|T |−|L|v(xL)
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If the above U(T )) = 0, it indicates that S \ S′ ⊈ T . In this case, there is no subset L ⊆ T s.t.
S \ S′ ⊆ L. In other words, only if S \ S′ ⊆ T,UT ̸= 0. In this way, a total of

(
m

k−(|S|−m)

)
causal

patterns of the k-th order emerge, where the order k of a causal pattern means that this causal pattern
T contains k = |T | variables. There are totally

∑n
k=|S|−m

(
m

k−(|S|−m)

)
= 2m causal patterns in x.

For example, if the input x is given as follows,

xi =

{
αi + 2ϵi, i ∈ S′ = {1, . . . ,m}
αi + ϵi, i ∈ S \ S′ = {m+ 1, . . . , n}

where ϵi ̸= 0 are arbitrary non-zero scalars. In this case, we have ∀T ⊆ S′, U(T ∪ {m+ 1, ..., n}) =
ϵ1ϵ2...ϵn ̸= 0. Besides, if {m+ 1, ..., n} ⊈ T , we have U(T ) = 0.

In this way, there are totally 2m causal patterns in x.

This explains the motivation of extending AND interactions to OR interactions. It is because the OR
interaction can be considered as a specific AND interaction, where the presence of a stone is taken as
the masked state, and the removing of a stone is considered as the unmasked state.

On the other hand, without defining the OR interaction, we have to use 2m AND interactions
to represent a single OR relationship between input variables. This is a more direct explanation
for the utility of using OR interactions. Let us focus on a toy function v(x) = ∨j∈Sunmask(xj) that
represents an single OR relationship between input variables in S. In this case, if we explain v(x)
by exclusively using AND interactions, then we will obtain a total of 2m − 1 AND interactions,
subject to m = |S|. For each subset T ⊆ S, T ̸= ∅, we will get a non-zero interaction effect
I(T ) =

∑|T |−1
k=0 (−1)k · Ck

|T | = (−1)|T |−1.

Therefore, to faithfully represent the OR relationship encoded by the KataGo model, we must extend
AND interactions to OR interactions. Otherwise, the explanation will be significantly complicated.

J THE REASON WHY THE SATURATION PROBLEM CAUSES HIGH-ORDER
INTERACTIONS

Let ek
def
= ExET⊆N :∆n=k log(

pwhite(xT )
1−pwhite(xT ) ) denote the average advantage score over all masked

states xT with the same unbalance level k. Let g ∈ R and h ∈ R denote the first derivative
and second derivative of the curve of ek

def
= ExET⊆N :∆n=k log(

pwhite(xT )
1−pwhite(xT ) ) w.r.t. the k value

(k ∈ {−n
2 ,−

n
2 + 1, ..., n

2 }). Then, we can roughly consider that ek = e0 + g · k + h
2 · k2.

Let us consider an interaction S between m stones, including mwhite white stones and mblack black
stones. The unbalance level of the masked board state xS is ∆n = mwhite − mblack = k∗. If we
only use AND interactions to explain the output of the value network, then we obtain the following
equation.

vm
def
= ET⊆S:|T |=m[v(xT )] ≈ ek∗

vm′
def
= ET⊆S:|T |=m′ [v(xT )]

≈
ek∗−((m−m′))(

mwhite
m−m′

) +
ek∗−((m−m′−1))(

mwhite
m−m′−1

) + . . .+
ek∗+((m−m′−1))(

mblack
m−m′−1

) +
ek∗+((m−m′))(

mblack
m−m′

)
v0

def
= ET⊆S:|T |=0[v(xT )] ≈ e0

(8)

Note that vm, vm′ and v0 are non-linear functions. The function vm′ can be rewritten by following
Taylor series expansion at the baseline point m′ = 0 as follows.

vm′ = ET⊆S:|T |=m′ [v(xT )] = v0 + gv ·m′ +
hv

2
·m′2 (9)
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where gv ∈ R and hv ∈ R denote the first derivative and second derivative of the curve of vm′ w.r.t.
the m′ value. In this way, the effect I(S) of the interaction S can be reformulated as follows.

I(S) =
∑

T⊆S
(−1)|S|−|T |v(xT )

≈
(
m

0

)
vm −

(
m

1

)
· vm−1 +

(
m

2

)
· vm−2 −

(
m

3

)
· vm−3 +

(
m

4

)
· vm−4 − ...

