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ABSTRACT

The deployment of Large Language Models (LLMs) faces a critical bottleneck
when handling lengthy inputs: the prohibitive memory footprint of the Key Value
(KV) cache. To address this bottleneck, the token pruning paradigm leverages
attention sparsity to selectively retain a small, critical subset of tokens. However,
existing approaches fall short, with static methods risking irreversible information
loss and dynamic strategies employing heuristics that insufficiently capture the
query-dependent nature of token importance. We propose FASA, a novel frame-
work that achieves query-aware token eviction by dynamically predicting token
importance. FASA stems from a novel insight into RoPE: the discovery of func-
tional sparsity at the frequency-chunk (FC) level. Our key finding is that a small,
identifiable subset of "dominant" FCs consistently exhibits high contextual agree-
ment with the full attention head. This provides a robust and computationally free
proxy for identifying salient tokens. Building on this insight, FASA first identifies
a critical set of tokens using dominant FCs, and then performs focused attention
computation solely on this pruned subset. Across a spectrum of long-context tasks,
from sequence modeling to complex CoT reasoning, FASA consistently outper-
forms all token-eviction baselines and achieves near-oracle accuracy, demonstrating
remarkable robustness even under constraint budgets. Notably, on LongBench-V1,
FASA reaches nearly 100% of full-KV performance when only keeping 256 tokens,
and achieves 2.56× speedup using just 18.9% of the cache on AIME24.

1 INTRODUCTION

Despite recent advances in Large Language Models (Dao et al., 2022; Ainslie et al., 2023; Liu
et al., 2024a) in long-context processing, requirements such as repository-level code analysis (Chen
et al., 2021) and document summarization (Goyal & Durrett, 2020) pose both memory and com-
putational challenges, especially the linear growth of the KV cache. As the sequences grow, each
token generation requires accessing the entire KV cache, leading to increased memory I/O latency.
This memory-bound process underutilizes high-performance GPUs, ultimately limiting the overall
throughput. To optimize KV cache management, previous studies have proposed mainly five direc-
tions: token eviction (Akhauri et al., 2025), low-rank compression (Chang et al., 2025; Singhania
et al., 2024; Zhang et al., 2025), quantization (Hooper et al., 2025b; Liu et al., 2024d), KV merging
(Wang et al., 2025b; Wan et al., 2025; Liu et al., 2024b), and budget allocation (Cai et al., 2025b).

Among these, an intuitive and widely explored approach is token eviction (LI et al., 2025; Liu et al.,
2023). The rationale is that only a small subset of tokens contributes significantly to outputs, enabling
the selective removal of trivial ones. Existing token eviction methods can be classified into three types:
(1) Static strategies remove tokens with fixed rules (Xiao et al., 2024), therefore risking irreversible
information loss; (2) Adaptive strategies either permanently evict less critical tokens (Zhang et al.,
2023; Li et al., 2024) or preserve the full cache while retrieving a subset of entries (Tang et al., 2024;
Ge et al., 2024). Yet such heuristic rankings provide an imperfect proxy for the truly dynamic nature
of token importance; (3) Learning-based strategies (Akhauri et al., 2025; Yang et al., 2025; Chen
et al., 2025) rely on a trained token predictor, suffering from poor generalization on different datasets.
Can a token predictor achieve query-awareness without resorting to costly training?

In response to this question, we introduce FASA (Frequency-Aware Sparse Attention), a training-
free, high-granularity, query-aware predictor designed to evaluate token significance during the
decoding phase, in a training-free manner. The design of FASA is rooted in an intriguing observation
that differential frequencies within RoPE (Su et al., 2023) induce functional sparsity among frequency
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chunks (FCs). Only a sparse subset of FCs, termed as dominant FCs, contribute significantly to
contextual awareness, while others construct robust positional patterns. We empirically verify that
these dominant FCs are sparse, universal, and task-agnostic in Section 3.3, thereby providing a robust
foundation for accurately predicting token importance.

Building upon this insight, FASA employs a two-stage framework for efficient inference. The first
stage, Token Importance Prediction, harnesses dominant FCs to dynamically estimate attention scores,
obtaining critical tokens. At the second stage, Focused Attention Computation then performs precise
and focused token generation on this reduced set. The overhead of FASA is minimal because the
identification of dominant FCs is a one-time and task–invariant process. Ultimately, FASA achieves
high efficiency by fetching only a small fraction of the KV cache, which significantly reduces
the data transferred between memory and the processor and thereby lowers memory bandwidth
consumption. The overview of FASA is in Figure 2. Grounded on the same principles above,
we introduce two variants of FASA: FASA-M and FASA-C. While they differ in implementation
strategies, both achieve equivalent downstream task performance while offering different efficiency
profiles, specializing in memory and computation, respectively. Crucially, despite FASA leverages a
low-rank subspace, its primary objective is the dynamic prediction of token importance, not mere
dimensionality reduction. This design makes FASA orthogonal to and compatible with most other
KV cache compression methods. For example, it can be seamlessly integrated with layer-wise budget
allocation schemes like PyramidKV (Cai et al., 2025b).

We evaluated FASA across a range of LLMs with varying KV cache budgets, concentrating on three
core tasks: long-context benchmark, long-sequence modeling, and long chain-of-thought (LongCoT)
reasoning. Our method achieves performance comparable to that of full KV cache, with reduction
of less than 0.7%, while consistently surpassing all baseline methods across these tasks. FASA-M
provides an 8× compression of the KV cache, substantially optimizing memory usage. and FASA-
C delivers 2.6× speedups, enhancing computational efficiency, with 25% of FCs selected. Our
contributions are summarized as follows:

• We are the first to uncover an intriguing finding: functional sparsity at FC-level induced by RoPE.
• Leveraging the functional sparsity of FCs, we introduce FASA, a training-free framework for

dynamically predicting token importance.
• We present two variants of FASA: FASA-M, optimized for settings with memory constraints, and

FASA-C, designed for scenarios with computational constraints.
• Extensive experiments across three paradigm tasks demonstrate that FASA consistently achieves

near-oracle accuracy in both long-context and long-generation tasks.

2 RELATED WORKS

Token Eviction. A central theme in recent KV cache optimization (Hooper et al., 2025a; Wang
et al., 2025a) is the exploitation of inherent, query-dependent attention sparsity (Liu et al., 2024c;
2025; Behnam et al., 2025). Stream (Xiao et al., 2024) employs a rigid heuristic, preserving only
initial and recent tokens, which invariably discards potentially crucial information from intermediate
positions. SnapKV (Li et al., 2024) improves on this by introducing a one-time, prefill-stage filtering
based on empirically estimated attention scores. However, the static nature of this estimation cannot
adapt to the evolving relevance of tokens as generation progresses. Quest (Tang et al., 2024) offers a
more dynamic solution by organizing the KV cache into pages and selectively fetching them. Despite
its dynamism, its efficacy is hampered by a coarse, page-level granularity, which incurs significant
overhead by forcing the retrieval of entire pages even when only a few tokens are needed.

Low-rank Compression. Another prominent paradigm for KV cache compression is low-rank
approximation (Zhang et al., 2025; Dong et al., 2024), predicated on the observation that the cache’s
information content is concentrated in a low-dimensional subspace (Sun et al., 2025; sax, 2024;
Behnam et al., 2025). For instance, SparQ (Ribar et al., 2024) employs a heuristic that selects key
dimensions based on high query-vector magnitudes, a strategy that proves suboptimal due to its
head-agnostic nature and its simplistic reliance on magnitude as a proxy for importance. Similarly,
LoKi (Singhania et al., 2024) leverages Principal Component Analysis (PCA) to project key states
into a compact subspace for efficient computation, but at the cost of significant memory overhead
from storing the requisite projection matrices. In contrast, our proposed FASA circumvents these
limitations by operating in-place on the KV cache, thereby incurring no auxiliary memory overhead.
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3 OBSERVATION

3.1 PRELIMINARY: ROTARY POSITIONAL ENCODINGS (ROPE)

RoPE embeds relative position information into the self-attention computation. Specifically, for a
query vector qt1 and a key vector kt2 at positions t1 and t2, the attention score is formulated as
At1,t2 =(qt1Rt1)(kt2Rt2)

⊤=qt1R∆tk
⊤
t2 . Due to the orthogonality, the product of Rt1 and Rt2

elegantly simplifies to a single rotation matrix parameterized solely by the relative offset ∆t = t1−t2.

A Frequency-Chunk Perspective on RoPE. From a frequency-domain perspective, the RoPE
mechanism can be interpreted through the concept of “frequency chunks” (FCs). This framework
posits that any d-dimensional vector v ∈ Rd (e.g., a query and key) is partitioned into d/2 orthogonal
2D subspaces. We denote the i-th such subspace, or FC, as v[i] = (v2i, v2i+1)

T . Each FC is
associated with a unique base angular frequency, calculated as θi=B−2(i−1)/d for i ∈ {1, . . . , d/2},
where B is a predefined frequency base. This design establishes a direct mapping from a chunk’s
dimensional indices (2i, 2i + 1) to its rotational frequency. Lower dimension indices (i) result in
higher frequencies, which implies that the corresponding FCs rotate very quickly physically. For a
token at absolute position m, its i-th FC is rotated by an angle mθi through a specific 2× 2 rotation
matrix Rm,θi . The global rotation matrix R∆t is block-diagonal, where each diagonal block is a 2×2

rotation matrix R∆t,θi and defined as R∆t = Diag(R∆t,θ1 ,R∆t,θ2 , . . . ,R∆t,θd/2) =
⊕d/2

i=1 R∆t,θi .

vm =

d/2⊕
k=1

v[i]
m =

d/2⊕
k=1

(v2i,v2i+1)
T ,Rm,θi =

(
cos(mθi) − sin(mθi)
sin(mθi) cos(mθi)

)
. (1)

3.2 MOTIVATION AND HYPOTHESIS

Position vs. Semantics: Different Roles of FCs. The varying rotational velocities across FCs
inherently lead to functional heterogeneity. This principle is substantiated by two key observations
from prior literature. First, a distinct division of labor exists within RoPE (Barbero et al., 2025; Wei
et al., 2025), where high-frequency FCs (in low dimensions) are primarily responsible for constructing
robust positional patterns, and in contrast, low-frequency counterparts specialize in carrying the
semantic information and model long-range dependencies. Second, this functional specialization
is structurally reflected by a RoPE-induced concentration of high-magnitude values within specific
query and key dimensions (Sun et al., 2024), reinforcing the non-uniform functional importance of
FCs. This functional heterogeneity suggests that FCs can be grouped into two distinct categories:
1. Contextual FCs: A small, critical subset responsible for dynamic, context-specific attention.

