
Published as a conference paper at ICLR 2026

NON-CONVEX FEDERATED OPTIMIZATION UNDER
COST-AWARE CLIENT SELECTION

Xiaowen Jiang
Saarland University & CISPA∗

xiaowen.jiang@cispa.de

Anton Rodomanov
CISPA∗

anton.rodomanov@cispa.de

Sebastian U. Stich
CISPA∗

stich@cispa.de

ABSTRACT

Different federated optimization algorithms typically employ distinct client-
selection strategies: some methods communicate only with a randomly sampled
subset of clients at each round, while others need to periodically communicate
with all clients or use a hybrid scheme that combines both strategies. However,
existing metrics for comparing optimization methods typically do not distinguish
between these strategies, which often incur different communication costs in prac-
tice. To address this disparity, we introduce a simple and natural model of federated
optimization that quantifies communication and local computation complexities.
This new model allows for several commonly used client-selection strategies and
explicitly associates each with a distinct cost. Within this setting, we propose a
new algorithm that achieves the best-known communication and local complexities
among existing federated optimization methods for non-convex optimization. This
algorithm is based on the inexact composite gradient method with a carefully
constructed gradient estimator and a special procedure for solving the auxiliary
subproblem at each iteration. The gradient estimator is based on SAGA, a popular
variance-reduced gradient estimator. We first derive a new variance bound for
it, showing that SAGA can exploit functional similarity. We then introduce the
Recursive-Gradient technique as a general way to potentially improve the error
bound of a given conditionally unbiased gradient estimator, including both SAGA
and SVRG. By applying this technique to SAGA, we obtain a new estimator,
RG-SAGA, which has an improved error bound compared to the original one.

1 INTRODUCTION

Motivation. Federated Learning (FL) is a distributed training paradigm in which a central server
coordinates model updates across multiple remote clients—such as mobile devices or hospitals—
without requiring access to their local data (McMahan et al., 2017; Kairouz et al., 2021). This
framework enables collaborative learning on decentralized data, but introduces new algorithmic
challenges due to the distributed nature of optimization.

A key issue in FL is the high cost of communication between the clients and the server. Clients may
be intermittently available (Konečnỳ et al., 2016) and connected over slow or unreliable networks.
These constraints make it critical to design optimization algorithms that minimize communication
costs, particularly in settings with partial client participation.

Various federated optimization algorithms have been proposed to address communication efficiency,
each often relying on distinct client-selection strategies. Some methods communicate only with
a randomly sampled subset of clients at each round, while others need to select the set of partici-
pating clients more carefully or employ hybrid schemes that combine both strategies. While prior
works (Woodworth et al., 2018; Korhonen & Alistarh, 2021; Patel et al., 2022; Zhang et al., 2013;
Davies et al., 2020; Scaman et al., 2019) introduced a few models for federated optimization, they
do not account for the varying costs of each client-selection strategy, which can in practice differ
due to factors such as client reliability, device heterogeneity, and network conditions. Consequently,
existing metrics such as the number of communication rounds are not entirely fair for comparing
methods in such scenario.

∗CISPA Helmholtz Center for Information Security, Saarbrücken, Germany.

1

Published as a conference paper at ICLR 2026

For instance, optimization methods based on SARAH (Nguyen et al., 2017; Li et al., 2021a) have
been shown to be communication-efficient in finding an approximate stationary point (Mishchenko
et al., 2024; Khaled & Jin, 2023). This efficiency arises from the method’s ability to exploit
dissimilarity (δ) between local and global objectives. In many practical scenarios—such as statistical
or semi-supervised learning (Chayti & Karimireddy, 2022; Karimireddy et al., 2021; Khaled & Jin,
2023)—δ is often small, leading to substantial theoretical gains in communication cost. However,
SARAH-based methods require periodic full synchronization with all clients in order to compute
full gradients. This can be impractical in real-world large-scale federated systems, where clients may
be intermittently unavailable due to energy constraints, network issues, or user behavior.

In contrast to SARAH, methods such as SAG (Schmidt et al., 2017) and SAGA (Defazio et al.,
2014) are naturally better suited to the partial participation setting in FL. These methods update the
model by sampling a small subset of clients at each round and using locally stored gradients. As a
result, they avoid the need for periodic full synchronization, which makes them more compatible
with federated systems where only a fraction of clients may be available at any given time. Despite
this advantage, the existing communication complexity of such methods depends on the individual
smoothness constant Lmax (Reddi et al., 2016; Li et al., 2021b; Karimireddy et al., 2020), which can
be significantly larger than the dissimilarity constant δ. Consequently, it remains unclear whether
such methods are more communication-efficient than SARAH-based methods, since they rely on
fundamentally different client-selection strategies with different constant dependencies.

Contributions. In this work, we aim to develop optimization algorithms that are efficient in both
communication and local computation in the setting where client-selection strategies incur different
costs. Our main contributions are as follows:

• We propose a new model formalizing the concept of federated optimization algorithms and defining
information-based notions of communication and local complexities. This model associates the
non-uniform costs with different client-selection strategies, enabling fair comparisons across
optimization algorithms. (Section C)

• Within our new model, we propose a new gradient method that achieves the best communication
and local complexities among existing first-order methods for non-convex optimization. This
method is based on the inexact composite gradient method (I-CGM) with a carefully constructed
gradient estimator and a special procedure for solving auxiliary subproblem at each iteration.
(Section 6)

• Specifically, we first study the convergence of I-CGM for arbitrary gradient estimators and present
an efficient technique for solving the auxiliary subproblem. Our technique is based on running
the classical composite gradient method locally for a random number of iterations following a
geometrical distribution with a carefully chosen parameter. (Section 3)

• We then analyze the SAGA estimator and establish a new variance bound for it that only depends
on δ without requiring individual smoothness, improving upon previous results showing that
SAGA can exploit functional similarity. We also study SVRG as another example that can be
incorporated into I-CGM. (Section 4)

• Finally, we introduce the Recursive-Gradient (RG) technique as a general way to potentially
improve the error bound for a given conditionally unbiased gradient estimator, including both
SAGA and SVRG. Applying this technique to SAGA and SVRG, we obtain new RG-SAGA and
RG-SVRG gradient estimators with better error bounds compared to the original ones. (Section 5)

We discuss our results in detail in the context of related work in Appendix D and summarize them in
Table 1.

2 PROBLEM FORMULATION

We consider the following distributed minimization problem:

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)
}
, (1)

where each fi : Rd → R is a differentiable function which can be directly accessed only by client i.

Notation. We abbreviate [n] := {1, 2, . . . , n}. For a finite set A and an integer 1 ≤ m ≤ |A|,
(
A
m

)
denotes the power set comprised of all m-element subsets of A. ∥·∥ denotes the standard Euclidean

2

Published as a conference paper at ICLR 2026

Table 1: Summary of efficiency guarantees (in BigO-notation) for finding an ε-stationary point. I-CGM-RG-
SAGA achieves the best communication and local complexities. For the precise description of the problem
classes, notations, as well as the discussions of the methods, see Appendix D.

Method Communication complexity Assumption Local complexity VR type

Centralized GD CAnm
LfF

0

ε2 FS nm
LfF

0

ε2 None

FedRed (Jiang et al., 2024a) CAnm
∆1F

0

ε2 2.1 ; 2.3 L1F
0

ε2 + nm
∆1F

0

ε2 None

FedAvg (McMahan et al., 2017) CR

(ζ2
mF 0

ε4 +
√
Lmaxζ
ε3 + LmaxF

0

ε2

)
IS , BGD ζ2

mF 0

ε4 +
√
Lmaxζ
ε3 + LmaxF

0

ε2 None

FedDyn (Acar et al., 2021) CAnm + CRnm
LmaxF

0

ε2 IS unknown None

MimeMVR (Karimireddy et al., 2021) CA

(ζ2
mF 0

ε2 + ζm∆maxF
0

ε3 + ∆maxF
0

ε2

)
IS, BGD, SD Lmaxζ

2
mF 0

∆maxε2
+ ζmLmaxF

0

ε3 + LmaxF
0

ε2 None

CE-LGD (Patel et al., 2022) CR

(ζ2
mF 0

ε2 + ζm∆maxF
0

√
mε3

+ ∆maxF
0

ε2

)
IS, BGD, SD Lmaxζ

2
mF 0

∆maxε2
+ ζmLmaxF

0

√
mε3

+ LmaxF
0

ε2 None

Scaffold (Karimireddy et al., 2020) CAnm + CA
n2/3
m LmaxF

0

ε2 IS nm +
n2/3
m LmaxF

0

ε2 SAG

SABER-full (Mishchenko et al., 2024) CAnm + CA
(∆max+

√
nmδm)F 0

ε2 SD unknown PAGE

SABER-partial (Mishchenko et al., 2024) CAnm + CR
ζ2
m

ε2
∆maxF

0

ε2 SD, BGD unknown SARAH

I-CGM-RG-SVRG (ours) CAnm + (CR∆1+
√
CACRnmδm)F 0

ε2 2.1,2.2 ; 2.3 nm +
(L1+∆1+

√
CA
CR

nmδm)F 0

ε2 RG-SVRG

I-CGM-RG-SAGA (ours) CAnm + CR
(∆1+

√
nmδm)F 0

ε2 2.1,2.2 ; 2.3 nm +
(L1+∆1+

√
nmδm)F 0

ε2 RG-SAGA

norm in Rd. We use E[·] to denote the standard (full) expectation. We write Eξ[·] for the expectation
taken w.r.t. ξ. We assume that the objective function in problem (1) is bounded from below and
denote its infimum by f⋆. We denote F 0 := f(x0)− f⋆ where x0 is the initial point.

2.1 FEDERATED OPTIMIZATION ALGORITHMS AND THEIR COMPLEXITY

Due to space limitations, we defer the whole definitions of federated optimizaton algorithms and their
complexity metrics to Appendix C, which is encouraged to read before proceeding.

2.2 PROBLEM CLASS

We study optimization problem (1) in which the client objectives exhibit an underlying similarity
structure. Specifically, we use the following two assumptions that relax standard smoothness assump-
tions. The first quantifies the deviation between the delegate function f1 and f . For an index i ∈ [n],
we use hi := f − fi to denote the difference function.
Assumption 2.1. There exists ∆1 > 0 such that for any x,y ∈ Rd, we have:

∥∇h1(x)−∇h1(y)∥ ≤ ∆1 ∥x− y∥ . (2)

Alternatively, one may define a uniform dissimilarity constant ∆max (Karimireddy et al., 2020; Jiang
et al., 2024a) such that for any i ∈ [n], it holds that ∥∇hi(x)−∇hi(y)∥ ≤ ∆max ∥x− y∥. In this
work, we focus on ∆1 since it can be much smaller than ∆max.

The second assumption characterizes the average dissimilarity among all local functions.
Assumption 2.2 (Khaled & Jin (2023); Jiang et al. (2024b); Lin et al. (2024); Jiang et al. (2024a);
Takezawa et al. (2025)). There exists δ > 0 such that for any x,y ∈ Rd, we have:

1

n

n∑
i=1

∥∇hi(x)−∇hi(y)∥2 ≤ δ2 ∥x− y∥2 . (3)

The left-hand side of (3) is equal to 1
n

∑n
i=1∥∇fi(x) − ∇fi(y)∥2 − ∥∇f(x) − ∇f(y)∥2, which

can be interpreted as the variance of ∇fi(x)−∇fi(y) where i is selected uniformly at random. If
each fi has Lmax-Lipschitz gradient, then we have ∆1 ≤ 2Lmax and δ ≤ Lmax. Therefore, both
conditions are weaker than assuming each fi is Lipschitz-smooth. We refer to discussions in (Jiang
et al., 2024b) for more properties and details.

The previous two quantities δ and ∆1 will only affect the communication complexity of our algorithms,
while the local complexity additionally depends on L1 which is defined as follows.
Assumption 2.3. There exists L1 > 0 such that for any x,y ∈ Rd, we have:

∥∇f1(x)−∇f1(y)∥ ≤ L1∥x− y∥ . (4)

3

Published as a conference paper at ICLR 2026

3 INEXACT COMPOSITE GRADIENT METHOD

Inexact Composite Gradient Method. We first introduce the Inexact Composite Gradient Method
(I-CGM), which serves as the backbone of our approach. Consider the composite reformulation of
the problem 1: f = f1 + [f − f1] = f1 + h1. Let λ > 0 and x0 ∈ Rd be the initial point. At each
iteration t ≥ 0, I-CGM computes an approximation of the gradient gt ≈ ∇f(xt) and defines the
next iterate as:

xt+1 ≈ argmin
x∈Rd

{
Ft(x) := f1(x) + h1(x

t) + ⟨gt −∇f1(xt),x− xt⟩+ λ

2
∥x− xt∥2

}
,

(I-CGM)
where both the inaccuracy in solving the subproblem and the approximation error (defined below) are
assumed to be sufficiently small (to be specified later):

Ft(x
t+1) ≤ Ft(x

t), et := ∥∇Ft(x
t+1)∥, Σ̂2

t :=
∥∥gt −∇f(xt)

∥∥2 . (5)

In the following statement, we provide the general convergence guarantee for I-CGM. The proof can
be found in Section F.1 in the Appendix.
Theorem 3.1. Let I-CGM be applied to Problem (1). Suppose Assumption 2.1 and condition (5) are
satisfied. Let λ > ∆1. Then for any T ≥ 1, we have:

T∑
t=1

∥∇f(xt)∥2 + (λ+∆1)
2

T∑
t=1

∥xt − xt−1∥2

≤ 12(λ+∆1)
2

λ−∆1
F 0 +

(12(λ+∆1)
2

(λ−∆1)2
+ 4

) T−1∑
t=0

Σ̂2
t + 4

T−1∑
t=0

e2t .

We see that each subproblem can be solved inexactly without affecting the convergence rate (up to
absolute constants), provided that the error term

∑T−1
t=0 e2t is of the same order as the first two terms

on the right-hand side. Moreover, if the approximation errors
∑T−1

t=0 Σ̂2
t can also be bounded by the

first two terms on the left-hand side, then the convergence of the gradient norm is guaranteed. If there
exists randomness either in solving the subproblems or in constructing the estimators, then these
conditions are required to hold in expectation. Specifically, we obtain the following corollary.
Corollary 3.2. Following the same settings as in Theorem 3.1. If the inaccuracies in solving the
subproblems satisfy:

Ft(x
t+1) ≤ Ft(x

t),

T−1∑
t=0

E[e2t] ≤
(λ+∆1)

2

λ−∆1
F 0 +

T−1∑
t=0

Σ2
t , (6)

and the approximation errors satisfy:(12(λ+∆1)
2

(λ−∆1)2
+ 8

) T−1∑
t=0

Σ2
t ≤ 1

2

T∑
t=1

G2
t + (λ+∆1)

2
T∑

t=1

χ2
t , (7)

then for any T ≥ 1, we have:

E[∥∇f(x̄T)∥2] ≤ 32(λ+∆1)
2

λ−∆1

F 0

T
.

where G2
t := E[∥∇f(xt)∥2], χ2

t := E[∥xt − xt−1∥2], Σ2
t := E[∥gt − ∇f(xt)∥2], and x̄T is

uniformly sampled from (xt)Tt=1.

When gt is the exact gradient ∇f(xt) for all t ≥ 0, then I-CGM is reduced to CGM that is widely
used for solving Problem (1), particularly because of its ability to exploit functional similarity and
reduce communication costs (Hendrikx et al., 2020; Jiang et al., 2024a; Lin et al., 2024; Khaled &
Jin, 2023; Jiang et al., 2024b; Mishchenko et al., 2024; Kovalev et al., 2022). Indeed, if λ ≃ ∆1

and the accuracy condition (6) is satisfied, then E[∥∇f(x̄T)∥2] ≤ ε2 after T = O(∆1F
0

ε2) iterations.

4

Published as a conference paper at ICLR 2026

In contrast, the iteration complexity of Gradient Descent depends on Lf which can be larger than
∆1 (2.1) when f1 is similar to f . However, CGM has sub-optimal communication complexity
in terms of n. Indeed, let us assume, for simplicity, that m = 1. Then each iteration involves:
1) computing the full gradient ∇f(xt), which requires n sequential communication rounds using
A-CSS, and 2) an additional round using D-CSS for solving the subproblem. Consequently, the total
number of communication rounds with A-CSS and D-CSS is NA = nT and ND = T , respectively.
The communication complexity of CGM is thus: CANA + ND = CAnT + T = O(CAnT) =

O(CA
n∆1F

0

ε2). This linear dependency on n can be prohibitive in large-scale federated learning
settings and is worse than the complexity of stochastic methods such as PROXSARAH (Pham et al.,
2020), SPIDERBOOST (Wang et al., 2019), and PAGE (Li et al., 2021a), each of them achieving:
O(CA

√
nL̄F 0

ε2), although they rely on a slightly different assumption of average smoothness 1.
Moreover, the dependence on CA

ε2 can become much larger in scenarios where using A-CSS is costly.

Solving Auxiliary Subproblems. In this section, we assume that f1 is L1-smooth and study how to
achieve the accuracy condition (6). Recall that each subproblem Ft consists of a smooth function
ϕ(x) = f1(x) and a quadratic regularizer ψt(x) = ⟨gt −∇f1(xt),x− xt⟩ + λ

2 ∥x− xt∥2. Let
us solve it using the standard composite gradient method (CGM), which proceeds as follows: For
k = 0, 1, ...,Kt − 1,

yt
k+1 = argmin

y∈Rd

{
ϕ(yt

k) +
〈
∇ϕ(yt

k),y − yt
k

〉
+
L1

2

∥∥y − yt
k

∥∥2 + ψt(y)
}

=
1

λ+ L1

(
L1y

t
k + λxt +∇f1(xt)− gt −∇f1(yt

k)
)
.

(8)

Each CGM step monotonically decreases the function value of Ft (see Lemma F.2). Therefore, we
can initialize yt

0 = xt and choose xt+1 to be a certain iterate of (yk)
K
k=0. Then the condition on

Ft(x
t+1) ≤ Ft(x

t) is satisfied. We next study the number of local steps Kt required to achieve the
second inequality in condition (6).

Fixed Number of Local Steps. Let Kt ≡ K ≥ 1 be a constant number and let xt+1 be the
iterate with the minimum gradient norm of Ft among {yt

k}Kk=1. We use the notation xt+1 =
CGMconst(λ,K,x

t,gt) for this process.

The goal is to upper bound
∑T−1

t=0 e2t where et := ∥∇Ft(x
t+1)∥. For each t ≥ 0, we have:

e2t ≲ L1(Ft(y
t
0)−Ft(y

t
K))

K ≲
L1(f(x

t)−f(ytK)+ 1
λ Σ̂

2
t

K (see Lemma F.2 and F.1). However, since yt
K and

xt are not necessarily the same, we cannot telescope f(xt)−f(yt
K) when we sum up e2t . Instead, the

”best” we can do is to upper bound f(xt)− f(yt
K) by f(xt)− f⋆. Then by further upper-bounding

the summation of
∑T−1

t=0 [f(xt)− f⋆] in terms of F 0 and Σ̂2
t , it can be shown that we need K ≃ L1T

λ
local steps to achieve the desired accuracy condition (6). The proof can be found in Section F.2.1.
Lemma 3.3. Consider I-CGM with xt+1 = CGMconst(λ,K,x

t,gt) under Assumption 2.1 and 2.3.
Let T ≥ 1 be the fixed number in condition (6). Then by choosing λ > ∆1 and K = KT := ⌈ 8L1T

λ−∆1
⌉,

the accuracy condition (6) is satisfied.

Random Number of Local Steps. We now allow the number of local steps Kt to follow a geometric
distribution—a common technique used to derive last-iterate recurrences (Allen-Zhu, 2018b). When
applied to solve the subproblems in I-CGM, this approach yields an algorithm that is efficient in local
computation.

Let us consider CGM (8) with Kt = K̂t + 1 iterations where K̂t ∼ Geom(p), that is P(K̂t = k) =
(1 − p)kp for each k ∈ {0, 1, 2, ...}. The solution is set to be xt+1 = yKt . We use the notation
xt+1 = CGMrand(λ, K̂t,x

t,gt) for this process.

In contrast to the convergence rate of using a deterministic K, we can now show that EK̂t
[e2t] ≲

L2
1p

L1+λ EK̂t
[Ft(x

t) − Ft(x
t+1)]. Using EK̂t

[Ft(x
t) − Ft(x

t+1)] ≲ EK̂t
[f(xt) − f(xt+1) + 1

λ Σ̂
2
t],

we get the telescoping term E[f(xt)− f(xt+1)] after passing to the full expectation, which allows to
improve the total amount of local computations.

1∀x,y ∈ Rd, it holds that 1
n

∑n
i=1 ∥∇fi(x)−∇fi(y)∥2 ≤ L̄2 ∥x− y∥2 and we have δ ≤ L̄.

5

Published as a conference paper at ICLR 2026

Lemma 3.4. Consider I-CGM with xt+1 = CGMrand(λ, K̂t,x
t,gt) where K̂t ∼ Geom(p) under

Assumption 2.1 and 2.3. Let T ≥ 1 be the fixed number in condition (6). Then by choosing λ > ∆1

and p = λ−∆1

8(L1+λ) < 1, the accuracy condition (6) is satisfied.

To achieve the accuracy condition (6), the number of local first-order oracle queries required by using
the random K̂t at each iteration t in expectation is EK̂t

[Kt] =
1
p ≃ L1

λ , which improves upon the
previous result of L1T

λ obtained by using a fixed number of K.

So far, we have studied how to solve the subproblems of I-CGM such that the accuracy condition (6)
is satisfied. We now turn to constructing the gradient estimator gt that has the desired approximation
error (7). Meanwhile, we aim to improve both the dependence on n and CA in the communication
complexity of CGM. The main strategy is to design a gradient estimator whose approximation error
depends only on the similarity constant δ while avoiding periodic full synchronizations.