(10)

According to Equation (9), each component vm′ of I(S) consists of a term hv

2 ·m′2. However, the
term hv

2 ·m′2 contained in vm′ cannot cancel out with each other. Therefore, the interaction effect
I(S) will increase with the order of the primitive S.

K THEOREMS AND PROPERTIES OF THE ATTRIBUTION METHOD IN
EQUATION (6).

The coalition attribution satisfies the following desirable properties.

• Symmetry property: If the input variable i ∈ N and the input variable j ∈ N cooperate with other
input variables in S ⊆ N \ {i, j} in the same way, i.e. ∀S ⊆ N \ {i, j}, v(S ∪ {i}) = v(S ∪ {j}),
then the coalition formed by S ∪ {i} and the coalition formed by S ∪ {j} have the same attribution,
i.e., ∀S ⊆ N \ {i, j}, φ(S ∪ {i}) = φ(S ∪ {j}).
• Additivity property: If the output score of the model v can be represented as the sum of the output
score of the model v1 and the output score of the model v2, i.e. ∀S ⊆ N, v(S) = v1(S) + v2(S),
then the attribution of any coalition S on the model v can also be represented as the sum of the
attribution of S on the model v1 and that on the model v2, i.e. ∀S ⊆ N, φv(S) = φv1(S) + φv2(S).

• Dummy property: If a coalition S is a dummy coalition, i.e. ∀i ∈ S,∀T ⊆ N \ {i}, v(T ∪{i}) =
v(T ), then the coalition S has no attribution on the model output, i.e. φ(S) = 0.

• Efficiency property: For any coalition S, the model output can be decomposed into the attribu-
tion of the coalition S and the attribution of each input variable in N \ S and the utilities of the
interactions covering partial variables in S, i.e., ∀S ⊆ N, v(N)− v(∅) = φ(S) +

∑
i∈N\S φ(i) +∑

T⊆N,T∩S ̸=∅,T∩S ̸=S
|T∩S|
|T | [Iand(T ) + Ior(T )]

And we try to use Corollary K.1 and Equation (7) to explain the conflict between the Shapley value
of input variables and the attribution of the coalition as follows.

Corollary K.1. If ∀T ⊆ N,T ∋ i, T ̸⊇ S, Iand(T ) = Ior(T ) = 0, then ϕ(i) = 1
|S|φ(S)

Corollary K.1 shows that if a set S of input variables is always memorized by the DNN as a coalition,
and the DNN does not encode any interactions between a set T of input variables, where T only
contains partial variables in S, i.e., ∀T ⊆ N,T ∩ S ̸= S, T ∩ S ̸= ∅, Iand(T ) = Ior(T ) = 0, then
the attribution φ(S) of the coalition S can be fully determined by the sum of the Shapley value ϕ(i)
of all input variables in S. Otherwise, if the DNN encodes interactions between a set T of input
variables, where T contains just partial but not all variables in S, then Equation (7) shows the conflict
between individual variables’ attributions and the coalition S’s attribution come from interactions
containing just partial but not all variables in S.

L EXPERIMENTAL DETAILS

L.1 THE COMPUTER RESOURCES

Our experimental are conducted on a server, which is equipped with a CPU that has 4 cores and 16
threads, 126GB of RAM, and an SSD with 960GB capacity. The server also includes two NVIDIA
GeForce RTX Titan GPUs.
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𝑇 = {2,9,10} 𝑇 = {3,9,10}

2

9

10

9

3

10

Figure 8: Attribution values of the inter-
action context of the target coalition.

L.2 SETTINGS FOR THE GENERATION OF ONE BOARD CONFIGURATION

We use pre-trained networks published on https://github.com/lightvector/KataGo. We set the board
size as 19x19, by letting the KataGo play games against itself, i.e., letting the KataGo take turns to
play the move of black stones and play the move of white stones, we can generate a board state.

L.3 SETTINGS FOR THE EXTRACTION OF INTERACTIONS IN SECTION 2.2

The learning rate for the learnable vector p, q exponentially decays from 1e-6 to 1e-7. In particular,
each element ak in the vector a has different initial learning rates. Specifically, the learning rate of
ak decayed from 1

(|k|
n
2
)
· 1e− 6 to 1

(|k|
n
2
)
· 1e− 7.