These FCs identify which tokens are semantically relevant to the current query.
2. Structural FCs: The remaining majority primarily injects inherent, positional attention patterns,

mainly recency bias (Peysakhovich & Lerer, 2023) and attention sinks (Xiao et al., 2024).

Hypothesis: The model’s contextual awareness is overwhelmingly driven by the Contextual FCs.
A few contextual FCs could replicate the contextual selection behavior of a full attention head. If
their index set is denoted as Idom ⊂ {1, . . . , d/2}, the full attention dot product can be effectively

approximated by summing only over Idom, namely At1,t2 = qt1R∆tk
T
t2

∑
i∈Idom

q
[i]
t1 R∆t,θik

[i]
t2

⊤
.

3.3 QUANTIFYING FUNCTIONAL SPARSITY

Quantifying our hypothesis of FC-level functional sparsity requires a metric to assess the “dominance”
of individual FCs. Therefore, we propose the Contextual Agreement (CA) metric, which measures
the alignment between the attention pattern from a single FC and that of the full attention head.

Formal Setup. For a query qt ∈ Rd and key matrix K1:t ∈ Rd×t in an attention head (l, h), we
define two raw score vectors: the standard full-head scores αl,h and the single-FC scores α(i)

l,h. The
latter are computed using only the 2D components of the i-th FC. These are expressed as:

αl,h(qt,K1:t) = [qt Rt−1 (k0)
T , · · · ,qt R0 (kt)

T ]T (2)

α
(i)
l,h(qt,K1:t) = [q

[i]
t Rt−1,θi k

[i]
0

T
, · · · ,q[i]

t R0,θi k
[i]
t

T
]T (3)
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Figure 1: Functional sparsity of FCs revealed by Contextual Agreement (CA) heatmaps. Each heatmap
shows CA per FC (x-axis) across all heads (y-axis). A few “dominant” FCs (bright vertical bands) consistently
capture contextual information across attention heads. Results on Qasper (K = 256); see Appendix B.

Metric Definition. The CA score, CAl,h,i
K , quantifies the agreement between the full-head αl,h and

single-FC α
(i)
l,h scores by measuring the normalized intersection of their top-K token index sets:

CAl,h,i
K (qt,K1:t) = [TopK-I(αl,h(qt,K1:t),K) ∩ TopK-I(α(i)

l,h(qt,K1:t),K)]/K, (4)

where the operator TopK-I(α,K) retrieves the top-K values of a vector α. To assess an FC’s
importance robustly, we compute its mean CA score, by averaging across several samples from a
specific dataset. Figure 1 reveals the distinct functional contribution of each FC across all heads.

Table 1: Compound CA scores under varying
number of selected FCs (F ) and KV cache bud-
gets (K). Each head has 64 FCs in total.

|Idom|
K 64 256 512 768 1024 2048

Random 2.0 3.6 6.4 19.1 25.5 51.1
Stream 34.4 26.8 24.4 26.5 30.7 53.9
SnapKV 37.9 40.9 41.9 45.4 49.5 66.6
F = 8 (1/8) 43.0 49.4 54.3 58.8 62.6 76.1
F = 10 46.4 52.1 56.6 61.1 64.8 77.5
F = 12 49.7 54.7 58.9 63.4 66.8 79.0
F = 14 52.4 56.9 60.9 65.2 68.5 80.2
F = 16 (1/4) 55.3 59.7 62.8 66.9 70.1 81.4

Sparse and Universal Idom. Empirical analysis
reveals three properties: (1) Sparsity: a small sub-
set of FCs (dominant FCs) exhibits disproportion-
ately high agreement with full attention patterns.
Conversely, the CA scores for the vast majority
of other FCs are negligible (typically < 0.1); (2)
Universality: The functional sparsity is widely ob-
served across Llama, Mistral, and Qwen, and model
scales from 3B to 32B (Appendix B.1); (3) Task-
Invariance: The set of dominant FCs is largely
task-agnostic. As shown in Figure 15, the saliency
maps derived from tasks such as QA and summa-
rization are consistent, suggesting that the functional roles of FCs are intrinsic to the RoPE’s
mechanics, rather than being task-specific adaptations.

Quantitative Evidence about the property of Sparsity & Universality & Task-Invariance For
sparsity, as shown in Table 16, We quantitatively analyzed the proportion of dominant FCs (defined
as CA > 0.4). We found they account for less than 1% of all FCs, while non-dominant FCs with
low CA scores comprise approximately 90% or more. This sparsity pattern holds universally. We
confirmed its existence across different architectures (Llama, Qwen, Mistral, R1 models) and scales
(3B to 32B), which strongly supports the universality claim. For Task-Invariance, our analysis
reveals a remarkably high degree of overlap on dominant FCs, which consistently exceeds 70% across
all tested models and tasks in Table 17, when using varying calibration datasets.

Reconstructing Functionality from Idom. The analysis above supports that the functionality of
a full attention head can be reconstructed using only its most dominant F components Il,hdom =

TopK-I({CAl,h,i
K | 0 ≤ f <d/2}, F ). Therefore, we measure the collective efficacy of this subset

using a compound CA score, CAl,h,Idom
K , and present the results in Table 1. For comparison, we

benchmark against token-eviction methods, which serve to emphasize the capability of predicting
token importance. Our method demonstrates remarkable efficiency: with just 1/8 of the components
selected under a tight budget 64, Idom achieves an accuracy of 43%, surpassing the strong baseline
SnapKV (Li et al., 2024) by an average of 10.3% across all budget levels.

4 METHOD

Grounded in the functional sparsity of FCs, our training-free framework FASA employs a two-
stage, coarse-to-fine strategy to circumvent the prohibitive cost of full self-attention. First, the
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Figure 2: Method Overview of FASA. First, the TIP stage leverages only dominant FCs to efficiently estimate
token importance and select a critical subset of tokens. Then, the FAC stage performs full-dimensional attention
exclusively on this reduced subset to generate the next token. See discussion about design in Appendix E.2.

Token Importance Predictor (TIP) stage utilizes a computationally frugal proxy, defined by a
pre-calibrated set of dominant FCs, Idom, to efficiently identify a small subset of contextually salient
tokens. Subsequently, the Focused Attention Computation (FAC) stage performs a full-fidelity
attention computation exclusively on this salient subset, preserving high generation fidelity while
drastically mitigating the computational and memory overhead of standard attention.

4.1 TOKEN IMPORTANCE PREDICTOR (TIP)

The TIP stage operates on the principle that dominant frequencies are an efficient proxy for token
importance, where the dominant indices Idom are identified via a one-time offline calibration.

Offline Calibration: Identifying Idom. The objective of the offline calibration is to identify a
small, head-specific set of dominant frequencies, Il,hdom, for each attention head (l, h). We formulate
this process as a search problem over frequency indices. Given a small calibration dataset Ω and a
target size Ntip, our goal is to find the subset of FCs of cardinality Ntip that maximizes the expected
average of CA scores. The objective is defined as:

Il,hdom = argmax
I⊆{0,...,d/2−1},|I|=Ntip

Eq,K∼Ω

[∑
i∈I

CAl,h,i
K (q,K)

]
. (5)

This calibration is a highly efficient, one-time offline process because the resulting Idom is empirically
found to be task-agnostic and can be robustly identified from a minimal number of samples. Its
associated computational cost is negligible. The detailed algorithm is provided in Algorithm 1.

Online Prediction: Importance Scoring via Frequency Subspace Aggregation. During the
online prediction phase at a given decoding step t, we leverage the pre-calibrated set of dominant
frequencies, Il,hdom, to efficiently estimate token importance in a training-free manner. Conceptually, the
full attention score for a query qt and keys K1:t can be decomposed into a sum of contributions from
all d/2 frequency components: αl,h(qt,K1:t) =

∑d/2−1
i=0 αl,h,i(qt,K1:t). Instead of performing

this computationally expensive summation, our method constructs an importance score vector
Sl,h
t , by exclusively aggregating the contributions from the pre-identified dominant frequencies,

i.e., Sl,h
t ≜

∑
i∈Il,h

dom
αl,h,i(qt,K1:t). This formulation strategically bypasses computation for non-

dominant frequencies. Finally, based on these scores, we identify the set of top-Nfac most important
token indices, Tt, for the subsequent FAC stage: Tt = TopK-I(Sl,h

t , Nfac).

4.2 FOCUSED ATTENTION COMPUTATION (FAC)

Following the identification of the contextually important token set Tt by the TIP module, this
stage executes an attention computation on Tt, enabling the model to concentrate its computational
resources on the most salient parts of the context. Specifically, for the current query vector qt at
decoding step t, instead of using the full key and value matrices (K1:t,V1:t) from the entire past
context, we first gather the keys and values corresponding to the indices in Tt:

KTt = Gather(K1:t, Tt), VTt = Gather(V1:t, Tt) (6)

5
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where the Gather(·) operation selects the rows from the original matrices specified by the index set
Tt. The attention scores for each head (l, h) are then computed using only these selected keys. The
final output vector for the head is subsequently produced by weighting the selected value vectors:

α̂l,h
FAC = Softmax

(
qtKTt

T /
√
d
)
, Ol,h

t = α̂l,h
FACVTt (7)

Critically, the original absolute positions of the tokens in Tt are preserved. This directly maintains the
integrity of their position embeddings and the vital spatial information they encode, preventing the
performance degradation associated with positional distortion. In essence, the FAC stage functions as
a high-fidelity computational filter, restricting full-precision attention to the most salient tokens to
achieve a compelling balance between computational efficiency and predictive accuracy.

4.3 TWO IMPLEMENTATIONS OF FASA

We introduce two specialized, hardware-aware variants of FASA that offer a trade-off between
memory and speed: (1). FASA-M (Memory-Optimized) minimizes its GPU memory footprint by
strategically offloading the value cache and non-dominant key components to CPU memory, making
it ideal for VRAM-constrained environments. To mitigate the latency from CPU-GPU data transfer,
this approach can be effectively paired with prefetching techniques. (2) FASA-C (Computation-
Optimized) prioritizes inference speed by retaining the full cache on-GPU but accessing only a sparse
subset of key states, drastically reducing memory I/O for significant acceleration. (See Appendix E.1
for details and memory analysis of FASA-M).