4 BASIC APPLICATION EXAMPLES: SAGA + SVRG

In this section, we present two algorithms that maintain an approximation of the gradient, Gt ≈
∇f(xt) for t ≥ 0. Each algorithm starts with an initial point x0. Then at each iteration t ≥ 0, Gt is
computed first, after which the next iterate xt+1 is computed. In what follows, for a set S ∈

(
[n]
m

)
and

m ∈ [n], we use fS := 1
m

∑
i∈S fi to denote the average function over this set.

For convenience of presentation, we use the following notations throughout the rest of the paper:

nm :=
n

m
, qm :=

n−m

n− 1
, and δ2m :=

qm
m
δ2 . (9)

SAGA Estimator. SAGA estimator is a variance-reduction technique based on incremental gradient
updates, originally designed for centralized finite-sum minimization (Defazio et al., 2014). In this
section, we adapt this estimator to the federated optimization scenario and study its properties.

The SAGA estimator defines:

G0 = ∇f(x0), G1 = ∇f(x1), Gt = bt
St − bt−1

St
+ bt−1, t ≥ 2 , (SAGA)

where St ∈
(
[n]
m

)
is uniformly sampled at random without replacement, bt

St
:= 1

m

∑
i∈St

bt
i,

bt−1
St

:= 1
m

∑
i∈St

bt−1
i , bt := 1

n

∑n
i=1b

t
i, and for any i ∈ [n], bt

i is recurrently defined as:

b0
i = ∇fi(x0), b1

i = ∇fi(x1), bt
i =

{
∇fi(xt) if i ∈ St,

bt−1
i otherwise,

, t ≥ 2 .

We have the following recurrence for bt (the derivation can be found in Lemma F.3):

bt = bt−1 +
1

nm
[∇fSt(xt)− bt−1

St
], t ≥ 2 . (10)

Implementation. At the beginning, when t = 0 and 1, each client i = 1, . . . , n computes ∇fi(xt)
and initializes bt

i and sends the result to the server; the server then aggregates these results computing
∇f(xt) to initialize Gt and bt. This requires two full synchronizations (2⌈nm⌉ communications
rounds using A-CSS). At each iteration t ≥ 2, the server contacts the randomly selected set of
clients St using R-CSS and sends xt to them. Each client i ∈ St computes bt

i = ∇fi(xt) and sends
bt
i−bt−1

i back to the server. The server then updates bt according to (10) and constructs the gradient
estimator Gt using the stored bt−1 according to (SAGA).

Each client i thus needs to store a single vector bt
i. On the server side, only the aggregated vector bt

and the iterate xt need to be maintained. The memory overhead of the SAGA estimator is thus very
small in the federated learning setting, similarly to the SAG estimator (Schmidt et al., 2017) used in
SCAFFOLD (Karimireddy et al., 2020).

Properties of SAGA. It is not difficult to show that Gt is a conditionally unbiased estimator of
∇f(xt), namely, ESt [G

t] = ∇f(xt). We next present a new variance bound for SAGA that is
controlled by the constant δ. The proof can be found in Section F.3.1.

6

Published as a conference paper at ICLR 2026

Lemma 4.1. Consider the SAGA estimator (SAGA) under Assumption 2.2. Then for any t ≥ 2,
ESt [G

t] = ∇f(xt) and for any T ≥ 1, we have :

T∑
t=0

σ2
t ≤ 2nmqm

m
G2

1 +
nm − 1 +

√
n2m − nm

(n− 1)

T−1∑
t=2

G2
t + 4n2mδ

2
m

T∑
t=2

χ2
t ,

where σ2
t := ES[t]

[∥Gt−∇f(xt)∥2], G2
t = ES[t−1]

[∥∇f(xt)∥2], χ2
t := ES[t−1]

[∥xt−xt−1∥2], and
S[t] := (S2, ..., St).

Note that this variance bound depends on G2
1, . . . , G

2
T−1 and χ2

2, . . . , χ
2
T , which aligns with the

terms on the right-hand side of the desired error bound (7). However, the coefficient in front of G2
1

in this bound can be larger than 1, whereas (7) requires it to be strictly less than 1. Consequently,
the requirement is not met and we cannot directly incorporate the SAGA estimator into I-CGM by
setting gt = Gt. We will show in Section 5 that this error bound can be significantly improved by
using the recursive gradient estimation technique.
Remark 4.2. Instead of computing the exact gradients ∇f(x0) and ∇f(x1) at the beginning which
requires full synchronizations, it is possible to start with an approximation G0 ≈ ∇f(x0). This
requires only one communication round using R-CSS. The resulting communication-complexity
estimate will now additionally depend on the inexactness of the initial approximation but this strategy
often works well in practice (Figure J.1). See Appendix G for detailed discussions.

SVRG Estimator. Another possible choice of the gradient estimator is the SVRG estimator (Johnson
& Zhang, 2013). There are different variants of SVRG, and here we consider the so-called loopless-
SVRG estimator (Kovalev et al., 2020) for simplicity.

The SVRG estimator defines:

G0 = ∇f(x0), Gt = ∇fSt(xt) +∇f(wt)−∇fSt(wt), t ≥ 1 , (SVRG)

where St ∈
(
[n]
m

)
is uniformly sampled at random without replacement,

w0 = x0, wt =

{
xt if ωt = 1,

wt−1 otherwise,
t ≥ 1 ,

and ωt is a Bernoulli random variable with parameter pB , i.e., P (ωt = 1) = pB ∈ (0, 1).

Properties: It is not difficult to show that the SVRG estimator Gt is a conditionally unbiased
estimator of ∇f(xt), namely, ESt [G

t] = ∇f(xt). Moreover, the variance is controlled by δ. The
proof can be found in Section F.3.2 where the implementation of the estimator is also provided.
Lemma 4.3. Consider the SVRG estimator (SVRG) under Assumption 2.2. Then for any t ≥
1, ESt [G

t] = ∇f(xt) and for any T ≥ 1, we have:
∑T

t=0 σ
2
t ≤ 4δ2m

p2
B

∑T
t=1 χ

2
t , where σ2

t :=

ESt,ω[t]
[∥Gt −∇f(xt)∥2], χ2

t := Eω[t−1]
[∥xt − xt−1∥2], and ω[t] := (ω1, ..., ωt).

We can incorporate the SVRG estimator into I-CGM by setting gt = Gt. This requires setting
pB ≃ 1

nm
and λ ≃ ∆1 + nmδm to achieve the error condition (7). The resulting communication

complexity of the method is O(CAnm+ (CR∆1+CAnmδm)F 0

ε2), which still has a linear dependence on
nm. (See Theorem F.4 with the proof that the reader can inspect if interested). Note that unbiasedness
is not needed to incorporate SVRG directly into I-CGM. However, it becomes necessary later for
the recursive gradient technique, which we discuss in the next section.

5 RECURSIVE GRADIENT ESTIMATOR + EXAMPLES (SAGA AND SVRG)

In this section, we present a general formular of the recursive gradient estimator that can potentially
improve the error bound for a given conditionally unbiased gradient estimator Gt ≈ ∇f(xt).
Formally, we consider the following setting.
Assumption 5.1. For any t ≥ 0, it holds that: 1) St is independent of x0, . . . ,xt+1, G0, . . . ,Gt−1;
2) ESt [G

t] = ∇f(xt).

7

Published as a conference paper at ICLR 2026

The recursive gradient estimator (RG) defines:

g0 = ∇f(x0), gt+1 = (1− β)gt + βGt +∇fSt(xt+1)−∇fSt(xt), t ≥ 0 , (RG)

where β ∈ (0, 1] and St ∈
(
[n]
m

)
is uniformly sampled at random without replacement.

Note that the indexing here differs from the previous ones. The algorithm starts with an initial point
x0. At each iteration t ≥ 0, the estimator gt ≈ ∇f(xt) is computed first and it depends only on
Gt−1 and St−1. After that, the next iterate xt+1 is computed. Therefore, xt+1 is independent from
St while previously it was dependent on it (if we use the SAGA/SVRG estimator).

Inspired by previous works, the expression of gt incorporates both recursive gradient update and
momentum (Chayti et al., 2025; Gao et al., 2024). This expression unifies several existing methods:
When β = 0, the estimator reduces to the SARAH update rule (Nguyen et al., 2017). When Gt

is replaced with the SAGA estimator, then gt recovers the structure of ZEROSARAH (Li et al.,
2021b). When Gt = ∇fSt(xt+1) and ∇fSt(xt+1) − ∇fSt(xt) is multiplied by 1 − β, then it
becomes STORM (Cutkosky & Orabona, 2019). In our formulation, Gt is a general similarity-aware
estimator of ∇f(xt) that satisfies Assumption 5.1, allowing us to flexibly instantiate the framework
with various variance-reduction techniques.

For instance, we can combine RG with SAGA or SVRG. We refer to the resulting estimators as
RG-SAGA and RG-SVRG. Note that St in the formulas for SAGA and SVRG is exactly the same
random index set that is used in the RG – they share the same randomness for the sake of efficiency.

Implementation. At the beginning, each client i = 1, . . . , n computes ∇fi(x0) and sends the result
to the server; the server then aggregates these results, computing ∇f(x0) to initialize g0. This
requires one full synchronization. Then x1 is computed based on g0. At each iteration t ≥ 0, the
server uses R-CSS which generates a random subset St. For RG-SAGA, the server sends xt+1, xt

to the clients in St. Each client i ∈ St updates bt
i = ∇fi(xt) and sends ∇fi(xt+1) along with

bt
i − bt−1

i (when t ≥ 2) or bt
i (when t = 1) to the server. For RG-SVRG, the server sends xt+1, xt

and wt to the clients which then return the gradients evaluated at these three points. If ωt = 1, the
server additionally computes the new gradient ∇f(wt) performing one full synchronization. After
receiving all the vectors, the server can compute ∇fSt(xt+1), ∇fSt(xt), Gt and gt+1.

For RG-SAGA, each client i needs to store a single vector bt
i and the server needs to maintain two

points xt+1 and xt, and two vectors bt and gt. For RG-SVRG, clients are stateless and the server is
required to maintain three points xt+1, xt, wt and one vector ∇f(wt).

Lemma 5.2 (Error bound for RG). Consider the RG estimator (RG) under Assumptions 5.1 and 2.2.
Then for any T ≥ 1, we have:

∑T
t=0 Σ

2
t ≤ 2β

2−β

∑T−1
t=0 σ2

t +
2δ2m

2β−β2

∑T
t=1 χ

2
t . where Σ2

t :=

ES[t−1]
[∥gt −∇f(xt)∥2], σ2

t := ES[t]
[∥Gt −∇f(xt)∥2], χ2

t := ES[t−2]
[∥xt −xt−1∥2], and S[t] :=

(S0, . . . , St).

The proof can be found in Section F.4.1. We next show that the error bound of both SAGA and
SVRG can be improved by combining them with RG and adjusting the parameter β. For instance, by
combining Lemma 5.2 and Lemma 4.1, we obtain the following result for RG-SAGA.

Corollary 5.3. Consider the RG-SAGA estimator under Assumptions 5.1 and 2.2. Then for any
T ≥ 1, it holds that:

T∑
t=0

Σ2
t ≤ 4βnmqm

(2− β)m
G2

1 +
2β(nm − 1 +

√
n2m − nm)

(2− β)(n− 1)

T−1∑
t=2

G2
t +

8β2n2mδ
2
m + 2δ2m

2β − β2

T∑
t=1

χ2
t ,

where Σ2
t := ES[t−1]

[∥gt − ∇f(xt)∥2], G2
t := ES[t−2]

[∥∇f(xt)∥2], χ2
t := ES[t−2]

[∥xt − xt−1∥2]
and S[t] := (S0, . . . , St).

By choosing β ≃ 1
nm

, we get
∑T

t=0 Σ
2
t ≲ qm

m G2
1 +

1
n

∑T−1
t=2 G2

t + nmδ
2
m

∑T
t=1 χ

2
t . Compared with

the original variance bound for SAGA (Lemma 4.1), the bound with RG achieves an improvement by
a factor of nm.

The error bound for the SVRG estimator can be improved in a similar way.

8

Published as a conference paper at ICLR 2026

Corollary 5.4. Consider the RG-SVRG estimator under Assumptions 5.1 and 2.2. Then for any T ≥
1, it holds that:

∑T
t=0 Σ

2
t ≤ 8β2δ2m/p2

B+2δ2m
2β−β2

∑T
t=1 χ

2
t , where Σ2

t := ES[t−1],ω[t−1]
[∥gt −∇f(xt)∥2],

χ2
t := ES[t−2],ω[t−2]

[∥xt − xt−1∥2], S[t] := (S0, . . . , St) and ω[t] := (ω1, . . . , ωt).

Compared with the original variance bound for SVRG (Lemma 4.3), the new bound achieves an
improvement by a factor of 1/pB by choosing β ≃ pB .

We can now incorporate both enhanced estimators into I-CGM. It can be shown that the iterates
{xt}∞t=0 generated by I-CGM-RG-SAGA or I-CGM-RG-SVRG and the corresponding sequence
{Gt}∞t=0 satisfy Assumption 5.1. (See Lemma F.5 and F.6).

6 COMMUNICATION AND LOCAL COMPLEXITY OF I-CGM-RG

We are ready to establish the complexity of I-CGM equipped with the RG-SAGA and RG-SVRG
estimator. We first present the result for RG-SAGA. The proof can be found in Section F.5.1.

Theorem 6.1 (I-CGM-RG-SAGA). Let I-CGM be applied to Problem 1 under Assumptions 2.1, 2.2
and 2.3, where xt+1 = CGMrand(λ, K̂t,x

t,gt) with K̂t ∼ Geom(p) and gt is generated by the RG-
SAGA estimator. Then by choosing λ = 3∆1+113

√
nmδm, β = 1

112nm
and p = λ−∆1

8(L1+λ) , after T =

⌈ (256(∆1+38
√
nmδm)F 0

ε2 ⌉ iterations, we have E[∥∇f(x̄T)∥2] ≤ ε2, where x̄T is is uniformly sampled

from (xt)Tt=1. The communication complexity is at most 2CA⌈nm⌉+(CR+1)⌈ (256(∆1+38
√
nmδm)F 0

ε2 ⌉
and the local complexity is bounded by 14 + 2⌈nm⌉+ 512(7∆1+283

√
nmδm+2L1)F

0

ε2 + 4L1

∆1+28
√
nmδm

.

The communication complexity of I-CGM-RG-SAGA is of order CAnm +CR
∆1+(

√
nmδm)F 0

ε2 and

the local complexity is of order nm +
(∆1+

√
nmδm+L1)F

0

ε2 when (∆1+
√
nmδm)F 0

ε2 ≳ 1. The nm term
comes from nm sequential rounds with A-CSS for computing the full gradients in the beginning.

Comparison: RG-SVRG Estimator. The communication complexity of I-CGM-RG-SVRG is
O
(
CAnm+ (CR∆1+

√
CACRnmδm)F 0

ε2

)
, where CA also affects the term involving ε (see Appendix F.6

for details and the result of the local complexity).

7 NUMERICAL EXPERIMENTS

In this section, we verify the theory of the proposed methods in numerical experiments. We set
CA = CR = 1 in the definition of communication complexity for all the experiments. We choose
this case to demonstrate that even when A-CSS and R-CSS are equally cheap, our proposed methods
already outperform several commonly used algorithms. (The study of the scenario when CA > CR

can be found in Appendix J.1.1.)

Quadratic minimization with log-sum penalty. Consider the problem of f(x) = 1
n

∑n
i=1fi(x)

with fi(x) := 1
b

∑b
j=1

1
2 ⟨Ai,j(x−bi,j),x−bi,j⟩+

∑d
k=1 log

(
1+α|xk|

)
, where α > 0, bi,j ∈ Rd,

Ai,j ∈ Rd×d is a diagonal matrix, and ·k is an indexing operation of a vector. We set α = 10, b = 5,
n = 100 and d = 1000. Each coordinate of bi,j is uniformly sampled from [0, 10]. To generate Ai,j ,
we first sample a diagonal matrix Ā with entries uniformly distributed in [0, 110], and then add bn
diagonal noise matrices whose entries are sampled from [0, 18]. Each resulting Ai,j is clipped to the
interval [1, 100] on the diagonal, and some eigenvalues are further set close to zero. Consequently, the
dataset satisfies 0 ⪯ Ai,j ⪯ 100I for any i, j, with ∆1 ≈ δ ≈ 5 and Lmax ≈ 100. We set m =

√
n.

For I-CGM-RG, we set p = δ
L , λ =

√
n

m δ+∆1, η = 2Lmax and β = m
n . We compare two proposed

algorithms against SCAFFOLD (Karimireddy et al., 2020), FEDAVG (McMahan et al., 2017) (with
sampling), SABER-FULL (Mishchenko et al., 2024) (with PAGE), SABER-PARTIAL (Mishchenko
et al., 2024) (only compute full gradient once) and GD (running directly on f). For SVRG-based
methods, the expected number of communication rounds at each iteration is roughly m

n n+m, which
is twice as large as other methods. From Figure 1, we observe that: 1) I-CGM-RG-SAGA is the
most efficient in both communication and local computation. 2) SCAFFOLD cannot fully exploit
δ-similarity as its local complexity is comparable to GD (the theoretical local complexity of both

9

Published as a conference paper at ICLR 2026

0 100 200 300 400 500 600 700
Communication complexity

10 1

100

101

102

103

104

105

||
f(x

)||

0 2000 4000 6000 8000 10000 12000 14000
Local complexity

10 1

100

101

102

103

104

105

||
f(x

)||

Quadratics minimization with log-sum penalty (m = 10, n = 100)

I-CGM-RG-SVRG (ours) Scaffold I-CGM-RG-SAGA (ours) FedAvg SABER-partial SABER-full GD

Figure 1: Comparisons of different algorithms for solving the quadratic minimization problems with non-convex
log-sum penalty.

0 50 100 150 200 250 300
Communication complexity

10 2

10 1

||
f(x

)||

mushrooms (m=1,n=10)

0 50 100 150 200 250 300
iterations

10 3

10 2

10 1

100

va
lu

e

Second-order Similarity

local smoothness
average similarity

0 100 200 300 400 500
Communication complexity

10 1

100

101

||
f(x

)||

duke (m=1,n=10)

0 100 200 300 400 500
iterations

10 2

10 1

100

101

102

103

va
lu

e

Second-order Similarity

local smoothness
average similarity

I-CGM-RG-SAGA (ours) I-CGM-RG-SVRG (ours) Scaffold FedAvg SABER-full SABER-partial Scaffnew

Figure 2: Comparisons of different algorithms on two LIBSVM datasets using logistic loss with non-convex
regularizer.

methods depends on Lmax). Finally, I-CGM-RG-SAGA with different initialization strategies can
be found in Figure J.1.

Logistic regression with nonconvex regularizer. We now experiment with the binary clas-
sification task on two real-world LIBSVM datasets (Chang & Lin, 2011). We use the
standard regularized logistic loss: f(x) = 1

n

∑n
i=1fi(x) with fi(x) := n

M

∑mi

j=1 log(1 +

exp(−yi,j ⟨ai,j ,x⟩)) + α
∑d

k=1
[x]2k

1+[x]2k
where α > 0, (ai,j , yi,j) ∈ Rd+1 are feature and la-

bels and M :=
∑n

i=1mi is the total number of data points. We use m = 1 and n =

10. We plot the local L1 and δ by computing
∥∥∇f1(xt)−∇f1(xt+1)

∥∥ / ∥∥xt − xt+1
∥∥ and√

1
n

∑n
i=1 ∥∇hi(xt)−∇hi(xt+1)∥2 / ∥xt − xt+1∥2 along the iterates of I-CGM-RG-SAGA.

From Figure 2, we observe that δ is much smaller than L1 for the mushrooms dataset, while
being comparable for the duke dataset. However, for both cases, I-CGM-RG-SAGA remains the
most efficient in communication complexity.

Deep learning tasks. We defer the study of neural network training to Appendix J, where more
experiments and details can be found.

8 CONCLUSION

We introduced a new simple model for comparing centralized distributed optimization algorithms,
where different client-selection strategies are associated with non-uniform costs. Within this model,
we developed a new family of algorithm based on inexact composite gradient method with recursive
gradient estimator. This design enables us to exploit functional similarity among clients while
supporting partial client participation—a key requirement in practical FL systems. It is efficient when
full synchronizations (requiring sequential communications with all clients) are costly compared
to client sampling. The key technical contribution of this work is a new variance bound for the
SAGA estimator, which depends on the functional similarity constant δ rather than individual
smoothness. This allows the SAGA-based variant of I-CGM-RG to outperform the previously best-
known communication complexity of SARAH-based methods. Limitations and future extensions are
discussed at the end of the Appendix.

10

Published as a conference paper at ICLR 2026

REFERENCES

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N Whatmough, and Venkatesh
Saligrama. Federated Learning Based on Dynamic Regularization. arXiv preprint arXiv:2111.04263, 2021.

Zeyuan Allen-Zhu. Katyusha x: Practical Momentum Method for Stochastic Sum-of-Nonconvex Optimization.
arXiv preprint arXiv:1802.03866, 2018a.

Zeyuan Allen-Zhu. Katyusha x: Practical Momentum Method for Stochastic Sum-of-Nonconvex Optimization.
arXiv preprint arXiv:1802.03866, 2018b.

Yossi Arjevani and Ohad Shamir. Communication Complexity of Distributed Convex Learning and Optimization.
Advances in neural information processing systems, 28, 2015.

Yossi Arjevani, Amit Daniely, Stefanie Jegelka, and Hongzhou Lin. On the complexity of minimizing convex
finite sums without using the indices of the individual functions. arXiv preprint arXiv:2002.03273, 2020.