The threshold τ is a small scalar to bound unavoidable noises q in the network output, which is set to be
τ = 0.38 in experiments, which is set to be 0.01 time of the average strength of the top-1% most salient
interaction. Specifically, we compute all AND interactions {Iand(S1), Iand(S2), ..., Iand(S2n)} by
setting vand(xT ) as v(xT ), and compute all OR interactions {Ior(S1), Ior(S2), ..., Ior(S2n)} by setting
vor(xT ) in Equation (4) as v(xT ). Then, all AND interactions {Iand(S1), Iand(S2), ..., Iand(S2n)}
and all OR interactions {Ior(S1), Ior(S2), ..., Ior(S2n)} are arranged in descending order of their
interaction strength.

L.4 COMPUTING THE ATTRIBUTION OF THE INTERACTION CONTEXT.

The attribution of the stone in the interaction context can be computed as:

attribution(xi) =
∑
S∋i

|I(S)|
|S|

(11)

We compute the attribution of contextual stones to a target coalition S, and we visualizes attribution
values of contextual stones in Figure 8.

M MORE EXPERIMENTAL RESULTS

M.1 TRANSFERABILITY OF INTERACTIONS BETWEEN STONES THROUGH DIFFERENT BOARDS.

We conduct experiments to show the transferability of interactions between stones through different
boards. As Figure 7 shows, the explained stones in game board states 1, 2, 3 are the same, but
the contextual stones are different. We computed interactions between the same set of stones on
different boards (with different contextual stones). Figure 7 shows that the same interaction exhibited
similar effects on different boards. For example, for Game 1, φ({1, 2, 9}) = 1.58, for Game 2,
φ({1, 2, 9}) = 1.49, and for Game 3, φ({1, 2, 9} = 1.50. It means that the shape patterns found on one
board can be transferred to another board.

M.2 MORE SHAPE PATTERNS EXTRACTED FROM THE VALUE NETWORK FOR THE GAME OF
GO.

We show more shape patterns extracted from the value network for the game of Go.
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Game 5 Game 6

Game 7 Game 8

(6.b)

𝜑 3,7,8 = 1.58

𝜑 6,7,8,10 = −0.93

𝜑 2,4,10 = 0.61 𝜑 3,5,7 = 1.70

𝜑 1,2,4,5 = −0.81 𝜑 2,3,4,5 = −0.81

(7.a) (7.b)

(8.a) (8.b)

𝜑 3,7,8 = 3.41

(6.a)

𝜑 6,7,9,10 = 0.60

(7.c)

Game 1 Game 2

Game 3 Game 4

(1.a) (2.a)

𝜑 7,8,9 = −0.94 𝜑 6,7,8 = 1.03

𝜑 2,7,8,9 = −2.28 𝜑 4,6,8,9 = −1.89

𝜑 1,2,9 = −1.58 𝜑 1,2,3,9 = −0.67 𝜑 1,2,4,5 = 0.62

(3.a) (3.b)

(4.a) (4.b) (4.c) (4.d)

𝜑 1,2,3,4 = 0.81

(5.a)

Figure 9: More experimental results for the estimated attributions of different coalitions (shape
patterns). Stones in the coalition are high-lighted by red circles.

For Game 1 in Figure 9 (1.a), Go players are confused about why the coalition {7, 8, 9} is advanta-
geous for black stones.

For Game 2 in Figure 9 (2.a), Go players cannot figure out why the coalition {6, 7, 8} is advantageous
for white stones.

For Game 3 in Figure 9 (3.a-3.b), Go players consider that the black stones x6, x7 are caught, and
the white stones are in advantage. However, the value network think that the coalition {2, 7, 8, 9} and
the coalition {4, 6, 8, 9} are advantageous for black stones. Go players are confused about that.

For Game 4 in Figure 9 (4.a-4.d), φ({1, 2, 9}) < φ({1, 2, 3, 9}), which means that the black stone
x3 is a low-value move, Go players consider that the stone x3 a valuable move.

For Game 5 in Figure 9 (5.a), φ({3, 7, 8}) = 1.58 means that the white stones are in advantage.
Furthermore, this shape pattern is considered a classic shape among Go players, aligning with their
strategic understanding of the game.

For Game 6 in Figure 9 (6.a-6.b), φ({6, 7, 8, 10}) = −0.93, it is confused for Go players that the
black stones are in advantage in the shape pattern {6, 7, 8, 10}. While φ({3, 7, 8}) = 3.41, the shape
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Figure 10: Average strength of effects for interactions of different orders. For different gobang games,
our revised method extracts weaker high-order interactions than the original method.

