

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DECEPTIVE HUMOR: A SYNTHETIC MULTILINGUAL BENCHMARK DATASET FOR BRIDGING FABRICATED CLAIMS WITH HUMOROUS CONTENT

Anonymous authors

Paper under double-blind review

ABSTRACT

In the evolving landscape of online discourse, misinformation increasingly adopts humorous tones to evade detection and gain traction. This work introduces Deceptive Humor as a new research direction, emphasizing how false narratives, when coated in humor, become more difficult to detect and more likely to spread. To support research in this space, we present the Deceptive Humor Dataset (DHD), a multilingual collection of humor-infused comments derived from fabricated claims using the ChatGPT-4o model. Each entry is annotated with a Satire Level (from 1 for subtle satire to 3 for overt satire) and categorized into five humor types: Dark Humor, Irony, Social Commentary, Wordplay, and Absurdity. The dataset spans English, Telugu, Hindi, Kannada, Tamil, and their code-mixed forms, making it a valuable resource for multilingual analysis. Building on this foundation, we propose DH-MTL (Deceptive Humor Multi-Task Learning), a lightweight neural framework that jointly models satire intensity and humor type through a two-stage training pipeline that first adapts the encoder to deceptive humor patterns and then refines task-specific reasoning. Together, DHD and DH-MTL establish both a benchmark resource and a methodological baseline for studying how false narratives are framed, normalized, or obscured through humor.

1 INTRODUCTION

Caution: The Paper Contains LLM-generated fabricated humor; reader discretion is advised.

In today’s online world, humor is increasingly used as a wrapper around false claims, making misinformation appear lighthearted and harmless. We refer to this phenomenon as deceptive humor. At first glance, such comments seem harmless and entertaining, often making people laugh. However, beneath the playful tone, they can subtly embed and reinforce misinformation. Importantly, not all jokes that mention false claims fall into this category; satire, for instance, may openly mock or criticize misinformation. Deceptive humor works differently: it repeats or normalizes a false claim through humor, making the misinformation harder to notice and easier to accept. Because humor lowers people’s guard, repeated exposure can shape beliefs without triggering careful scrutiny. Unlike traditional humor, which aims to entertain, deceptive humor masks fabricated narratives, weakening detection and accelerating their spread. While [Appendix A](#) highlights that current models struggle to detect deceptive humor, we argue that the challenge lies not merely in the humorous coating, but in the way deception is framed. To capture these nuances, the DHD annotates each comment along two complementary dimensions, Satire Level and Humor Attribute, reflecting the subtlety and stylistic strategies used to convey the false claim, as illustrated in [Figure 1a](#).

Understanding this blend of humor and deception is essential for recognizing how fabricated claims can appear harmless when expressed jokingly¹. To illustrate, consider the widely debunked claim: “**Ch*na is spreading COVID as a bioweapon**” (see [Appendix F](#)). On the surface, humorous comments about this claim may seem playful and unrelated to the false narrative. Upon closer examination, a pattern emerges: some jokes simply exaggerate everyday experiences, such as “*Ch*na products usually don’t last long*” or “*My phone broke in a week, must be made in Ch*na*.” Others subtly link this everyday humor back to the false claim, for example: “*Ch*na products usually don’t*

¹Anonymous links: [Project Website](#), [GitHub](#), and [Dataset](#) (The dataset will be released after acceptance.)

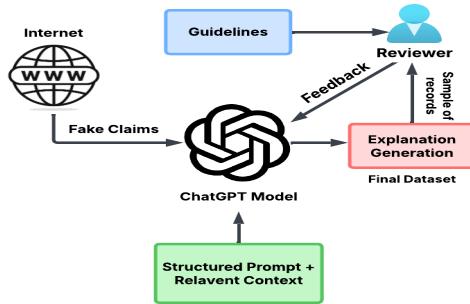


Figure 1: Illustration of the deceptive humor concept and DHD generation pipeline.

last long, except this COVID thing” or “*Guess Ch*na finally made something that went global and stayed.*” Rather than challenging the false claim, these comments keep the idea alive through humor. This contrast highlights how deceptive humor embeds fabricated narratives within ordinary jokes, making them appear casual while still echoing misinformation.

The literature provides substantial evidence that humor can actively contribute to the spread and believability of false claims, influencing how audiences perceive and propagate them (see [Appendix G](#)). Real-world observations further indicate that during crises, misinformation often appears in varied forms, with deceptive humor emerging as a particularly pervasive and influential channel (see [Appendix H](#)). These findings highlight the need to study how humor can subtly reinforce false claims.

While prior work has examined related phenomena such as Faux Hate ([Biradar et al., 2024b;a](#)), deceptive humor presents a distinct challenge. In our setting, deceptive humor refers to comments that embed a false claim within a humorous expression, not to mock the claim, but to restate or reinforce it in a playful tone. Because the humor masks the underlying narrative, such comments can appear harmless while still keeping the fabricated claim alive. Our dataset specifically targets this type of content: comments that project the false claim through humor, making it easier for users to consume without noticing the misinformation. To enable a systematic study of this phenomenon, we introduce the Deceptive Humor Dataset (DHD), a structured resource for analyzing how deceptive humor embeds false claims within playful expressions.

Key Contributions: In this work, we introduce the *Deceptive Humor Dataset (DHD)*, a novel multilingual resource that focuses specifically on humorous comments that embed a false claim in a playful tone, not to mock the claim, but to restate or normalize it. To the best of our knowledge, this is the first dataset designed to systematically study this form of humor, where misinformation is masked within a lighthearted expression. DHD provides detailed annotations for satire intensity and humor attributes. We further benchmark DHD using a diverse suite of pre-trained language models (PLMs), offering strong baselines for future work on fact-aware humor understanding. Additionally, we propose *DH-MTL*, a lightweight multi-task learning framework that jointly models satire intensity and humor type using ordinal regression and contrastive objectives with adaptive weighting, enabling the model to handle the ambiguity inherent in humorous expressions. Together, these contributions establish both the first dedicated resource and effective modeling tools for advancing research on deceptive humor detection.

2 LITERATURE REVIEW

Existing research often treats humor and misinformation as separate domains, leaving their intersection largely unexplored.

108
 109
 110
 111
 112
 113 Table 1: Comparison of representative benchmark datasets in the domain of online discourse and
 114 social media safety across six key dimensions. The interdisciplinary attribute refers to the combi-
 115 nation of two distinct domains within a single dataset, enabling the study of their interaction rather
 116 than analyzing them independently. ✓ indicates presence, while ✗ indicates absence.
 117
 118
 119
 120

Dataset	Misinformation	Humor	Implicit/Explicit Hate	Fine-grained Cls	Multilingual	Interdisciplinary
LIAR (Wang et al., 2017)	✓	✗	✗	✓	✗	✗
FEVER (Thorne et al., 2018)	✓	✗	✗	✗	✗	✗
FakeNewsNet (Shu et al., 2020)	✓	✗	✗	✗	✗	✗
Hostile (Bhardwaj et al., 2020)	✓	✗	✓	✓	✗	✗
HaHackathon (Meaney et al., 2021)	✗	✓	✗	✓	✗	✗
Humicroedit (Hossain et al., 2019)	✗	✓	✗	✓	✗	✗
Memotion (Ramamoorthy et al., 2022)	✗	✓	✗	✓	✗	✗
Dark Humor (Kasu et al., 2025)	✗	✓	✓	✓	✗	✗
Implicit Hate (ElSherief et al., 2021)	✗	✗	✓	✓	✗	✗
Faux Hate (Biradar et al., 2024b)	✓	✗	✓	✓	✗	✓
Deceptive Humor (Ours)	✓	✓	✓	✓	✓	✓

121
 122
 123 **Humor:** Humor has a dual role in social and psychological contexts. The Interpersonal Humor
 124 Deception Model (IHDM) suggests that humor can either reduce self-centered deception and foster
 125 trust or, when misused, raise suspicion and undermine credibility (Gaspar et al., 2023). Humor
 126 is widely used in communication, including advertising, where it can mask deceptive practices;
 127 studies report that a significant portion of humorous advertisements contain misleading elements
 128 that obscure unethical messaging (Shabbir et al., 2007). Computational research has largely focused
 129 on sarcasm (Joshi et al., 2015), irony (Van Hee et al., 2018), and satire (Rubin et al., 2016), with
 130 datasets such as HaHackathon (Meaney et al., 2021), Dark Humor (Kasu et al., 2025), Humicroedit
 131 (Hossain et al., 2019), and Memotion (Ramamoorthy et al., 2022) capturing linguistic or stylistic
 132 humor features. However, these resources do not consider humor grounded in fabricated claims,
 133 limiting their utility for detecting deceptive humor.

134 **Misinformation:** Detection of misinformation has largely focused on textual veracity, social propa-
 135 gation, and user behavior (Thorne et al., 2018; Wang et al., 2017; Shu et al., 2020; Bhardwaj et al.,
 136 2020). While effective in identifying false or misleading content, these approaches do not account
 137 for how humor can distort facts, creating nuanced forms of deception. Existing frameworks and
 138 datasets mostly treat misinformation independently, without examining how humorous presentation
 139 interacts with credibility, context, or factual distortion.

140 Despite these advances, current benchmarks fail to jointly consider humor, misinformation, and
 141 harmful content, making it difficult to study how humor can serve as a medium for deception in on-
 142 line discourse. As shown in Table 1, existing datasets largely focus on single dimensions, whereas
 143 the proposed Deceptive Humor Dataset (DHD) integrates multiple dimensions, including satire,
 144 irony, misinformation, and implicit/explicit hate, enabling the first comprehensive analysis of de-
 145 ceptive humor in multilingual social media contexts.

3 DATASET DEVELOPMENT

146 In this section, we describe the process of selecting fabricated claims and generating the Deceptive
 147 Humor Dataset (DHD). Using ChatGPT-4o, we create humor-infused comments across multiple lan-
 148 guages, ensuring diversity in satire and linguistic variations. We also highlight the role of synthetic
 149 data in advancing AI (see Appendix J), emphasizing its importance in training robust models and
 150 addressing data scarcity in multilingual settings.

3.1 SELECTION OF FAKE CLAIMS

151 The first step in data acquisition involves identifying a wide range of topics to ensure diversity in the
 152 collected data. The authors selected themes such as entertainment, politics, finance, sports, religion,
 153 and health. After selecting the topical domains, the next step is to identify fabricated narratives asso-
 154 ciated with each of them. These narratives are systematically scraped from reputable fact-checking
 155 platforms such as AltNews, Boom FactCheck, FactChecker, and FACTLY. This process ensures that
 156 the deceptive claims used as inputs for humor generation are both reliable and grounded in verified
 157 misinformation cases.