Mark Braverman, Ankit Garg, Tengyu Ma, Huy L Nguyen, and David P Woodruff. Communication Lower
Bounds for Statistical Estimation Problems via a Distributed Data Processing Inequality. In Proceedings of
the forty-eighth annual ACM symposium on Theory of Computing, pp. 1011–1020, 2016.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library for Support Vector Machines. ACM Trans-
actions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at http://
www.csie.ntu.edu.tw/~cjlin/libsvm.

El Mahdi Chayti and Sai Praneeth Karimireddy. Optimization with Access to Auxiliary Information. arXiv
preprint arXiv:2206.00395, 2022.

El Mahdi Chayti, Nikita Doikov, and Martin Jaggi. Improving Stochastic Cubic Newton with Momentum.
In Proceedings of The 28th International Conference on Artificial Intelligence and Statistics, volume 258
of Proceedings of Machine Learning Research, pp. 1441–1449. PMLR, 03–05 May 2025. URL https:
//proceedings.mlr.press/v258/chayti25a.html.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. EMNIST: Extending MNIST to
Handwritten Letters. In 2017 international joint conference on neural networks (IJCNN), pp. 2921–2926.
IEEE, 2017.

Ashok Cutkosky and Francesco Orabona. Momentum-Based Variance Reduction in Non-Convex SGD. Advances
in neural information processing systems, 32, 2019.

Peter Davies, Vijaykrishna Gurunathan, Niusha Moshrefi, Saleh Ashkboos, and Dan Alistarh. New Bounds for
Distributed Mean Estimation and Variance Reduction. arXiv preprint arXiv:2002.09268, 2020.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A Fast Incremental Gradient Method with
Support for Non-Strongly Convex Composite Objectives. Advances in neural information processing systems,
27, 2014.

Yuan Gao, Anton Rodomanov, and Sebastian U. Stich. Non-Convex Stochastic Composite Optimization with
Polyak Momentum. In Proceedings of the 41st International Conference on Machine Learning, ICML’24.
JMLR.org, 2024.

Yuan Gao, Yuki Takezawa, and Sebastian U Stich. A Bias Correction Mechanism for Distributed Asynchronous
Optimization. Transactions on Machine Learning Research, 2025. ISSN 2835-8856. URL https:
//openreview.net/forum?id=8doMbaah0s.

Ankit Garg, Tengyu Ma, and Huy L Nguyen. On Communication Cost of Distributed Statistical Estimation and
Dimensionality. Advances in Neural Information Processing Systems, 27, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016. doi:
10.1109/CVPR.2016.90.

Hadrien Hendrikx, Lin Xiao, Sebastien Bubeck, Francis Bach, and Laurent Massoulie. Statistically Precondi-
tioned Accelerated Gradient Method for Distributed Optimization. In International conference on machine
learning, pp. 4203–4227. PMLR, 2020.

Xiaowen Jiang, Anton Rodomanov, and Sebastian U Stich. Federated Optimization with Doubly Regularized
Drift Correction. In Proceedings of the 41st International Conference on Machine Learning, volume
235 of Proceedings of Machine Learning Research, pp. 21912–21945. PMLR, 21–27 Jul 2024a. URL
https://proceedings.mlr.press/v235/jiang24e.html.

11

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://proceedings.mlr.press/v258/chayti25a.html
https://proceedings.mlr.press/v258/chayti25a.html
https://openreview.net/forum?id=8doMbaah0s
https://openreview.net/forum?id=8doMbaah0s
https://proceedings.mlr.press/v235/jiang24e.html

Published as a conference paper at ICLR 2026

Xiaowen Jiang, Anton Rodomanov, and Sebastian U Stich. Stabilized Proximal-Point Methods for Federated
Optimization. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024b.
URL https://openreview.net/forum?id=WukSyFSzDt.

Rie Johnson and Tong Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Re-
duction. In Advances in Neural Information Processing Systems, volume 26. Curran Associates,
Inc., 2013. URL https://proceedings.neurips.cc/paper_files/paper/2013/file/
ac1dd209cbcc5e5d1c6e28598e8cbbe8-Paper.pdf.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D’Oliveira, Salim El
Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons,
Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu,
Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz
Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer
Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang
Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma,
Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances and Open
Problems in Federated Learning. Foundations and Trends® in Machine Learning, 14(1–2):1–210, 2021. URL
https://arxiv.org/pdf/1912.04977.pdf.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian U. Stich, and
Ananda Theertha Suresh. SCAFFOLD: Stochastic Controlled Averaging for Federated Learning. In Interna-
tional conference on machine learning, pp. 5132–5143. PMLR, 2020.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian U. Stich, and
Ananda Theertha Suresh. Breaking the Centralized Barrier for Cross-Device Federated Learning. In Advances
in Neural Information Processing Systems, 2021.

Ahmed Khaled and Chi Jin. Faster Federated Optimization under Second-Order Similarity. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=ElC6LYO4MfD.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave Bacon.
Federated Learning: Strategies for Improving Communication Efficiency. arXiv preprint arXiv:1610.05492,
2016.

Janne H Korhonen and Dan Alistarh. Towards Tight Communication Lower Bounds for Distributed Optimisation.
Advances in Neural Information Processing Systems, 34:7254–7266, 2021.

Dmitry Kovalev, Samuel Horváth, and Peter Richtárik. Don’t Jump Through Hoops and Remove Those Loops:
SVRG and Katyusha are Better Without the Outer Loop. In Proceedings of the 31st International Conference
on Algorithmic Learning Theory, volume 117 of Proceedings of Machine Learning Research, pp. 451–467.
PMLR, 2020.

Dmitry Kovalev, Aleksandr Beznosikov, Ekaterina Borodich, Alexander Gasnikov, and Gesualdo Scutari.
Optimal Gradient Sliding and its Application to Optimal Distributed Optimization under Similarity. Advances
in Neural Information Processing Systems, 35:33494–33507, 2022.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. CIFAR-10 (Canadian Institute for Advanced Research).
URL http://www.cs.toronto.edu/~kriz/cifar.html.

Jason D. Lee, Qihang Lin, Tengyu Ma, and Tianbao Yang. Distributed Stochastic Variance Reduced Gradient
Methods by Sampling Extra Data with Replacement. Journal of Machine Learning Research, 18(122):1–43,
2017. URL http://jmlr.org/papers/v18/16-640.html.

Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. PAGE: A Simple and Optimal Probabilistic
Gradient Estimator for Nonconvex Optimization. In International conference on machine learning, pp.
6286–6295. PMLR, 2021a.

Zhize Li, Slavomír Hanzely, and Peter Richtárik. ZeroSARAH: Efficient Nonconvex Finite-Sum Optimization
with Zero Full Gradient Computation. arXiv preprint arXiv:2103.01447, 2021b.

Dachao Lin, Yuze Han, Haishan Ye, and Zhihua Zhang. Stochastic Distributed Optimization under Average
Second-Order Similarity: Algorithms and Analysis. Advances in Neural Information Processing Systems, 36,
2024.

12

https://openreview.net/forum?id=WukSyFSzDt
https://proceedings.neurips.cc/paper_files/paper/2013/file/ac1dd209cbcc5e5d1c6e28598e8cbbe8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/ac1dd209cbcc5e5d1c6e28598e8cbbe8-Paper.pdf
https://arxiv.org/pdf/1912.04977.pdf
https://openreview.net/forum?id=ElC6LYO4MfD
https://openreview.net/forum?id=ElC6LYO4MfD
http://www.cs.toronto.edu/~kriz/cifar.html
http://jmlr.org/papers/v18/16-640.html

Published as a conference paper at ICLR 2026

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-
Efficient Learning of Deep Networks from Decentralized Data. In Artificial intelligence and statistics, pp.
1273–1282. PMLR, 2017.

Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtárik. ProxSkip: Yes! Local
Gradient Steps Provably Lead to Communication Acceleration! Finally! In International Conference on
Machine Learning, pp. 15750–15769. PMLR, 2022.

Konstantin Mishchenko, Rui Li, Hongxiang Fan, and Stylianos Venieris. Federated Learning Under Second-
Order Data Heterogeneity, 2024. URL https://openreview.net/forum?id=jkhVrIllKg.

A. S. Nemirovsky. Information-Based Complexity of Convex Programming. 1994.

A. S. Nemirovsky and D. B. Yudin. Problem Complexity and Method Efficiency in Optimization. 1983.

Yurii Nesterov. Lectures on Convex Optimization. Springer Publishing Company, Incorporated, 2nd edition,
2018. ISBN 3319915770.

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. SARAH: A Novel Method for Machine
Learning Problems using Stochastic Recursive Gradient. In International conference on machine learning,
pp. 2613–2621. PMLR, 2017.

Kumar Kshitij Patel, Lingxiao Wang, Blake E Woodworth, Brian Bullins, and Nati Srebro. Towards Optimal
Communication Complexity in Distributed Non-Convex Optimization. In Advances in Neural Information
Processing Systems, volume 35, 2022. URL https://proceedings.neurips.cc/paper_files/
paper/2022/file/56bd21259e28ebdc4d7e1503733bf421-Paper-Conference.pdf.

Nhan H Pham, Lam M Nguyen, Dzung T Phan, and Quoc Tran-Dinh. ProxSARAH: An Efficient Algorithmic
Framework for Stochastic Composite Nonconvex Optimization. Journal of Machine Learning Research, 21
(110):1–48, 2020.

Sashank J Reddi, Suvrit Sra, Barnabás Póczos, and Alex Smola. Fast Incremental Method for Nonconvex
Optimization. arXiv preprint arXiv:1603.06159, 2016.

Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié. Optimal Convergence
Rates for Convex Distributed Optimization in Networks. Journal of Machine Learning Research, 20(159):
1–31, 2019. URL http://jmlr.org/papers/v20/19-543.html.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing Finite Sums with the Stochastic Average
Gradient. Mathematical Programming, 162:83–112, 2017.

Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-Efficient Distributed Optimization using an
Approximate Newton-Type Method. In International conference on machine learning, pp. 1000–1008. PMLR,
2014.

Yuki Takezawa, Xiaowen Jiang, Anton Rodomanov, and Sebastian U Stich. Exploiting Similarity for Computa-
tion and Communication-Efficient Decentralized Optimization. arXiv preprint arXiv:2506.05791, 2025.

Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, and Vahid Tarokh. SpiderBoost and Momentum: Faster Variance
Reduction Algorithms. Advances in Neural Information Processing Systems, 32, 2019.

Blake Woodworth. The Minimax Complexity of Distributed Optimization. arXiv preprint arXiv:2109.00534,
2021.

Blake E Woodworth, Jialei Wang, Adam Smith, Brendan McMahan, and Nati Srebro. Graph Oracle Models,
Lower Bounds, and Gaps for Parallel Stochastic Optimization. Advances in neural information processing
systems, 31, 2018.

Yida Yin, Zhiqiu Xu, Zhiyuan Li, Trevor Darrell, and Zhuang Liu. A Coefficient Makes SVRG Effec-
tive. In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=twtTLZnG0B.

Yuchen Zhang, John Duchi, Michael I Jordan, and Martin J Wainwright. Information-Theoretic Lower Bounds
for Distributed Statistical Estimation with Communication Constraints. In Advances in Neural Information
Processing Systems, volume 26. Curran Associates, Inc., 2013.

13

https://openreview.net/forum?id=jkhVrIllKg
https://proceedings.neurips.cc/paper_files/paper/2022/file/56bd21259e28ebdc4d7e1503733bf421-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/56bd21259e28ebdc4d7e1503733bf421-Paper-Conference.pdf
http://jmlr.org/papers/v20/19-543.html
https://openreview.net/forum?id=twtTLZnG0B
https://openreview.net/forum?id=twtTLZnG0B

Published as a conference paper at ICLR 2026

Appendix

CONTENTS

A Ethics statement 15

B LLM usage 15

C Federated Optimization Algorithms and their Complexity 16

D Related Work 17

D.1 Formalization of Federated Optimization Algorithms and Their Complexity 17

D.2 Comparison with Existing Federated Optimization Methods 18

E Technical Preliminaries 21

F Proofs for I-CGM 23

F.1 Proof for Theorem 3.1 . 23

F.2 Proofs of Local CGM for Solving the Subproblems . 24

F.2.1 Proof of Lemma 3.3 . 25

F.2.2 Proof of Lemma H.2 . 25

F.3 Proofs of Properties of the SAGA and SVRG Estimators 26

F.3.1 Proof of Lemma 4.1 . 26

F.3.2 Proof of Lemma 4.3 . 27

F.4 Properties of the RG Estimator . 28

F.4.1 Proof of Lemma 5.2 . 28

F.4.2 Proof of Corollary 5.3. 29

F.4.3 Proof of Corollary 5.4. 29

F.5 Proofs for I-CGM with RG-SAGA . 30

F.5.1 Proof of Theorem 6.1. 30

F.6 Proofs for I-CGM with RG-SVRG . 31

G I-CGM-RG-SAGA with Inexact Initialization 32

H Solving the Subproblems with Local Stochastic CGM 37

I Discussion on the SAG estimator 38

J Additional details and experiments 39

J.1 Quadratic minimization with log-sum penalty. 39

J.1.1 Ablation studies of I-CGM-RG-SAGA . 39

J.2 Logistic regression with nonconvex regularizer. 40

J.3 EMNIST with Residual CNN . 41

J.4 CIFAR10 with ResNet18 . 42

14

Published as a conference paper at ICLR 2026

A ETHICS STATEMENT

This paper presents work that aims to advance the field of Distributed Machine Learning. There are many
potential societal consequences of our work, none of which we feel must be specifically highlighted here.

B LLM USAGE

We used LLM only for polishing the text.

15

Published as a conference paper at ICLR 2026

C FEDERATED OPTIMIZATION ALGORITHMS AND THEIR COMPLEXITY

Federated Optimization Algorithm. We consider the standard federated optimization setting with a central
server and n clients. The server is the main entity that implements the optimization algorithm, but cannot directly
access any of the local functions (fi)ni=1. Instead, it interacts with problem (1) through communications with
the clients, allowing certain information to be exchanged between them. Each client i ∈ [n] has access to the
information provided by the server and can interact with its own local function fi, but only through the oracle
Ofi . An oracle is a standard notion in optimization (Nemirovsky, 1994; Nemirovsky & Yudin, 1983), which is a
procedure that takes as input a point and returns certain information about the function at this point. The most
commonly used oracle is the first-order oracle, which returns the function value and its gradient. In general, an
oracle can be stochastic; however, in this work, we mainly consider the standard deterministic first-order oracle
OFOi(x) := (fi(x),∇fi(x)). Throughout the paper, we assume that the server can communicate with up to
m ∈ [n] clients simultaneously in parallel. We formalize optimization algorithms in this setting as follows.

Given the oracles Of1 , . . . ,Ofn , a federated optimization algorithm for a problem class F is a procedure that
proceeds across communication rounds. A problem class is the collection of all problems of form (1) satisfying
certain assumptions. (We will introduce a specific problem class considered in this work in Section 2.2.) At the
beginning, the server and each client i ∈ [n] initialize the empty information sets I0 and H0

i , respectively. At
each round r ≥ 0, the server chooses a subset of clients Sr ⊆ [n] with at mostm elements (to be discussed later).
The server then communicates with the clients in Sr , providing each client i ∈ Sr with certain information Īri
constructed from the server’s information set Ir . Then it specifies a certain method Mr

i (often called a local
method) for each client i ∈ Sr to run locally. The method Mr

i starts with the initial information (Īri ,Hr
i), and

iteratively queries the oracle Ofi , obtaining a response Rr
i , which is then sent back to the server. (The details

of this procedure are discussed in the next paragraph.) The server collects the output responses and updates
the information set Ir+1 = (Ir, (Rr

i)i∈Sr). At each round r ≥ 0, the server also performs a termination test
based on the current information set Ir . After the algorithm terminates at a certain round R ≥ 0, the server then
constructs and outputs an approximate solution x̂R to problem (1) based on IR using a certain rule specified by
the algorithm. To summarize, a federated optimization algorithm is a collection of rules prescribing what to do
at each communication round r: 1) how to select clients, 2) how to compute the information Īri that is sent to
each selected client, 3) which local method each selected client runs, 4) when to terminate, and 5) how to form
the approximate solution. We allow each of these rules to be randomized. See Figure D.1 for an illustration
summarizing the procedures described above.

At the beginning of each round r, each selected client i ∈ Sr receives the information Īri from the server. Using
this new information, it enriches its information set Hr

i,0 := (Hr
i , Īri) and runs the specified method Mr

i . At
each step k ≥ 0, this method first computes a point xri,k based on Hr

i,k, queries the oracle at this point, and then
updates its local information: Hr

i,k+1 = (Hr
i,k,Ofi(x

r
i,k)). At the beginning of each step k, the method also

performs a termination test T ri,k(Hr
i,k); Once this test is satisfied at a certain step Kr

i , the method terminates
and constructs the output Rr

i from the final information Hr
i,Kri

. The information sets are then updated as
Hr+1
i := Hr

i,Kri
, and remain the same (Hr+1

i := Hr
i) for each non-selected client i /∈ Sr . To summarize, a

local method Mr
i is a collection of 3 rules: 1) how to compute the next point at each step, 2) when to terminate,

and 3) how to form the result. We allow each of these rules to be randomized (resulting in a randomized local
method); if all the rules are deterministic, the local method is called deterministic.

Note that the above definition of a distributed optimization algorithm is rather general and only constrains
how the algorithm accesses information about the optimization problem. In particular, we do not impose
any restrictions on the arithmetic or memory complexity of each step of the algorithm, nor on the size of the
data transmitted between the server and the clients. This general definition is sufficient to introduce the two
information-based notions of complexity that we focus on in this work: communication and local complexities
(defined below). In practice, however, both memory storage and information usage should be implemented
efficiently. Typically, the accumulated information sets maintained by the clients and the server, as well as the
information exchanged between them, are simply a collection of a few vectors and scalars.

Client-Selection Strategies. We next introduce three commonly used client-selection strategies and associate
them with different costs. The distinction among them lies in how the set Sr is selected.

• Arbitrary Client Selection Strategy (A-CSS): The set Sr can be chosen in any way from
(
[n]
m

)
. We define the

cost of this operation as CA.

• Random Client Selection Strategy (R-CSS): The set Sr is sampled uniformly at random from
(
[n]
m

)
. We

define the cost of this operation as CR.

• Delegated Client Selection Strategy (D-CSS): The set Sr is chosen to be SD , where SD is a fixed set of
so-called delegate clients (to be discussed later) with |SD| ≤ m. We define the cost of this operation as 1.

Clearly, A-CSS is the most powerful among the three strategies, as the other two could be easily implemented in
terms of A-CSS. Further, this strategy allows the server to collect information from any subset of clients. This

16

Published as a conference paper at ICLR 2026

flexibility enables the implementation of full synchronization, where the algorithm needs certain information to
be collected from all clients. This feature appears in many algorithms, the most basic example being the usual
gradient descent (GD). Specifically, if an algorithm requires computing the full gradient ∇f(x) at a point x, the
server can split [n] into m disjoint sets and repeatedly use A-CSS to make ⌈ n

m
⌉ sequential communications with

each set of clients, sending to each client the point x and asking it to compute and return the gradient ∇fi(x)
(this corresponds to the simplest one-step local first-order method Mr

i).

However, when clients are unreliable or slow to respond, using A-CSS can become costly. In cross-device
settings, it is often more efficient to communicate only with a randomly sampled subset of clients at each
communication round—a strategy commonly known as partial client participation (McMahan et al., 2017),
which is modeled by the R-CSS. Therefore, we treat R-CSS as a cheaper strategy compared with A-CSS.
Unlike A-CSS, the full-gradient computation cannot be directly implemented with R-CSS. (But it can be
recovered with high probability by using R-CSS multiple times (Arjevani et al., 2020).)

In addition to the previous two strategies, there are scenarios where there exist so-called delegate clients that
are always reliable and efficient both in communication and performing local computations. Sometimes, it
is sufficient—or even preferable—to interact with these clients. With D-CSS, the server can always query
information about the specific functions in the delegate set. In this work, we focus on the setting where there is
one delegate client (number 1), i.e., SD = {1}.

Based on the properties of each strategy discussed above, we assume that the above costs satisfy the following
natural relations:

1 ≤ CR ≤ CA .

Communication-and Local Complexities. Consider a federated optimization algorithm A for solving a
problem f from the problem class F . Let R be the (possibly random) number of communication rounds made
by A on f and let x̂R be the corresponding output of A. We define the accuracy of the algorithm A at the
problem f as:

Accur(A, f) = E[∥∇f(x̂R)∥2] .

Further, let NA, NR, and ND be the (possibly random) total number of times that the client-selection strategies
A-CSS, R-CSS, and D-CSS are used by A during the R communication rounds, respectively. We define the
communication complexity of A on f as:

Nf = E[CANA + CRNR +ND] ,

and the local complexity of A on f as:

Kf = E

[
R−1∑
r=0

Kr

]
,

whereKr := maxi∈Sr K
r
i andKr

i ≥ 0 is the number of queries to the oracle Ofi by the client i at round r. We
next define the worst-case complexities of A over the entire problem class F . The communication complexity
of A for solving the problem class F up to ε accuracy is defined as:

NF (ε) = sup
f∈F

{
Nf |Accur(A, f) ≤ ε2

}
,

and the corresponding local complexity is defined as:

KF (ε) = sup
f∈F

{
Kf |Accur(A, f) ≤ ε2

}
.

If there exists some f ∈ F such that A fails to reach Accur(A, f) ≤ ε2, then both complexities NF (ε) and
KF (ε) are defined as +∞.

After fixing the desired accuracy ε, we consider only federated optimization algorithms that can achieve
Accur(A, f) ≤ ε2 for all f ∈ F . Among these algorithms, we say that the one with smaller communication
complexity NF (ε) is more efficient. If two algorithms have the same communication complexity, the one with
lower local complexity KF (ε) is preferable.