4.4 EFFICIENCY ANALYSIS OF FASA
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Figure 3: Decoding latency dominates total
latency in auto-regressive generation.

Computational Analysis. At the generation step t, the
complexity of computing qtK

T
1:t is O(td) and the com-

plexity of multiplying the value states with attention scores
is O(td) per head. For FASA, (1) the complexity of the
TIP stage is O(2tNtip) (each FC takes up 2 dimensions),
since this stage operates in low-dimensional subspaces,
and (2) the FAC stage performs attention on a reduced
set of Nfac tokens, leading to a complexity of O(Nfacd).
Additionally, the detection of dominant frequencies Idom
is offline, one-time, and applicable for various tasks and
the burdens from this part could be neglected. Assuming
the complexity of selecting the top-k tokens is small, the
overall complexity of FASA is O(2tNtip +2Nfacd). The
theoretical speedup at decoding stage is in Equation 8.

Speedup =
2td

2tNtip + 2Nfacd
=

1

Ntip/d+Nfac/t
, Speedup ≈ d

Ntip
if Nfac ≪ t (8)

Memory Movement Reduction. The auto-regressive decoding stage is notoriously memory-bound,
as requiring loading the entire KV cache, creating a significant latency bottleneck. This is confirmed
in Figure 3, where decoding constitutes 90% of the total latency at a 32K context. FASA, directly
mitigates this bottleneck by drastically reducing memory traffic. At a decoding step t, standard
attention loads 2tm bytes from the KV cache (with m as the byte size per state vector) while FASA
accesses only t(2Ntip/d ∗ m) bytes (only keys) for the TIP and 2Nfacm bytes for the FAC. The
fraction that FASA must load is therefore: (2tmNtip/d + 2Nfacm)/2tm = Ntip/d + Nfac/t ≈
Ntip/d(Nfac ≪ t), which alleviates the memory-bound constraint of long-context decoding.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTING

Baselines and Models. To comprehensively evaluate FASA’s performance, we benchmark it against
into two groups of robust baselines: (1) State-of-the-art methods: We compare against leading
token eviction methods in efficient KV cache management, including Stream (Xiao et al., 2024),
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Table 2: Performance of FASA on diverse models on LongBench-V1 benchmarks. For baselines, we retain
constant token budget (256) and 25% FCs for FASA. †FKV and Oracle are full and look-ahead upper bounds.

Method
Single-Doc QA Multi-Doc QA Summarize Summarize Synthetic Code

NQA
Qasp

M
F-en

Hqa
2W

iki
M

us
i

Gov
R

Qsu
m

M
ult Trec Tqa Pcn

t
Pre Lcc

RB-P
AVG.

L
la

m
a3

.2
-3

B FKV† 26.0 40.7 50.4 32.2 29.6 15.1 33.5 22.9 25.3 71.5 88.9 3.5 87.8 52.0 54.2 42.2
Oracle† 26.6 41.2 49.8 31.9 29.9 16.2 32.6 22.2 25.0 71.5 89.3 3.5 88.0 53.7 54.4 42.4↑0.2
Quest 8.7 19.5 23.6 12.9 15.9 6.5 23.3 18.1 25.1 34.5 52.9 6.5 38.3 53.7 43.6 25.5↓16.7
Stream 13.2 19.7 23.6 18.1 22.7 7.8 18.2 17.9 17.9 49.0 83.7 3.5 85.7 49.3 45.9 31.8↓10.4
SnapKV 23.5 28.9 45.6 17.7 22.9 11.8 21.7 20.9 21.1 61.0 88.5 3.5 88.0 50.7 48.6 37.0↓5.2
FASA 25.6 38.9 49.9 29.7 31.2 14.8 28.0 24.2 26.1 71.5 89.2 3.6 86.9 53.2 50.5 41.5↓0.7

Q
w

en
2.

5-
7B

FKV 24.2 43.5 52.1 55.9 46.9 28.6 31.8 23.1 23.9 71.5 89.3 7.5 92.0 60.2 66.5 47.8
Oracle 24.4 43.0 52.3 57.8 46.9 30.1 31.6 23.9 24.1 72.5 89.7 8.0 100.0 60.5 65.3 48.7↑0.9
Quest 9.1 24.5 30.4 24.7 24.1 8.8 26.8 19.9 24.4 41.8 66.7 4.4 77.6 46.5 42.0 31.4↓16.4
Stream 18.1 24.2 26.5 41.2 36.4 17.3 18.4 18.3 15.4 45.0 82.9 8.5 24.0 49.6 52.2 31.9↓15.9
SnapKV 26.6 36.0 50.8 55.6 43.8 26.5 21.9 21.9 19.3 58.0 86.2 8.0 98.5 55.6 60.6 42.6↓5.2
FASA 28.3 43.8 51.9 57.4 46.0 30.1 31.2 22.8 24.3 72.0 89.4 8.0 99.5 60.3 64.0 47.9↑0.1

M
is

tr
al

-7
B

-v
0.

3 FKV† 29.1 41.6 52.9 49.4 39.5 29.1 34.8 25.7 27.8 76.0 88.6 5.5 98.0 58.4 59.7 47.4
Oracle† 31.0 40.2 52.4 50.3 39.4 28.8 34.0 25.74 27.2 76.0 89.4 5.0 98.0 59.3 61.0 47.9↑0.5
Quest 15.7 30.7 41.0 37.4 27.1 11.9 29.3 21.3 26.6 57.0 80.7 5.0 85.5 56.9 53.0 38.6↓8.8
Stream 11.8 15.3 20.9 32.1 27.1 10.6 20.2 17.3 20.1 44.5 69.0 1.6 3.2 56.5 49.8 26.7 ↓20.7
SnapKV 25.5 32.6 53.7 48.4 37.3 25.9 22.7 23.6 23.1 62.5 89.4 6.5 94.5 57.3 57.0 44.0↓3.4
FASA 29.9 42.3 53.7 51.1 39.1 28.7 34.0 24.8 28.2 76.0 89.4 5.0 98.0 57.8 58.0 47.8↑0.4

L
la

m
a3

.1
-8

B FKV† 30.0 45.3 55.6 55.8 43.7 30.2 35.1 25.4 27.0 72.5 91.7 7.1 99.5 63.0 56.3 48.7
Oracle† 30.3 44.5 55.0 54.9 44.6 32.0 34.8 25.1 26.9 72.5 91.5 7.0 99.5 63.3 57.4 48.7↓0.0
Quest 13.7 33.1 38.4 35.8 32.2 12.8 26.5 20.9 26.7 38.0 65.6 3.8 95.0 52.5 45.7 35.4↓13.3
Stream 21.9 23.4 31.8 45.1 36.7 24.3 20.0 21.0 19.3 45.5 87.9 6.9 99.5 59.4 49.1 38.8↓9.9
SnapKV 27.5 34.5 51.6 52.3 44.3 28.3 23.9 24.0 22.7 62.5 90.9 7.5 99.5 60.1 52.6 45.0↓3.7
FASA 29.3 43.7 54.1 54.8 43.9 30.8 33.5 24.7 27.0 72.0 91.1 7.5 99.5 61.8 52.7 48.2↓0.5

Q
w

en
2.

5-
14

B
-1

M FKV† 28.7 46.2 53.8 65.2 64.5 43.6 43.5 23.3 22.7 80.5 89.5 11.0 100.0 32.3 37.5 50.3
Oracle† 28.5 46.3 54.3 64.3 63.6 44.7 31.5 22.9 22.7 81.0 88.4 10.0 100.0 33.6 39.7 49.4↓0.9
Quest 14.5 31.9 39.1 38.8 36.6 16.2 16.2 20.1 25.2 43.5 72.7 10.0 88.8 35.0 34.0 34.9↓15.4
Stream 19.6 26.9 29.4 46.5 48.3 29.6 17.8 18.4 15.0 46.5 82.5 12.5 72.1 28.7 31.2 35.3↓15.0
SnapKV 26.3 40.5 51.2 63.2 62.2 43.3 22.5 22.0 18.3 63.5 87.5 11.5 100.0 30.4 36.0 45.9↓4.4
FASA 27.2 45.5 54.5 64.4 63.9 44.5 30.4 22.8 21.9 80.0 87.5 15.5 100.0 30.5 36.1 49.2↓1.1

SnapKV (Li et al., 2024), RKV (Cai et al., 2025a), Quest (Tang et al., 2024), H2O (Zhang et al.,
2023); (2) Upper bounds: two theoretical bounds, FKV, which represents standard inference with
the complete, uncompressed KV cache, serving as the absolute performance ceiling due to no
information loss, and Oracle, a more pragmatic upper bound for eviction-based methods, assuming
ideal knowledge to retain only the most critical tokens based on full-head scores. Our experiments
span a variety of cutting-edge architectures and model sizes, specifically Llama (Touvron et al., 2023),
Mistral (Jiang et al., 2023), and Qwen (Bai et al., 2023).

Evaluation Benchmarks. To rigorously assess the capabilities of FASA across diverse long-context
scenarios, we conduct comprehensive evaluations spanning three paradigms: (1) Long-context
understanding: We use diverse, real-world tasks from LongBench V1 (Bai et al., 2024) to assess the
ability to identify critical information within lengthy contexts. (2) Long-Sequence Modeling: We
measure perplexity on PG-19 (Rae et al., 2019), WikiText (Merity et al., 2017), and C4 (Raffel et al.,
2019) datasets to evaluate generative fidelity over long dependencies. (3) Long-CoT Reasoning: To
test performance in long-generation scenarios, we evaluate on complex mathematical reasoning tasks
from MATH500 (Hendrycks et al., 2021) and AIME24 (MAA, 2024) on R1-distilled LLMs.

5.2 PERFORMANCE COMPARISON ON LONG-CONTEXT TASKS.
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Figure 4: Perplexity results of FASA in comparison with FKV, Oracle, Stream, and Quest on Wikitext (top),
PG19 (middle), and C4 corpus (bottom). Token sparsity indicates the retained ratio of tokens.
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Table 3: Performance and output length of FASA compared to baseline models on the MATH500 and AIME24
Ntip = 16. AIME24 results are reported as pass@1, based on 16 responses per question. PREF* and DEC*

denote the prefill and decoding lengths, respectively. †FKV and Oracle are full and look-ahead upper bounds.