162 3.2 GENERATION OF DECEPTIVE HUMOR CORPUS
163

164 In this section, we describe the construction of the Deceptive Humor Dataset (DHD) using ChatGPT-
165 4o (Hurst et al., 2024). Deceptive humor is inherently complex and difficult to collect reliably at
166 scale, as such comments often blend subtly into normal discourse and require contextual knowledge
167 to identify. To address this, we leverage the controllability and scalability of LLMs to generate high-
168 quality, humor-infused comments grounded in fabricated claims. This approach ensures consistency
169 across multiple languages while maintaining diversity in humor styles and linguistic variations.

170 Generating humor with embedded deception is challenging, requiring a balance between satire and
171 subtle misinformation. We evaluated several state-of-the-art generative models, including Gemini
172 (Team et al., 2023), LLaMA (Touvron et al., 2023), Claude, and ChatGPT. While Gemini and
173 LLaMA perform reasonably for English, they often produce ungrammatical outputs in Indic lan-
174 guages; Claude frequently declines requests involving humor and deception. ChatGPT-4o consis-
175 tently generates coherent, contextually appropriate, and humorous comments across languages. The
176 generated corpus was further reviewed by language experts to ensure natural, engaging, and safe
177 content (see subsection I.2 for structured prompting details).

178 To ensure high-quality and reliable data, we adopt a human-in-the-loop (HITL) workflow in which
179 LLM-generated comments are iteratively refined using structured prompts, expert feedback, and
180 contextual examples. Because deceptive humor is challenging and synthetic text often diverges
181 from real-world patterns, we used a batchwise review process (100 samples per iteration) to inspect
182 most outputs and correct common failure modes. The review process involved three postgraduate
183 students, two PhD students with expertise in hate speech and computational humor, and a super-
184 vising professor who guided the overall procedure. This structured prompting and feedback loop,
185 shown to significantly enhance quality in HITL literature, helped reduce typical synthetic-data er-
186 rors and align the outputs more closely with real-world deceptive humor. These controls ensured
187 consistency, quality, and safety across batches (for the detailed HITL workflow we followed, see
188 Appendix I). The overall process is illustrated in Figure 1b.

189
190 3.3 DATASET DESCRIPTION
191

192 The proposed DHD consists of 9,000 synthetically generated humorous comments, carefully curated
193 to ensure linguistic diversity and humor variation. The dataset is split into 7,200 comments for
194 training, 900 for validation, and 900 for testing. Each comment is labelled with a satire level ranging
195 from 1 to 3, where 1 represents subtle satire and 3 denotes highly exaggerated satire. Additionally,
196 every comment is assigned a humor attribute from one of the five predefined categories: Irony,
197 Absurdity, Social Commentary, Dark Humor, and Wordplay.

198 A key aspect of the DHD is its linguistic diversity. Along with English, it includes comments
199 in four major Indic languages: Telugu, Hindi, Kannada, and Tamil, along with their code-mixed
200 versions. This ensures a rich and varied dataset that captures the nuances of humor across multiple
201 languages and cultural contexts. The structured labeling enables a comprehensive analysis of
202 humor in NLP systems, fostering advancements in computational humor understanding, particularly
203 in multilingual and code-mixed settings. A detailed description of the dataset is presented in Table 2.

204
205
206 3.4 TASKS SUPPORTED BY THE DECEPTIVE HUMOR DATASET
207

208 The Deceptive Humor Dataset (DHD) models how misinformation is framed and delivered through
209 humor. Since every comment in DHD is anchored in a fabricated claim, the key variation lies not in
210 the presence of deception but in how humor shapes its presentation, believability, and detectability.
211 To capture this, we annotate two complementary dimensions, Satire Level and Humor Attribute,
212 reflecting the degree of subtlety or exaggeration and the stylistic strategies used to express the false
213 claim. These annotations focus on how misinformation is humorously framed, rather than humor
214 in isolation, enabling detailed analysis of the mechanisms by which false claims are normalized
215 or obscured. Although the tasks do not explicitly identify misinformation, they provide structured
supervision for modeling the pathways through which humor makes fabricated content persuasive.

216 Table 2: Distribution of satire levels and humor attributes across languages. (* indicates Indic
 217 languages along with their code-mixed variants.) Humor attribute abbreviations: Abs. = Absurdity,
 218 Dark = Dark Humor, Irony = Irony, Soc. Comm. = Social Commentary, Word. = Wordplay. (For
 219 summary see [Table 10](#))

Language	Total	Satire 1	Satire 2	Satire 3	Abs	Dark	Irony	Soc. Comm.	Word.
Train Data									
English	881	188	322	371	259	149	292	101	80
Telugu*	1663	494	698	471	372	275	552	274	190
Hindi*	1624	480	735	409	284	204	510	316	310
Kannada*	1536	461	674	401	397	262	384	285	208
Tamil*	1496	457	709	330	349	198	462	239	248
Validation Data									
English	114	25	37	52	22	25	37	14	16
Telugu*	221	68	99	54	47	33	67	35	39
Hindi*	195	59	86	50	35	26	52	34	48
Kannada*	198	67	86	45	47	30	62	39	20
Tamil*	172	57	74	41	29	22	64	33	24
Test Data (Human Annotated)									
English	104	38	32	34	33	15	30	7	19
Telugu*	204	112	64	28	73	21	57	20	33
Hindi*	207	37	26	143	27	36	76	14	22
Kannada*	189	67	40	82	62	40	39	20	28
Tamil*	196	113	64	19	51	21	57	42	25

3.4.1 TASK 1: SATIRE INTENSITY CLASSIFICATION

This task involves classifying the intensity of satire in a given comment, which is a crucial proxy for the subtlety of the underlying deception. The goal is to predict one of three ordinal levels, reflecting the degree to which humor is used to mask a false claim.

- **Low Satire:** The humor is subtle and lightly satirical, often resembling real-world statements with a mild twist.
- **Moderate Satire:** The humor is more evident, incorporating exaggeration and sarcasm while maintaining a balance between reality and absurdity.
- **High Satire:** The humor is strongly exaggerated and overtly satirical, often making use of extreme irony or absurd distortions of reality.

3.4.2 TASK 2: HUMOR ATTRIBUTE CLASSIFICATION

This task requires models to categorize the specific type of humor in a comment. Unlike Satire Level, which measures intensity, Humor Attribute focuses on stylistic and rhetorical devices. Although some categories may overlap, maintaining fine-grained distinctions is essential to support nuanced analysis and robust model evaluation.

- **Irony:** A form of humor where the intended meaning contrasts sharply with the literal meaning, often exposing contradictions or unexpected outcomes.
- **Absurdity:** Humor that thrives on exaggeration, illogical scenarios, or unrealistic premises to create an amusing effect.
- **Social Commentary:** Humor that critiques, mocks, or highlights societal or cultural issues, often with a satirical or thought-provoking angle.
- **Dark Humor:** Humor that deals with morbid, taboo, or controversial topics in a way that might be unsettling but still amusing.

270 • **Wordplay**: Humor that relies on clever linguistic constructs, including puns, double meanings, and phonetic playfulness.
 271
 272

273 4 METHODOLOGY
 274

275 We introduce **DH-MTL** (*Deceptive Humor Multi-Task Learning*), a lightweight neural framework
 276 designed specifically for the challenges of deceptive humor detection. Unlike traditional humor
 277 datasets, DHD contains two complementary but non-trivial annotation dimensions: (i) *Satire Level*,
 278 which is inherently ordinal, and (ii) *Humor Attribute*, which is categorical but often ambiguous
 279 due to overlapping humor styles. In addition, deceptive humor deliberately blends exaggeration
 280 and subtlety, requiring models to be both robust and uncertainty-aware. To meet these challenges,
 281 DH-MTL employs a two-stage training framework for better domain adaptability.
 282

283 **Shared Transformer Encoder**

284 We employ a pretrained Transformer f_θ (BERT-large) to encode each comment. Given input text x ,
 285 the encoder produces a pooled representation

286
$$\mathbf{h} = f_\theta(x),$$

 287

288 which captures contextual markers of exaggeration, irony, incongruity, and pragmatic misdirection
 289 intrinsic to deceptive humor. This representation is shared across both tasks.

290 **Satire Level as an Ordinal Prediction Task**

291 Satire Level consists of three ordered intensities $\{0, 1, 2\}$. Because the degree of humorous distortion
 292 is inherently monotonic (i.e., high satire always implies at least moderate satire), we adopt an
 293 ordinal regression formulation. Instead of learning three independent logits, we model $K-1 = 2$
 294 cumulative comparisons:

295
$$P(y > k) = \sigma(z_k), \quad k \in \{0, 1\}.$$

 296

297 Each z_k is computed by a lightweight satire head $g_{\text{sat}}(\mathbf{h})$. Let $t_{ik} = \mathbb{1}\{y_i > k\}$ denote threshold
 298 labels. The satire objective is

299
$$\mathcal{L}_{\text{sat}} = \sum_{i=1}^N \sum_{k=0}^{K-2} \text{BCE}(\sigma(z_{ik}), t_{ik}),$$

 300
 301

302 which enforces monotonicity and preserves ordinal structure. This is crucial: intensity progression
 303 from subtle satire to overt absurdity is continuous, and ordinal modeling captures this continuum
 304 more faithfully than flat classification.

305 **Humor Attribute as Multi-Class Classification**

306 While satire intensity is ordered, Humor Attribute expresses stylistic differences with no inherent
 307 ranking (e.g., irony, absurdity, wordplay). We therefore use a standard softmax classifier $g_{\text{hum}}(\mathbf{h})$:

308
$$p = \text{softmax}(g_{\text{hum}}(\mathbf{h})).$$

 309

310 Because humorous styles are imbalanced in natural discourse, we employ a focal loss to prevent
 311 dominance by frequent humor types and promote better discrimination across stylistic subtleties:
 312

313
$$\mathcal{L}_{\text{hum}} = - \sum_{i=1}^N \sum_{c=1}^C (1 - p_{ic})^\gamma y_{ic} \log(p_{ic}).$$

 314
 315

316 This enhances learning from difficult or infrequent humor mechanisms.
 317

318 4.1 JOINT MULTI-TASK OPTIMIZATION WITH TWO-STAGE TRAINING
 319

320 Deceptive humor presents a dual challenge: it combines stylistic variations with varying intensity
 321 levels, and its linguistic patterns differ substantially from general-domain text. To address this, DH-
 322 MTL jointly optimizes both tasks using a weighted combination of the Satire Level and Humor
 323 Attribute losses:

324
$$\mathcal{L}_{\text{total}} = w_{\text{sat}} \mathcal{L}_{\text{sat}} + w_{\text{hum}} \mathcal{L}_{\text{hum}}.$$

324 The weighting coefficients are dynamically updated during training to reflect evolving task difficulty,
 325 preventing one task from dominating and allowing the model to allocate capacity adaptively between
 326 intensity and stylistic cues. This joint optimization is embedded within a two-stage training pipeline:
 327 Stage 1 performs domain adaptation to align the pretrained encoder with the unique distribution of
 328 deceptive humor, while Stage 2 fine-tunes task-specific heads with gradual unfreezing, enabling the
 329 model to refine both satire intensity and humor style predictions. Together, these design choices
 330 ensure balanced multi-task learning while capturing the nuanced characteristics of deceptive humor.
 331

332 **Stage 1: Domain Adaptation.** The primary motivation for domain adaptation stems from the
 333 nature of deceptive humor: it is a relatively new problem with no readily available pretrained models
 334 specifically tailored for its linguistic patterns. Existing language models are trained on general
 335 domain text and may not capture the nuanced exaggeration, irony, or culturally grounded references
 336 inherent to deceptive humor. In this stage, all encoder layers and both task-specific heads are jointly
 337 optimized. The goal is not yet high task precision, but rather to align the pretrained Transformer
 338 with the unique distribution of deceptive humor. Training both tasks simultaneously encourages the
 339 shared encoder to internalize the interaction between *how strongly* a claim is distorted and *which*
 340 *stylistic mechanism* delivers that distortion, establishing a domain-aligned representation space that
 341 captures deceptive humor holistically.