D RELATED WORK

D.1 FORMALIZATION OF FEDERATED OPTIMIZATION ALGORITHMS AND THEIR COMPLEXITY

Several prior works have proposed oracle models and complexity metrics for distributed and federated opti-
mization. These works typically consider solving the same problem as in (1), where each of the n clients or

17

Published as a conference paper at ICLR 2026

Server

Information:

Client
Information:

client selection Client
Information:

Client
Information:

...

Client

Client

Client

send ...

send

send ...

run ...

run Server

send ...

send ...

send

Local method

...

...

...

...

...

...

...
run ...

Figure D.1: Illustration of the sequence of procedures performed by a centralized distributed optimization
algorithm at each communication round r.

workers only has access to its own local function. The primary distinctions among these models lie in how
communication and computation are formalized. One line of work focuses on the settings where each worker
can compute arbitrary information about its local objective, but only a limited number of bits is allowed to
transmitted during each communication round (Braverman et al., 2016; Garg et al., 2014; Zhang et al., 2013). In
this setting, complexity is often defined as the number of rounds required to reach a target accuracy. Alternative
models remove this constraint and instead measure the total number of bits communicated over the entire opti-
mization process (Korhonen & Alistarh, 2021). Other works impose structural restrictions on the communicated
information, such as requiring exchanged vectors to lie in a certain subspace (e.g., linear combinations of local
gradients) (Arjevani & Shamir, 2015; Lee et al., 2017).

The closest related model to ours is the Graph Oracle Model (GOM) (Woodworth et al., 2018; Patel et al.,
2022; Woodworth, 2021). GOM introduces a computation and communication graph that determines how
each device queries its local oracle and how the computed information propagates through the devices during
optimization. Once the oracle and the graph structure are fixed, we obtain a specific model that allows to define
the corresponding optimization algorithms. A commonly studied setting is the intermittent communication
model, where n devices work in parallel and synchronize after every K local oracle queries. This setting
becomes conceptually equivalent to our model when 1) all clients participate in every round, 2) the number of
local oracle queries Kr is uniformly bounded across all communication rounds, and 3) the server and the clients
are allowed to send its entire accumulated information.

Beyond this scenario, there are several main differences between GOM and our proposed model. 1) GOM does
not distinguish between different client-selection strategies that might have non-uniform associated costs. 2)
Even when all the strategies have the same cost, GOM fixes the maximum number of local oracle queries for
each round, whereas our model allows Kr to vary across rounds. This flexibility enables modeling algorithms
such as DANE (Shamir et al., 2014; Jiang et al., 2024a), which needs to solve each local subproblem sufficiently
accurately, making Kr dependent on the round r. 3) While partial client participation can be modeled in GOM
by generating a random graph, the resulting algorithms are generally restricted to using pre-specified groups of
clients at each round. This effectively enforces an offline client-selection strategy for GOM, since it may not
account for the need to know the past responses of specific clients before deciding which clients to contact next.
In contrast, our model fully supports online and adaptive client-selection strategies.

We believe that our model is reasonably simple and it appears to sufficiently capture how federated optimization
algorithms work in practice. Even in the cases where our model is mathematically equivalent to existing ones,
our model could still be more convenient to be used.

D.2 COMPARISON WITH EXISTING FEDERATED OPTIMIZATION METHODS

Notations in Table 1. We denote F 0 := f(x0)−f⋆, nm := n
m

, δ2m := n−m
n−1

δ2

m
, ζ2m := ζ2

m
, and 1 ≲ CR ≲ CA

are the costs of communicating with a random set of m clients and a specific set of m clients, respectively.

In this section, we compare our proposed methods with several popular federated optimization algorithms in
terms of their communication and local complexities (Section C). For simplicity and to ensure fair comparisons
across algorithms, we assume that all methods use the deterministic first-order oracle locally, i.e., Ofi = OFOi ,
for all i ∈ [n]. We first state and discuss the assumptions under which each algorithm was analyzed in the
literature. The abbreviations used in Table 1 are defined as follows.

18

Published as a conference paper at ICLR 2026

Assumption D.1 (FS (Function Smoothness)). There exists Lf > 0 such that for any x,y ∈ Rd, we have:
∥∇f(x)−∇f(y)∥ ≤ Lf∥x− y∥.

Assumption D.2 (IS (Individual Smoothness)). There exists Lmax > 0 such that for any x,y ∈ Rd and any
i ∈ [n], we have: ∥∇fi(x)−∇fi(y)∥ ≤ Lmax∥x− y∥.

Assumption D.3 (SD (Second-order Dissimilarity) (Karimireddy et al., 2020; Jiang et al., 2024a; Gao et al.,
2025)). There exists ∆max > 0 such that for any x,y ∈ Rd and any i ∈ [n], we have: ∥∇hi(x)−∇hi(y)∥ ≤
∆max∥x− y∥.

Assumption D.4 (BGD (Bounded Gradient Dissimilarity)). There exists ζ > 0 such that for any x ∈ Rd, we
have: 1

n

∑n
i=1∥∇fi(x)−∇fi(y)∥2 ≤ ζ2.

Note that the problem class of IS belong to SD, and SD implies Assumption 2.1 and 2.2. Moreover, any functions
that satisfy Assumption 2.1 and 2.3 belong to the class of FS. Finally, the class of FS partially overlaps with the
problem class defined by Assumptions 2.1 and 2.2. In Table 1, the assumption under which Centralized GD is
analyzed is the most general one, and those for I-CGM-RG are the second most general. Finally, the smoothness
constants satisfy the following relations:

δ,∆1 ≲ ∆max ≲ Lmax, L1, Lf ≲ Lmax .

We next briefly describe each method in Table 1 and discuss how the communication and local complexities are
computed for each method. There are two operations that are commonly used in these methods. We describe
them here to avoid repetition later. Denote nm := n/m. The first operation is to compute the full gradient ∇f
at the server at a certain point x. As discussed in Section C, this can be implemented with ⌈nm⌉ successive
communication rounds, each involving the use of A-CSS and one local gradient computation. Each such
operation adds therefore N∇f := CA⌈nm⌉ to the total communication complexity and K∇f := ⌈nm⌉ to the
total local complexity of an algorithm.

Another commonly used operation is to compute several mini-batch gradients ∇fS at b ≥ 1 points where
S ∈

(
[n]
m

)
is sampled uniformly at random. This requires one communication round using R-CSS. The

communication complexity of this operation is N∇fS ,b := CR and the local complexity is K∇fS ,b := b.

In what follows, we omit the subscript F in the notation for the complexities NF (ε) and KF (ε); the correspond-
ing problem class is specified in Table 1 for each method.

Centralized GD. The method iterates:

xt+1 = xt − 1

Lf
∇f(xt) .

The iteration complexity of GD is T = O(
LfF

0

ε2
) (Nesterov, 2018), implying that the communication complexity

is N(ε) = TN∇f = O(CAnm
LfF

0

ε2
) and the local complexity is K(ε) = TK∇f = O(nm

LfF
0

ε2
).

FEDRED (Jiang et al., 2024a). We consider FEDRED-GD, which initializes x̃0 = x0 and iterates:

xt+1 = argmin
x∈Rd

{
f1(xt) + ⟨∇f1(xt) +∇f(x̃t)−∇f1(x̃t),x⟩+

η

2
∥x− xt∥2 +

λ

2
∥x− x̃t∥2

}
,

where x̃t+1 = xt+1 w.p. p and x̃t+1 = x̃t w.p. 1 − p. The solution of the subproblem can be computed
in a closed-form. For p ≃ ∆1

L1+∆1
, η ≃ L1 and λ ≃ ∆1, the iteration complexity of the method is T =

O(L1F
0

ε2
) (Jiang et al., 2024a). In expectation, once every 1/p iterations, the server computes the full gradient

∇f(x̃t) = ∇f(xt), which adds N∇f to the total communication complexity and K∇f to the total local
complexity. Then the server makes another communication round with D-CSS, sends ∇f(xt) to client 1 which
then performs 1/p local steps in expectation and sends the result back to the server. The expected number of
times the full gradient ∇f(x̃t) is computed is pT = O(∆1F

0

ε2
). The expected number of communication rounds

where D-CSS is used is E[ND] = pT . Therefore, the communication complexity is

N(ε) = E[CANA +ND] = O(pTN∇f + pT) = O
(
CAnm

∆1F
0

ε2

)
.

The local complexity is bounded by

K(ε) = O(pTK∇f + T) = O(pTnm + T) = O
(
nm

∆1F
0

ε2
+
L1F

0

ε2

)
.

FEDAVG (McMahan et al., 2017). At each communication round r ≥ 0, the server uses R-CSS to select clients,
sends xr to each client i ∈ Sr , which then returns an approximation solution xr+1

i ≈ argminx fi(x) by

19

Published as a conference paper at ICLR 2026

running local GD starting at xr for Kr steps. Then the next iterate is defined as xr+1 = 1
m

∑
i∈Sr x

r+1
i . When

using local-GD, the optimal number of local steps is of order 1 (Karimireddy et al., 2020). Therefore, the local
complexity is of the same order as the iteration complexity T = O(

ζ2mF
0

ε4
+

√
Lmaxζ
ε3

+ LmaxF
0

ε2
) (Karimireddy

et al., 2020), and the communication complexity is CRT .

MIMEMVR (Karimireddy et al., 2021). At each iteration t ≥ 0, the server first uses R-CSS to get a random
client set St and computes the mini-batch gradient ∇fSt(xt). Then the server uses A-CSS to establish
communication with the same set of clients St, sends ∇fSt(xt) to them which then updates:

xt+1
i ≈ argmin

x∈Rd

{
fi(x) +

〈
∇fSt(x

t)−∇fi(xt),x
〉}

by running momentum-based first-order methods locally for Θ(Lmax
∆max

) steps. The next iterate is defined as:
xt+1 = 1

m

∑
i∈St x

t+1
i . The communication complexity is thusN(ε) = E[CANA+CRNR] = (CA+CR)T ,

where T = O(
ζ2mF

0

ε2
+ ζm∆maxF

0

ε3
+ ∆maxF

0

ε2
) is the iteration complexity (Karimireddy et al., 2021). The local

complexity is O(Lmax
∆max

T).

CE-LGD (Patel et al., 2022). The method initializes x−1 = x0 and v−1 ∈ Rd. At each iteration t ≥ 0, the
server first uses R-CSS to select clients St, sends xt−1 and xt to the client i ∈ St which then computes ∇fi(xt)
and ∇fi(xt−1) and sends them back to the server. The server computes vt = ∇fSt(xt) + (1 − ρ)(vt−1 −
∇fSt(xt−1)) where ρ ∈ [0, 1]. Then the server uses R-CSS again to communicate with a random client. The
client returns xt+1 by running the local SARAH method using vt for Θ(Lmax

∆max
) local steps. The iteration

complexity is T = O(
ζ2mF

0

ε2
+ ζm∆maxF

0
√
mε3

+ ∆maxF
0

ε2
) (Patel et al., 2022). The communication complexity is

N(ε) = O(CRT) and the local complexity is K(ε) = O(Lmax
∆max

T).

SCAFFOLD (Karimireddy et al., 2020). At the beginning, each client i = 1, . . . , n computes b0
i = ∇fi(x0)

and sends the result to the server; the server then computes b0 = ∇f(x0), which adds N∇f and K∇f to the
total communication and local complexities, respectively. At each iteration t ≥ 0, the server uses R-CSS to
generate the client set St and sends xt to each client i ∈ St, which then computes bti = ∇fi(xt) and sends
bti − bt−1

i back to the server. The server then updates bt (SAG (Schmidt et al., 2017)) according to (10) (for
t ≥ 1). Then the server uses A-CSS to contact the clients in St again and sends bt to them. Each client i ∈ St
computes

xt+1
i ≈ argmin

x∈Rd

{
fi(x) +

〈
bt −∇fi(xt),x

〉}
by running local GD for K ≃ 1 steps and sends the result back to the server. The server computes the
next iterate as xt+1 = 1

m

∑
i∈St x

t+1
i . The iteration complexity is T = O((n

m
)
2
3
LmaxF

0

ε2
) (Karimireddy

et al., 2020). The communication complexity N(ε) = O(CA⌈nm⌉ + (CA + CR)T). The local complexity
K(ε) = ⌈nm⌉+ (1 +K)T = O(nm + T).

The final three algorithms do not strictly satisfy our definition of an algorithm because they do not clearly specify
when to terminate the local method. However, we still present the conceptual methods and their communication
complexity estimates, assuming (rather informally) that certain "local" operations can be implemented by running
a certain local method for a sufficiently long time.

FEDDYN (Acar et al., 2021). During initialization, the server needs to collect x0
i that satisfies ∇fi(x0

i) = 0
from all clients. Therefore, the communication complexity of this operation is CA⌈nm⌉. At each communication
round r ≥ 0, the server uses R-CSS to select clients Sr and sends xr to each client i ∈ Sr which then sends

xr+1
i = argmin

x

{
fi(x)− ⟨∇fi(xi,r),x⟩+

λ

2
∥x− xr∥2

}
, i ∈ Sr ,

back to the server. For i /∈ Sr , xr+1
i = xri . Then the next iterate is updated as:

xr+1 =
1

m

∑
i∈Sr

xr+1
i − 1

λ
hr+1, hr+1 = hr − λ

1

n
(
∑
i∈Sr

xr+1
i − xr) .

The iteration complexity is T = O(nm
LmaxF

0

ε2
) (Acar et al., 2021) and the communication complexity is

N(ε) = O(CAnm + CRT).

SABER-FULL (Mishchenko et al., 2024). The method initializes x−1 = x0 and v−1 = v0 = ∇f(x0).
At each iteration t ≥ 0, w.p. 1

nm
, the server updates vt = ∇f(xt) which adds N∇f and K∇f to the

total communication and local complexity, respectively. With probability 1 − 1
nm

, the server uses R-CSS,
obtains the random set St, and computes two mini-batch gradients ∇fSt(xt) and ∇fSt(xt−1). This operation
adds N2

∇fSt
and K2

∇fSt
to the communication and local complexity, respectively. Then the server updates

20

Published as a conference paper at ICLR 2026

vt = vt−1 +∇fSt(xt)−∇fSt(xt−1). (The original method samples a single index mt. Here we extend it to
St.) After the computation of vt, the server uses R-CSS, samples a random index m̃t ∈ [n], and sends vt and
xt to the client m̃t, which then returns

xt+1 ≈ argmin
x∈Rd

{
fm̃t(x) +

〈
vt −∇fm̃t(x

t),x
〉
+
λ

2

∥∥x− xt
∥∥2

}
back to the server. The iteration complexity of the method is T = O(

√
nm∆maxF

0

ε2
) if each subproblem is

solved exactly. The total communication complexity is

N(ε) = E[CANA+CRNR] = O
(
CAnm+

1

nm
CATnm+(1− 1

nm
)CRT +CRT

)
= O(CAnm+CAT) .

SABER-PARTIAL (Mishchenko et al., 2024). We refer to Algorithm 2 in the original paper as SABER-
PARTIAL. By Theorem 3 in that paper, the best p is 1. The algorithm initializes v0 = ∇f(x0), which adds
N∇f and K∇f to the total communication and local complexities, respectively. At each iteration t ≥ 1, the
method also needs to compute a mini-batch gradient vt = 1

s

∑
i∈S′

t
∇fi(xt) where S′

t is sampled uniformly
at random with replacement and |S′

t| = s where s is a parameter of the method. Since we assume that the
server can communicate with at most m clients at each round, implementing this operation requires ⌈s/m⌉
sequential communication rounds with R-CSS. After that, the method needs to choose another random set St
with |St| = s. This adds CR⌈s/m⌉ to the total communication complexity. The server sends xt and vt to the
client i ∈ St, which then computes

xt+1
i ≈ argmin

x∈Rd

{
fi(x) +

〈
vt −∇fi(xt),x

〉
+
λ

2

∥∥x− xt
∥∥2

}
,

and sends the result back to the server. The next iterate is updated as xt+1 = 1
s

∑
i∈St x

t+1
i . If ζ

2

ε2
≲ n and s is

chosen as Θ(ζ
2

ε2
), then the method can output an ε-approximate stationary point after T = O(∆maxF

0
√
pε2

) iterations
if each subproblem is solved exactly. The communication complexity is N(ε) = E[CRNR + CANA] =

O(CRT ⌈ ζ2

mε2
⌉+ CAnm).

Discussions. FEDDYN, SABER-FULL and SABER-PARTIAL do not strictly satisfy our definition of an
algorithm since they do not precisely specify when to terminate the local methods. The problem class for
which FEDAVG, MIMEMVR, CE-LGD, and SABER-PARTIAL are analyzed is the smallest among all methods.
Specifically, in addition to IS, they also assume BGD, which can be restrictive and exclude simple quadratics.
Among these four, MIMEMVR and CE-LGD improve upon FEDAVG and SABER-PARTIAL in terms of their
dependence on the target accuracy ε. Except for FEDAVG, the remaining three methods replace the dependence
on Lmax with ∆max in the communication complexity. Furthermore, compared to MIMEMVR, CE-LGD
achieves a better dependence on m in the term involving ε−3.

For the remaining methods, SCAFFOLD improves the dependence on n from nm (as in FEDDYN) to n2/3
m .

SAVER-FULL further reduces the dependence on n to
√
nm and simultaneously improves the smoothness

dependence from Lmax to ∆max. I-CGM-RG-SVRG achieves a tighter bound of CR∆1 +
√
CACRnmδm ≲

CA
√
nm∆max. Finally, I-CGM-RG-SAGA improves the communication cost constant from CA to CR,

compared to I-CGM-RG-SVRG, while maintaining the same local complexity—the best among all existing
methods.
Remark D.5. According to Arjevani et al. (2020), one may alternatively compute the full gradient using only
R-CSS. Let m = 1 for simplicity. Lemma 2 in (Arjevani et al., 2020) shows that w.p. 1− δ, we can recover
the full gradient ∇f(x) at a given point x by making 2n2 log(2n

δ
) communication rounds with R-CSS. This

can be helpful when the cost CA is extremely large. Indeed, the current communication complexity of I-CGM-
RG-SAGA is of order CAn+ CR((∆1 +

√
nδ)F 0/ε2). As soon as CA ≳ CR((∆1 +

√
nδ)F 0/ε2)/n, the

complexity is dominated by CAn. This term arises from 2n sequential communication rounds with A-CSS
for computing the full gradients. Now if we replace these operations with 4n2 log(2n

δ
) sequential rounds

with R-CSS, the total complexity might be reduced to CR
(
n2 log(n) + (∆1 +

√
nδ)F 0/ε2

)
. We leave a full

theoretical development of this direction as interesting future work.

E TECHNICAL PRELIMINARIES

We frequently use the following lemmas for the proofs.
Lemma E.1. For any x,y ∈ Rd and any γ > 0, we have:

|⟨x,y⟩| ≤ γ

2
∥x∥2 + 1

2γ
∥y∥2 , (E.1)

∥x+ y∥2 ≤ (1 + γ) ∥x∥2 +
(
1 +

1

γ

)
∥y∥2 . (E.2)

21

Published as a conference paper at ICLR 2026

Lemma E.2 ((Jiang et al., 2024b), Lemma 13). Let {gi}ni=1 be vectors in Rd with n ≥ 2. Let m ∈ [n]

and let S ∈
(
[n]
m

)
be sampled uniformly at random without replacement. Let ḡ := 1

n

∑n
i=1gi, σ

2 :=
1
n

∑n
i=1 ∥gi − ḡ∥2, and ḡS := 1

m

∑
j∈S gj . Then,

ES [ḡS] = ḡ and ES [∥ḡS − ḡ∥2] = n−m

n− 1

σ2

m
. (E.3)

Lemma E.3 ((Allen-Zhu, 2018a), Fact 2.3). Let A0, A1, ... be reals and let K ∼ Geom(p) with p ∈ (0, 1],
that is P(K = k) = (1− p)kp for each k ∈ {0, 1, 2, ...}. Then it holds that: E[K] = 1

p
− 1 and

E[AK] = (1− p)E[AK+1] + pA0 . (E.4)

Proof. Using the identity
∑
k≥0 kq

k = q
(1−q)2 for any |q| < 1, we have:

E[K] = p
∑
k≥0

k(1− p)k = p
1− p

p2
=

1

p
− 1 .

To prove the second part, using the definition of K,

E[AK+1] = p
∑
k≥0

Ak+1(1− p)k =
p

1− p

∑
k≥1

Ak(1− p)k =
1

1− p
(E[AK]− pA0) .

Rearranging gives the claim.

Lemma E.4. Let (At)∞t=0, (Bt)∞t=0 and be two non-negative sequences such that

Ai+1 ≤ (1− α)Ai +Bi

for any i ≥ 0 with α ∈ (0, 1]. Then for any t ≥ 1,

At ≤ (1− α)tA0 +

t∑
i=1

(1− α)t−iBi−1 ,

and for any T ≥ 1,
T∑
t=1

At ≤
(1− α)(1− (1− α)T)

α
A0 +

T−1∑
t=0

1− (1− α)T−t

α
Bt ≤

1− α

α
A0 +

1

α

T−1∑
t=0

Bt .

Proof. When α = 1, the claim clearly holds. Let 0 < α < 1. Dividing both sides of the main recurrence by
(1− α)i+1, we have for any i ≥ 0:

Ai+1

(1− α)i+1
≤ Ai

(1− α)i
+

Bi
(1− α)i+1

.

Summing up from i = 0 to i = t− 1, we get, for any t ≥ 1:

At
(1− α)t

≤ A0 +

t−1∑
i=0

Bi
(1− α)i+1

= A0 +

t∑
i=1

Bi−1

(1− α)i
.