Methods MATH500 AIME24
Fixed Budget Len Stats Fixed Budget Len Stats

300 500 700 1000 PREF* DEC* TOTAL. 500 1000 1500 2000 2500 PREF* DEC* TOTAL.
DeepSeek-R1-Distill-Llama-8B

FKV† 72.4 - - 72.4
127

2977 3104 43.9 - - - 43.9
161

13231 13392
Oracle† 70.4 72.6 74.2 71.8 3195 3321 30.0 36.7 37.3 39.3 36.0 15638 15799
H2O 6.8 33.0 53.87 42.8 8244 8370 0.7 4.7 11.3 14.0 20.0 21099 21260
Stream 9.6 24.6 40.4 47.4 3520 3647 0.0 3.3 8.0 10.7 15.3 10191 10352
SnapKV 21.6 32.6 46.8 54.6 7047 7174 4.0 8.0 16.0 23.3 29.1 17359 17520
RKV 24.0 39.4 49.2 57.0 7005 7132 6.7 10.7 14.0 21.7 23.3 22916 23077
FASA 62.2 68.8 69.4 71.8 3171 3298 20.6 34.4 40.2 35.8 38.0 17166 17327

DeepSeek-R1-Distill-Qwen-14B

FKV† 92.4 - - 92.4
127

2784 2914 66.6 - - - 66.6
165

11039 11204
Oracle† 92.2 92.4 92.4 92.2 2985 3112 67.9 66.7 67.3 70.7 67.3 11546 11711
H2O 29.6 50.2 62.8 77.0 3413 3540 5.3 20.5 37.3 46.0 52.7 9519 9684
Stream 27.8 44.0 57.8 64.4 2801 2928 2.0 4.0 16.7 22.7 29.3 8468 8633
SnapKV 34.2 55.8 69.4 79.4 3586 3713 10.0 23.3 40.0 46.0 52.7 11922 12083
RKV 57.8 74.0 80.8 86.4 3865 3992 20.7 30.0 46.7 55.4 62.0 16274 16439
FASA 86.6 88.8 90.2 91.2 3139 3266 54.0 60.6 59.3 62.7 63.3 11553 11709

DeepSeek-R1-Distill-Qwen-32B

FKV† 92.6 - - 92.6
127

2717 2846 72.8 - - - 72.8
156

10461 10626
Oracle† 92.4 91.4 91.4 91.2 2886 3013 68.0 70.1 70.0 76.7 69.2 11545 11710
H2O 47.2 50.0 68.3 74.4 3841 3968 6.7 16.7 38.4 45.6 55.6 10904 11069
Stream 43.6 57.6 65.6 73.4 2773 2900 0.7 6.7 18.7 23.3 24.7 10732 10897
SnapKV 49.6 66.0 74.8 80.8 3704 3831 10.0 23.3 40.0 46.0 52.7 13650 13815
RKV 75.0 72.2 78.4 83.6 4229 4356 14.7 32.7 43.3 55.3 61.3 18078 18243
FASA 86.4 90.2 90.2 91.2 2887 3014 60.7 62.0 66.3 70.0 73.2 11735 11891

FASA achieves near-lossless performance under various budgets. FASA consistently outperforms
all baselines across various budgets (Appendix D.1 and 5), preserving contextual integrity even under
extreme compression (Table 2). In stark contrast, existing token-eviction methods suffer catastrophic
performance degradation; for instance, Quest’s accuracy plummets by 13.4% on NarrativeQA,
underscoring their inability to retain critical information. Remarkably, under extreme budgets, FASA
occasionally surpasses the FKV baseline (e.g., on Mistral-7B). We attribute this phenomenon to the
mitigation of attentional distraction from irrelevant tokens. This hypothesis is corroborated by the
Oracle baseline, which also outperforms FKV sometimes, thereby validating our frequency-chunk-
based framework’s efficacy in precisely identifying semantically pivotal regions.

FASA models complex long-term dependencies. We simulate a token-by-token decoding process
wherein the eviction strategy is iteratively applied before token prediction. The fixed-rule approach
of Stream (Xiao et al., 2024), which relies on “attention sinks,” severely compromises its ability to
capture long-range dependencies, leading to a drastic increase in perplexity as shown in Figure 4.
Similarly, Quest’s coarse, page-level granularity prevents it from adaptively retaining critical, non-
contiguous tokens. In contrast, FASA’s fine-grained, query-dependent mechanism accurately iden-
tifies salient tokens, achieving performance comparable to FKV, even under aggressive compression.
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Figure 5: FASA under various token budgets (Ntip = 16).

FASA excels at long-CoT
reasoning. The chain of
thought in long-form reason-
ing is a fragile thread, requir-
ing the preservation of dy-
namically shifting "thought
traces", a thread that promi-
nent baselines consistently sever. As shown in Table 3, their static compression heuristics, blind to the
evolving importance of tokens, lead to a precipitous drop in performance. On R1-Llama, SnapKV’s
accuracy collapses to 21.6, a stark contrast to the FKV’s 72.4, demonstrating a fundamental failure to
sustain the very logical dependencies required for reasoning. Conversely, FASA operates with surgical
precision. It surpasses not only standard baselines but also R-KV, a highly specialized method for
CoT compression. It achieves an impressive 86.4% accuracy on a scant 10% context budget, narrowly
trailing the 92.6% FKV upper bound. This feat cements its status as a superior framework, one that
can navigate the intricate web of complex reasoning without severing the essential threads of logic.

5.3 IN-DEPTH ANALYSIS

Effect on Generation Length. A neglected aspect of compression methods is the impact on output
length. Some compression methods, like H2O, induce generative verbosity, imposing an overlooked
computational burden (Table 3). Conversely, others, such as Stream, prematurely terminate generation,
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Table 4: Compatibility of FASA.
Budget 256 512 1024 2048

Qasp.
FASA 43.7 44.0 44.7 45.7
+PyKV 44.4↑0.7 44.5↑0.5 45.8↑1.1 45.8↑0.1

Lcc
FASA 61.8 63.4 64.4 64.8
+PyKV 62.2↑0.4 63.6↑0.2 64.7↑0.3 64.9↑0.1

Table 5: Ablation on K.

K Token Budget AVG.
128 256 512 1024 2048

128 42.5 43.6 44.9 45.7 45.6 44.5
256 42.6 43.7 44.0 44.7 45.3 44.1
512 41.9 43.5 43.7 44.9 45.3 43.9
1024 42.2 44.2 44.3 44.7 45.0 44.1

Table 6: Ablation of offline calibration.

Offline S-Doc QA M-Doc QA
2Wiki Musi Hqa Qasp. MF_en Nqa

Base 43.7 30.2 55.8 45.3 55.6 29.9
Nqa 44.5 31.6 55.0 44.2 55.8 29.2
Qasp. 43.0 31.0 54.1 44.0 54.6 29.1
Musi 43.8 30.8 55.1 44.8 54.6 29.6
Self 43.5 30.8 55.3 43.9 54.4 29.2
CV .014 .012 .010 .009 .011 .007
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Figure 6: Evaluation of FASA on TREC (left) and MATH (right) datasets. The plots show the synergistic
effects under varying numbers of selected FCs and different token budgets.

which truncates valid reasoning and degrade performance. In contrast, FASA maintains output lengths
nearly identical to the FKV while preserving high performance, demonstrating a superior balance.

Compatiblility of FASA. By design, FASA is orthogonal to and synergistic with other KV cache
optimization paradigms. We demonstrate this by integrating it with PyramidKV (Cai et al., 2025b),
which allocates varied budgets across layers. While PyramidKV determines how many tokens to keep
per layer, FASA decides which tokens are most critical. As shown in Table 4, this complementary
pairing yields consistent performance gains, confirming FASA’s high compatibility and modularity.
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Figure 7: Memory vs. latency (Ntip = 16).

Efficiency Analysis. We assess the efficiency of our two
FASA variants. FASA-M’s memory savings are particu-
larly pronounced in long sequences, as the KV cache’s
footprint grows to dominate and dwarf the static memory
costs of model parameters and activations. While its CPU-
GPU data transfer introduces a slight latency overhead,
this can be effectively mitigated by prefetching techniques
that asynchronously load the required KV pairs in advance.
FASA-C, implemented with Triton (based on Ribar et al.
(2024)), delivers substantial inference acceleration. The
speedup effect intensifies with longer sequences, achieving up to a 2.56× with Ntip = 16 under 64K.

5.4 ABLATION STUDIES

Robustness to Calibration WindowK. Our method exhibits remarkable robustness to the calibration
window size, K. Performance is largely insensitive to K, with smaller K values often yielding slightly
superior results (Table 5). This suggests that due to the inherent sparsity of attention, even a small
calibration window provides a sufficiently robust signal to identify the dominant FCs.

Trade-off between Ntip and Nfac. The hyperparameters Ntip (token selection precision) and Nfac

(retention budget) govern a trade-off between the fidelity of token identification and the volume
of retained context. As depicted in Figure 6, optimal performance can be achieved either with
high-precision selection (large Ntip) and a small budget, or a more lenient selection (small Ntip)
compensated by a larger one. Empirically, on the TREC dataset, we found that using just 10 dominant
FCs (15.6% of dimensions) with Nfac = 500 is sufficient to match the FKV’s performance.

Impact of Offline Calibrated Data. As shown in Table 6, our method exhibits remarkable robustness
to the choice of calibration data. The minimal performance variation across different calibration
datasets, as quantified by a low Coefficient of Variation (CV), confirms that our FC detection
mechanism is stable and not reliant on a specific calibration source.
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Ablation Study on Data Size. As shown in Table 12, The robustness of our dominant FC identifica-
tion is evident in the stable performance across all calibration set sizes. Crucially, this stability is
achieved with as few as two QA pairs, demonstrating the high efficiency of FASA’s offline calibration.

5.5 GENERALIZATION TO OTHER POSITIONAL ENCODINGS

Functional Sparsity on Other PEs For ALiBi (Baichuan-13B-Chat), as shown in Figure 8, the
attention heads exhibit two patterns: one group shows the expected functional sparsity, while another
shows extremely high contextual awareness across all dimensions. This demonstrates that FASA
is highly compatible with ALiBi models; For Partial-RoPE (DeepSeek-V2-Lite-Chat), head
dimension consists of both non-RoPE dimensions and RoPE frequency chunks. We computed CA
scores for both parts and found a clear pattern that, consistently aligns with our functional sparsity
hypothesis in Figure 9. Therefore, other PEs could also induce the functional sparsity.