342 **Stage 2: Task-Specific Fine-Tuning.** Once domain adaptation stabilizes, we refine task special-
 343 ization through gradual unfreezing. Beginning with only the top layers of the encoder trainable, and
 344 progressively unfreezing deeper layers over successive phases, the model transitions from broad do-
 345 main alignment to precise task reasoning. This curriculum achieves two outcomes: (1) it preserves
 346 foundational linguistic knowledge while allowing deeper layers to adapt to deception-specific pat-
 347 terns, and (2) it encourages the satire and humor heads to carve out separable yet related subspaces
 348 within the shared encoder. This stage greatly improves the model’s ability to distinguish fine-grained
 349 humorous styles and subtle differences in satire intensity.

350 DH-MTL explicitly models the unique properties of deceptive humor. Dynamic loss weighting
 351 balances satire intensity and humor style, ordinal regression preserves intensity ordering, and the
 352 two-stage training pipeline combines domain alignment with task-specific fine-tuning. Together,
 353 these components produce structured representations that enable better generalization to unseen
 354 examples compared to single-task or static multi-task baselines.

356 5 RESULTS AND DISCUSSION

357
 358 We evaluated a diverse set of model architectures: Encoder-Only, Encoder-Decoder, and LLMs
 359 ([Brown et al., 2020](#)) across Zero-Shot, Few-Shot, and QLoRA-based ([Dettmers et al., 2024](#)) fine-
 360 tuning settings, for both Satire Level classification and Humor Attribute prediction. Among the
 361 LLMs, LLaMA-3.2-3B-Instruct outperformed most of the baselines in Satire Level prediction,
 362 demonstrating a clear dominance in capturing satire nuances. For Humor Attribute prediction, the
 363 LLaMA-3.1-8B-Instruct model achieved comparatively better performance than the other baselines.
 364 While LLMs struggled with Zero-Shot and Few-Shot settings, often failing to correctly identify la-
 365 bels in deceptive humor comments, QLoRA fine-tuning significantly improved their understanding,
 366 enabling them to compete closely with, or sometimes even outperform, Encoder-Only and Encoder-
 367 Decoder based models ([Table 3](#)).

368 These findings underscore the challenges LLMs face with nuanced tasks like deceptive humor clas-
 369 sification, which requires deep contextual, cultural, and factual understanding. The subtlety and
 370 ambiguity of deceptive humor often lead to misclassifications or omission of certain classes. Prior
 371 work, such as the Memotion analysis task ([Sharma et al., 2020](#)), has shown that fine-grained humor
 372 detection becomes increasingly difficult, especially with limited modalities. Consistently, our ex-
 373 periments reveal that using only the text modality significantly reduces performance, highlighting
 374 the open nature of this research problem. A detailed error analysis and discussion of challenging
 375 samples are provided in [Appendix L](#), offering insights into current limitations and directions for
 376 future work.

377 Existing models, while effective on humor detection or misinformation classification individually,
 378 struggle with deceptive humor, which requires both fact verification and intent recognition. Prior

378 datasets such as SemEval-2017 Task 6 (Potash et al., 2017), Humicroedit (Hossain et al., 2019),
 379 FEVER (Thorne et al., 2018), LIAR (Wang et al., 2017), and Hostile (Bhardwaj et al., 2020) address
 380 either humor or misinformation but not their intersection. Even synthetic humor datasets, like Unfun
 381 (Horvitz et al., 2024), focus on humor manipulation rather than humor entwined with deception.²

382 Our proposed DH-MTL framework addresses this gap by jointly modeling Satire Level (ordinal)
 383 and Humor Attribute (categorical) in a multi-task setup. As shown in Table 3, DH-MTL excels in
 384 modeling the ordinal structure of Satire Level, achieving the highest Pearson correlation (33.57) on
 385 the DHD dataset. The model balances learning across all classes and maintains clear distinctions
 386 between overlapping Humor Attribute labels, capturing fine-grained stylistic differences. Together,
 387 dynamic loss weighting and joint multi-task learning enable DH-MTL to provide more reliable
 388 predictions for both satire intensity and humor style compared to traditional baselines.

390 Table 3: Baseline metrics of models across satire levels and humor attributes. Metrics include
 391 Accuracy (Acc), Macro F1 (MacF1), Weighted F1 (WgtF1), and Pearson Correlation (Pear). Top
 392 results are in **bold**, while the second-best performance is marked with a \dagger .

Model	Satire Level				Humor Attribute		
	Acc	MacF1	WgtF1	Pear	Acc	MacF1	WgtF1
Encoder-Only							
BERT (Devlin et al., 2019)	45.33	44.06	44.47	28.10	35.44	30.09	32.33
DistilBERT (Sanh et al., 2019)	42.00	40.43	40.80	22.20	32.00	28.02	29.97
mBERT	45.56	44.97	45.20	27.64	33.78	31.37	32.82
XLM-RoBERTa (Conneau et al., 2019)	43.11	41.15	41.66	26.69	34.00	30.99	32.57
DeBERTa (He et al., 2020)	41.22	30.15	32.60	20.19	31.22	28.20	29.56
Encoder-Decoder							
BART (Lewis et al., 2020)	42.33	39.65	40.35	19.17	35.33	31.73	33.54
T5 (Raffel et al., 2020)	42.33	35.31	36.67	20.75	28.44	11.91	15.11
Decoder-Only (Zero-Shot)							
Gemma-2-2b-it (Team et al., 2024)	32.00	27.66	30.24	13.47	20.56	18.97	22.50
Llama-3.2-3b-it (Grattafiori et al., 2024)	38.44	33.07	35.22	19.23	24.89	20.44	25.10
Mistral-7b-v0.3-it (Jiang et al., 2023)	31.35	29.52	29.47	12.12	27.25	27.00	26.92
Llama-3.1-8b-it (Grattafiori et al., 2024)	34.00	29.83	29.69	13.37	25.72	23.89	23.97
Decoder-Only (Few-Shot)							
Gemma-2-2b-it	34.73	30.80	32.25	18.55	22.56	14.87	18.75
Llama-3.2-3b-it	38.78	35.27	36.12	18.79	27.55	25.55	28.20
Mistral-7b-v0.3-it	30.55	30.29	31.97	15.40	28.57	28.44	30.20
Llama-3.1-8b-it	37.55	33.91	34.20	17.51	30.25	28.91	29.57
Decoder-Only (QLoRA Fine-Tuned)							
Gemma-2-2b-it	39.22	36.49	40.27	28.72	27.89	30.31	31.22
Llama-3.2-3b-it	48.67	47.84	47.39 \dagger	32.91 \dagger	34.25	30.42	32.25
Mistral-7b-v0.3-it	40.67	33.89	35.14	13.18	27.11	18.53	18.56
Llama-3.1-8b-it	48.33 \dagger	47.82 \dagger	48.03	31.67	36.22 \dagger	35.57	36.01
Proposed Work							
DH-MTL (Ours)	46.22	42.89	43.53	33.57	36.56	31.82 \dagger	34.00 \dagger

5.1 ABLATION AND PARAMETER SENSITIVITY ANALYSIS

425 To assess the importance of dynamic loss weighting, we conducted an ablation study with three configura-
 426 tions: (1) fixing the Satire weight ($w_{\text{sat}} = 1$), (2) fixing the Humor weight ($w_{\text{hum}} = 1$), and (3)
 427 fixing both weights ($w_{\text{sat}} = w_{\text{hum}} = 1$). As shown in Appendix D and discussed in subsection D.1,
 428 these experiments demonstrate that adaptive weighting is essential for balancing the two tasks, en-
 429 suring robust Satire Level predictions and fine-grained Humor Attribute distinctions. This validates
 430 the critical role of dynamic loss adjustment in DH-MTL’s multi-task learning.

431 ²ColBERT Humor Detection Dataset: https://huggingface.co/datasets/CreativeLang/ColBERT_Humor_Detection

432 DH-MTL incorporates two trainable parameters in the multi-task loss: the dynamic weighting coefficients for Satire Level (w_{sat}) and Humor Attribute (w_{hum}). To evaluate their impact, we conducted
 433 a parameter sensitivity analysis by varying batch size and learning rate, observing that the model
 434 remains stable across reasonable settings. This demonstrates that the dynamic weighting effectively
 435 balances the two tasks without introducing instability. For a full analysis, see [Appendix E](#).
 436
 437

438 5.2 HUMAN EVALUATION

439 To ensure data quality, the DHD test set (900 samples) was manually annotated by the authors,
 440 leveraging their familiarity with the fabricated claims and the nuanced ways in which humor embeds
 441 deception. Annotating deceptive humor is inherently challenging, as it requires recognizing subtle
 442 fabrications, implied meanings, and culturally grounded cues that non-expert annotators often miss.
 443 A mock annotation round was conducted to refine guidelines and resolve ambiguous cases, after
 444 which consistent labeling procedures were followed for Satire Level and Humor Attribute. This
 445 author-driven annotation ensured that both surface-level humor and deeper contextual implications
 446 were accurately captured, providing a reliable benchmark for evaluating model performance.
 447

448 Inter-annotator agreement results (see [Appendix K](#) for extended human evaluation details, [Table 8](#))
 449 indicate fair to moderate alignment for Satire Level and moderate to substantial alignment for Humor
 450 Attributes, with strongest agreement observed in English and slightly lower but stable agreement
 451 across Indic languages and their code-mixed variants. Complementary human quality assessments
 452 (see [Appendix K](#), [Table 9](#)) show consistently high readability and claim-graspability across lan-
 453 guages, with cultural nuance best preserved in English and moderately captured elsewhere. These
 454 results establish DHD as a dependable benchmark for multilingual deceptive-humor modeling. The
 455 dataset was curated through rigorous human-in-the-loop procedures that actively enforce ethical
 456 safeguards and explicitly account for known limitations, including synthetic content and cultural
 457 coverage (see [Appendix B](#) and [Appendix C](#)).
 458