Game 1 Game 2

(1.a) (1.b) (1.c) (1.d)

(2.a) (2.b) (2.c) (2.d)

𝜑 3,5,6 = 9.66 𝜑 3,5,7,8 = 4.61 𝜑 1,5,7,10 = −8.82 𝜑 1,5,7,9 = −8.22

𝜑 2,4,6 = 10.69 𝜑 5,6,8 = 9.69 𝜑 2,5,6,8 = 8.24 𝜑 2,6,8 = 8.06

Figure 11: Estimated attributions of different coalitions (shape patterns) selected from two gobang
game states.

pattern {3, 7, 8} is a classic shape among Go players, and the attribution score align with Go players’
strategic understanding of the game.

For Game 7 in Figure 9 (7.a-7.c), φ({2, 4, 10}) = 0.61 and φ({3, 5, 7}) = 1.70, which means that
white stones are in advantage in the shape pattern {2, 4, 10} and {3, 5, 7}. Meanwhile, Go players
consider that {2, 4, 10} and {3, 5, 7} are classic shape patterns, and the attribution scores of these
two coalition align with their understanding of the Go game. However, the shape pattern {6, 7, 9, 10}
consists of four black stones, while φ({6, 7, 9, 10}) = 0.60 means that white stones are in advantage
in the pattern {6, 7, 9, 10}, which contracts with the understanding of Go player.

For Game 8 in Figure 9 (8.a-8.b), φ({1, 2, 4, 5}) = −0.81 and φ({2, 3, 4, 5}) = −0.81, which
means that black stones are in advantage in these two shape patterns. However, these two shape
patterns {1, 2, 4, 5} and {2, 3, 4, 5} are both composed of four white stones. It makes it difficult for
Go palyers to understand.

M.3 EXTENSION OF OUR METHOD TO EXPLAIN GOBANG GAME

We apply our method to another application, i.e., the Gobang game. Specifically, we analyze the value
network in the open-source Gobang project, Katagomo. The Katagomo model is designed upon the
KataGo project, and it also has a value network. We use the Katagomo model to generate a Gobang
board with 20 stones. Then, we use our method to analyze shape patterns encoded by Katagomo’s
value network. Furthermore, we compute the attribution φ(T ) of each shape pattern encoded by
the katagomo’s value network. Figure 10 compares the strength of interactions of different orders.
Given different Gobang game board states, our method in Equation (5) extracts weaker high-order
interactions than the original method in Equation (4). Figure 11 visualizes the common coalitions
selected from two gobang game states.
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Figure 12: The interactions extracted from a DNN for pedestrian detection.
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M.4 EXTENSION OF OUR METHOD TO DEBUG REPRESENTATION FLAWS HIDDEN IN A DNN

The second application of our method is to debug representation flaws hidden in a DNN. Besides
letting people learn new interactions/concepts encoded by the DNNs, another typical utility of
explaining interactions in a DNN is to debug representation flaws hidden in a DNN.

Figure 12 shows the interactions extracted from a DNN for pedestrian detection. Given an input
image, we manually label image regions with salient attributions as input variables, and compute
interactions between image regions. The visualization of the interactions enables people to check
the correctness of interactions encoded by the DNN manually. Let us consider the explanation on
the first input image as an example. We can analyze the representation quality of the DNN from the
following three perspectives. (1) The interactions Iand(S = {C, I}), Iand(S = {D, I}), Iand(S = {F, I})
and Iand(S = {A, I}) between pedestrian patches and background patches may represent unreliable
inference patterns. (2) High-order interactions, e.g., Ior(S = {A,C,D,E, F,G,H, I}) and Ior(S =
{A,C,D, F,H, I, J}), usually represent too complex inference patterns. Complex interactions usually
have lower generalization power than simple interactions. (3) There are 29 positive interactions
and 31 negative interactions extracted from an input image. The offsetting of positive and negative
interactions is another problem. Adversarially robust neural networks usually encode more positive
interactions and fewer negative interactions than normal neural networks.

In addition, the problematic interactions (e.g., interactions on background patches) reflect repre-
sentation flaws of a DNN, because it is found by Li & Zhang (2023) that salient interactions are
usually transferable across different samples. In other words, problematic interactions may affect the
inference of a large number of samples.
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