This proves the first claim. To prove the second part, we sum up the first claim from t = 1 to t = T ,
T∑
t=1

At ≤
T∑
t=1

(1− α)tA0 +
T∑
t=1

t∑
i=1

(1− α)t−iBi−1

=
(1− α)(1− (1− α)T)

α
A0 +

T∑
i=1

T∑
t=i

(1− α)t−iBi−1

=
(1− α)(1− (1− α)T)

α
A0 +

T∑
i=1

1− (1− α)T−i+1

α
Bi−1

=
(1− α)(1− (1− α)T)

α
A0 +

T−1∑
t=0

1− (1− α)T−t

α
Bt .

Lemma E.5. Let p ∈ (0, 1). The minimizer of the problem minγ∈(0,1){f(γ) := 1−γp
γ(1−γ)} is attained at

γ⋆ = 1−
√
1−p
p

.

Proof. Differentiate f(γ), we have f ′(γ) = −1+2γ−pγ2
γ2(1−γ)2 . Setting f ′(γ) = 0 with γ ∈ (0, 1) gives γ⋆ =

1−
√
1−p
p

. Since f(γ) → ∞ as γ → 0+ or γ → 1−, the critical point γ⋆ is the minimizer over (0, 1).

22

Published as a conference paper at ICLR 2026

F PROOFS FOR I-CGM

Lemma F.1. Let I-CGM be applied to Problem (1) under Assumption 2.1. Let λ > ∆1. Then for any t ≥ 0,∥∥∇f(xt+1)
∥∥ ≤ (λ+∆1)χ̂t+1 + Σ̂t + et ,

where χ̂t := ∥xt − xt−1∥. For any x ∈ Rd, we have:

Ft(x
t)− Ft(x) ≤ f(xt)− f(x) +

Σ̂2
t

2(λ−∆1)
.

Suppose the iterates satisfy (5), then the function value decreases as:

f(xt+1) ≤ f(xt)− λ−∆1

4
χ̂2
t+1 +

Σ̂2
t

λ−∆1
.

Proof. By the definition of Ft, we have:

∇Ft(xt+1) = ∇f1(xt+1) + gt −∇f1(xt) + λ(xt+1 − xt)

= ∇f(xt+1) +
(
gt −∇f(xt)

)
+

(
∇h1(x

t)−∇h1(x
t+1)

)
+ λ(xt+1 − xt) .

It follows that: ∥∥∇f(xt+1)
∥∥ ≤ λχ̂t+1 + ∥∇h1(x

t)−∇h1(x
t+1)∥+ Σ̂t + et

(2)
≤ (λ+∆1)χ̂t+1 + Σ̂t + et ,

which proves the first inequality. Using the definition of Ft, for any x ∈ Rd, we have:

Ft(x
t)− Ft(x)

= f1(x
t) + h1(x

t)− f1(x)− h1(x
t)− ⟨gt −∇f1(xt),x− xt⟩ − λ

2
∥x− xt∥2

= f(xt)− f(x) + f(x)− f1(x)− h1(x
t)− ⟨gt −∇f1(xt),x− xt⟩ − λ

2
∥x− xt∥2

= f(xt)− f(x) +
(
h1(x)− h1(x

t)−
〈
∇h1(x

t),x− xt
〉)

− λ

2
∥x− xt∥2 −

〈
gt −∇f(xt),x− xt

〉
(2.1)
≤ f(xt)− f(x)− λ−∆1

2
∥x− xt∥2 −

〈
gt −∇f(xt),x− xt

〉
.

Using (E.1), we can bound the last two terms by: ∥gt−∇f(xt)∥2
2(λ−∆1)

, which proves the second claim. Substituting
x = xt+1 and using (5), we get:

f(xt+1) ≤ f(xt)− λ−∆1

2
χ̂2
t+1 −

〈
gt −∇f(xt),xt+1 − xt

〉
(E.1)
≤ f(xt)− λ−∆1

4
χ̂2
t+1 +

Σ̂2
t

λ−∆1
.

F.1 PROOF FOR THEOREM 3.1

Proof. Let t ≥ 0. By Lemma F.1, we have:

λ−∆1

4
χ̂2
t+1 ≤ f(xt)− f(xt+1) +

Σ̂2
t

λ−∆1
.

Using the first claim of Lemma F.1, we have:

∥∇f(xt+1)∥2 ≤
(
λ+∆1)χ̂t+1 + Σ̂t + et

)2 ≤ 2(λ+∆1)
2χ̂2

t+1 + 2(Σ̂t + et)
2 ,

Adding (λ+∆1)
2χ̂2

t+1 to both sides of this inequality and substituting the first display, we have:

∥∇f(xt+1)∥2 + (λ+∆1)
2χ̂2

t+1

≤ 3(λ+∆1)
2
(4

λ−∆1

(
f(xt)− f(xt+1)

)
+

4

λ−∆1

Σ̂2
t

λ−∆1

)
+ 2(Σ̂t + et)

2

≤ 12(λ+∆1)
2

λ−∆1

(
f(xt)− f(xt+1)

)
+

(12(λ+∆1)
2

(λ−∆1)2
+ 4

)
Σ̂2
t + 4e2t .

Summing up from t = 0 to T − 1, we get the claim.

23

Published as a conference paper at ICLR 2026

F.2 PROOFS OF LOCAL CGM FOR SOLVING THE SUBPROBLEMS

Lemma F.2 (Composite gradient method). Consider the composite problem:

min
x∈Rd

{
F (x) := ϕ(x) + ψ(x)

}
,

where ϕ is Lϕ-smooth and ψ is λψ-strongly convex and simple with λψ ≥ 0. Let η = Lϕ. Consider the
composite gradient method:

xk+1 = argmin
x∈Rd

{
Lk(x) := ϕ(xk) + ⟨∇ϕ(xk),x− xk⟩+

η

2
∥x− xk∥2 + ψ(x)

}
.

Then for any k ≥ 0, F (xk+1) ≤ F (xk). For any K ≥ 1, it holds that:

∥∇F (x⋆K)∥2 ≤
8L2

ϕ

[
F (x0)− F (xK)

]
(Lϕ + λϕ)K

,

where x⋆K = argmin(xk)
K
k=1

∥∇F (xk)∥. Furthermore, if K̂ ∼ Geom(p) with p ∈ (0, 1], then we also have:

EK̂
[
∥∇F (xK̂+1)∥

2] ≤ 8L2
ϕp

Lϕ + λψ

[
F (x0)− EK̂ [F (xK̂+1)]

]
.

Proof. Let k ≥ 0. By (Lϕ + λψ)-strong convexity of Lk, for any x ∈ Rd, we have,

Lk(x) ≥ Lk(xk+1) +
Lϕ + λψ

2
∥x− xk+1∥2 .

Substituting x = xk, it follows that,

F (xk) ≥ ϕ(xk) + ⟨∇ϕ(xk),xk+1 − xk⟩+
Lϕ
2

∥xk+1 − xk∥2 + ψ(xk+1) +
Lϕ + λψ

2
∥xk+1 − xk∥2

≥ ϕ(xk+1) + ψ(xk+1) +
Lϕ + λψ

2
∥xk+1 − xk∥2 = F (xk+1) +

Lϕ + λψ
2

∥xk+1 − xk∥2 .

This proves that the function value of F monotinically decreases. By the definition of xk+1, we get:

∇ϕ(xk) + Lϕ(xk+1 − xk) +∇ψ(xk+1) = 0 .

It follows that:

∇F (xk+1) = ∇ϕ(xk+1) +∇ψ(xk+1) = ∇ϕ(xk+1)−∇ϕ(xk) + Lϕ(xk − xk+1) ,

and hence,

∥∇F (xk+1)∥ ≤ ∥∇ϕ(xk+1)−∇ϕ(xk)∥+ η ∥xk+1 − xk∥ ≤ 2Lϕ ∥xk+1 − xk∥ .

Substituting this inequality into the second display, we get, for any k ≥ 0:

∥∇F (xk+1)∥2 ≤
8L2

ϕ

Lϕ + λψ

[
F (xk)− F (xk+1)

]
.

Summing up from k = 0 to K − 1, we have:

K∑
k=1

∥∇F (xk)∥2 ≤
8L2

ϕ

Lϕ + λϕ

[
F (x0)− F (xK)

]
.

Dividing both sides by K, we get the first claim.

For the second claim, substituting k = K̂ with K̂ ∼ Geom(p) into the last second display, passing to the
expectations and applying Lemma E.3, we have:

EK̂ [∥∇F (xK̂+1)∥
2] ≤

8L2
ϕ

Lϕ + λψ
EK̂ [F (xK̂)− F (xK̂+1)]

≤
8L2

ϕ

Lϕ + λψ

(
(1− p)EK̂ [F (xK̂+1)] + pF (x0)− EK̂ [F (xK̂+1)]

)
=

8L2
ϕp

Lϕ + λψ

[
F (x0)− EK̂ [F (xK̂+1)]

]
.

24

Published as a conference paper at ICLR 2026

F.2.1 PROOF OF LEMMA 3.3

Proof. Applying Lemma F.2 (with ϕ(x) = f1(x) and ψ(x) =
〈
gt −∇f1(xt),x− xt

〉
+ λ

2

∥∥x− xt
∥∥2), we

have for any t ≥ 0:

e2t =
∥∥∇Ft(xt+1)

∥∥2 ≤ 8L2
1(Ft(x

t)− F ⋆t)

(L1 + λ)K
,

where F ⋆t := minx∈Rd{Ft(x)}. Applying Lemma F.1, we get:

Ft(x
t)− F ⋆t ≤ f(xt)− f⋆ +

Σ̂2
t

2(λ−∆1)
.

It follows that:
T−1∑
t=0

e2t ≤
8L2

1

(L1 + λ)K

(T−1∑
t=0

(f(xt)− f⋆) +

T−1∑
t=0

Σ̂2
t

2(λ−∆1)

)
.

We next upper bound
∑T−1
t=0 (f(xt)− f⋆). Applying Lemma F.2, we have for any i ≥ 0:

f(xi+1) ≤ f(xi) +
Σ̂2
i

2(λ−∆1)
.

Summing up from i = 0 to i = t− 1, we have:

f(xt) ≤ f(x0) +

t−1∑
i=0

Σ̂2
i

2(λ−∆1)
.

Hence,

T−1∑
t=0

(f(xt)− f⋆) ≤ T (f(x0)− f⋆) +

T−1∑
t=0

t−1∑
i=0

Σ̂2
i

2(λ−∆1)
≤ TF 0 + T

T−2∑
t=0

Σ̂2
t

2(λ−∆1)
.

It follows that:
T−1∑
t=0

e2t ≤
8L2

1

(L1 + λ)K

(
TF 0 + (T + 1)

T−1∑
t=0

Σ̂2
t

2(λ−∆1)

)
.

To achieve the accuracy condition 6, by the choice of K, we have

8L2
1T

(L1 + λ)K
≤ 8L1T

K
≤ λ−∆1 ≤ (λ+∆1)

2

λ−∆1
, and

8L2
1

(L1 + λ)K

(T + 1)

2(λ−∆1)
≤ 8L1T

(λ−∆1)K
≤ 1 .

Passing to the full expectation, we get the claim.

F.2.2 PROOF OF LEMMA H.2

Proof. Applying Lemma F.2 and F.1, we have for any t ≥ 0:

EK̂t [e
2
t] ≤

8L2
1p

L1 + λ
EK̂t [Ft(x

t)− Ft(x
t+1)] ≤ 8L2

1p

L1 + λ

(
EK̂t

[
f(xt)− f(xt+1)

]
+

Σ̂2
t

2(λ−∆1)

)
.

Taking the full expectation and summing up from t = 0 to t = T − 1, we have:

T−1∑
t=0

E[e2t] ≤
8L2

1p

L1 + λ

(
f(x0)− f⋆ +

1

2(λ−∆1)

T−1∑
t=0

Σ2
t

)
.

By the choice of p, it holds that:

8L2
1p

L1 + λ
=
L2

1(λ−∆1)

(L1 + λ)2
≤ λ−∆1 ≤ (λ+∆1)

2

λ−∆1
,

and
4L2

1p

(L1 + λ)(λ−∆1)
=

L2
1

2(L1 + λ)2
< 1 .

Hence, accuracy condition (6) is satisfied.

25

Published as a conference paper at ICLR 2026

F.3 PROOFS OF PROPERTIES OF THE SAGA AND SVRG ESTIMATORS

Lemma F.3. Consider the SAGA estimator. Then for any t ≥ 2, it holds that:

bt = bt−1 +
1

nm
[∇fSt(x

t)− bt−1
St

] .

Proof. Indeed,

bt =
1

n

n∑
i=1

bti =
1

n

[∑
i/∈St

bt−1
i +

∑
i∈St

∇fi(xt)
]
=

1

n

[n∑
i=1

bt−1
i +

∑
i∈St

[∇fi(xt)− bt−1
i]

]
= bt−1 +

1

nm
[∇fSt(x

t)− bt−1
St

] .

F.3.1 PROOF OF LEMMA 4.1

Proof. Let t ≥ 2. By definition, Gt = 1
m

∑
i∈St G

t
i, where Gt

i := ∇fi(xt) − bt−1
i + bt−1 and St is

independent from xt and (bt−1
i)ni=1. Therefore, according to Lemma E.2, we have:

ESt [G
t] =

1

n

n∑
i=1

Gt
i = ∇f(xt) and ESt [∥G

t −∇f(xt)∥2] = n−m

n− 1

1

m
σ̂2
t,1 ,

where σ̂2
t,1 := 1

n

∑n
i=1∥(∇fi(x

t) − bt−1
i) − (∇f(xt) − bt−1)∥2. Taking the expectation w.r.t. S[t−1] on

both sides, we get:

σ2
t =

n−m

n− 1

1

m
ES[t−1]

[σ̂2
t,1] :=

qm
m
σ2
t,1 .

We next derive the recurrence for σ2
t,1. Denote χ̂t := ∥xt − xt−1∥. For any α > 0, we obtain:

σ̂2
t+1,1 =

1

n

n∑
i=1

∥(∇fi(xt+1)− bti)− (∇f(xt+1)− bt)∥2

=
1

n

n∑
i=1

∥∥(∇fi(xt)− bti)− (∇f(xt)− bt) + [∇hi(xt)−∇hi(xt+1)]
∥∥2

(E.2),(3)
≤ (1 + α)

1

n

n∑
i=1

∥(∇fi(xt)− bti)− (∇f(xt)− bt)∥2 +
(
1 +

1

α

)
δ2χ̂2

t+1

= (1 + α)
[1
n

n∑
i=1

∥∇fi(xt)− bti −∇f(xt)∥2 − ∥bt∥2
]
+

(
1 +

1

α

)
δ2χ̂2

t+1

= (1 + α)
[1

nm
∥∇f(xt)∥2 + 1

n

∑
i/∈St

∥∇fi(xt)− bt−1
i −∇f(xt)∥2 − ∥bt∥2

]
+

(
1 +

1

α

)
δ2χ̂2

t+1 ,

where the last second equality follows from the identity 1
n

∑n
i=1[∇fi(x

t)− bti −∇f(xt)] = bt, and the last
equality follows from the definition of bti . Further note that

ESt
[1
n

∑
i/∈St

∥∇fi(xt)− bt−1
i −∇f(xt)∥2

]
=

1

n

n∑
i=1

P(i /∈ St)∥∇fi(xt)− bt−1
i −∇f(xt)∥2

=
(
1− 1

nm

) 1

n

n∑
i=1

∥∇fi(xt)− bt−1
i −∇f(xt)∥2 =

(
1− 1

nm

)
[σ̂2
t,1 + ∥bt−1∥2]

Taking the expectation w.r.t. St on both sides of the last second display and plugging in this identity, we obtain:

ESt [σ̂
2
t+1,1 + (1 + α)∥bt∥2] ≤ (1 + α)

(
1− 1

nm

)[
σ̂2
t,1 + ∥bt−1∥2

]
+ (1 + α)

1

nm
∥∇f(xt)∥2

+
(
1 +

1

α

)
δ2 ESt [χ̂

2
t+1] .

Taking the expectation w.r.t. S[t−1] on both sides and denoting B2
t := (1 + α)ES[t]

[∥bt∥2], we get:

σ2
t+1,1 +B2

t ≤ (1 + α)
(
1− 1

nm

)
[σ2
t,1 +B2

t−1] +
1 + α

nm
G2
t + (1 +

1

α
)δ2χ2

t+1 .

26

Published as a conference paper at ICLR 2026

Let 1 − γ/nm := (1 + α)(1 − 1/nm) ∈ (1 − 1/nm, 1). We then have: γ ∈ (0, 1), 1 + α = nm−γ
nm−1

and
1 + 1

α
= nm−γ

1−γ . The previous display can thus be reformulated as:

σ2
t+1,1 +B2

t ≤
(
1− γ

nm

)
[σ2
t,1 +B2

t−1] +
nm − γ

nm(nm − 1)
G2
t +

nm − γ

1− γ
δ2χ2

t+1 .

Let T ≥ 3. Applying Lemma E.4 (starting from t = 2), we have:

T∑
t=3

[σ2
t,1 +B2

t−1] ≤
1− γ/nm
γ/nm

[σ2
2,1 +B2

1] +
1

γ/nm

T−1∑
t=2

[nm − γ

nm(nm − 1)
G2
t +

nm − γ

1− γ
δ2χ2

t+1

]
.

Adding σ2
2,1 to both sides and dropping the non-negative B2

t , we obtain:

T∑
t=2

σ2
t,1 ≤ nm

γ
σ2
2,1 +

nm − γ

γ
B2

1 +
nm − γ

γ(nm − 1)

T−1∑
t=2

G2
t +

nm(nm − γ)

γ(1− γ)
δ2

T−1∑
t=2

χ2
t+1 .

Recall that b1
i = ∇fi(x1) for all i ∈ [n]. It holds that:

σ2
2,1 = σ̂2

2,1 =
1

n

n∑
i=1

[∥(∇fi(x2)−∇fi(x1))−(∇f(x2)−∇f(x1))∥2
(2.2)
≤ δ2χ̂2

2 = δ2χ2
2, B

2
1 =

nm − γ

nm − 1
G2

1 .

It follows that:
T∑
t=2

σ2
t,1 ≤ (nm − γ)2

γ(nm − 1)
G2

1 +
nm − γ

γ(nm − 1)

T−1∑
t=2

G2
t +

nm(nm − γ)

γ(1− γ)
δ2

T−1∑
t=1

χ2
t+1 .

Let us choose γ which minimizes the coefficient in front of
∑T−1
t=1 χ2

t+1 over (0, 1). By Lemma E.5, we get
γ⋆ = nm −

√
n2
m − nm. Substituting γ = γ⋆, we have:

T∑
t=2

σ2
t,1 ≤ (

√
n2
m − nm + nm)G2

1 +
(
1 +

√
nm√

nm − 1

) T−1∑
t=2

G2
t + nm(

√
nm +

√
nm − 1)2δ2

T−1∑
t=1

χ2
t+1

≤ 2nmG
2
1 +

(
1 +

√
nm√

nm − 1

) T−1∑
t=2

G2
t + 4n2

mδ
2
T−1∑
t=1

χ2
t+1 .

Multiplying both sides by qm
m

, substituting the identity σ2
t = qm

m
σ2
t,1 and qm

m

(
1 +

√
nm√
nm−1

)
= n−m

n−1
1
m

+
√
n−m

√
n

m(n−1)
, we obtain:

T∑
t=2

σ2
t ≤ 2nmqm

m
G2

1 +
nm − 1 +

√
n2
m − nm

(n− 1)

T−1∑
t=2

G2
t + 4n2

mδ
2
m

T∑
t=2

χ2
t .

Adding σ2
0 = 0 and σ2

1 = 0 to both sides, we prove the variance bound for T ≥ 3, since G0 = ∇f(x0)
and G1 = ∇f(x1). The same inequality also holds for T = 1 and T = 2, since σ2

0 = σ2
1 = 0 and

σ2
2 = qm

m
σ2
2,1 ≤ qm

m
δ2χ2

2.

F.3.2 PROOF OF LEMMA 4.3

Proof. Let t ≥ 1. By definition, Gt = 1
m

∑
i∈St G

t
i, where Gt

i := ∇fi(xt)−∇fi(wt) +∇f(wt) and St
is independent from xt and wt. Therefore, according to Lemma E.2, we have:

ESt [G
t] =

1

n

n∑
i=1

Gt
i = ∇f(xt) and ESt [∥G

t −∇f(xt)∥2] = n−m

n− 1

1

m
σ̂2
t,1 ,

where σ̂2
t,1 := 1

n

∑n
i=1∥∇hi(x

t)−∇hi(wt)∥2. Since ωt+1 is independent of xt+1 and wt, we have for any
α > 0:

Eωt+1 [σ̂
2
t+1,1] = (1− pB)

1

n

n∑
i=1

∥∇hi(xt+1)−∇hi(wt)∥2

(3),(E.2)
≤ (1− pB)(1 + α)σ̂2

t,1 + (1− pB)
(
1 +

1

α

)
δ2χ̂2

t+1 .

27

Published as a conference paper at ICLR 2026

where χ̂t+1 := ∥xt+1 − xt∥. Let 1− γpB := (1− pB)(1 + α) ∈ (1− pB , 1). We then have γ ∈ (0, 1) and
1 + 1/α = 1−pBγ

pB(1−γ) . Therefore, the previous display can be reformulated as:

Eωt+1 [σ̂
2
t+1,1] ≤ (1− γpB)σ̂

2
t,1 +

(1− pB)(1− pBγ)

pB(1− γ)
δ2χ̂2

t+1 .

Taking the expectation w.r.t, ω[t] on both sides and denoting σ2
t,1 := Eω[t]

[σ̂2
t,1], we have:

σ2
t+1,1 ≤ (1− γpB)σ

2
t,1 +

(1− pB)(1− pBγ)

pB(1− γ)
δ2χ2

t+1 .