459 6 CONCLUSION AND FUTURE WORK

460 In this study, we highlighted a real-world phenomenon at the intersection of misinformation and
 461 humor that has been largely overlooked in existing research, emphasizing how humor can serve as
 462 a major vehicle for spreading misinformation. Our approach underscores the need to better under-
 463 stand the interplay between humor and misinformation, an aspect often neglected in prior studies.
 464 To facilitate this exploration, we introduced the Deceptive Humor Dataset (DHD), the first multilin-
 465 gual and code-mixed benchmark for deceptive humor, along with strong baselines across pre-trained
 466 language models and large language models. Complementing the dataset, We propose DH-MTL, a
 467 lightweight two-stage multi-task framework that first adapts the encoder to deceptive humor patterns
 468 and then fine-tunes task-specific heads to jointly model Satire Level intensity and Humor Attributes.
 469 This design effectively captures subtle satire and fine-grained humor styles, providing robust, bal-
 470 anced predictions and demonstrating clear advantages over traditional single-task or static multi-task
 471 approaches. Together, DHD and DH-MTL establish both a benchmark resource and a methodolog-
 472 ical foundation for future research.
 473

474 Looking forward, we plan to host an open leaderboard to encourage systematic benchmarking and
 475 foster community participation. In addition, we are developing DHD-HARD, a hidden and more
 476 challenging test split. Unlike the current dataset, which is fully automated with a human-in-the-loop
 477 process, DHD-HARD will be hybrid in nature, combining deceptive humor comments generated by
 478 LLMs with human-authored comments. Building on the controlled foundation of DHD, the pro-
 479 posed DHD-HARD will extend evaluation to noisy, in-the-wild environments, enabling a rigorous
 480 study of the sim-to-real gap. Moreover, our empirical findings reinforce the difficulty of this task, as
 481 even state-of-the-art LLMs often failed to detect deceptive humor in zero-shot and few-shot settings,
 482 underscoring the necessity of specialized benchmarks like DHD. By adopting a human-in-the-loop
 483 generation pipeline, we ensured high-quality and culturally grounded data across languages, further
 484 enhancing the reliability of our resource. Ultimately, this work highlights not only the technical but
 485 also the societal importance of studying deceptive humor, given its ability to subtly influence public
 486 beliefs while remaining disguised as entertainment. While the current dataset primarily focuses on
 487 fabricated claims grounded in Indian contexts, future work aims to expand DHD to capture deceptive
 488 humor at a global scale, incorporating broader cultural nuances and region-specific subtleties.
 489

486 REFERENCES
487488 Mohit Bhardwaj, Md Shad Akhtar, Asif Ekbal, Amitava Das, and Tanmoy Chakraborty. Hostility
489 detection dataset in hindi. *arXiv preprint arXiv:2011.03588*, 2020.490 Shankar Biradar, Kasu Sai Kartheek Reddy, Sunil Saumya, and Md Shad Akhtar. Proceedings of
491 the 21st international conference on natural language processing (icon): Shared task on decoding
492 fake narratives in spreading hateful stories (faux-hate). In *Proceedings of the 21st International
493 Conference on Natural Language Processing (ICON): Shared Task on Decoding Fake Narratives
494 in Spreading Hateful Stories (Faux-Hate)*, pp. 1–5, 2024a.
495496 Shankar Biradar, Sunil Saumya, and Arun Chauhan. Faux hate: unravelling the web of fake nar-
497 ratives in spreading hateful stories: a multi-label and multi-class dataset in cross-lingual hind-
498 english code-mixed text. *Language Resources and Evaluation*, pp. 1–32, 2024b.499 Mark Boukes and Michael Hameleers. Fighting lies with facts or humor: Comparing the effec-
500 tiveness of satirical and regular fact-checks in response to misinformation and disinformation.
501 *Communication Monographs*, 90(1):69–91, 2023.
502503 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
504 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
505 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.506 Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek,
507 Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Un-
508 supervised cross-lingual representation learning at scale. *arXiv preprint arXiv:1911.02116*, 2019.
509510 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
511 of quantized llms. *Advances in Neural Information Processing Systems*, 36, 2024.512 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
513 deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
514 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of
515 the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
516 and Short Papers)*, pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Com-
517 putational Linguistics. doi: 10.18653/v1/N19-1423. URL <https://aclanthology.org/N19-1423/>.
518519 Chenhe Dong, Yinghui Li, Haifan Gong, Miaoxin Chen, Junxin Li, Ying Shen, and Min Yang. A
520 survey of natural language generation. *ACM Computing Surveys*, 55(8):1–38, 2022.
521522 Mai ElSherief, Caleb Ziems, David Muchlinski, Vaishnavi Anupindi, Jordyn Seybolt, Munmun
523 De Choudhury, and Diyi Yang. Latent hatred: A benchmark for understanding implicit hate
524 speech. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih
525 (eds.), *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
526 cessing*, pp. 345–363, Online and Punta Cana, Dominican Republic, November 2021. Associa-
527 tion for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.29. URL <https://aclanthology.org/2021.emnlp-main.29/>.
528529 José A Flecha Ortiz, Maria A Santos Corrada, Evelyn Lopez, and Virgin Dones. Analysis of the use
530 of memes as an exponent of collective coping during covid-19 in puerto rico. *Media International
531 Australia*, 178(1):168–181, 2021.
532533 Methasani Redona Gaspar, Joseph P et al. Laughter and lies: Unraveling the intricacies of humor
534 and deception. *Current Opinion in Psychology*, pp. 101707, 2023.
535536 Srinath Mukund Gautam, Sanjana et al. Blind spots and biases: Exploring the role of anno-
537 tator cognitive biases in nlp. In *Proceedings of the Third Workshop on Bridging Human-
538 Computer Interaction and Natural Language Processing*, pp. 82–88, Mexico City, Mexico,
539 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.hcinlp-1.8. URL
<https://aclanthology.org/2024.hcinlp-1.8/>.

540 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 541 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 542 of models. *arXiv preprint arXiv:2407.21783*, 2024.

543 Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
 544 with disentangled attention. *arXiv preprint arXiv:2006.03654*, 2020.

545 Zachary Horvitz, Jingru Chen, Rahul Aditya, Harshvardhan Srivastava, Robert West, Zhou Yu, and
 546 Kathleen McKeown. Getting serious about humor: Crafting humor datasets with unfunny large
 547 language models. *arXiv preprint arXiv:2403.00794*, 2024.

548 Nabil Hossain, John Krumm, and Michael Gamon. " president vows to cut; taxes; hair": Dataset
 549 and analysis of creative text editing for humorous headlines. *arXiv preprint arXiv:1906.00274*,
 550 2019.

551 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 552 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 553 *arXiv:2410.21276*, 2024.

554 Dongsheng Jiang, Yuchen Liu, Songlin Liu, Jin'e Zhao, Hao Zhang, Zhen Gao, Xiaopeng Zhang, Jin
 555 Li, and Hongkai Xiong. From clip to dino: Visual encoders shout in multi-modal large language
 556 models. *arXiv preprint arXiv:2310.08825*, 2023.

557 Aditya Joshi, Vinita Sharma, and Pushpak Bhattacharyya. Harnessing context incongruity for sar-
 558 casm detection. In *Proceedings of the 53rd Annual Meeting of the Association for Computational*
 559 *Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume*
 560 *2: Short Papers)*, pp. 757–762, 2015.

561 Hong Jin Kang, Fabrice Harel-Canada, Muhammad Ali Gulzar, Violet Peng, and Miryung Kim.
 562 Human-in-the-loop synthetic text data inspection with provenance tracking. *arXiv preprint*
 563 *arXiv:2404.18881*, 2024.

564 Sai Kartheek Reddy Kasu, Mohammad Zia Ur Rehman, Shahid Shafi Dar, Rishi Bharat Junghare,
 565 Dhanvin Sanjay Namboodiri, and Nagendra Kumar. D-humor: Dark humor understanding via
 566 multimodal open-ended reasoning. *arXiv preprint arXiv:2509.06771*, 2025.

567 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
 568 Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-
 569 training for natural language generation, translation, and comprehension. In Dan Jurafsky,
 570 Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), *Proceedings of the 58th Annual Meet-
 571 ing of the Association for Computational Linguistics*, pp. 7871–7880, Online, July 2020. As-
 572 sociation for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.703. URL <https://aclanthology.org/2020.acl-main.703/>.

573 Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe Zhang, Jinmeng Rao, Steven Zheng, Daiy-
 574 Peng, Diyi Yang, Denny Zhou, et al. Best practices and lessons learned on synthetic data for
 575 language models. *arXiv preprint arXiv:2404.07503*, 2024.

576 Julie-Anne Meaney, Steven Wilson, Luis Chiruzzo, Adam Lopez, and Walid Magdy. Semeval 2021
 577 task 7: Hahackathon, detecting and rating humor and offense. In *Proceedings of the 15th Inter-
 578 national Workshop on Semantic Evaluation (SemEval-2021)*, pp. 105–119, 2021.

579 Sadiq Muhammed T and Saji K Mathew. The disaster of misinformation: a review of research in
 580 social media. *International journal of data science and analytics*, 13(4):271–285, 2022.

581 Peter Potash, Alexey Romanov, and Anna Rumshisky. Semeval-2017 task 6:# hashtagwars: Learn-
 582 ing a sense of humor. In *Proceedings of the 11th International Workshop on Semantic Evaluation*
 583 (*SemEval-2017*), pp. 49–57, 2017.

584 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 585 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
 586 text transformer. *Journal of Machine Learning Research*, 21(140):1–67, 2020. URL <http://jmlr.org/papers/v21/20-074.html>.

594 Sathyaranarayanan Ramamoorthy, Nethra Gunti, Shreyash Mishra, S Suryavardan, Aishwarya Re-
 595 ganti, Parth Patwa, Amitava DaS, Tanmoy Chakraborty, Amit Sheth, Asif Ekbal, et al. Memotion
 596 2: Dataset on sentiment and emotion analysis of memes. In *Proceedings of De-Factify: workshop*
 597 *on multimodal fact checking and hate speech detection, CEUR*, volume 17, 2022.

598 Raúl Rodríguez-Ferrández, Cande Sánchez-Olmos, Tatiana Hidalgo-Marí, and Estela Saquete-Boro.
 599 Memetics of deception: Spreading local meme hoaxes during covid-19 1st year. *Future Internet*,
 600 13(6):152, 2021.