Table 7: Performance on Partial-RoPE Models.

Qasper 2Wiki Multi Passage_Re Lcc Samsum

FKV 33.18 19.83 47.27 49.00 63.40 34.04
FASA 33.46 20.25 46.50 48.50 62.49 32.53

Table 8: Performance on ALiBi Models.

Qasper Lsht Dureader Trec Repobench

FKV 9.11 24.25 23.18 23.00 17.30
FASA 7.80 21.25 21.70 21.50 16.46

FASA Evaluation on Other PEs Ultimately, our work establishes FASA as a broadly applicable
method, not confined to RoPE. This generalizability to diverse PE architectures is achieved at no
significant performance cost, with results remaining on par with FKV.
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Figure 8: CA Scores Heatmaps of Baichuan-13B-Chat (ALiBi models).
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6 CONCLUSION

In this work, we addressed the memory footprint and bandwidth introduced by the KV cache in LLMs.
Firstly, we cover an intriguing phenomenon: the functional sparsity of FCs. A subset of dominant FCs
could show high contextual awareness. Based on this discovery, we introduce FASA, a coarse-to-fine
two-stage freamwork. The first stage utilizes the dominant FCs to perform dynamic, query-aware
token selection without costly training. Then, the second stage perform focused and precise attention
computation on this reduced subset. Our experiments indicate that FASA attains performance nearly
on par with full KV even under constrained budgets. The memory- and speed-optimized variants of
FASA offers a practical and effective solution for efficient long-context inference.
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ETHICS STATEMENT

Our research is focused on enhancing the computational efficiency of Large Language Model (LLM)
inference by optimizing KV cache management. The primary positive impact of our work, FASA,
is to make large-scale models more accessible, affordable, and environmentally sustainable. By
significantly reducing memory and computational overhead, our method can enable researchers and
institutions with limited resources to develop and deploy powerful long-context models, thereby
fostering broader innovation and democratization in the field of AI.

We acknowledge the dual-use nature of efficiency-enhancing technologies. While our goal is positive,
lowering the barrier to running large models could inadvertently make it easier for malicious actors to
deploy them for harmful purposes, such as generating misinformation or spam at scale. It is important
to note, however, that our work is foundational and does not create new capabilities for generating
harmful content; it merely optimizes the performance of existing models.

All experiments were conducted on publicly available benchmarks (LongBench, MATH, AIME)
and open-source pre-trained models. We did not use any private, sensitive, or user-generated data.
We recognize that the foundation models used in our evaluation may reflect and perpetuate societal
biases present in their vast training corpora. Our method operates orthogonally to the challenge of
model-level bias and does not address it directly, but we encourage users to be mindful of the inherent
limitations of the models they deploy with our technique.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide a detailed account of all models, datasets,
experimental setups, and evaluation protocols, all of which are publicly available. An overview of the
experiments is provided in Section 5.1, with more comprehensive details described across several
appendices. Specifically, the configurations for all baselines and the detailed hyperparameters for
FASA are presented in Appendix C.1. The descriptions of all benchmarks and their corresponding
evaluation protocols are detailed in Appendix C.2 and Appendix C.3, respectively. Furthermore, the
implementation and design choices for FASA are explained in Appendix C.4. Finally, the specific
algorithms for FASA-M and other core functions are provided in Appendix E.1 and Appendix E.3.
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A REBUTTAL SECTION

A.1 GENERALIZATION ON ALIBI AND MLA
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Figure 10: CA Scores Heatmaps of Baichuan-13B-Chat (ALiBi models).

We considered two prominent PE schemes: ALiBi (Attention with Linear Biases) and a Partial-
RoPE hybrid, using the representative LLMs Baichuan-13B-Chat and DeepSeek-V2-Lite-Chat,
respectively. We conducted experiments to test our functional sparsity hypothesis and evaluate
FASA’s performance on these models.
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Figure 11: CA Scores Heatmaps of DeepSeek-V2-Lite-Chat (Partial-RoPE models).
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a. Functional Sparsity on ALiBi and Partial-RoPE

• Baichuan: the attention heads exhibit two patterns: one group shows the expected functional
sparsity, while another shows extremely high contextual awareness across all dimensions.
This demonstrates that FASA is highly compatible with ALiBi models. (Figure 10)

• DeepSeek-V2: The head dimension consists of both non-RoPE dimensions and RoPE
frequency chunks. We computed CA scores for both parts and found a clear pattern that,
consistently aligns with our functional sparsity hypothesis. (Figure 11)

b. FASA Evaluation on Baichuan and DeepSeek-V2.

Table 9: FASA Evaluation on DeepSeek-V2-Lite-Chat (Nfac = 256).

Partial-RoPE Qasper 2Wikimqa Multifieldqa Passage_Re Lcc Samsum
FKV 33.18 19.83 47.27 49.00 63.40 34.04
FASA 33.46 20.25 46.50 48.50 62.49 32.53

Table 10: FASA Evaluation on Baichuan-13B-Chat (Nfac = 256).

ALiBi Qasper Lsht Dureader Trec Lcc Repobench
FKV 9.11 24.25 23.18 23.00 14.29 17.30
FASA 7.80 21.25 21.70 21.50 13.62 16.46

Ultimately, our work establishes FASA as a broadly applicable method, not confined to RoPE. This
generalizability to diverse PE architectures is achieved at no significant performance cost, with results
remaining on par with FKV.

A.2 GENERALIZATION ON PAGE-LEVEL METHODS

The results of applying FASA to page-level methods are presented in Table 11, where page size n
denotes the number of tokens per page. From these results, we draw three key conclusions:

• Compatibility and Efficiency: FASA is fully compatible with page-level selection and
significantly enhances its computational efficiency.

• Performance Maintenance: When integrated into page-level methods, FASA maintains
competitive performance across various page sizes, even while using only dominant FCs.

• Superiority of Token-Level Granularity: As a native token-level method, FASA substan-
tially outperforms all page-level variants. Notably, this performance gap widens as the page
size n increases.
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Table 11: Performance comparison of FASA on page-level methods. The results demonstrate that
FASA is applicable to page-level selection, enhancing efficiency while maintaining competitive
performance across various page sizes.

Method Qasper Multifieldqa_en Hotpotqa 2Wikimqa Musique Dureader Avg.
Model: Mistral-7B-Instruct-v0.3

FKV 41.60 52.90 49.40 39.50 29.10 30.96 40.58
FASA (ours) 41.48 53.81 49.22 40.01 28.80 32.00 40.89

Page-level Methods
(page _size=8) 37.33 49.58 49.83 36.06 25.92 26.33 37.51

+ FASA 37.29 49.69 50.02 34.45 25.20 31.51 38.03
(page_size=16) 38.37 49.24 47.67 32.45 25.17 25.16 36.34

+ FASA 38.06 48.16 49.04 33.70 25.08 31.05 37.52
(page _size=32) 38.01 49.55 47.59 32.81 22.10 23.05 35.52

+ FASA 35.34 47.83 47.59 31.35 22.17 26.92 35.20

Model: Qwen2.5-7B-Instruct
FKV 43.50 52.10 55.90 46.90 28.60 29.82 42.80
FASA (ours) 42.97 52.58 58.29 45.97 30.43 29.08 43.22

Page-level Methods
(page _size=8) 42.42 51.58 56.56 46.64 29.46 23.40 41.68

+ FASA 41.58 52.31 56.96 46.42 27.60 30.28 42.53
(page _size=16) 42.05 51.78 56.36 45.54 28.08 22.82 41.11

+ FASA 41.46 50.84 55.41 45.14 27.04 27.63 41.25
(page _size=32) 41.65 51.89 56.19 46.33 28.10 22.34 41.08

+ FASA 40.20 50.41 54.42 43.38 26.92 27.54 40.48

A.3 ABLATION STUDY ON DATA SIZE

Our ablation study on data size involves identifying dominant FCs using varying numbers of QA
pairs. We then perform two analyses:

• Evaluate the performance of these FCs on down-stream long-text tasks.

• Measure the percentage of overlap between the sets of dominant FCs identified under each
condition.

Table 12: Ablation study on data size used to identify dominant frequency chunks (Llama-3.2-3B-
Ins).

Num. of QA Narrativeqa Qasper Multifieldqa Hotpotqa 2Wikimqa Musique Avg.
2 23.18 37.37 50.34 49.31 39.44 21.98 36.94
4 22.49 37.17 50.79 49.52 39.43 21.62 36.84
6 23.90 37.71 52.25 49.65 39.24 21.78 37.42
8 24.32 37.28 51.43 50.22 39.16 21.62 37.34

10 22.96 36.67 51.83 48.66 39.43 21.21 36.80

Conclusion (Downstream tasks): The robustness of our dominant FC identification is evident in the
stable performance across all calibration set sizes. Crucially, this stability is achieved with as few as
two QA pairs, demonstrating the high efficiency of FASA’s offline calibration.

For a more direct analysis, we measure the overlap among the dominant FC sets identified with
varying calibration data sizes.

Conclusion (Overlap Analysis): The robustness of the offline calibration process is confirmed by
the high degree of overlap—consistently above 80%—among the dominant FC sets identified with
different data sizes. This stability indicates that the identified FCs are not sensitive to the size of the
calibration dataset.
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Table 13: Overlap percentage (%) of dominant FCs identified using different numbers of QA pairs
for calibration. The high degree of overlap demonstrates the robustness of the identification method.

Num. of QA 2 4 6 8 10
2 100.0 82.8 81.7 82.0 81.7
4 100.0 86.8 86.1 86.7
6 100.0 95.9 95.1
8 100.0 96.6

10 100.0

Summary: The results from downstream tasks and the overlap analysis demonstrate that our offline
calibration process is both robust and efficient.

Ablation with Ntip on More Datasets Building upon the analysis for TREC and MATH presented
in Figure 6, we now evaluate performance on four more diverse datasets to assess the generalizability
of our approach across varying (Ntip) and constant Nfac = 256 in Table 14.

Table 14: Ablation study on the number of dominant FCs across more datasets under 256 token
budget.