Let T ≥ 2. Applying Lemma E.4 (starting from t = 1), we obtain:
T∑
t=2

σ2
t,1 ≤ 1− γpB

γpB
σ2
1,1 +

(1− pB)(1− pBγ)

p2Bγ(1− γ)
δ2

T−1∑
t=1

χ2
t+1 .

Adding σ2
1,1 to both sides and using σ2

1,1 = Eω1 [σ̂
2
1,1] ≤ (1− pB)δ

2χ̂2
1 = (1− pB)δ

2χ2
1, we obtain:

T∑
t=1

σ2
t,1 ≤ 1

γpB
(1− pB)δ

2χ2
1 +

(1− pB)(1− pBγ)

p2Bγ(1− γ)
δ2

T−1∑
t=1

χ2
t+1

≤ (1− pB)(1− pBγ)

p2Bγ(1− γ)
δ2

T−1∑
t=0

χ2
t+1 .

According to Lemma E.5, the minimizer of (1−pB)(1−pBγ)
p2
B
γ(1−γ) over γ ∈ (0, 1) is γ⋆ = 1−

√
1−pB
pB

. Substituting

γ = γ⋆, we get:
T∑
t=1

σ2
t,1 ≤ (1− pB)δ

2

(1−
√
1− pB)2

T∑
t=1

χ2
t .

Multiplying both sides by qm
m

and using the identity σ2
t = ESt,ω[t]

[∥Gt − ∇f(xt)∥2] = qm
m

Eω[t]
[σ̂2
t,1] =

qm
m
σ2
t,1, we have:

T∑
t=1

σ2
t ≤ (1− pB)δ

2
m

(1−
√
1− pB)2

T∑
t=1

χ2
t ≤

4δ2m
p2B

T∑
t=1

χ2
t .

Adding σ2
0 = ∥G0 − ∇f(x0)∥2 = 0 to both sides, we get the variance bound for T ≥ 2. The same bound

holds for T = 1 since σ2
0 = 0 and σ2

1 = qm
m
σ2
1,1 ≤ (1− pB)δ

2
mχ

2
1.

Theorem F.4. Let I-CGM be applied to Problem 1 with the SVRG estimator under Assumption 2.1 and 2.2.
Suppose the inaccuracies in solving the subproblems satisfy (6). Then by choosing λ = 3∆1 + 16δm/pB ,
after T = ⌈ (256(∆1+6δm/pB)F0

ε2
⌉ iterations, we have E[∥∇f(x̄T)∥2] ≤ ε2, where x̄T is uniformly sampled

from (xt)Tt=1. By choosing pB = CR
CA⌈nm⌉ The communication complexity is at most CA⌈nm⌉ + (2CR +

1)
⌈ (256(∆1+6δmCA⌈nm⌉/CR)F0

ε2

⌉
.

The proof strategy is the same as the one for Theorem F.7.

Implementation of SVRG. At the beginning when t = 0, each client i = 1, . . . , n computes ∇fi(x0) and
sends the result to the server; the server then aggregates these results, computing ∇f(x0) to initialize G0. This
requires one full synchronization. At each iteration t ≥ 1, the server uses R-CSS and sends wt and xt to the
clients in St and then receives the gradient difference ∇fi(xt)−∇fi(wt) from them. If ωt = 1, the server
computes the new gradient ∇f(wt) performing one full synchronization and stores it in memory; otherwise, it
continues with ∇f(wt) = ∇f(wt−1) which is already stored in memory. In total, the server needs to maintain
two points xt and wt and one vector ∇f(wt) and the clients are so-called stateless.

F.4 PROPERTIES OF THE RG ESTIMATOR

F.4.1 PROOF OF LEMMA 5.2

Proof. Let t ≥ 0. By the definition of RG, we obtain:

Σ̂2
t+1 = ∥gt+1 −∇f(xt+1)∥2

=
∥∥(1− β)gt + βGt +∇fSt(x

t+1)−∇fSt(x
t)−∇f(xt+1)

∥∥2

=
∥∥(1− β)

(
gt −∇f(xt)

)
+ β

(
Gt −∇f(xt)

)
+

(
∇hSt(x

t)−∇hSt(x
t+1)

)∥∥2

= (1− β)2Σ̂2
t +

∥∥β(Gt −∇f(xt)
)
+

(
∇hSt(x

t)−∇hSt(x
t+1)

)∥∥2

+ 2(1− β)
〈
gt −∇f(xt), β

(
Gt −∇f(xt)

)
+

(
∇hSt(x

t)−∇hSt(x
t+1)

)〉
.

28

Published as a conference paper at ICLR 2026

By Assumption 5.1, St is independent of xt, xt+1 and Gt−1. Furthermore, since gt is a deterministic function
of Gt−1, xt, xt−1, St−1 and gt−1, by induction, St is also independent of gt. Hence, it holds that:

ESt [
〈
gt −∇f(xt), β

(
Gt −∇f(xt)

)
+∇hSt(x

t)−∇hSt(x
t+1)

〉
]

=
〈
gt −∇f(xt), β ESt [G

t −∇f(xt)] + ESt [∇hSt(x
t)−∇hSt(x

t+1)]
〉
.

By Assumption 5.1, we have ESt [Gt] = ∇f(xt). Using Lemma E.2, we have ESt [∇hSt(xt) −
∇hSt(xt+1)] = 1

n

∑n
i=1[∇hi(x

t)−∇hi(xt+1)] = 0 and

ESt [∥∇hSt(x
t)−∇hSt(x

t+1)∥2] (E.3)
=

qm
m

1

n

n∑
i=1

∥∇hi(xt)−∇hi(xt+1)∥2
(2.2)
≤ δ2mχ̂

2
t+1 .

Taking the expectation w.r.t. St on both sides of the first display, we get:

ESt
[
Σ̂2
t+1

]
= (1− β)2Σ̂2

t + ESt [∥β
(
Gt −∇f(xt)

)
+

(
∇hSt(x

t)−∇hSt(x
t+1)

)
∥2]

≤ (1− β)2Σ̂2
t + 2β2 ESt [∥G

t −∇f(xt)∥2] + 2δ2mχ̂
2
t+1 .

Taking the expectation w.r.t. S[t−1] on both sides and substituting the notations, we get:

Σ2
t+1 ≤ (1− β)2Σ2

t + 2β2σ2
t + 2δ2mχ

2
t+1 .

Applying Lemma E.4, we get for any T ≥ 1:

T∑
t=1

Σ2
t ≤

(1− β)2

2β − β2
Σ2

0 +
2β

2− β

T−1∑
t=0

σ2
t +

2δ2m
2β − β2

T−1∑
t=0

χ2
t+1 . (F.1)

This proves the claim since g0 = ∇f(x0) and so Σ2
0 = 0.

F.4.2 PROOF OF COROLLARY 5.3.

Proof. Let T ≥ 1. Note that, under Assumption 5.1, we have ES[t−1]
[∥xt − xt−1∥]2 = ES[t−2]

[∥xt −
xt−1∥]2 = χ2

t and ES[t−1]
[∥∇f(xt)∥2] = ES[t−2]

[∥∇f(xt)∥2] = G2
t . Applying Lemma 4.1, we have:

T∑
t=0

σ2
t ≤ 2nmqm

m
G2

1 +
nm − 1 +

√
n2
m − nm

(n− 1)

T−1∑
t=2

G2
t + 4n2

mδ
2
m

T∑
t=2

χ2
t .

Applying Lemma 5.2 , we obtain:

T∑
t=0

Σ2
t ≤

2β

2− β

T−1∑
t=0

σ2
t +

2δ2m
2β − β2

T∑
t=1

χ2
t .

Combining the previous two displays, we have:

T∑
t=0

Σ2
t ≤

4βnmqm
(2− β)m

G2
1 +

2β(nm − 1 +
√
n2
m − nm)

(2− β)(n− 1)

T−1∑
t=2

G2
t +

8β2n2
mδ

2
m + 2δ2m

2β − β2

T∑
t=1

χ2
t .

F.4.3 PROOF OF COROLLARY 5.4.

Proof. Let T ≥ 1. Applying Lemma 4.3, we get:

T∑
t=0

ESt,ω[t]
[∥Gt −∇f(xt)∥2] ≤ 4δ2m

p2B

T∑
t=1

Eω[t−1]
[∥xt − xt−1∥2] .

Note that, under Assumption 5.1, St−1 is independent of xt and xt−1. Moreover, the first iterate that might
depend on ωt−1 is xt+1 since gt is computed using xt and Gt−1 which is a function of ωt−1. Therefore, ωt−1

is also independent of xt and xt−1. Hence, we have ES[t−1],ω[t−1]
[∥xt − xt−1∥2] = ES[t−2],ω[t−2]

[χ̂2
t] = χ2

t .
Taking the expectation w.r.t. S[t−1] on both sides of the first display, we get:

T∑
t=0

σ2
t ≤ 4δ2m

p2B

T∑
t=1

χ2
t .

29

Published as a conference paper at ICLR 2026

where σ2
t := ES[t],ω[t]

[∥Gt −∇f(xt)∥2]. Applying Lemma 5.2, taking the expectation w.r.t. ω[t] and substitut-
ing the identity ES[t−1],ω[t]

[Σ̂2
t] = ES[t−1],ω[t−1]

[Σ̂2
t] = Σ2

t and ES[t−2],ω[t]
[χ̂2
t] = ES[t−2],ω[t−2]

[χ̂2
t] = χ2

t ,
we obtain:

T∑
t=0

Σ2
t ≤

2β

2− β

T−1∑
t=0

σ2
t +

2δ2m
2β − β2

T∑
t=1

χ2
t .

Combining the previous two displays, we have:

T∑
t=0

Σ2
t ≤

8β2δ2m/p
2
B + 2δ2m

2β − β2

T∑
t=1

χ2
t .

F.5 PROOFS FOR I-CGM WITH RG-SAGA

Lemma F.5. Let xt be the iterates of I-CGM-RG-SAGA and let Gt be the-SAGA estimator for all t ≥ 0. Let ζt
denote the randomness generated during the process of solving the subproblem Ft−1 in I-CGM for any t ≥ 1.
Assume that {ζt}∞t=1 are mutually independent across t. Then the iterates {xt}∞t=0 and the estimators {Gt}∞t=0

satisfy Assumption 5.1.

Proof. The equation ESt [Gt] = ∇f(xt) has been proved in Lemma 4.1. We next verify the dependency
of randomness. Let t ≥ 1 and denote S[t] := (S0, . . . , St) and ζ[t] := (ζ1, . . . , ζt). Assume that xt is a
deterministic function of (S[t−2], ζ[t]). Then Gt is a deterministic function of (S[t], ζ[t]) since Gt depends only
on x[t] := (x0,x1, ...,xt) and St. Next observe that gt−1 is a function of St−2, xt−1, xt−2, Gt−2 and gt−2.
Therefore, gt−1 is a deterministic function of S[t−2] and ζ[t−1]. Finally, from the update rule of I-CGM, xt is a
deterministic function of gt−1, ζt and xt−1. Therefore, the assumption that xt is determinsitic conditioned on
(S[t−2], ζ[t]) is satisfied. This implies that St is independent of x[t+1], Gt−1, . . . ,G0.

F.5.1 PROOF OF THEOREM 6.1.

Proof. According to Lemma H.2, by choosing p = λ−∆1
8(L1+λ)

, the accuracy condition (6) for solving the
subproblems is satisfied. Applying Corollary 5.3 and taking the full expectation, for any T ≥ 1, we have:

T∑
t=0

Σ2
t ≤

4βqmnm
(2− β)m

G2
1 +

2β(nm − 1 +
√
n2
m − nm)

(2− β)(n− 1)

T−1∑
t=2

G2
t +

8β2n2
mδ

2
m + 2δ2m

2β − β2

T∑
t=1

χ2
t ,

where Σ2
t , G2

t and χ2
t are defined in Corollary 3.2. Using 1

2−β ≤ 1, qm
m

≤ 1, nm−1
n−1

≤ 1 ≤ nm, and√
n2
m−nm
n−1

≤ nm as n ≥ 2, we get:

T∑
t=0

Σ2
t ≤ 4βnm

T−1∑
t=1

G2
t +

(
8βn2

mδ
2
m +

2δ2m
β

) T∑
t=1

χ2
t .

Let λ = 1
a
∆1 + b

√
nmδm and β = 1

cnm
where 0 < a < 1 and b, c > 0. To achieve the error condition (7), the

constants should satisfy: (12(λ+∆1)
2

(λ−∆1)2
+ 8

)
4βnm ≤

(12(1 + a)2

(1− a)2
+ 8

)4
c
≤ 1

2
,

and(12(λ+∆1)
2

(λ−∆1)2
+8

)(
8βn2

mδ
2
m+

2δ2m
β

)
≤

(12(1 + a)2

(1− a)2
+8

)
(8/c+2c)nmδ

2
m ≤ b2nmδ

2
m ≤ (λ+∆1)

2 ,

which gives: (12(1 + a)2

(1− a)2
+ 8

)
≤ c

2
,

(12(1 + a)2

(1− a)2
+ 8

)
(8/c+ 2c) ≤ b2 . (F.2)

Let a, b, c satisfy (F.2). We can apply Corollary 3.2 and obtain:

E[∥∇f(x̄T)∥2] ≤ 32(λ+∆1)
2

λ−∆1

F 0

T
≤ 32(1 + a)2

1− a

(1

a
∆1 + b

√
nmδm

)F 0

T
.

Minimizing the coefficient in front of ∆1 gives a⋆ = 1
3

. Choosing b = 113 and c = 112, the condition (F.2) is
satisfied and we have:

E[∥∇f(x̄T)∥2] ≤
256(∆1 + 38

√
nmδm)F 0

T
.

30

Published as a conference paper at ICLR 2026

Therefore, to achieve E[∥∇f(x̄T)∥2] ≤ ε2, we need at most T = ⌈ (256(∆1+38
√
nmδm)F0

ε2
⌉ iterations. We next

compute the communication and local complexity. At the beginning when t = 0 and t = 1, we need 2⌈nm⌉
communication rounds with A-CSS to compute two full gradients and the associated local complexity is 1 for
each round. Additionally, 2 communication rounds with D-CSS are needed to compute x1 and x2, where the
local complexity is 1

p
for each round. For subsequent iterations t ≥ 2, one communication round with R-CSS

is needed for updating gt and its associated local complexity is 2 since each client in St−1 needs to compute
∇fi(xt) and ∇fi(xt−1). Then another round with D-CSS is required to compute the next iterate, where the
local complexity is 1

p
. Therefore, the total communication complexity is at most:

N(ε) = E[CANA + CRNR +ND]

≤ 2CA⌈nm⌉+ CRT + T

= 2CA⌈nm⌉+ (CR + 1)

⌈
(256(∆1 + 38

√
nmδm)F 0

ε2

⌉
.

The local complexity is bounded by:

K(ε) = E[NA +ND/p+ 2NR]

≤ 2⌈nm⌉+ 1

p
T + 2T

= 2⌈nm⌉+
(
2 +

8(L1 + λ)

λ−∆1

)
T

≤ 2⌈nm⌉+
28∆1 + 1130

√
nmδm + 8L1

2∆1 + 113
√
nmδm

((256(∆1 + 38
√
nmδm)F 0

ε2
+ 1

)
≤ 2⌈nm⌉+

512(7∆1 + 283
√
nmδm + 2L1)F

0

ε2
+ 14 +

4L1

∆1 + 28
√
nmδm

.

F.6 PROOFS FOR I-CGM WITH RG-SVRG

Lemma F.6. Let xt be the iterates of I-CGM-RG-SVRG and let Gt be the-SVRG estimator for all t ≥ 0. Let ζt
denote the randomness generated during the process of solving the subproblem Ft−1 in I-CGM for any t ≥ 1.
Assume that {ζt}∞t=1 are mutually independent across t. Then the iterates {xt}∞t=0 and the estimators {Gt}∞t=0

satisfy Assumption 5.1.

Proof. The equation ESt [Gt] = ∇f(xt) has been proved in Lemma 4.3. We next verify the dependency of
randomness. Let t ≥ 1 and denote x[t] = (x0, ..,xt), ω[t] = (ω1, ..., ωt) and ζ[t] = (ζ1, . . . , ζt). Assume
that xt is a deterministic function of (S[t−2], ω[t−2], ζ[t]). It follows that wt is a deterministic function of
(S[t−2], ω[t], ζ[t]) since wt depends only on xt, wt−1 and ωt. Then Gt is deterministic conditioned on
(S[t], ω[t], ζ[t]) since Gt is a function of xt, wt and St. Next observe that gt−1 is a function of St−2, xt−1,
xt−2, Gt−2 and gt−2. Hence, gt−1 is a deterministic function of (S[t−2], ω[t−2], ζ[t−1]). Finally, from the
update rule of I-CGM, xt is a deterministic function of gt−1, ζt and xt−1. Therefore, the assumption that xt

is deterministic conditioned on (S[t−2], ω[t−2], ζ[t]) is satisfied. This implies that St is independent of x[t+1],
G0, . . . ,Gt−1.

Theorem F.7 (I-CGM-RG-SVRG). Let I-CGM be applied to Problem 1 under Assumptions 2.1, 2.2 and 2.3,
where xt+1 = CGMrand(λ, K̂t,x

t,gt) with K̂t ∼ Geom(p) and gt is generated by the RG-SVRG estimator.

Then by choosing λ = 3∆1 + 22δm/
√
pB , β = pB

2
, and p = λ−∆1

8(L1+λ)
, after T = ⌈ (256(∆1+8δm/

√
pB)F0

ε2
⌉

iterations, we have E[∥∇f(x̄T)∥2] ≤ ε2, where x̄T is is uniformly sampled from (xt)Tt=1. Further let pB =

CR
CA⌈nm⌉ . The communication complexity is at mostCA⌈nm⌉+(2CR+1)

⌈ (256(∆1+8δm
√
CA⌈nm⌉/CRF0

ε2

⌉
and

the local complexity is bounded by 16+⌈nm⌉+ 1024(L1+4∆1+33
√
CA⌈nm⌉/CRδm)F0

ε2
+ 4L1

∆1+11
√
CA⌈nm⌉/CRδm

.

Proof. According to Lemma H.2, by choosing p = λ−∆1
8(L1+λ)

, the accuracy condition (6) for solving the
subproblems is satisfied. Applying Corollary 5.4 and taking the full expectation, for any T ≥ 1, we have:

T∑
t=0

Σ2
t ≤

8β2δ2m/p
2
B + 2δ2m

2β − β2

T∑
t=1

χ2
t ≤

(8βδ2m
p2B

+
2δ2m
β

) T∑
t=1

χ2
t .

31

Published as a conference paper at ICLR 2026

Let λ = 1
a
∆1 + bδm/

√
pB and β = pB

c
where 0 < a < 1 and b, c > 0. To achieve the error condition (7), the

constants should satisfy:(12(λ+∆1)
2

(λ−∆1)2
+ 8

)(8βδ2m
p2B

+
2δ2m
β

)
≤

(12(1 + a)2

(1− a)2
+ 8

)
(8/c+ 2c)δ2m/pB ≤ b2δ2m/pB ≤ (λ+∆1)

2 ,

which gives: (12(1 + a)2

(1− a)2
+ 8

)
(8/c+ 2c) ≤ b2 . (F.3)

Let a, b, c satisfy (F.3). We can apply Corollary 3.2 and obtain:

E[∥∇f(x̄T)∥2] ≤ 32(λ+∆1)
2

λ−∆1

F 0

T
≤ 32(1 + a)2

1− a

(1

a
∆1 + bδm/

√
pB

)F 0

T
.

Minimizing the coefficient in front of ∆1 gives a⋆ = 1
3

. Choosing b = 22 and c = 2, the condition (F.3) is
satisfied and we have:

E[∥∇f(x̄T)∥2] ≤
256(∆1 + 8δm/

√
pB)F

0

T
.

Therefore, to achieve E[∥∇f(x̄T)∥2] ≤ ε2, we need at most T = ⌈ (256(∆1+8δm/
√
pB)F0

ε2
⌉ iterations. We next

compute the communication and local complexity. At iteration t = 0, the full gradient ∇f(x0) is computed
which requires ⌈nm⌉ communication rounds with A-CSS. At each iteration t ≥ 1, with probability pB , the
full gradient is computed, which requires ⌈nm⌉ rounds with A-CSS. The expected total number of rounds
where A-CSS is used is thus bounded by: ⌈nm⌉+ ⌈nm⌉pBT . The associated local complexity for each round
with A-CSS is always 1. For t ≥ 1, one communication round with R-CSS is needed for updating gt and
its associated local complexity is 3 since the client i ∈ St−1 needs to compute ∇fi(xt−1), ∇fi(wt−1) and
∇fi(xt). Then another round with D-CSS is established, which has the local complexity of 1/p. Therefore, the
communication complexity is bounded by:

N(ε) = E[CANA+CRNR+ND] ≤ CA(⌈nm⌉+⌈nm⌉pBT)+CRT+T = CA⌈nm⌉+(CA⌈nm⌉pB+CR+1)T .

Let CA⌈nm⌉pB = CR. We have

N(ε) ≤ CA⌈nm⌉+ (2CR + 1)

⌈
(256(∆1 + 8δm

√
CA⌈nm⌉/CR)F 0

ε2

⌉
.

The local complexity K(ε) is bounded by:

E[NA +ND/p+ 3NR] = ⌈nm⌉+ ⌈nm⌉pBT + T/p+ 3T

≤ ⌈nm⌉+ (
8(L1 + λ)

λ−∆1
+ 4)T

= ⌈nm⌉+
8L1 + 32∆1 + 264δm/

√
pB

2∆1 + 22δm/
√
pB

((256(∆1 + 8δm/
√
pB)F

0

ε2
+ 1

)
≤ ⌈nm⌉+ 128

(8L1 + 32∆1 + 264δm/
√
pB)F

0

ε2
+ 16 +

4L1

∆1 + 11δm/
√
pB

.