602 Victoria L Rubin, Niall Conroy, Yimin Chen, and Sarah Cornwell. Fake news or truth? using
 603 satirical cues to detect potentially misleading news. In *Proceedings of the second workshop on*
 604 *computational approaches to deception detection*, pp. 7–17, 2016.

605 Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
 606 bert: smaller, faster, cheaper and lighter. *arXiv preprint arXiv:1910.01108*, 2019.

608 Thwaites Des Shabbir, Haseeb et al. The use of humor to mask deceptive advertising: It's no
 609 laughing matter. *Journal of Advertising*, 36(2):75–85, 2007.

610 Chhavi Sharma, Deepesh Bhageria, William Scott, Srinivas PYKL, Amitava Das, Tanmoy
 611 Chakraborty, Viswanath Pulabaigari, and Björn Gambäck. SemEval-2020 task 8: Memotion
 612 analysis- the visuo-lingual metaphor! In Aurelie Herbelot, Xiaodan Zhu, Alexis Palmer,
 613 Nathan Schneider, Jonathan May, and Ekaterina Shutova (eds.), *Proceedings of the Fourteenth*
 614 *Workshop on Semantic Evaluation*, pp. 759–773, Barcelona (online), December 2020. Interna-
 615 tional Committee for Computational Linguistics. doi: 10.18653/v1/2020.semeval-1.99. URL
 616 <https://aclanthology.org/2020.semeval-1.99/>.

617 Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda Wang, and Russell Webb.
 618 Learning from simulated and unsupervised images through adversarial training. In *Proceedings*
 619 *of the IEEE conference on computer vision and pattern recognition*, pp. 2107–2116, 2017.

621 Kai Shu, Deepak Mahadeswaran, Suhang Wang, Dongwon Lee, and Huan Liu. Fakenewsnet: A
 622 data repository with news content, social context, and spatiotemporal information for studying
 623 fake news on social media. *Big data*, 8(3):171–188, 2020.

624 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 625 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 626 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

627 Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
 628 Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
 629 models based on gemini research and technology. *arXiv preprint arXiv:2403.08295*, 2024.

631 James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. Fever: a large-scale
 632 dataset for fact extraction and verification. *arXiv preprint arXiv:1803.05355*, 2018.

633 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 634 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 635 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

637 Cynthia Van Hee, Els Lefever, and Véronique Hoste. Semeval-2018 task 3: Irony detection in
 638 english tweets. In *Proceedings of the 12th international workshop on semantic evaluation*, pp.
 639 39–50, 2018.

640 William Yang Wang et al. "liar, liar pants on fire": A new benchmark dataset for fake news
 641 detection. *arXiv preprint arXiv:1705.00648*, 2017.

642 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
 643 Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
 644 *arXiv preprint arXiv:2212.10560*, 2022.

646 Yawen Wu, Zhepeng Wang, Dewen Zeng, Yiyu Shi, and Jingtong Hu. Synthetic data can also teach:
 647 Synthesizing effective data for unsupervised visual representation learning. In *Proceedings of the*
AAAI Conference on Artificial Intelligence, volume 37, pp. 2866–2874, 2023.

648 Benfeng Xu, Quan Wang, Yajuan Lyu, Dai Dai, Yongdong Zhang, and Zhendong Mao. S2ynre:
649 Two-stage self-training with synthetic data for low-resource relation extraction. In *Proceedings*
650 *of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long*
651 *Papers)*, pp. 8186–8207, 2023.

652 Sara K Yeo and Meaghan McKasy. Emotion and humor as misinformation antidotes. *Proceedings*
653 *of the National Academy of Sciences*, 118(15):e2002484118, 2021.

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A LLM-BASED EVALUATION OF DECEPTIVE HUMOR DETECTION
703704 **Motivation**

705 Deceptive Humor (DH) is a form of content where humor acts as a vehicle for misinformation,
706 allowing misleading or false information to propagate more effectively in online and social me-
707 dia platforms. The subtlety of DH makes detection challenging, even for instruction-tuned LLMs.
708 Unlike standard fake news or hate speech, the humorous coating masks the underlying deception,
709 increasing virality and impact.

710 To empirically study this phenomenon, we evaluate both widely-used Small Language Models
711 (SLMs) and state-of-the-art Large Language Models (LLMs) on our curated Deceptive Humor
712 Dataset (DHD), which consists of 9,000 multilingual and code-mixed comments, all of which are in-
713 herently deceptive. Instead of directly performing full classification of the type or level of deceptive
714 humor, we first probe whether the models can recognize at a basic level whether a given comment
715 appears deceptive or not. This step assesses the models' initial sensitivity to deceptive cues. Our
716 experiment findings show that even this basic detection task remains difficult for both SLMs and
717 LLMs.

718 Our experimental findings reveal several important insights regarding the detection of Deceptive
719 Humor:

- 721 • **Small Language Models (SLMs):** In our experiments, only LLaMA-3.2-3B Instruct
722 achieved moderate performance, with $\sim 33\%$ overall accuracy. Its performance was no-
723 tably lower on code-mixed languages, highlighting the challenge of linguistic complexity.
724 Qwen-2.5-3B Instruct failed to identify any deceptive comments, achieving 0% accuracy
725 overall. These results indicate that smaller models struggle to detect deceptive humor ef-
726 fectively.
- 727 • **Large Language Models (LLMs):** LLaMA-3 8B Instruct achieved the highest overall ac-
728 curacy ($\sim 67\%$), although performance varied across languages and code-mixed contexts.
729 Qwen-2.5 7B Instruct achieved 14% accuracy overall, showing that even large models face
730 difficulty identifying deceptive humor, particularly in non-English and script-based lan-
731 guages.
- 732 • **Task Complexity:** Overall, our experiments demonstrate that detecting deceptive humor
733 is inherently difficult. Model performance varies substantially across languages and code-
734 mixed contexts, emphasizing that the combination of humor, deception, and linguistic di-
735 versity complicates detection.

736 Collectively, these results empirically support our claim that Deceptive Humor significantly com-
737 plicates misinformation detection and facilitates wider propagation of misleading content (see [Table 4](#)
738 and [Table 5](#) for detailed model-wise performance).

739 A.1 EXPERIMENTAL PROMPT USED

740 Prompt Used in our Experiments

741 You are an expert in identifying fake news and deceptive content.
742 You will be given a comment. Your task is to determine if the comment is deceptive.

743 **Important instructions:**

- 744 • Respond strictly with either "Yes" if the comment is surely fake/deceptive, or "No"
745 if it is not.
- 746 • Do not write or explain anything else.
- 747 • Do not include quotes or punctuation, just 'Yes' or 'No'.

748 **Comment:** {comment}

749 **Your Answer:**

756 Table 4: Performance of Small Language Models on the Deceptive Humor dataset (3B models).
757

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809	LLaMA-3.2 3B Instruct			Qwen-2.5 3B Instruct		
	Total	Identified	Accuracy	Total	Identified	Accuracy
Te	1049	386	0.368	1049	0	0.00
Te-En	1039	266	0.256	1039	0	0.00
Hi	1002	340	0.339	1002	0	0.00
Hi-En	1024	306	0.299	1024	0	0.00
Ka	936	359	0.384	936	0	0.00
Ka-En	987	276	0.280	987	0	0.00
En	1099	446	0.406	1099	0	0.00
Ta	913	328	0.359	913	0	0.00
Ta-En	951	251	0.264	951	0	0.00
Overall	9000	2958	0.33	9000	0	0.00

Table 5: Performance of Large Language Models on the Deceptive Humor dataset (7B and 8B models).

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809	LLaMA-3 8B Instruct			Qwen-2 7B Instruct		
	Total	Identified	Accuracy	Total	Identified	Accuracy
Te	1049	644	0.614	1049	63	0.060
Te-En	1039	756	0.728	1039	104	0.100
Hi	1002	685	0.684	1002	217	0.217
Hi-En	1024	791	0.772	1024	380	0.371
Ka	936	453	0.484	936	76	0.081
Ka-En	987	703	0.712	987	57	0.058
En	1099	872	0.793	1099	196	0.178
Ta	913	459	0.503	913	70	0.077
Ta-En	951	686	0.721	951	68	0.072
Overall	9000	6049	0.67	9000	1231	0.14

A.2 POTENTIAL CHALLENGES FOR LLMs IN DETECTING DECEPTIVE HUMOR

Our zero- and few-shot results (Appendix A, Table 4, Table 5) show that instruction-tuned LLMs (e.g., Qwen-2.5 3B Instruct, **0% accuracy**) largely fail on this task. Several factors explain this gap:

- **Hidden Pragmatic Intent.** False claims are conveyed indirectly via irony or wordplay, so surface forms often resemble literal statements.
- **Lack of Context.** Many comments depend on conversational history, cultural cues, or multimodal context absent in isolated text snippets.
- **Cultural and Linguistic Gaps.** Code-mixing, idioms, and regional references are under-represented in pretraining, leading to systematic misinterpretation.
- **Domain Shift.** Pretraining rarely includes humor deliberately embedding false claims, creating a sharp distributional mismatch.

Together, these factors show why even large instruction-tuned models cannot reliably detect deceptive humor without task-specific adaptation.

810 **B ETHICAL CONSIDERATIONS**
811812 **Misuse Potential and Mitigation:** The Deceptive Humor Dataset (DHD) contains humorous ex-
813 pressions that embed, restate, or normalize fabricated claims, including politically sensitive nar-
814 ratives. Such content introduces dual-use risks, such as enabling systems that generate or amplify
815 misleading or harmful messages under the guise of humor. To mitigate these risks, DHD is released
816 only under controlled access with strictly prohibited redistribution. Access is limited to verified
817 researchers who formally agree not to use the dataset or any derivative models to train generative
818 systems, deploy misinformation-related applications, or create humor that repeats, amplifies, or le-
819 gitimizes false claims. Compliance is enforced through verification of access requests and adherence
820 to the signed data usage agreement.821 **Privacy and Legal Compliance:** The humorous comments in DHD are synthetically generated
822 using the ChatGPT-4o model. While the underlying fabricated claims were curated from public
823 fact-checking archives (e.g., AltNews) under Fair Use principles, the humorous text itself is fully
824 synthetic and not derived from real user posts.. As a result, the dataset contains no personal identifi-
825 able information (PII), no user metadata, and no material subject to third-party copyright or platform
826 Terms of Service. Because the content is fully synthetic, there is no risk of re-identification. The
827 dataset is released solely for non-commercial research purposes.828 **Bias and Content Warning:** Because the dataset contains humorous content referencing fabricated
829 or sensitive narratives, it may include text that could be perceived as offensive, biased, or harmful
830 toward specific groups. We caution researchers to interpret these examples responsibly and explic-
831 itely advise against using this dataset to train or evaluate systems that may automate hate speech,
832 harassment, or politically manipulative messaging.833 **Responsible Annotation:** Annotation was mainly carried out by three postgraduate student assis-
834 tants under the supervision of two PhD researchers and faculty members who provided informed
835 consent prior to beginning the task. Annotators were compensated above the local minimum wage
836 and were given clear task guidelines, including the right to opt out of any example containing sensi-
837 tive or disturbing content. To protect annotators' well-being, we imposed a hard limit of 150 items
838 per day and encouraged regular breaks throughout each session. Participation could be discontinued
839 at any time without penalty. As an additional academic benefit, annotators were offered up to 150
840 hours of GPU compute for their own independent research projects; this benefit was optional and not
841 tied to annotation performance. The annotation procedure followed our institution's ethical research
842 guidelines and received approval from the relevant ethics oversight process.843 **C LIMITATIONS**
844845 While deceptive humor represents a novel and underexplored phenomenon, the Deceptive Humor
846 Dataset (DHD) nevertheless has notable limitations that we must acknowledge:
847848