Number of Dominant FCs
Model calibrated dataset 8 10 12 14 16 FKV

Mistral-7B-Instruct

Qasper 38.54 39.08 41.57 41.78 42.30 41.60
Narrativeqa 26.26 28.58 28.67 29.26 29.90 29.10
Dureader 26.65 28.50 29.72 29.73 30.21 30.96
Gov_Report 29.82 31.61 33.25 33.96 34.00 34.80

Avg. 30.32 31.94 33.30 33.68 34.10 34.12

Qwen2.5-14B-Instruct

Qasper 41.17 45.14 44.98 45.29 45.49 45.34
Narrativeqa 25.91 26.38 27.87 28.50 30.40 29.71
Dureader 23.72 23.71 25.42 26.68 28.92 29.32
Gov_Report 24.41 26.56 27.24 28.62 29.51 29.71

Avg. 28.80 30.45 31.38 32.27 33.08 33.52

Benefits of prefetching techniques We sincerely thank the reviewer for this insightful suggestion.
You are correct to point out the trade-off: while FASA-M achieves significant memory savings, the
CPU-to-GPU data transfer for a small fraction of tokens introduces latency. This effect is quantified
in the third row of our results, which shows an increase in decoding time without prefetching. This is
precisely why we introduced the prefetching technique, to counteract this specific overhead. As our
results demonstrate, prefetching successfully mitigates this latency, bringing the overall decoding
time to a level comparable to the baseline.

Table 15: Comparision results with and without prefetching techniques.

1k 2k 4k 8k 16k 32k 64k
base 0.018 0.019 0.023 0.027 0.038 0.062 0.113
W. prefetch 0.021 0.024 0.026 0.031 0.046 0.086 0.154
Wo. prefetch 0.028 0.038 0.049 0.066 0.128 0.185 0.339
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A.4 QUANTITATIVE RESULTS ON SPARSITY &TASK-INVARIANCE

Sparsity: We quantitatively analyzed the proportion of dominant FCs (defined as CA > 0.4). We
found they account for less than 1% of all FCs, while non-dominant FCs with low CA scores comprise
approximately 90% or more. This empirically validates our claim of functional sparsity.

Universality: This sparsity pattern holds universally. We confirmed its existence across different
architectures (Llama, Qwen, Mistral, R1 models) and scales (3B to 32B), which strongly supports
our universality claim.

Table 16: The ratio of dominant FCs and non-dominant FCs.

Type of FC Dominant FCs (%) Non-Dom FCs(%)
Model CA scores > 0.4 CA score < 0.15
Llama-3.2-3B 0.54 89.6
Meta-Llama-3.1-8B 0.68 89.6
Mistral-7B-v0.3 0.68 92.7
Qwen2.5-7B 0.17 95.5
Qwen2.5-14B 0.27 94.7
Qwen2.5-14B-1M 0.65 90.5
Qwen2.5-32B-Instruct 0.52 91.2
R1-Distill-Llama-8B 0.79 89.5
R1-Distill-Qwen-14B 0.76 90.2
R1-Distill-Qwen-32B 0.67 90.9

Table 17: Cross-task overlap matrix of dominant FCs (%). Each sub-table shows the percentage of
intersection between dominant FCs identified on a "row" dataset and a "column" dataset.

Model Overlap of dom-FCs Qasper Gov_Report Musique Narrativeqa 2Wikimqa Avg.

Llama-3.2-3B

Qasper 100.00 75.90 82.30 70.50 83.20 82.38
Gov_Report 75.90 100.00 82.10 70.80 81.90 82.14
Musique 82.30 82.10 100.00 73.60 96.50 86.90
Narrativeqa 70.50 70.80 73.60 100.00 73.10 77.60
2Wikimqa 83.20 81.90 96.50 73.10 100.00 86.94

Mistral-7B

Qasper 100.00 71.10 77.10 67.30 77.00 78.50
Gov_report 71.10 100.00 79.40 65.50 78.90 78.98
Musique 77.10 79.40 100.00 67.80 97.90 84.44
Narrativeqa 67.30 65.50 67.80 100.00 67.30 73.58
2Wikimqa 77.00 78.90 97.90 67.30 100.00 84.22

Qwen2.5-7B

Qasper 100.00 70.60 80.90 68.70 81.30 80.30
Gov_Report 70.60 100.00 79.40 68.20 78.70 79.38
Musique 80.90 79.40 100.00 71.70 96.60 85.72
Narrativeqa 68.70 68.20 71.70 100.00 71.10 75.94
2Wikimqa 81.30 78.70 96.60 71.10 100.00 85.54

Qwen2.5-14B

Qasper 100.00 69.20 84.30 71.80 84.50 81.96
Gov_Report 69.20 100.00 75.00 67.60 74.80 77.32
Musique 84.30 75.00 100.00 74.30 98.40 86.40
Narrativeqa 71.80 67.60 74.30 100.00 73.90 77.52
2Wikimqa 84.50 74.80 98.40 73.90 100.00 86.32

Task-Invariance: To provide direct evidence of task-invariance, we measured the overlap between
sets of dominant FCs identified using different calibration datasets. Our analysis reveals a remarkably
high degree of overlap, which consistently exceeds 70% across all tested models and tasks.

This finding offers compelling evidence for the task-agnostic nature of these dominant FCs. The
effect is particularly pronounced in the Llama model, where the overlap between the sets identified by
the Musique and 2WikiMQA datasets surpasses 90%. Such high consistency strongly indicates that
the set of dominant FCs is not determined by the calibration task, but is rather an intrinsic, emergent
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property of the model’s fundamental architecture. This conclusion is generalizable, as the pattern
holds true across models of varying scales and designs.

Long-CoT Performance with Long-context Calibration we evaluated the R1 models on MATH
tasks using FCs calibrated on long-context tasks (Table 18 and 19). Our findings are twofold:

(1) Models calibrated on a long-context task achieve performance on the MATH that is highly
comparable to counterparts calibrated directly on MATH. For instance, R1-Qwen-14B and R1-
Qwen-32B achieve 91.0% accuracy on MATH (1000-token budget) when calibrated with Qasper.
Furthermore, R1-Distill-Llama-8B consistently delivers performance comparable to the FKV baseline
on both MATH and AIME, regardless of the calibration datasets. These results provide strong evidence
for the robustness and task-agnostic nature of the dominant FC identification.

(2) We did, however, observe a minor exception. For the R1-Distill-Qwen-32B model on MATH, when
the token budget is restricted to 300 tokens, the version calibrated on Qasper performs slightly below
the version calibrated on MATH itself. This finding does not contradict our main conclusion. We
hypothesize that the activation patterns of very short outputs diverge from the activation distribution
of longer outputs, which are more representative of the R1 model’s intrinsic dynamics, explaining the
slight performance difference.

Table 18: Performance on the MATH dataset using FCs calibrated on different datasets.

MATH (Token Budget)
Model Calibration 300 500 700 1000 AVG

R1-Distill-Qwen-14B
FKV 92.4 92.4 92.4 92.4 92.4
MATH 86.6 88.8 90.2 91.2 89.2
Qasper 87.2 89.2 91.0 91.0 89.6

R1-Distill-Qwen-32B
FKV 92.6 92.6 92.6 92.6 92.6
MATH 86.4 90.2 90.2 91.2 89.5
Qasper 79.8 84.8 86.6 90.6 85.5

Table 19: Performance on MATH and AIME datasets using diverse calibration datasets for R1-Distill-
Llama-8B.

MATH (Token Budget)
Model Calibration 300 500 700 1000

R1-Distill-Llama-8B

FKV 72.40 72.40 72.40 72.40
Math 62.20 68.80 69.40 71.80
AIME 63.20 67.60 71.80 72.00
Qasper 57.10 64.60 68.40 71.80
Gov_Report 58.60 60.40 70.40 71.60
2Wikimqa 58.80 62.20 68.60 69.80

AIME 24 (Token Budget)
Model Calibration 500 1000 1500 2000 2500

R1-Distill-Llama-8B
FKV 43.90 43.90 43.90 43.90 43.90
Math 20.60 34.40 40.20 35.80 38.00
Qasper 18.80 33.30 36.76 37.68 41.34
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A.5 DISTRIBUTION OF CA SCORES

Distribution of CA Scores We conducted an additional analysis specifically designed to examine
the predicting accuracy of dominant and non-dominant FCs on tokens of varying attention magnitudes
(i.e., importance levels).

Table 20: Prediction accuracy in each attention scale ranges.

Prediction accuracy across varying attention scale ranges
Model Type of FCs Top 20% Top 20-40% Top 40-60% Top 60-80% Top 80-100%

Llama-3.2-3B-Instruct dom 82.4∗ 79.1 72.1 59.2 44.9
non-dom 4.6 5.3 5.3 5.4 5.4

Mistral-7B-Instruct-v0.3 dom 81.1 80.7 78.7 72.5 56.4
non-dom 3.6 4.2 4.9 4.4 4.5

Qwen2.5-7B-Instruct dom 81.9 82.4 76.9 63.7 49.3
non-dom 6.1 5.7 5.4 5.6 5.5

Qwen2.5-14B-Instruct dom 74.3 66.4 56.6 44.9 34.7
non-dom 4.1 4.6 4.5 4.9 4.9

PS: 82.4 means dominant FCs successfully predicts 82.4% tokens in Top-20%.

Predicting Performance Across Attention Score Ranges: We selected the top 256 tokens with
the highest attention scores at each generation step and divided them into five token ranges based
on attention magnitude: Top 0–20%, Top 20–40%, Top 40–60%, Top 60–80%, and Top 80–100%.
For each token range, we calculated the proportion of tokens accurately predicted by dominant
FCs/non-dominant FCs (where we defined CA scores above 0.6 as dominant FC and those below
0.15 as non-dominant FC).

• Dominant FCs identify the most influential tokens: The performance of dominant FCs is
heavily concentrated in the token ranges with the highest attention scores. For instance, in
the Llama-3.2-3B model, dominant FCs account for 82.4% of the prediction performance
within the top 20% most important tokens. This contribution progressively declines as token
importance decreases. This strongly indicates that dominant FCs not only capture the
overall relative ranking of token importance (as reflected by high CA scores) but also
accurately capture the performance magnitude of the most influential tokens.

• Non-dominant FCs consistently show extremely low accuracy. This finding directly
counters the possibility that “some non-dominant FCs may simply rank poorly but still
attend to the most important tokens.” Experiments indicate that non-dominant FCs perform
poorly in capturing both the influence and ranking of token importance.