G I-CGM-RG-SAGA WITH INEXACT INITIALIZATION

In the main paper, we consider the RG- SAGA estimator with two full gradient computation during initialization.
This allows to satisfy the desired error condition (7) without incurring additional error. In this section, we
discuss the case where only one or no full gradient is computed for this estimator. Let us introduce the parameter
t0 ∈ {0, 1, 2} to determine how many times the full gradient is computed at the beginning. We have the
following definition for the general SAGA estimator:

G0 = ∇fS0(x
0), t0 = 0, Gt = ∇f(xt), 0 ≤ t ≤ t0 − 1, Gt = btSt − bt−1

St
+ bt−1, t ≥ max(t0, 1) ,

(G.1)
where St ∈

(
[n]
m

)
is uniformly sampled at random without replacement, btSt := 1

m

∑
i∈St b

t
i, b

t−1
St

:=
1
m

∑
i∈St b

t−1
i , bt := 1

n

∑n
i=1b

t
i for all t ≥ max(t0, 1), and for any i ∈ [n], bti is recurrently defined as:

b0
i =

{
∇fi(x0) if i ∈ S0,

0 otherwise,
, t0 = 0, bti = ∇fi(xt), 0 ≤ t ≤ t0 − 1,∀i ∈ [n],

32

Published as a conference paper at ICLR 2026

and

bti =

{
∇fi(xt) if i ∈ St,

bt−1
i otherwise,

, t ≥ max(t0, 1) .

We have the following recurrence for bt:

b0 =

{
∇fS0(x

0) if t0 = 0,
1
n

∑n
i=1b

0
i otherwise,

bt = bt−1 +
1

nm
[∇fSt(x

t)− bt−1
St

], t ≥ max(t0, 1) .

Lemma G.1. Consider the SAGA estimator (G.1) under Assumption 2.2. Let t0 ∈ {0, 1}. Then for any t ≥ 0,
ESt [Gt] = ∇f(xt) and for any T ≥ 1, we have :

T∑
t=0

σ2
t ≤ 2nmqm

m
∥∇f(x0)∥2 + nm − 1 +

√
n2
m − nm

(n− 1)

T−1∑
t=1

G2
t + 4n2

mδ
2
m

T∑
t=1

χ2
t , (t0 = 1)

T∑
t=0

σ2
t ≤

(
12

√
n2
m − nm +

qm
m

)
ζ20 + 8

√
n2
m − nm∥∇f(x0)∥2

+
nm − 1 +

√
n2
m − nm

(n− 1)

T−1∑
t=1

G2
t + 4n2

mδ
2
m

T∑
t=1

χ2
t , (t0 = 0)

where σ2
t := ES[t]

[∥Gt − ∇f(xt)∥2], G2
t = ES[t−1]

[∥∇f(xt)∥2], χ2
t := ES[t−1]

[∥xt − xt−1∥2], S[t] :=

(St0 , ..., St) and ζ20 := 1
n

∑n
i=1∥∇fi(x

0)−∇f(x0)∥2.

Proof. When t0 = 0, we have ES0 [G
0] = ES0 [∇fS0] = ∇f(x0). When t0 = 1, we have G0 = ∇f(x0).

For t ≥ 1, Gt = btSt − bt−1
St

+ bt−1 and the unbiasedness has been proven in Lemma 4.1. We next study the
variance bound. Following the proof in Section F.3.1, we have for any t ≥ 1:

σ2
t+1,1 +B2

t ≤
(
1− γ

nm

)
[σ2
t,1 +B2

t−1] +
nm − γ

nm(nm − 1)
G2
t +

nm − γ

1− γ
δ2χ2

t+1 ,

where σ2
t,1 := ES[t−1]

[1
n

∑n
i=1∥(∇fi(x

t) − bt−1
i) − (∇f(xt) − bt−1)∥2], B2

t := nm−γ
nm−1

ES[t]
[bt∥2] and

γ ∈ (0, 1). Let T ≥ 2. Applying Lemma E.4 (starting from t = 1), we have:

T∑
t=2

[σ2
t,1 +B2

t−1] ≤
1− γ/nm
γ/nm

[σ2
1,1 +B2

0] +
1

γ/nm

T−1∑
t=1

[nm − γ

nm(nm − 1)
G2
t +

nm − γ

1− γ
δ2χ2

t+1

]
.

Adding σ2
1,1 to both sides and dropping the non-negative B2

t−1, we obtain:

T∑
t=1

σ2
t,1 ≤ nm

γ
σ2
1,1 +

nm − γ

γ
B2

0 +
nm − γ

γ(nm − 1)

T−1∑
t=1

G2
t +

nm(nm − γ)

γ(1− γ)
δ2

T−1∑
t=1

χ2
t+1 . (G.2)

Suppose t0 = 1. Then we have b0
i = ∇fi(x0) for all i ∈ [n]. It holds that:

σ2
1,1 =

1

n

n∑
i=1

[∥(∇fi(x1)−∇fi(x0))− (∇f(x1)−∇f(x0))∥2
(2.2)
≤ δ2χ2

1, B
2
0 =

nm − γ

nm − 1
∥∇f(x0)∥2 .

It follows that:
T∑
t=1

σ2
t,1 ≤ (nm − γ)2

γ(nm − 1)
∥∇f(x0)∥2 + nm − γ

γ(nm − 1)

T−1∑
t=1

G2
t +

nm(nm − γ)

γ(1− γ)
δ2

T−1∑
t=0

χ2
t+1 .

Substituting γ = γ⋆ = nm −
√
n2
m − nm that minimizes the coefficient in front of

∑T−1
t=0 χ2

t+1 over (0, 1),
multiplying both sides by qm

m
, substituting the identity σ2

t = qm
m
σ2
t,1, we have:

T∑
t=1

σ2
t ≤ 2nmqm

m
∥∇f(x0)∥2 + nm − 1 +

√
n2
m − nm

(n− 1)

T−1∑
t=1

G2
t + 4n2

mδ
2
m

T∑
t=1

χ2
t .

Adding σ2
0 = 0 to both sides, we prove the variance bound for T ≥ 2, since G0 = ∇f(x0). The same

inequality also holds for T = 1, since σ2
1 = qm

m
σ2
1,1 ≤ qm

m
δ2χ2

1.

33

Published as a conference paper at ICLR 2026

We next prove the case for t0 = 0. Going back to (G.2), substituting γ = γ⋆ = nm −
√
n2
m − nm that

minimizes the coefficient in front of
∑T−1
t=0 χ2

t+1 over (0, 1), multiplying both sides by qm
m

, substituting the
identity σ2

t = qm
m
σ2
t,1, we have:

T∑
t=1

σ2
t ≤ 2qmnm

m
σ2
1,1 +

2qmnm
m

B2
0 +

nm − 1 +
√
n2
m − nm

(n− 1)

T−1∑
t=1

G2
t + 4n2

mδ
2
m

T∑
t=2

χ2
t .

Let α be such that (1 + α)(1− 1/nm) = 1− γ∗/nm as specified in Lemma 4.1. By the definition of b0
i , we

have:

σ̂2
1,1 =

1

n

n∑
i=1

∥(∇fi(x1)− b0
i)− (∇f(x1)− b0)∥2

(E.2),(2.2)
≤ (1 + α)

1

n

n∑
i=1

∥(∇fi(x0)− b0
i)− (∇f(x0)− b0)∥2 +

(
1 +

1

α

)
δ2χ̂2

1

= (1 + α)
1

n

[∑
i∈S0

∥∇f(x0)−∇fS0(x
0)∥2 +

∑
i/∈S0

∥∇fi(x0)−∇f(x0) +∇fS0(x
0)∥2

]
+

(
1 +

1

α

)
δ2χ̂2

1

= (1 + α)
1

n

[
m∥∇f(x0)−∇fS0(x

0)∥2 +
∑
i/∈S0

∥∇fi(x0)−∇f(x0)∥2 +m⟨∇f(x0),∇fS0(x
0)⟩

+ (n− 2m)∥∇fS0(x
0)∥2

]
+

(
1 +

1

α

)
δ2χ̂2

1 .

It follows that:

σ2
1,1 = ES0 [σ̂

2
1,1]

(E.3)
≤ (1 + α)

1

n

[
qmζ

2
0 + (n−m)ζ20 +m∥∇f(x0)∥2 + (n− 2m)∥∇f(x0)∥2 + (n− 2m)

qm
m
ζ20

]
+

(
1 +

1

α

)
δ2χ2

1

= (1 + α)
(
1 +

qm
m

− qm
n

− 1

nm

)
ζ20 + (1 + α)(1− 1/nm)∥∇f(x0)∥2 +

(
1 +

1

α

)
δ2χ2

1 .

=
nm − γ∗

nm − 1

[
(1− 1/nm + qm/m− qm/n)ζ

2
0 + (1− 1/nm)∥∇f(x0)∥2

]
+
nm − γ∗

1− γ∗ δ2χ2
1

≤
√

nm
nm − 1

[
(1− 1/nm + qm/m− qm/n)ζ

2
0 + (1− 1/nm)∥∇f(x0)∥2

]
+ 2nmδ

2χ2
1 .

By the definition of B2
0, we get:

B2
0 =

nm − γ∗

nm − 1
ES0 [∥b

0∥2] (E.3)
=

√
nm

nm − 1

[
∥∇f(x0)∥2 + qm

m
ζ20
]
.

Substituting the bound of σ2
1,1 and B2

0, we have:

T∑
t=1

σ2
t ≤ a0ζ

2
0 + b0G

2
0 +

nm − 1 +
√
n2
m − nm

(n− 1)

T−1∑
t=1

G2
t + 4n2

mδ
2
m

T∑
t=1

χ2
t ,

where a0 = 2qmnm
m

√
nm
nm−1

(1 − 1/nm + 2qm/m − qm/n) and b0 = 2qmnm
m

√
nm
nm−1

(2 − 1/nm). Using

2qmnm
m

√
nm
nm−1

= 2n
n−1

√
n2
m − nm ≤ 4

√
n2
m − nm since n ≥ 2, we have a0 ≤ 12

√
n2
m − nm and b0 ≤

8
√
n2
m − nm. By the definition of σ2

0 , we have:

σ2
0 = ES0 [∥G0 −∇f(x0)∥2] = ES0 [∥∇fS0(x

0)−∇f(x0)∥2] (E.3)
=

qm
m
ζ20 .

Adding σ2
0 to both sides of the previous display, we conclude the proof.

We next consider the RG estimator with inexact initialization.

g0 ≈ ∇f(x0), gt+1 = (1− β)gt + βGt +∇fSt(x
t+1)−∇fSt(x

t), t ≥ 0 , (G.3)

Let us now combine RG (G.3) and SAGA (G.1). They share the same randomness St starting from t ≥ 0.

34

Published as a conference paper at ICLR 2026

Lemma G.2. Consider the RG-SAGA estimator (G.3)-(G.1) under Assumptions 5.1 and 2.2. Let T ≥ 1.
Suppose t0 = 1, by setting g0 = G0 = ∇f(x0), we have:

T∑
t=0

Σ2
t ≤

4βnmqm
(2− β)m

∥∇f(x0)∥2+2β(nm − 1 +
√
n2
m − nm)

(2− β)(n− 1)

T−1∑
t=1

G2
t+

8β2n2
mδ

2
m + 2δ2m

2β − β2

T∑
t=1

χ2
t (t0 = 1) ,

If t0 = 0, then by setting g0 = ∇fS−1(x
0) where S−1 ∈

(
[n]
m

)
is sampled uniformly at random without

replacement, we have:

T∑
t=0

Σ2
t ≤

(((1− β)2

2β − β2
+ 1 +

2β

2− β

)qm
m

+
24β

√
n2
m − nm

2− β

)
ζ20 +

16β

2− β

√
n2
m − nmG

2
0

+
2β(nm − 1 +

√
n2
m − nm)

(2− β)(n− 1)

T−1∑
t=1

G2
t +

8β2n2
mδ

2
m ++2δ2m

2β − β2

T∑
t=1

χ2
t ,

where Σ2
t := ES[t−1]

[∥gt −∇f(xt)∥2], G2
t := ES[t−2]

[
∥∥∇f(xt)∥∥2

], χ2
t := ES[t−2]

[∥xt − xt−1∥2], S[t] :=

(S−1, S0, . . . , St) and ζ20 := 1
n

∑n
i=1∥∇fi(x

0)−∇f(x0)∥2.

Proof. Suppose t0 = 1. Then g0 = ∇f(x0). Applying Lemma 5.2 and using the assumption that xt is
independent of S[t−1], we have for any T ≥ 1:

T∑
t=0

Σ2
t ≤

2β

2− β

T−1∑
t=0

σ2
t +

2δ2m
2β − β2

T∑
t=1

χ2
t .

Applying Lemma G.1 with t0 = 1, we have:

T∑
t=0

σ2
t ≤ 2nmqm

m
∥∇f(x0)∥2 + nm − 1 +

√
n2
m − nm

(n− 1)

T−1∑
t=1

G2
t + 4n2

mδ
2
m

T∑
t=1

χ2
t .

Combining the previous two displays, we get the first claim.

We next prove the case for t0 = 0. Since ESt [Gt] = ∇f(xt) for any t ≥ 0 and Assumption 5.1 is assumed,
inequality (5.1) is thus satisfied. Taking the expectation w.r.t. S−1 on both sides of (5.1), we have for any T ≥ 1:

T∑
t=1

Σ2
t ≤

(1− β)2

2β − β2
Σ2

0 +
2β

2− β

T−1∑
t=0

σ2
t +

2δ2m
2β − β2

T−1∑
t=0

χ2
t+1

Adding Σ2
0 = ES−1 [∥g0 − ∇f(x0)∥2] = qm

m
ζ20 to both sides and applying Lemma G.1 with t0 = 0, we

conclude the proof.

Theorem G.3. Let I-CGM be applied to Problem 1 with RG-SAGA (G.3)-(G.1) estimator under Assumption 2.1
and 2.2. Let g0 = ∇f(x0) if t0 = 1 and g0 = ∇fS−1(x

0) if t0 = 0, where S−1 ∈
(
[n]
m

)
is uniformly sampled

at random without replacement. Suppose the inaccuracies in solving the subproblems satisfy (6). Then by
choosing λ = 3∆1 + 113δm/pB and β = 1

112nm
, the total communication complexity N(ε) required to find

an ε-approximate stationary point is at most:

CA⌈nm⌉+ (CR + 1)
⌈256(∆1 + 38

√
nmδm)F 0

ε2
+

8qmG
2
0

mε2

⌉
(t0 = 1) ,

and

(CR + 1)
⌈256(∆1 + 38

√
nmδm)F 0

ε2
+ (112qm/m+ 28

√
1− 1/nm)ζ20 + 16

√
1− 1/nmG

2
0

⌉
(t0 = 0),

where G2
0 := ∥∇f(x0)∥2 and ζ20 := 1

n

∑n
i=1∥∇fi(x

0)−∇f(x0)∥2.

Proof. Let T ≥ 1. Applying Theorem 3.1, taking the full expectation and using condition (6), we have:

T∑
t=1

G2
t + (λ+∆1)

2
T∑
t=1

χ2
t ≤

16(λ+∆1)
2

λ−∆1
F 0 +

(12(λ+∆1)
2

(λ−∆1)2
+ 8

) T−1∑
t=0

Σ2
t ,

35

Published as a conference paper at ICLR 2026

where G2
t , χ2

t and Σ2
t are defined in Corollary 3.2. Let us first assume t0 = 1. Applying Lemma G.2 with

t0 = 1, we get:
T∑
t=0

Σ2
t ≤

4βnmqm
(2− β)m

∥∇f(x0)∥2 + 2β(nm − 1 +
√
n2
m − nm)

(2− β)(n− 1)

T−1∑
t=1

G2
t +

8β2n2
mδ

2
m + 2δ2m

2β − β2

T∑
t=1

χ2
t

≤ 4βnmqm
m

G2
0 + 4βnm

T−1∑
t=1

G2
t +

(
8βn2

mδ
2
m +

2δ2m
β

) T∑
t=1

χ2
t ,

where we used 1
2−β ≤ 1, qm

m
≤ 1, nm−1

n−1
≤ 1 ≤ nm, and

√
n2
m−nm
n−1

≤ nm as n ≥ 2. Using the same choice
of parameters as used in Theorem 6.1, it holds that:(12(λ+∆1)

2

(λ−∆1)2
+ 8

)
4βnm ≤ 1

2
,
(12(λ+∆1)

2

(λ−∆1)2
+ 8

)(
8βn2

mδ
2
m +

2δ2m
β

)
≤ (λ+∆1)

2 .

It follows that:

1

2

T∑
t=1

G2
t ≤

16(λ+∆1)
2

λ−∆1
F 0 +

(12(λ+∆1)
2

(λ−∆1)2
+ 8

)4βnmqm
m

G2
0

≤ 128(∆1 + 38
√
nmδm)F 0 +

4qm
m

G2
0 .

Therefore, to achieve E[∥∇f(x̄T)∥2] ≤ ε2, we need at most T = ⌈ 256(∆1+38
√
nmδm)F0

ε2
+

8qmG
2
0

mε2
⌉ iterations.

We next compute the communication complexity. At the beginning when t = 0, we need ⌈nm⌉ communication
rounds with A-CSS to compute one full gradient and the associated local complexity is 1. Additionally,
one communication round with D-CSS is needed to compute x1. For subsequent iterations t ≥ 1, one
communication round with R-CSS is needed for updating gt. Then another round with D-CSS is required to
compute the next iterate. Therefore, the total communication complexity is at most:

N(ε) = E[CANA + CRNR +ND] ≤ CA⌈nm⌉+ CRT + T .

We next consider the case where t0 = 0. We follow the same reasoning strategy as for t0 = 1. Applying
Lemma G.2 with t0 = 0, we get:
T∑
t=0

Σ2
t ≤

(((1− β)2

2β − β2
+ 1 +

2β

2− β

)qm
m

+
24β

√
n2
m − nm

2− β

)
ζ20 +

16β

2− β

√
n2
m − nmG

2
0

+
2β(nm − 1 +

√
n2
m − nm)

(2− β)(n− 1)

T−1∑
t=1

G2
t +

8β2n2
mδ

2
m ++2δ2m

2β − β2

T∑
t=1

χ2
t

≤ (4qm/m+ 24β
√
n2
m − nm)ζ20 + 16β

√
n2
m − nmG

2
0 + 4βnm

T−1∑
t=1

G2
t +

(
8βn2

mδ
2
m +

2δ2m
β

) T∑
t=1

χ2
t .

Using the same choice of parameters as used in Theorem 6.1, it follows that:

1

2

T∑
t=1

G2
t ≤

16(λ+∆1)
2

λ−∆1
F 0 +

(12(λ+∆1)
2

(λ−∆1)2
+ 8

)(
(4qm/m+ 24β

√
n2
m − nm)ζ20 + 16β

√
n2
m − nmG

2
0

)
≤ 128(∆1 + 38

√
nmδm)F 0 +

(
56qm/m+ 14

√
1− 1/nm

)
ζ20 + 8

√
1− 1/nmG

2
0 .

Therefore, to achieve E[∥∇f(x̄T)∥2] ≤ ε2, we need at most T = ⌈ 256(∆1+38
√
nmδm)F0

ε2
+ (112qm/m +

28
√

1− 1/nm)ζ20 + 16
√

1− 1/nmG
2
0⌉ iterations. We next compute the communication complexity. At the

beginning when t = 0, we need one communication round with R-CSS to compute g0 = ∇fS−1(x
0) and the

associated local complexity is 1. Additionally, one communication round with D-CSS is needed to compute x1.
For subsequent iterations t ≥ 1, one communication round with R-CSS is needed for updating gt. Then another
round with D-CSS is required to compute the next iterate. Therefore, the total communication complexity is at
most:

N(ε) = E[CANA + CRNR +ND] ≤ CRT + T .

Summary. The communication complexity of I-CGM-RG-SAGA with one full gradient computation (t0 = 1)
is N(ε) ≲ CAnm+CR

(∆1+
√
nmδm)F0

ε2
+CR

qmG
2
0

mε2
. Compared to the case where t0 = 2, this complexity has

an additional error term depending on ∥∇f(x0)∥2. Furthermore, if t0 = 0 (no full synchonization is needed),

the resulting communication complexity is N(ε) ≲ CR
(∆1+

√
nmδm)F0

ε2
+ CR(qm/m +

√
1− nm)

ζ20
ε2

+

CR
√
1− nmG

2
0. This quantity does not depend on CA but has two additional error terms depending on

1
n

∑n
i=1∥∇fi(x

0)−∇f(x0)∥2 and ∥∇f(x0)∥2, due to inexact initialization. Note that when m→ n, these
error terms eventually disappear.

36

Published as a conference paper at ICLR 2026

H SOLVING THE SUBPROBLEMS WITH LOCAL STOCHASTIC CGM

In this section, we discuss how to achieve the inaccuracy condition (6) by running stochastic CGM locally.
Lemma H.1 (Stochastic composite gradient method). Consider the composite problem:

min
x∈Rd

{
F (x) := ϕ(x) + ψ(x)

}
,

where ϕ is Lϕ-smooth and ψ(x) := λψ
2
∥x− x̃∥2 where x̃ ∈ Rd is a fixed point and λψ ≥ 0. Suppose we have

access to an unbiased stochastic gradient oracle gϕ for ∇ϕ such that:

Eζ [gϕ(x; ζ)] = ∇ϕ(x), Eζ [∥gϕ(x; ζ)−∇ϕ(x)∥2] ≤ σ2, ∀x ∈ Rd .
Consider the stochastic composite gradient method:

xk+1 = argmin
x∈Rd

{
Lk(x) := ϕ(xk) + ⟨gϕ(xk; ζk),x− xk⟩+

η

2
∥x− xk∥2 + ψ(x)

}
.