- 849 **Reliance on synthetic data:** The primary limitation of DHD is that it is synthetically gen-
850 erated. This was a deliberate and necessary choice, as large-scale, high-quality organic
851 deceptive humor is extremely difficult to collect. In pilot studies, candidate examples from
852 social media were often ambiguous, and even expert annotators disagreed on labels. We be-
853 lieve this challenge arises from the intrinsic ambiguity and elusiveness of deceptive humor,
854 rather than from any shortcoming in our methodology.
- 855 **Cultural and geographical bias:** The current dataset primarily covers Indian fake news,
856 with widely debunked claims collected from verified fact-checking websites such as Alt
857 News and FactChecker. As a result, DHD may not generalize globally and contains inherent
858 cultural biases. We acknowledge this limitation and plan to extend future work to include
859 more diverse and international sources.
- 860 **Limitations in capturing humor and cultural nuances:** Although we employ a care-
861 ful generation pipeline with human-in-the-loop refinement, DHD may not fully replicate
862 human-level humor and cultural nuances. As Table 9 shows, for low-resource languages
863 such as Telugu, Hindi, Kannada, and Tamil, preserving culturally aligned humor remains
864 challenging. This reflects an open research problem in aligning LLM-generated content
865 with cultural context.

864
 865
 866
 867
 868
 869
 870

- **Model-induced bias from using ChatGPT-4o:** Because all synthetic samples were generated with ChatGPT-4o, DHD may inherit stylistic or distributional biases from this model. To mitigate this, we applied human-in-the-loop filtering, multilingual quality checks, and cross-lingual consistency validation. Notably, using a single generator also provides a controlled benchmark setting by avoiding cross-model variation that could confound evaluation.

871 Accordingly, we position DHD as a controlled and scalable testbed rather than a perfect reflection
 872 of the real world. It provides clear ground truth with a known set of fabricated claims, enabling
 873 rigorous, apples-to-apples comparison of model capabilities. This approach aligns with prior uses
 874 of synthetic data to create foundational benchmarks for otherwise intractable problems (Wang et al.,
 875 2022; Liu et al., 2024). Our human-in-the-loop process and evaluation results (see Table 8, Ta-
 876 ble 9) indicate that the synthetic comments exhibit consistent and recognizable patterns of deceptive
 877 humor.

878 Nonetheless, we acknowledge the "sim-to-real" gap: models trained on DHD may struggle to gen-
 879 eralize to organic deceptive humor (Shrivastava et al., 2017; Dong et al., 2022). To systematically
 880 bridge this gap, future work will introduce DHD-HARD to test model robustness against human-
 881 authored, unstructured variations of the controlled patterns established in DHD. Following best prac-
 882 tices for bridging synthetic and real distributions (Kang et al., 2024), evaluating models on DHD-
 883 HARD will allow us to quantify and mitigate this gap, establishing a principled agenda for future
 884 research in this nascent field.

885 **D ABLATION STUDY**

886 Table 6: Ablation study results for DH-MTL. Each row represents a different model configura-
 887 tion with one or both dynamic loss weights removed. Metrics include Accuracy (Acc), Macro F1
 888 (MacF1), and Weighted F1 (WgtF1) for both tasks, and Pearson Correlation (Pear) for Satire Level.
 889

890

Model Configuration	Satire Level				Humor Attribute		
	Acc	MacF1	WgtF1	Pear	Acc	MacF1	WgtF1
Proposed Work (Full DH-MTL)							
DH-MTL (Original)	46.22	42.89	43.53	33.57	36.56	31.82	34.00
Ablated Models							
DH-MTL fixed satire weight (w_{sat})	42.44	38.15	39.24	20.98	33.44	26.99	29.61
DH-MTL fixed humor weight (w_{hum})	42.89	38.95	39.92	26.54	34.11	29.69	31.87
DH-MTL fixed weights (w_{sat}, w_{hum})	42.00	36.26	37.64	21.24	34.33	27.52	30.15

901 The ablation study is designed to assess the importance of dynamic loss weighting in the DH-MTL
 902 framework and its impact on modeling deceptive humor. Dynamic weighting allows the model to
 903 adaptively balance the contributions of the Satire Level and Humor Attribute tasks during training,
 904 preventing one task from dominating the other and ensuring both tasks are learned effectively. To
 905 quantify this effect, we evaluated three ablated configurations:

906

1. **Fixed Satire Weight** ($w_{sat} = 1$): In this configuration, the weight for the Satire Level
 907 loss is held constant as a scalar, while the Humor Attribute weight remains learnable and
 908 updates according to the data. This allows the model to focus on dynamically adjusting
 909 the contribution of humor-related features while keeping satire intensity static.
 910 Comparing this configuration to the full DH-MTL model helps us understand how much
 911 the model relies on adaptive weighting for the Satire Level task specifically.
2. **Fixed Humor Weight** ($w_{hum} = 1$): Here, the weight for the Humor Attribute loss is fixed,
 912 and the Satire Level weight is allowed to adapt during training. This setup evaluates the
 913 impact of removing adaptive control from the humor-related task while retaining flexibility
 914 for modeling satire intensity. It demonstrates the benefit of letting the Satire Level task
 915 adjust dynamically relative to Humor Attribute, highlighting the interplay between the two
 916 tasks in multi-task learning.

918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2

972 E PARAMETER SENSITIVITY ANALYSIS (EXTENDED)

974
 975 To understand the robustness of DH-MTL, we analyze the sensitivity of the model to key training
 976 hyperparameters: batch size and learning rate. We evaluate how different configurations affect both
 977 Satire Level and Humor Attribute performance, with results summarized in [Table 7](#).

978
 979 Table 7: Parameter Sensitivity Analysis for DH-MTL. Each row shows model performance un-
 980 der different batch sizes and learning rates. Metrics include Accuracy (Acc), Macro F1 (MacF1),
 981 Weighted F1 (WgtF1) for both tasks, and Pearson Correlation (Pear) for Satire Level.

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 Hyperparameter Set	999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 Satire Level				1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 Humor Attribute		
	999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 Acc	999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 MacF1	999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 WgtF1	999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 Pear	999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 Acc	999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 MacF1	999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 WgtF1
Batch=16, LR=2e-10 (Original)	46.22	42.89	43.53	33.57	36.56	31.82	34.00
Batch=64, LR=2e-10	44.56	41.02	41.92	27.68	33.67	26.16	28.90
Batch=16, LR=1e-10	42.33	39.35	40.09	24.92	33.44	25.12	28.20

989
 990 The analysis shows that the proposed DH-MTL framework is largely stable across reasonable hyper-
 991 parameter variations. While the original setting (Batch=16, LR=2e-10) yields the best performance,
 992 increasing the batch size or lowering the learning rate slightly reduces accuracy and Pearson corre-
 993 lation for Satire Level, as well as the classification metrics for Humor Attribute. Importantly, the
 994 trends confirm that DH-MTL consistently maintains a balanced treatment of classes and preserves
 995 the ordinal structure of Satire Level, highlighting that the model is robust and not overly sensitive
 996 to moderate changes in training configuration. This stability provides confidence in the practical
 997 applicability of the framework across diverse experimental settings.

F WHY DECEPTIVE HUMOR IS DANGEROUS

1000
 1001 Deceptive humor often appears amusing or harmless at first glance, but closer examination reveals
 1002 that it can carry false or misleading information along with the comedic content. While such con-
 1003 tent may provoke laughter, it can simultaneously influence beliefs, reinforce stereotypes, and spread
 1004 misinformation. Humans are particularly susceptible to deceptive humor because the comedic fram-
 1005 ing can lower critical scrutiny, making audiences more likely to accept false claims as true unless
 1006 they are certain of the facts. This dual nature makes deceptive humor a subtle yet powerful vehicle
 1007 for misinformation that can have psychological, social, and cultural consequences. When viewed
 1008 through the lens of modern AI systems, an additional concern emerges: if deceptive humor is present
 1009 in training data without explicit labeling, language models may inadvertently internalize and repli-
 1010 cate the same misleading humorous tone, making downstream detection and moderation of such
 1011 content significantly more difficult.

1012 For instance, we reference the fake claim: “*Ch*na is spreading COVID as a bioweapon*.” This
 1013 example is included not to endorse the statement, but to demonstrate how false claims, when framed
 1014 in humorous or exaggerated ways, can propagate widely and cause real-world harm. Fact-checking
 1015 sources³ have debunked this claim, yet it continues to circulate online. Beyond spreading health-
 1016 related misinformation, such content can also target specific countries or communities, in this case
 1017 potentially disturbing individuals who are from, support, or are associated with Ch*na. This il-
 1018 lustrates how deceptive humor can simultaneously misinform, provoke social tension, and amplify
 1019 xenophobic or geopolitical narratives.

1020 Understanding the propagation of such content is crucial for research in online misinformation and
 1021 social media safety. By analyzing deceptive humor, we can develop better detection methods, design
 1022 datasets that account for both the comedic and misleading aspects of content, and ultimately mitigate
 1023 its harmful effects without censoring legitimate humor. Our study emphasizes the importance of
 1024 responsible handling and careful annotation of politically or socially sensitive examples to ensure
 1025 ethical and scientifically sound research.

³For a comprehensive debunking of the “COVID-19 as a bioweapon” claim, see [Snopes](#) and [Reuters](#).

1026 **G EMPIRICAL EVIDENCE OF HUMOR CONTRIBUTING TO MISINFORMATION**
 1027 **PROPAGATION**

1029 To validate the relevance of deceptive humor as a meaningful research direction, we review empirical
 1030 evidence showing how humor can influence the perception, spread, and believability of false claims.
 1031 Humor plays a prominent role in modern social media ecosystems, where lightweight, shareable
 1032 formats such as memes, satire, and humorous commentary can accelerate information diffusion.