Conclusion: We deeply appreciate your insightful suggestions. By presenting the distribution of CA
scores across token ranges with varying attention magnitudes, this analysis further substantiates
the ability of dominant FCs to effectively capture both the relative ranking and true impact of
context tokens.
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A.6 CUMULATIVE DISTRIBUTION FUNCTION (CDF) OF CA SCORES
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Figure 12: CDF figures of CA scores across all model layers and models.

Solid Evidence of Functional Sparsity To further substantiate the universality of functional
sparsity, we analyze the CDF of CA scores across all layers of six evaluated LLMs (see Figure 12).
As illustrated, the distribution is heavily skewed towards zero, demonstrating that most frequency
chunks have low contextual awareness. Specifically, over 90% of chunks typically have scores
below 0.15, while high-scoring FCs are exceptionally rare, with consistently less than 0.5% of FCs
exhibiting strong contextual awareness (CA > 0.4). These CDF plots confirm that functional
sparsity is not an artifact of specific layers but a fundamental and universal property of the
model architectures.
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B INVESTIGATION RESULTS OF DOMINANT FREQUENCY CHUNKS

B.1 FURTHER GENERALIZATION ON MODEL SCALES AND ARCHITECHTURES
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Figure 13: Functional sparsity is maintained on Qwen2.5 series models (Yang et al., 2024). Heatmaps
visualize the Mean Contextual Agreement (CAK=256) for each Frequency Chunk (FC, x-axis) across
all attention heads (y-axis) in a representative layer. We compare the standard Qwen2.5-14B-Instruct
model (left) with its long-context variant, Qwen2.5-14B-Instruct-1M (right), both calibrated on the
Qasper dataset. The remarkable similarity between the two heatmaps demonstrates that the functional
sparsity of FCs is a robust property, consistently maintained even after long-context fine-tuning.
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Figure 14: Functional sparsity persists across model scales. Heatmaps show the Mean Contextual
Agreement (CAK=256) for increasing scale (3B and 32B). The remarkable stability of the dominant
FC patterns (bright vertical columns) across these scales demonstrates that functional sparsity is a
fundamental and scalable characteristic of RoPE.

Conclusions: Our cross-architectural (Figure 13) and cross-scale (Figure 14) analysis reveals a
striking finding: the functional sparsity of FCs is a universal and stable property. This powerful
evidence suggests that the observed functional hierarchy is not an emergent artifact of a specific
model’s training dynamics or size, but rather an intrinsic characteristic deeply embedded within
the RoPE mechanism itself. The roles of different frequencies appear to be fundamental and pre-
determined, providing a robust and predictable foundation for developing model-agnostic efficiency
optimizations.

B.2 TASK-INVARIANCE PROPERTY OF FUNCTIONAL SPARSITY

We find that the saliency of dominant FCs is largely task-agnostic. This property is evidenced by
the strong alignment between saliency maps generated for distinct downstream tasks, as shown in
Figure 15. Despite the functional differences between question answering (left) and summarization
(right), the resulting importance rankings are highly consistent. This indicates that these FCs perform
a fundamental role inherent to the model’s architecture, rather than one adapted for a specific task.

B.3 MORE ANALYSIS RESULTS

Functional Sparsity across Layers. While the principle of functional sparsity is universal, the
specific set of dominant FCs is far from static in Figure 16; instead, it exhibits a high degree of
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(b) GovReport

Figure 15: Heatmaps of agreement score (CA,K = 256) across attention heads for the Qasper (Left)
and GovReport (Right) from LongBench-V1 (Bai et al. (2024)) on Mistral-7B-Instruct-v0.3.
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Figure 16: Heatmaps of agreement score (CA,K = 256) across different layers.

specialization across both model depth and individual attention heads. This dynamic behavior reveals
a sophisticated division of labor within the transformer architecture.

C EXPERIMENTS DETAILS

C.1 EXPERIMENT CONFIGURATIONS.

Baseline Configurations. As FASA is designed to optimize the decode phase, we forgo any KV
cache optimizations during prefilling for all methods under evaluation. This experimental design
isolates the performance impact of decode-stage acceleration, ensuring that our comparisons are
direct and fair. For all baselines, we adopted configurations that are either standard in their original
papers or represent a fair and strong setup for comparison.

• Oracle: serves as an oracle baseline to demonstrate the upper-bound performance of Top-k sparse
attention. This method operates under the ideal assumption that the k most important KV tokens
for each query can be identified perfectly and at no computational cost. Consequently, a given
token budget directly corresponds to this optimal Top-k set.

• Stream (Xiao et al., 2024): This method is based on the "attention sink" phenomenon, preserving a
fixed number of initial tokens and a sliding window of recent tokens. Following its standard setup,
we set the initial "start_size" to 8 and the "recent_size" to "budget - 8".

• SnapKV (Li et al., 2024): SnapKV estimates token importance based on accumulated attention
scores within a observation window during prefilling. We adopted its "maxpool" strategy with a
window size of 32 and a kernel size of 7. As its original design performs a one-time filtering, it is
not directly suited for long-generation tasks. We therefore adapted it, following the methodology
in (Cai et al., 2025a), by re-applying the filtering mechanism every n generated tokens.

• Quest (Tang et al., 2024): Quest organizes the KV cache into pages and retrieves them based on a
coarse-grained query-page similarity. We set the page size to 16, a value reported as near-optimal,
to balance the trade-off between retrieval granularity and overhead.

• RKV (Cai et al., 2025a): RKV is a state-of-the-art method for reasoning tasks that also employs
a retrieval mechanism. We set its core hyperparameter λ, which balances between recent and
important tokens, to 0.1 as recommended for optimal performance.

FASA Configurations. Our configuration for FASA is designed for both effectiveness and practical
efficiency. Unless otherwise specified, the following setup was used across all experiments.
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• Dominant FC Identification: A core principle of FASA is that the set of dominant FCs is a univer-
sal, task-agnostic property of the model architecture itself. Consequently, these indices (Idom) can
be determined via a highly efficient, one-time offline calibration. For our LongBench experiments,
this calibration was performed on just a single data sample from the Qasper dataset. We found
this minimal setup to be remarkably robust, as the generated response provides sufficient signal
to identify the dominant FCs. The universality of these calibrated indices is empirically validated
by FASA’s strong performance across diverse tasks, from summarization to code completion. For
Long-CoT reasoning, a similar single-instance calibration was performed on a question from the
MATH500 dataset.

• Hyperparameter Settings: For architectural simplicity and to maximize computational parallelism,
we employ a uniform configuration across all heads and layers. The number of dominant FCs
to retain, denoted as Ntip, was consistently set to 16. This choice represents a balance between
preserving sufficient contextual information and maximizing computational.

• Task Configurations: We configured the maximum sequence length to 32k for the AIME24 bench-
mark, reflecting its higher reasoning complexity, and to 16k for MATH500. For the LongBench
benchmark, we set the maximum prompt length to 127.5k for Llama3/Qwen2.5 series models and
31.5k for Mistral-7B-Instruct-v0.2.

C.2 BENCHMARK DETAILS

LongBench (Bai et al., 2024) is a comprehensive, multi-task benchmark designed to evaluate the
long-context understanding capabilities of Large Language Models. It comprises a diverse set of tasks,
including single-document QA, multi-document QA, summarization, few-shot learning, synthetic
tasks, and code completion. In our experiments, we report the average performance across all relevant
tasks to provide a holistic measure of a model’s ability to process and reason over extended contexts,
with sequence lengths ranging from 4K to over 100K tokens.

MATH500 (Hendrycks et al., 2021) is a challenging benchmark for evaluating mathematical
reasoning. It consists of 12,500 problems sourced from high school math competitions, spanning
subjects like Algebra, Geometry, Number Theory, and Precalculus. Each problem is accompanied by
a step-by-step solution, making it highly suitable for assessing CoT reasoning capabilities. We utilize
the MATH500 subset for our long-CoT generation experiments, where models must produce detailed
reasoning chains to arrive at the final answer.

AIME (MAA, 2024) represents a significant step-up in reasoning complexity compared to the MATH
dataset. It consists of problems from the AIME competition, which are known for their non-routine,
multi-step solutions requiring deep mathematical insight and creativity. These problems serve as
a stress test for a model’s most advanced reasoning and long-chain generation abilities. Following
standard practice, we evaluate performance using the pass@k metric, specifically reporting pass@1
based on 16 generated responses per question.

C4(Raffel et al., 2019) is a massive, general-domain English text dataset derived from the Common
Crawl web scrape. The "clean" version is created by applying a series of heuristics to filter out
boilerplate content, code, and offensive language, resulting in a high-quality, natural language corpus.

PG19 (Rae et al., 2019) is a long-form text dataset derived from books in the Project Gutenberg
library. It is specifically curated for evaluating long-range sequence modeling. Each example in the
dataset is a full book text, making it an ideal benchmark for assessing a model’s ability to handle and
maintain coherence over very long dependencies, often exceeding the context windows of LLMs.

WikiText(Merity et al., 2017) is a large-scale language modeling corpus sourced from high-quality
"Good" and "Featured" articles on Wikipedia. Unlike raw web text, WikiText is well-formatted,
grammatically correct, and retains its original punctuation and case. It is split into training, validation,
and test sets at the article level.

C.3 EVALUATION PROTOCOLS

To provide a comprehensive and rigorous assessment of model performance, we employ a set of
standard metrics tailored to each evaluation paradigm.
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Long-Context Understanding (LongBench). For the diverse tasks within the LongBench bench-
mark (Bai et al., 2024), we follow its official evaluation protocol. Specifically, we use:

• f1 score for question-answering tasks.
• rouge_score for summarization tasks.
• code_sim_score for code completion tasks.

The final reported score for LongBench is the average performance across all constituent tasks.

Long-Sequence Modeling. To evaluate a model’s ability to maintain generative fidelity over long
dependencies, we use perplexity (PPL). Perplexity measures how well a probability model predicts a
sample. For a sequence of tokens W = (w1, w2, . . . , wN ), PPL is defined as the exponential of the
average negative log-likelihood in Equation 9. A lower PPL indicates a better model, as it signifies
higher confidence and accuracy in predicting the next token.

PPL(W ) = exp

(
− 1

N

N∑
i=1

logP (wi|w<i)

)
(9)

Long CoT Reasoning. For complex mathematical reasoning tasks such as MATH500 and
AIME2024, we evaluate the model’s performance in a long-generation setting. This paradigm
is distinct from conventional long-context understanding tasks. Instead of processing a long static
input, the model must maintain logical coherence and track thought traces across an extended,
auto-regressive generation process to produce the correct final answer. Performance is reported as
pass@1.

• For MATH500, we report pass@1, where a single generation is sampled for each problem.
• For AIME2024, which features more challenging problems, we also report pass@1, but the result is

determined by checking if at least one correct answer exists within k = 16 independent generations
for each question. This sampling strategy is standard for estimating performance on complex
reasoning benchmarks.

bsz, q_len, _ = hidden_states.size()
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
#####################################################################
#token selection in TIP
if query_states.shape[2] == 1: # for deocoding stage

key_states,value_states = core_module_with_padding(query_states,\
key_states,value_states,self.layer_idx,budget,records)

#####################################################################
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
attn_output = _flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=dropout_rate,
sliding_window=getattr(self, "sliding_window", None),
use_top_left_mask=self._flash_attn_uses_top_left_mask,
is_causal=self.is_causal,
)
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights, past_key_value

Figure 17: The FASA Pipeline: An Efficient, FlashAttention-Compatible Approach. The algorithm
details our two-stage process. A key design feature is that the FAC stage seamlessly integrates with
the standard FlashAttention API, leveraging its performance while enabling sparse computation.

C.4 IMPLEMENT DETAILS

Implementation Details Our implementation of FASA is built upon the HuggingFace Transformers
library (Wolf et al., 2020). We employ a non-invasive monkey patching approach to integrate our
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logic. Specifically, we intercept the forward pass of the FlashAttention2 class within the model’s
modeling.py file. The core of our method resides in two components. First, leveraging the universal
nature of dominant FCs, their pre-computed indices are stored in a globally accessible dictionary,
shared across all layers and heads. Second, the Token Importance Prediction (TIP) logic, which
performs the critical token selection, is encapsulated within our core_module_with_padding function.
A key advantage of our design is its simplicity and minimal intrusion. The integration requires
inserting just a single line of code, the token selection logic, into the original attention function,
making FASA easy to deploy and adapt. This minimal intrusion makes FASA highly portable and
easy to adapt. The corresponding pseudocode is provided in Figure 17.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 PERFORMANCE ANALYSIS ON DIFFERENT BUDGETS

128256 512
1024

2048
30

40

50

60

Ac
cu

ra
cy

 (%
)

MultiFieldQA_zh (Qwen2.5-7B)

128256 512
1024

2048

20

30

40

2WikiMQA (Qwen2.5-7B)

128256 512
1024

2048

20

25

30

GovReport (Qwen2.5-7B)

128256 512
1024

2048

20

25

30

Dureader (Qwen2.5-7B)
FKV Oracle Stream Quest SnapKV FASA

Figure 18: FASA on Qwen2.5-7B-Instruct under various token budgets (Ntip = 16).
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Figure 19: FASA on Meta-3.1-Llama-8B-Instruct under various token budgets (Ntip = 16).

Comparison with Low-Rank Methods A closely related work to FASA is SparQ (Ribar et al.,
2024), which also performs a form of dimension selection. SparQ operates on the heuristic that
high-magnitude dimensions in a query vector are the most indicative of importance, and thus selects
corresponding key dimensions as a proxy for token prediction. However, as our experiments in
Figure 20 demonstrate, this heuristic proves to be a poor substitute for true contextual awareness.
Under a constrained budget of 256 tokens, SparQ’s performance collapses, indicating its inability to
reliably identify critical tokens based solely on query magnitudes. Furthermore, from an efficiency
standpoint, SparQ incurs significant overhead as it must re-evaluate high-magnitude dimensions
for every new query. In stark contrast, FASA leverages a one-time, offline calibration, making its
per-token inference cost substantially lower.

E DISCUSSION ON FASA

E.1 VARIANTS OF FASA

FASA-M (Memory-Optimized) The memory-optimized variant, FASA-M, is specifically engi-
neered for scenarios with constrained GPU memory, such as consumer-grade hardware. As detailed
in Algorithm 2, its core strategy is to minimize the on-GPU memory footprint by strategically keeping
only the most essential data on the GPU.
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Figure 20: Comparision with SparQ on LongBench.

Specifically, only the dominant parts of the Key cache (Cdom
key ), which are required for the initial

token importance prediction, are retained in GPU memory. The non-dominant parts of the Key cache
(Cnondom

key ) and the entire Value cache (Cval) are offloaded to and managed in the much larger CPU
memory. During the Focused Attention Computation (FAC) stage, once the critical token indices
(Tt) are identified, only the small, required subsets of the non-dominant key and value caches are
transferred from the CPU to the GPU for the final attention calculation. This "just-in-time" data
transfer ensures that the GPU memory is primarily occupied by the most critical components, leading
to substantial memory savings.

Memory Footprint Analysis The GPU memory footprint of the KV cache in FASA-M can be
formulated as follows. Let L be the total sequence length, b the token budget, d the model’s hidden
dimension, and Nlayers the number of layers. Let ddom be the dimension of the dominant FCs and
dnondom be the dimension of the non-dominant FCs (d = ddom + dnondom). The memory occupied
by the KV cache on the GPU is:

MemGPU ≈ Nlayers ×

L× ddom︸ ︷︷ ︸
Dominant Keys

+ b× dnondom︸ ︷︷ ︸
Non-dominant Keys

+ b× d︸ ︷︷ ︸
Values

× bytes_per_param (10)

Compared to a full KV cache, which occupies Nlayers × L × 2d × bytes_per_param, FASA-M
significantly reduces the memory burden, especially when the non-dominant and value components
constitute a large portion of the cache. For instance, if ddom is 25% of d and the budget b is 10% of
L, the memory savings can be substantial, approaching an 8× reduction in typical configurations.

E.2 DESIGN CHOICES

• On the Role of FC-Scores: A Proxy for Ranking, Not a Substitute for Attention. A crucial
design principle we validated is that our FC-based scores (Sl,h

t ) are not calibrated to function as
direct attention weights. Although they provide a remarkably accurate relative ranking of token
importance, their direct substitution for attention probabilities leads to a catastrophic performance
degradation. This reveals their fundamental role as a selector—a mechanism to identify salient
tokens rather than an approximator of the final attention distribution.

• On the Indivisibility of Frequency Chunks. We investigated whether individual dimensions
could serve as selection units, and the answer is a definitive no. A pipeline based on selecting
"dominant dimensions" suffers a catastrophic performance degradation. This empirically validates
that the Frequency Chunk (FC) is an indivisible functional unit for this process. This principle
is not coincidental but is a direct corollary of RoPE’s core mechanism, which encodes position
by applying rotations to coupled pairs of dimensions. Disrupting these pairs severs the positional
encoding, leading to model failure.

In summary, these two findings underscore two core design principles of FASA. First, an efficient
proxy for token importance does not necessarily serve as a valid substitute for attention weights.
Second, any optimization for RoPE-based models must respect the inherent coupling of dimension
pairs, treating the Frequency Chunk as an indivisible functional unit.
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E.3 ALGORITHM ON FASA

See the algorithm of offline calibration in Algorithm 1; see the algorithm of FASA-M in Algorithm 2.

Algorithm 1: Offline Calibration for Dominant FCs
Input: A calibration dataset Ω; number of dominant FCs to select k.
Output: The set of dominant FC indices, Idom.

// Stage 1: Collect Contextual Agreement (CA) scores
Initialize an empty map M to store CA scores for each (l, h, i) triplet
foreach example in Ω do

foreach token generation step t do
foreach layer l do

foreach head h do
Compute full attention scores αl,h(qt,K1:t)
foreach FC index i do

Compute single-FC scores α(i)
l,h(qt,K1:t)

Calculate the CA score CAl,h,i
K using Eq. 4

Store CAl,h,i
K in M [l][h][i]

end
end

end
end

end
// Stage 2: Select Dominant FCs

Initialize an empty map M for mean CA scores
foreach (l, h, i) in M do

M [l][h][i]← Mean(M [l][h][i])
end
Idom ← TopK-Indices(M,k) // Select top-k indices based on CA
return Idom

F LLM USAGE

During the preparation of this manuscript, we utilized the AI-based language model ChatGPT,
developed by OpenAI. Its use was strictly limited to language refinement, including grammar
correction, stylistic enhancement, and rephrasing for clarity. All scientific concepts, experimental
designs, data analyses, and conclusions presented herein are the original work of the authors and
were conceived and executed without any substantive contribution from the language model.
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Algorithm 2: Inference with FASA-M (Memory-Optimized Variant)
Input: Current query qt; Current key kt; Current value vt

Dominant FC indices Idom
Token budget b
Past KV cache: Cdom

key (GPU), Cnondom
key (CPU), Cval (CPU)

Output: Next hidden state ht+1

Updated KV cache: Cdom
key , Cnondom

key , Cval

// Stage 1: Token Importance Prediction (TIP)
// Split key by dominant FCs
kdom
t ,knondom

t ← Split(kt, Idom)
// Select corresponding query dimensions
qdom
t ← Select(qt, Idom)

Kdom
1:t ← UpdateCache(Cdom

key ,kdom
t )

// Approximate scores using dominant parts

Ŝt ← qdom
t (Kdom

1:t )⊤

// Identify indices of b most salient tokens

Tt ← TopK-Indices(Ŝt, b)

// Stage 2: Focused Attention Computation (FAC)
// Select dominant key parts on GPU
Kdom

Tt
← SelectTokens(Kdom

1:t , Tt)
// Update non-dominant cache on CPU
Cnondom

key ← UpdateCache(Cnondom
key ,knondom

t )

Knondom
1:t ← LoadFromCPU(Cnondom

key )

// Select non-dominant key parts on CPU
Knondom

Tt
← SelectTokens(Knondom

1:t , Tt)
// Update value cache on CPU
Cval ← UpdateCache(Cval,vt)
V1:t ← LoadFromCPU(Cval)
// Select values on CPU
VTt ← SelectTokens(V1:t, Tt)
// Offload required non-dominant keys to GPU
Knondom

Tt
← TransferToGPU(Knondom

Tt
)

// Offload required values to GPU
VTt ← TransferToGPU(VTt)
// Reconstruct full keys for selected tokens
KTt
← Combine(Kdom

Tt
,Knondom

Tt
, Idom)

// Compute full attention on the subset
αfac ← Softmax(qtK

⊤
Tt
/
√
dk)

ht+1 ←WO(αfacVTt
)

return ht+1 and updated caches
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