1033 Humorous framing can reduce epistemic vigilance and shift attention away from factual evaluation.
 1034 Behavioral and eye-tracking studies indicate that humor modulates attention allocation, lowering
 1035 perceived seriousness of claims and weakening analytical scrutiny (Yeo & McKasy, 2021). Con-
 1036 sequently, audiences may accept or share false claims more readily when they are embedded in
 1037 humorous content.

1038 Humor also enhances social transmission. Memes, ironic posts, and pithy humorous quips tend
 1039 to be more widely shared due to social-signaling motives, in-group bonding, and heightened emo-
 1040 tional engagement. As a result, fabricated claims packaged in humorous formats propagate further
 1041 than non-humorous content, even when their credibility is low (Rodríguez-Ferrández et al., 2021;
 1042 Flecha Ortiz et al., 2021).

1043 A recurring challenge highlighted in prior work is the ambiguity between satire and literal misinfor-
 1044 mation. Audiences lacking contextual cues may fail to distinguish parody from deception, allow-
 1045 ing false claims to circulate in humorous forms without being clearly identified as misinformation
 1046 (Boukes & Hameleers, 2023). This supports operationalizing satire as a graded signal rather than a
 1047 binary label.

1048 Importantly, humor can play a dual role: it may correct misinformation, but it can also reinforce false
 1049 beliefs depending on the audience and context (Yeo & McKasy, 2021; Muhammed T & Mathew,
 1050 2022). Humorous interventions can backfire, strengthening identity-driven beliefs or inadvertently
 1051 normalizing false claims. This dual effect underscores the nuanced role of humor in shaping infor-
 1052 mation ecosystems.

1053 **Relevance to DHD:** These findings directly inform the design of the Deceptive Humor Dataset.
 1054 By holding the presence of a fabricated claim constant and annotating how humor is expressed,
 1055 via Satire Level and Humor Attributes (or Humor stylistic attributes), we capture the mechanisms
 1056 through which deceptive humor shapes believability and detectability. Satire Level reflects grad-
 1057 ations of subtlety or exaggeration, while Humor Attributes encode rhetorical strategies such as irony,
 1058 absurdity, social commentary, wordplay, and dark humor. Collectively, these annotations enable de-
 1059 tailed analysis of how humorous framing can normalize, obscure, or amplify false claims, providing
 1060 structured supervision for models to study the pathways through which deceptive humor influences
 1061 audiences.

1062 **H REAL-WORLD DECEPTIVE HUMOR ANALYSIS**

1063 In real-world settings, especially during crises, deceptive humor is a powerful tool in the information
 1064 ecosystem. During the COVID-19 pandemic, misinformation surged, not only as serious rumors but
 1065 also as humorous, satirical content. For instance, memes anthropomorphizing the virus (“Corona-
 1066 chan”) used gallows humor to propagate conspiracy theories about its origins, subtly embedding
 1067 falsehoods in comedic form⁴. Empirical research also shows that health-related misinformation
 1068 spread more rapidly than other content⁵.

1069 More recently, geopolitical tension between Ind*a and Pak*stan has given rise to wartime disinfor-
 1070 mation campaigns amplified in humorous or satirical formats. A flurry of fake videos, manipulated
 1071 images, and exaggerated stories circulated online, including false claims of missile strikes, drone at-
 1072 tacks, and nuclear escalation⁶. For example, some social media users joked about “nuclear radiation
 1073 spreading” after purported attacks, using humor to amplify fear and speculation⁷.

1074 ⁴Corona-chan Wikipedia

1075 ⁵COVID-19 misinformation spread study

1076 ⁶India Today report on disinformation

1077 ⁷The Tribune report

1080 These humorous distortions were not just grassroots memes. Observers noted a coordinated infor-
 1081 mation campaign: a think-tank analysis found that many disinformation posts came from influential
 1082 accounts with high visibility⁸. Media fact-checkers, such as the Press Information Bureau (PIB), also
 1083 debunked several high-profile hoaxes, such as a WhatsApp message alleging “Operation Sindoor,”
 1084 falsely claiming imminent conflict operations⁹. Meanwhile, social media users in both countries
 1085 produced satirical content that blurred the line between mockery and propaganda¹⁰.

1086 This real-world usage demonstrates three critical points:
 1087

- 1088 1. **Deceptive humor is both topical and timely**, emerging strongly during periods of crisis
 1089 or tension.
- 1090 2. **Humor helps misinformation spread** by reducing skepticism and embedding disinforma-
 1091 tion in culturally resonant or absurd formats.
- 1092 3. **The framing of a false claim through humor** is not merely decorative, humor changes
 1093 how people perceive and share misinformation, making it harder to combat with standard
 1094 fact-checking methods.

1095 These patterns strongly motivate our DHD dataset: by modeling how humor frames deception
 1096 (through Satire Level and Humor Attribute), we aim to capture the *stylistic mechanisms* that en-
 1097 able false narratives to thrive in real-world settings. Understanding these mechanisms is essential
 1098 for building systems that can detect not only outright falsehoods but also the *humorous packaging*
 1099 that makes them socially acceptable and shareable.

1101 I HUMAN-IN-THE-LOOP DATASET GENERATION

1102 Motivation:

1103 To ensure high-quality generation of deceptive humor comments across multiple languages and
 1104 code-mixed variants, we employed a human-in-the-loop (HITL) workflow. In this setup, content
 1105 was batch-generated by ChatGPT. It was then rigorously reviewed by a faculty member and a PhD
 1106 researcher specializing in computational humor, as well as three postgraduate students (with in-
 1107 formed consent), who ensured linguistic accuracy, label correctness, and coherence. Such HITL
 1108 supervision of synthetic generation has been shown to significantly improve content quality and re-
 1109 duce errors. For example, provenance-based HITL frameworks like INSPECTOR demonstrate that
 1110 incorporating human review into AI-generated corpora leads to 3-4x more accurate labels compared
 1111 to unsupervised generation (Kang et al., 2024). This structured oversight ensured that the final DHD
 1112 dataset met high standards of quality (see subsection I.2 for the structured generation prompt).

1113 I.1 WORKFLOW OVERVIEW

1114 The HITL process was conducted as follows:

- 1115 1. **Batch Generation:** Comments were generated by the model in small batches of 100
 1116 records per iteration, using a prompt that included the fake news statement as input.
- 1117 2. **Manual Evaluation:** Each batch of 100 generated samples was carefully reviewed to en-
 1118 sure quality. The checks included:
 - 1119 • Verifying correctness of assigned labels.
 - 1120 • Assessing grammatical structure and readability.
 - 1121 • Ensuring meaningfulness of the comment and removing nonsensical or irrelevant out-
 1122 puts.
- 1123 3. **Iterative Feedback:** Any detected errors (label mismatches, grammatical issues, or mean-
 1124 ingless comments) were fed back to the model with instructions to correct them. This loop
 1125 continued until the batch met quality standards.

1126⁸Economic Times on social media campaigns

1127⁹Moneycontrol fact-check

1128¹⁰The Guardian report

1134
 1135 4. **Final Compilation:** Once each batch of 100 comments passed quality checks, it was added
 1136 to the growing DHD dataset. Repeating this process iteratively over multiple batches pro-
 1137 duced the final dataset of 9,000 multilingual and code-mixed deceptive humor comments.

1138 This careful dataset generation pipeline was designed to closely mimic real-world data distributions,
 1139 producing machine-generated text that resembles human-authored deceptive humor. We believe that
 1140 incorporating iterative human-in-the-loop review substantially improves the quality and reliability
 1141 of the dataset compared to standard prompting methods. While this process enhances linguistic cor-
 1142 rectness and label accuracy, we acknowledge that it may not fully capture all patterns and subtleties
 1143 of naturally occurring deceptive humor in the wild.

1144

1145 I.2 PROMPT USED FOR DATASET GENERATION

1146

1147 The following prompt was used to guide model generation:

1148

1149 Dataset Generation Prompt

1150

1151 **<System>**

1152

1153 You are tasked with generating humorous comments in one of the following languages:
 1154 English (En), Telugu (Te), Hindi (Hi), Kannada (Ka), Tamil (Ta), and their code-mixes
 1155 (Te-En, Hi-En, Ka-En, Ta-En).

1156

1157 Each generated comment must include the following labels:

1158 **Satire Level:**

1159

- Low Satire: Subtle humor, lightly satirical.
- Moderate Satire: Evident humor, incorporating exaggeration or sarcasm.
- High Satire: Strongly exaggerated or overtly satirical.

1160

1161 **Humor Attribute:**

1162

- Irony: Intended meaning contrasts with literal meaning.
- Absurdity: Exaggeration or illogical scenarios.
- Social Commentary: Critiques societal or cultural issues.
- Dark Humor: Morbid, taboo, or controversial topics.
- Wordplay: Puns, double meanings, or clever linguistic constructs.

1163

1164 Ensure comments are complex, human-like, and reflect various humor types.

1165

1166 **</System>**

1167

1168 **<Hypothesis>**

1169

1170 Generate a humorous comment based on the following fake claim:

1171

1172 **</Hypothesis>**

1173

1174 **<User>**

1175

1176 Please generate a humorous comment based on the fake claim: <FAKE CLAIM >

1177

1178 **</User>**

1179

1180

1181 I.3 NOTES ON HITL QUALITY CONTROL

1182

- Random sampling and author review ensured consistency and quality across batches.
- Iterative feedback allowed the model to correct errors, improving label accuracy and com-
 1184 ment naturalness.
- The process ensured coverage of multiple languages, code-mixed variants, and diverse hu-
 1185 mor types, resulting in a high-quality, multilingual deceptive humor dataset suitable for
 1186 LLM evaluation.

1188 J ROLE OF SYNTHETIC DATA IN ADVANCING THE AI SYSTEMS
1189

1190 The proposed DHD is synthetically generated using the ChatGPT-4o model. A common critique
1191 of synthetic data is that PLMs struggle to capture patterns representative of human-generated text.
1192 While this concern has some merit, it is important to recognize that human annotations themselves
1193 are influenced by inherent biases shaped by individual mental models (Gautam et al., 2024). The
1194 role of synthetic data in AI research has grown substantially, with top institutions like Hugging
1195 Face and various companies actively developing synthetic data generators¹¹ to support this effort.
1196 Notably, the Phi-4 model, a SOTA open model, incorporates synthetic data as a core component of
1197 its training regimen, underscoring its practical value in advancing AI capabilities.

1198 Recent work across leading AI research venues further validates synthetic data’s critical role in
1199 improving model generalization, addressing data scarcity, and mitigating annotation biases. For
1200 instance, Google DeepMind’s comprehensive study outlines best practices and challenges in syn-
1201 thetic data generation, highlighting its potential to enhance model robustness and fairness (Liu et al.,
1202 2024). In multimodal learning, synthetic data has been demonstrated to boost unsupervised vi-
1203 sual representation learning by generating effective training samples and improving data efficiency
1204 (Wu et al., 2023). Additionally, synthetic data-driven self-training methods have shown promise in
1205 low-resource natural language processing tasks such as relation extraction, effectively overcoming
1206 domain adaptation challenges (Xu et al., 2023). These advancements position synthetic data not
1207 merely as a workaround for limited human annotations but as a transformative tool that drives inno-
1208 vation and broader applicability in AI. In this light, synthetic data provides an essential foundation
1209 for our work on Deceptive Humor detection and enables future research progress in this potentially
1210 emerging domain.

1211 **Reference Links**1212 **Humor Types:**

- 1214 • **Irony:** [Irony Wikipedia](#)
- 1215 • **Absurdity:** [Absurdity Wikipedia](#)
- 1216 • **Social Commentary:** [Social Commentary Wikipedia](#)
- 1217 • **Dark Humor:** [Dark Humor Wikipedia](#)
- 1218 • **Wordplay:** [Wordplay Wikipedia](#)

1219 **Fact-Checking Sources:**

- 1222 • **AltNews:** <https://www.altnews.in/>
- 1223 • **Boom FactCheck:** <https://www.boomlive.in/fact-check>
- 1224 • **FactChecker:** <https://www.factchecker.in/fact-check>
- 1225 • **FACTLY:** <https://factly.in/>

1228 K HUMAN EVALUATION (EXTENDED)

1229 In this section we discuss the extended version of Human Evaluation. Our human evaluation setup
1230 was designed not only to validate labeling reliability but also to examine how deceptive humor mani-
1231 festests across languages with distinct cultural, morphological, and code-mixed characteristics. Table 8
1232 reports pairwise and multi-annotator agreement for both Satire Level and Humor Attribute. While
1233 English shows the strongest alignment, the Indic languages exhibit systematic variability: disagree-
1234 ments frequently arise in borderline cases where humor, sarcasm, and misinformation intertwine in
1235 ways that depend heavily on socio-political context. This pattern is consistent across all annotator
1236 pairs and is further reflected in the weighted Kappa values, suggesting that divergences are not ran-
1237 dom noise but stem from genuine ambiguity in interpreting the satirical intensity of misinformative
1238 humor. Notably, Fleiss’ Kappa remains in a stable moderate range across languages, indicating that
1239 despite individual variability, annotators converge on shared judgment patterns at the dataset scale.

1240
1241 ¹¹<https://huggingface.co/blog/synthetic-data-generator>

1242 These agreement scores therefore provide a realistic picture of the interpretive uncertainty inherent
 1243 in deceptive humor, rather than an artifact of annotation quality alone.

1244 To further characterize the fidelity and naturalness of the synthetic data, we performed a structured
 1245 quality assessment covering Readability, Claim-Graspability, and Cultural Nuance (see [Table 9](#)).
 1246 The cross-lingual trends reveal a clear stratification: English consistently achieves high scores, while
 1247 morphologically rich Indic languages show drops that correlate with two recurring phenomena: (i)
 1248 narrative drift, where the humorous surface slightly obscures the underlying false claim, and (ii)
 1249 cultural mismatches, where the generative model defaults to humor tropes not commonly used by
 1250 native speakers. These deviations are especially prevalent in Kannada and Tamil, suggesting that
 1251 low-resource pretraining signals and limited exposure to region-specific humor styles weaken the
 1252 model’s ability to generate culturally grounded deception. Importantly, even with these variations,
 1253 Claim-Graspability remains above threshold across all languages, indicating that the core misin-
 1254 formative narrative remains interpretable to human evaluators. Taken together, the agreement and
 1255 quality analyses illustrate the linguistic and cultural gradients that shape deceptive humor genera-
 1256 tion, providing valuable diagnostic insights for future cross-lingual robustness and controllability
 1257 efforts.

1258 [Table 8](#): Inter-annotator agreement scores for Satire Level and Humor Attribute. Top: Satire Level
 1259 (Unwt K = unweighted Cohen’s Kappa; Wtd K = weighted Cohen’s Kappa; F-K = Fleiss’ Kappa
 1260 across all three annotators). Bottom: Humor Attribute (Unwt K = unweighted Cohen’s Kappa; Wtd
 1261 K = not applicable; F-K = Fleiss’ Kappa). (*) indicates Indic languages along with their code-mixed
 1262 variants.

Lang	Mac vs Ann1		Mac vs Ann2		Ann1 vs Ann2		F-K
	Unwt K	Wtd K	Unwt K	Wtd K	Unwt K	Wtd K	
Satire Level							
English	52.75	61.93	65.24	66.70	65.49	69.40	63.21
Telugu*	45.06	58.43	63.27	64.96	56.13	59.65	55.26
Hindi*	53.41	60.69	70.43	77.66	65.71	69.00	62.86
Kannada*	49.86	61.92	68.56	77.19	63.64	64.64	60.37
Tamil*	45.97	52.66	64.12	67.80	61.47	65.55	58.20
Overall	51.87	62.97	67.65	73.30	67.25	68.51	62.06
Humor Attribute							
English	65.62	–	69.82	–	76.05	–	70.44
Telugu*	53.37	–	66.52	–	59.91	–	59.88
Hindi*	56.14	–	67.03	–	65.01	–	62.64
Kannada*	54.55	–	71.39	–	62.91	–	62.89
Tamil*	50.91	–	68.02	–	67.20	–	61.95
Overall	55.64	–	68.64	–	65.74	–	63.30

1288 [Table 9](#): Quality Assessment for Deceptive Humor Data (scale of 1–10; 1 = low, 10 = high).

Lang	Readability	Claim-Graspability	Cultural Nuance
English	9.00	7.80	8.20
Telugu*	7.90	7.60	7.10
Hindi*	7.70	7.20	7.20
Kannada*	7.10	6.30	6.20
Tamil*	7.30	6.50	5.90

1296

L ERROR ANALYSIS

1297
 1298 This section provides a deep dive into instances where the model misclassified Satire Level and
 1299 Humor Attribute. We analyze the original labels, predictions, and the potential reasons behind these
 1300 errors. Such an analysis uncovers recurring challenges, particularly in detecting indirect satire,
 1301 cultural nuances, and subtle humor constructs.

1302
 1303 **Satire Level:** We focus on cases where comments originally labeled as High Satire (level 3) were
 1304 predicted as Low Satire (level 1). These examples highlight the difficulty models face when satire is
 1305 implied, indirect, or culturally embedded.

1306

Example 1: Satire Level

1307
 1308 **Comment:** Are temples now just stepping stones for interfaith harmony campaigns?

1309 **Original Label:** 3 (High Satire)

1310 **Predicted:** 1 (Low Satire)

1311 **Possible model interpretation:** The model likely focused on the literal meaning of the
 1312 words, missing the subtle critique of interfaith campaigns.

1313 **Conclusion:** Indirect satire that relies on cultural context or social commentary is particu-
 1314 larly challenging for models.

1315

Example 2: Satire Level

1316
 1317 **Comment:** Seems like nud*ty is the new immunity booster.

1318 **Original Label:** 3 (High Satire)

1319 **Predicted:** 1 (Low Satire)

1320 **Possible model interpretation:** The exaggerated statement was subtle and implied, so the
 1321 model misjudged the level of satire.

1322 **Conclusion:** Models tend to underestimate satire when it is indirect or lightly veiled rather
 1323 than overt.

1324

Example 3: Satire Level

1325
 1326 **Comment:** Sure, cutting taxes for billionaires will totally fix climate change.

1327 **Original Label:** 3 (High Satire)

1328 **Predicted:** 2 (Medium Satire)

1329 **Possible model interpretation:** The model recognized some level of exaggeration but failed
 1330 to fully capture the sarcastic critique of policy decisions.

1331 **Conclusion:** Even explicit sarcasm mixed with societal critique can be partially misclassi-
 1332 fied if the context is nuanced.

1333
 1334 **Humor Attribute:** Next, we examine examples where the model confused one humor type for
 1335 another, highlighting challenges in detecting nuanced styles such as irony, wordplay, absurdity, and
 1336 satirical exaggeration.

1337

Example 1: Humor Attribute

1338
 1339 **Comment:** Ch*na's virus: the only war fought with sweatpants and Wi-Fi!

1340 **Original Label:** Absurdity

1341 **Predicted:** Irony

1342 **Possible model interpretation:** The contrast between “war” and “sweatpants/Wi-Fi” may
 1343 have appeared ironic rather than absurd due to the unexpected comparison.

1344 **Conclusion:** Extreme exaggeration can be misread as irony; distinguishing between humor
 1345 types requires understanding the intended incongruity.

1350
1351

Example 2: Humor Attribute

1352
1353**Comment:** So the gas cylinder decided to skip being cooked on and went straight for a track record?

1354

Original Label: Wordplay

1355

Predicted: Irony

1356

Possible model interpretation: The pun involving “track record” may have been interpreted as ironic commentary rather than playful language.

1357

Conclusion: Clever wordplay is often misclassified as irony, reflecting the difficulty of detecting subtle linguistic constructions.

1360

1361

Example 3: Humor Attribute

1362

1363

Comment: The new vaccination program is so good, they’ve started giving out free loyalty cards.

1364

Original Label: Absurdity

1365

Predicted: Social Commentary

1366

Possible model interpretation: The model interpreted the absurd exaggeration of “loyalty cards” as a critique of public health campaigns or as commentary on consumer culture and how it’s being applied to public services. This is a common conflation, as social commentary often uses absurdity to make its point.

1367

1368

Conclusion: Models can confuse humor that relies on extreme exaggeration (Absurdity) with Social Commentary, highlighting a challenge in distinguishing between purely fantastical humor and humor with a pointed, satirical target.

1369

1370

Key Insights:

1371

1372

1373

- Indirect and culturally embedded satire is frequently underestimated by models.
- Exaggeration vs. irony vs. absurdity distinctions are subtle and often confused, indicating the need for stronger contextual and pragmatic understanding.
- Wordplay and puns are particularly challenging, as surface-level semantic similarity may mislead models.
- Overall, error patterns highlight that deceptive humor requires not just lexical understanding, but reasoning over intent, cultural nuance, and layered meanings.

1374

1375

M DATASET DESCRIPTION SUMMARY

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

Table 10: DHD distribution across train, validation, and test sets.

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Statistic	Train	Validation	Test
Total Samples	7,200	900	900
Satire Level Distribution			
Low Satire	2,080	276	367
Moderate Satire	3,138	382	227
High Satire	1,982	242	306
Humor Attribute Distribution			
Irony	2,200	282	259
Absurdity	1,661	180	248
Social Commentary	1,215	155	106
Dark Humor	1,089	136	160
Wordplay	1,036	147	127