Let η ≥ Lϕ and K̂ ∼ Geom(p) with p ∈ (0, 1]. Then we have:

(1−p)E
[
∥∇F (xK̂+1)∥

2]+p∥∇F (x0)∥2 ≤ 2(η + λψ)
2p

2η − Lϕ + λψ

[
F (x0)−E[F (xK̂+1)]

]
+

Lϕ + λψ
2η − Lϕ + λψ

σ2 .

Proof. Let k ≥ 0 and denote gk := gϕ(xk; ζk). By (η + λψ)-strong convexity of Lk, for any x ∈ Rd, we
have:

Lk(x) ≥ Lk(xk+1) +
η + λψ

2
∥x− xk+1∥2 .

Substituting x = xk, it follows that,

F (xk) ≥ ϕ(xk) + ⟨gk,xk+1 − xk⟩+
η

2
∥xk+1 − xk∥2 + ψ(xk+1) +

η + λψ
2

∥xk+1 − xk∥2

≥ ϕ(xk+1) + ψ(xk+1) +
2η − Lϕ + λψ

2
∥xk+1 − xk∥2 + ⟨gk −∇ϕ(xk),xk+1 − xk⟩

= F (xk+1) +
2η − Lϕ + λψ

2
∥xk+1 − xk∥2 + ⟨gk −∇ϕ(xk),xk+1 − xk⟩ .

Let η ≥ Lϕ. By the definition of xk+1, we get:

gk + η(xk+1 − xk) + λψ(xk+1 − x̃) = 0 ⇒ xk+1 − xk =
1

η + λψ
(−∇ψ(xk)− gk) .

It follows that:

⟨gk −∇ϕ(xk),xk+1 − xk⟩ =
1

η + λψ
⟨gk −∇ϕ(xk),−∇F (xk)− (gk −∇ϕ(xk))⟩ ,

and that:

∥xk+1 − xk∥2 =
∥gk −∇ϕ(xk) +∇F (xk)∥2

(η + λψ)2
.

Substituting these identities into the second display and taking the expectation w.r.t. ζk, we have:

F (xk) ≥ Eζk [F (xk+1)] +
(2η − Lϕ + λψ

2(η + λψ)2
− 1

η + λψ

)
Eζk [∥gk −∇ϕ(xk)∥2] +

2η − Lϕ + λψ
2(η + λψ)2

∥∇F (xk)∥2

≥ Eζk [F (xk+1)] +
2η − Lϕ + λψ
2(η + λψ)2

∥∇F (xk)∥2 −
Lϕ + λψ

2(η + λψ)2
σ2 .

Let ζ[k] := (ζ0, . . . , ζk). Taking the expectation w.r.t. ζ[k−1] and rearranging, we get:

Eζ[k−1]
[∥∇F (xk)∥2] ≤

2(η + λψ)
2

2η − Lϕ + λψ

(
Eζ[k−1]

[F (xk)]− Eζ[k] [F (xk+1)]
)
+

Lϕ + λψ
2η − Lϕ + λψ

σ2 .

Substituting k = K̂ with K̂ ∼ Geom(p), taking the expectation w.r.t. K̂ and applying Lemma E.3, we have:

EK̂,ζ
[K̂−1]

[∥∇F (xK̂)∥2] = (1− p)EK̂,ζ
[K̂−1]

[∥∇F (xK̂+1)∥
2] + p∥∇F (x0)∥2

≤ 2(η + λψ)
2

2η − Lϕ + λψ

(
EK̂,ζ

[K̂−1]
[F (xK̂)]− EK̂,ζ

[K̂]
[F (xK̂+1)]

)
+

Lϕ + λψ
2η − Lϕ + λψ

σ2 .

≤ 2(η + λψ)
2

2η − Lϕ + λψ

(
(1− p)EK̂,ζ

[K̂−1]
[F (xK̂+1)] + pF (x0)− EK̂,ζ

[K̂]
[F (xK̂+1)]

)
+

Lϕ + λψ
2η − Lϕ + λψ

σ2 .

Taking the full expectation on both sides, we get the claim.

37

Published as a conference paper at ICLR 2026

Let us now apply SCGM to solve the subproblem of (I-CGM) with ϕ(x) = f1(x) and ψt(x) =〈
gt −∇f1(xt),x− xt

〉
+ λ

2

∥∥x− xt
∥∥2. For k = 0, 1, . . . ,Kt − 1,

ytk+1 = argmin
y∈Rd

{
ϕ(ytk) + ⟨gϕ(ytk),y − ytk⟩+

η

2

∥∥y − ytk
∥∥2

+ ψt(y)
}

=
1

λ+ η

(
ηytk + λxt +∇f1(xt)− gt − g1(y

t
k)
)
,

(H.1)

where g1 is the unbiased gradient estimator of ∇f1 with bounded variance σ2, Kt = K̂t + 1 where K̂t ∼
Geom(p). The solution is set to be xt+1 = yKt . We use the notation xt+1 = SCGMrand(λ, η, K̂t,x

t,gt) for
this process.

Lemma H.2. Consider I-CGM with xt+1 = SCGMrand(λ, η, K̂t,x
t,gt) where K̂t ∼ Geom(p) under

Assumption 2.1 and 2.3. Let T ≥ 1 be the fixed number in condition (6). Then by choosing λ > ∆1,
η = L1+

2(λ+L1)σ
2

ε2
, p = λ−∆1

2(η+λ)
< 1, the accuracy condition

∑T−1
t=0 E[e2t] ≤ (λ+∆1)

2F0

λ−∆1
+
∑T−1
t=0 Σ2

t +
Tε2

2

is satisfied where ε is the target accuracy for achiving E[∥∇f(x̄T)∥2] ≤ ε2.

Proof. Applying Lemma H.1 and Lemma F.1, we have for any t ≥ 0:

(1− p)E[e2t] + pE[e2t−1] ≤
2(η + λ)2p

2η − L1 + λ
E[Ft(xt)− Ft(x

t+1)] +
L1 + λ

2η − L1 + λ
σ2

≤ 2(η + λ)2p

2η − L1 + λ

(
E[f(xt)− f(xt+1)] +

Σ2
t

2(λ−∆1)

)
+

L1 + λ

2η − L1 + λ
σ2 .

where e2−1 = ∥∇F0(x
0)∥2. Summing up from t = 0 to t = T and dropping the non-negative E[e2T] and e2−1,

we have:
T−1∑
t=0

E[e2t] ≤
2(η + λ)2p

2η − L1 + λ

(
f(x0)− f⋆ +

T∑
t=0

Σ2
t

2(λ−∆1)

)
+

L1 + λ

2η − L1 + λ
Tσ2

≤ 2(η + λ)p(f(x0)− f⋆) +
(η + λ)p

λ−∆1

T∑
t=0

Σ2
t +

L1 + λ

η + λ
Tσ2 .

By the choice of η and λ, we have:

2(η+λ)p = λ−∆1 ≤ (λ+∆1)
2

λ−∆1
,
η + λ

λ−∆1
p =

1

2
< 1,

L1 + λ

η + λ
Tσ2 ≤ L1 + λ

(L1 + λ)2σ2/ε2
Tσ2 = Tε2/2 .

To ensure convergence of I-CGM, the expected number of local steps by using stochastic CGM is thus
1
p
≃ L1

λ
+ λ+L1

λε2
σ2. When σ2 → 0, it recovers the result of deterministic CGM with randomized local steps.

I DISCUSSION ON THE SAG ESTIMATOR

SAG is another incremental gradient method (Schmidt et al., 2017). SCAFFOLD has successfully applied it to
the FL settings. Specifically, the local update rule of device 1 at outer iteration t (assuming no stochasticity for
simplicity) is:

ytk+1 = ytk −
1

η

(
∇f1(ytk) + bt −∇f1(xt)

)
.

Compared with the local CGM (8), Scaffold sets λ = 0 and uses bt (10)(SAG) instead of Gt (SAGA) in
the control variate. we next show that the variance of bt cannot be controlled by δ. Let n = 2, t = 1,
b0
1 = ∇f1(x0) and b0

2 = ∇f2(x0). Then we get: b1 = 1
2

(
∇f1(x1) + ∇f2(x0)

)
, if S1 = {1} and

b1 = 1
2

(
∇f2(x1) +∇f1(x0)

)
, if S1 = {2}. Then the variance can be computed as:

ES1

[∥∥b1 −∇f(x1)
∥∥2]

=
1

8

2∑
i=1

∥∥∇fi(x0)−∇fi(x1)
∥∥2

.

While for SAGA, we have:

ES1

[∥∥G1 −∇f(x1)
∥∥2]

=
1

2

2∑
i=1

∥∥∇hi(x0)−∇hi(x1)
∥∥2

,

where hi := f − fi. Therefore, the SAG estimator cannot fully exploit functional similarity as efficiently
as SAGA in the worse case from a theoretical perspective. Nevertheless, SCAFFOLD can still perform well
empirically on some problems, as shown in Figure J.7.

38

Published as a conference paper at ICLR 2026

0 200 400 600
Communication complexity

10 1

100

101

102

103

104

105

||
f(x

)||

0 2500 5000 7500 10000 12500
Local complexity

10 1

100

101

102

103

104

105

||
f(x

)||

Quadratics minimziation with log-sum penalty (m = 10, n = 100)

0 200 400 600
iterations

10 1

100

101

102

103

104

105

||
f(x

)||

t0=0 t0=1 t0=2

Figure J.1: Comparisons of different initialization strategies of I-CGM-RG-SAGA for solving the quadratic
minimization problems with non-convex log-sum penalty.

0 200 400 600
Communication complexity

10 1

100

101

102

103

104

105

||
f(x

)||

0 25000 50000 75000100000125000
Local complexity

10 1

100

101

102

103

104

105

||
f(x

)||

Quadratics minimziation with log-sum penalty (m = 10, n = 100)

0 200 400 600
iterations

10 1

100

101

102

103

104

105

||
f(x

)||

p=0.05 p=0.5 p=0.005

Figure J.2: Comparisons of different p (number of local steps) used in local CGM for I-CGM-RG-SAGA when
solving the quadratic minimization problems with non-convex log-sum penalty.

J ADDITIONAL DETAILS AND EXPERIMENTS

We simulate the deep learning experiments on one NVIDIA DGX A100. All the other experiments are run on a
MacBook Pro laptop.

J.1 QUADRATIC MINIMIZATION WITH LOG-SUM PENALTY.

Everywhere in the paper, we use the first choice of the control variate for SCAFFOLD (Karimireddy et al., 2020).
We set the number of local steps K to be 20 and the local learning rate to be 0.003 (0.005 diverges at the
beginning) for FEDAVG and SCAFFOLD. For SABER-FULL, we use the standard gradient method as the local
solver and set K to be 20, local learning rate to be 0.005 and the probability for computing the full gradient
to be 0.1, matching I-CGM-RG-SVRG. For GD, we run 14000 = 20 ∗ 700 iterations to match the local
gradient computations of other algorithms. Finally, the comparisons of different initialization strategies for
I-CGM-RG-SAGA can be found in Figure J.1 (t0 = 0, 1, 2 correspond to computing the full gradient 0, 1, 2
times at the beginning).

J.1.1 ABLATION STUDIES OF I-CGM-RG-SAGA

Initialization strategies. The comparisons of different initialization strategies for I-CGM-RG-SAGA can be
found in Figure J.1 (t0 = 0, 1, 2 correspond to computing the full gradient 0, 1, 2 times at the beginning. See
Section G for the details). The result shows that the method works well without any full gradient computations.

Local steps. We now compare the performance of I-CGM-RG-SAGA under different choices of the parameter
p, which is defined in Local CGM (8). Theoretically, p ≃ λ

λ+L1
. Since the expected number of local steps per

iteration is 1
p

, a smaller p corresponds to more local computations. In the previous experiments, we used the
default value p = δ

L1
≈ 5

100
= 0.05. We now vary p ∈ {0.5, 0.05, 0.005}. From Figure J.2, we observe that

1) Large p = 0.5 results in worse communication complexity since the local accuracy condition is not fully
satisfied; 2) Small p = 0.005 achieves similar performance to p = 0.05 in terms of communication complexity.
This is expected, since communication complexity is determined by the fixed parameter λ. However, the local
complexity becomes worse, as the total number of local steps increase and becomes unnecessarily large.

Constant λ. We now study the impact of the constant λ on the performance of I-CGM-RG-SAGA. Note
that λ directly determines the iteration complexity. Theoretically the best λ ≃ ∆1 +

√
nmδ. In the previous

experiments, we used the default value λ =
√
nmδ ≈ 15. We now vary λ ∈ {1, 10, 100}. From Figure J.3,

39

Published as a conference paper at ICLR 2026

0 200 400 600
Communication complexity

10 1

100

101

102

103

104

105

||
f(x

)||

0 5000 10000 15000
Local complexity

10 1

100

101

102

103

104

105

||
f(x

)||

Quadratics minimziation with log-sum penalty (m = 10, n = 100)

0 200 400 600
iterations

10 1

100

101

102

103

104

105

||
f(x

)||

lambda=1 lambda=10 lambda=100

Figure J.3: Comparisons of different λ used I-CGM-RG-SAGA for solving the quadratic minimization problems
with non-convex log-sum penalty.

0 200 400 600
Communication complexity

10 1

100

101

102

103

104

105

||
f(x

)||

0 5000 10000 15000
Local complexity

10 1

100

101

102

103

104

105
||

f(x
)||

Quadratics minimziation with log-sum penalty (m = 10, n = 100)

0 200 400 600
iterations

10 1

100

101

102

103

104

105

||
f(x

)||

beta=0.5 beta=0.1 beta=0.05 beta=0.01 beta=0.005 beta=0.001

Figure J.4: Comparisons of different β used I-CGM-RG-SAGA for solving the quadratic minimization problems
with non-convex log-sum penalty.

we observe that: 1) Large λ = 100 results in worse communication complexity since it does not fully use the
similarity structure; 2) Small λ = 1 does not converge as the theory requires λ ≳ ∆1 +

√
nmδm, all matching

the theory.

Constant β. We now test the effect of β used in the RG estimator. Both larger or smaller β can the-
oretically increase the variance bound (Lemma 5.2). Theoretically, the best β ≃ 1

nm
. We now vary

β ∈ {0.5, 0.1, 0.05, 0.01, 0.005, 0.001}. From Figure J.4, we see that β ∈ [0.05, 0.5] results in relatively
better performance as 1

nm
= 0.1 and the values that fall outside this range lead to worse communication

complexity.

Ratio of CA
CR

. In the main text, we report results under the extreme setting where CA = CR = 1. Now
we test how increasing the ratio CA/CR affects the performance. Specifically, we vary CA ∈ {1, 5, 10, 20}
while keeping CR = 1, and repeat the same experiments. From Figure J.5, we observe that the performance
of I-CGM-RG-SVRG degrades as CA increases since each use of A-CSS becomes more costly. In contrast,
I-CGM-RG-SAGA remains largely unaffected, as ASS is only used during initialization. This result further
confirms the advantage of I-CGM-RG-SAGA in settings where full synchronization is costly.

Ratio n
m

. Finally, we examine how the ratio n
m

influences the performance of our method. Theoretically, both the
communication and local complexities scale with

√
nmδmF

0/ε2. We fix m = 1 and vary n ∈ {10, 100, 1000}.
The datasets are generated in a consistent manner so that the values of δ and Lmax remain approximately
unchanged. We set λ =

√
nmδ ≈ 5

√
nm, β = 1

nm
and p = λ

λ+Lmax
≈ λ

λ+100
with nm = n. From

Figure J.6, we observe that increasing nm indeed leads to higher communication complexity. However, the
growth is moderate: the additional cost scales by roughly

√
100/

√
10 =

√
1000/

√
100 ≈ 3 rather than linearly

100/10 = 100/10 = 10, confirming that the dependence is on
√
nm instead of nm.

J.2 LOGISTIC REGRESSION WITH NONCONVEX REGULARIZER.

For both datasets, we set p = 0.1 in Local GD for CGM-RG methods and SCAFFNEW, and use K = 10 local
steps for the other algorithms. We select the best local learning rate for each method from {0.1, 0.2, 0.5, 1.0}
for Mushroom and {0.002, 0.001, 0.0005} for Duke. For proximal-point methods, we choose the best λ from
{10, 1, 0.1, 0.01} on both datasets. We use β = m

n
for both I-CGM-RG methods.

40

Published as a conference paper at ICLR 2026

0 500 1000 1500
Communication complexity

100

101

102

103

104

105

||
f(x

)||

CR = 1, CA = 1

0 2000 4000
Communication complexity

100

101

102

103

104

105

||
f(x

)||

CR = 1, CA = 5

0 5000 10000
Communication complexity

100

101

102

103

104

105

||
f(x

)||

CR = 1, CA = 10

0 5000 10000 15000
Communication complexity

100

101

102

103

104

105

||
f(x

)||

CR = 1, CA = 20

I-CGM-RG-SAGA (ours) I-CGM-RG-SVRG (ours)

Figure J.5: Comparisons of I-CGM-RG-SAGA against I-CGM-RG-SVRG under different CA/CR for solving
the quadratic minimization problems with non-convex log-sum penalty.

0 2000 4000 6000
Communication complexity

100

101

102

103

104

105

||
f(x

)||

0 5000 10000 15000
Local complexity

100

101

102

103

104

105

||
f(x

)||

Quadratics minimziation with log-sum penalty (m = 1)

0 2000 4000 6000
iterations

100

101

102

103

104

105

||
f(x

)||

n=10 n=100 n=1000

Figure J.6: Comparisons of I-CGM-RG-SAGA under different nm for solving the quadratic minimization
problems with non-convex log-sum penalty.

J.3 EMNIST WITH RESIDUAL CNN

We now extend our study to neural network training. Specifically, we train a 6-layer Residual CNN on the
EMNIST dataset (Cohen et al., 2017), which consists of a collection of 26 letter classes. We use n = 26
and m = 5 ≈

√
n, and split the dataset according to the Dirichlet distribution with α = 0.1 (the smaller

the α, the higher the heterogeneity, α = 0.1 is highly heterogeneous). We use a batch size of 128 for
computing both the local stochastic gradient and the control variates. For all the methods that use control
variates, including I-CGM-RG, SCAFFOLD, SABER and SCAFFNEW, we add a damping factor q in front
of the control variate to enhance their empirical performance, i.e., on line 5 of Algorithm 8, we use ytk+1 =

argminy∈Rd
{
f1(y

t
k)+⟨g1(y

t
k)+q(g

t−g1(x
t)),y−ytk⟩+ η

2

∥∥y − ytk
∥∥2

+ λ
2
||y−xt||2

}
, where q ∈ (0, 1]

is a tuned parameter and g1 is the stochastic mini-batch gradient of ∇f1. This approach is suggested by Yin
et al. (2025). We report the best local stepsize 1

η
among {0.05, 0.02, 0.01, 0.001} and the best λ among

{0.001, 0.01, 0.1, 1}. The final choices of the parameters can be found in Table J.1. The convergence behaviours
can be found in Figure J.7. The best validation accuracy can be found in Table J.2, where I-CGM-RG-SAGA
performs the best.

optimizers hyper-parameters used for multi-classification tasks

I-CGM-RG-SAGA 1
η = 0.02, λ = 0.01, p = 0.01, β = 0.2, q = 0.001, t0 = 0

I-CGM-RG-SVRG 1
η = 0.02, λ = 0.01, p = 0.01, β = 0.2, q = 0.001

SCAFFOLD (Karimireddy et al., 2020) 1
η = 0.02, K = 100, q = 0.001

FEDAVG (McMahan et al., 2017) 1
η = 0.02, K = 100

SCAFFNEW (Mishchenko et al., 2022) 1
η = 0.02, p = 0.01, q = 0.001

SABER (Mishchenko et al., 2024) 1
η = 0.02, λ = 0.01, p = 0.01, β = 0.2, q = 0.001

Table J.1: Hyper-parameters of the considered optimizers used in the multi-classification task for the EMNIST
dataset.

Optimizers I-CGM-RG-SAGA I-CGM-RG-SVRG SABER-FULL SCAFFOLD SCAFFNEW FEDAVG
Accuracy 86.2 86.0 85.3 85.9 84.9 85.6

Table J.2: Comparisons of validation accuracy for different optimizers used in the multi-classification task for
the EMNIST dataset within 100 outer iterations.

41

Published as a conference paper at ICLR 2026

0 25 50 75 100
Communication complexity

100

6 × 10 1

2 × 100

3 × 100

4 × 100

Tr
ai

n
lo

ss

0 25 50 75 100
Communication complexity

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Va
lid

at
io

n
ac

cu
ra

cy

0 2500 5000 7500 10000
Local complexity

100

6 × 10 1

2 × 100

3 × 100

4 × 100

Tr
ai

n
lo

ss

0 2500 5000 7500 10000
Local complexity

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Va
lid

at
io

n
ac

cu
ra

cy

EMNIST 6-layer Residual CNN (m=5, n=26, = 0.1, batch size=128)

I-CGM-RG-SAGA (ours) I-CGM-RG-SVRG (ours) Scaffold Scaffnew FedAvg SABER-full

Figure J.7: Comparisons of different algorithms on the EMNIST dataset using a 6-layer residual CNN.

0 20 40 60 80 100
Communication complexity

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Va
lid

at
io

n
ac

cu
ra

cy

0 2500 5000 7500 10000
Local complexity

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Va
lid

at
io

n
ac

cu
ra

cy

0 20 40 60 80 100
iterations

101

va
lu

e

Second-order Similarity

local smoothness
average dissimilarity

CIFAR10-Resnet18 (m=3, n=10, = 0.1, batch size=128)

I-CGM-RG-SAGA (ours) I-CGM-RG-SVRG (ours) Scaffold Scaffnew FedAvg SABER-full

Figure J.8: Comparisons of different algorithms on the CIFAR10 dataset using ResNet18.

J.4 CIFAR10 WITH RESNET18

We now consider multi-class classification tasks with CIFAR10 (Krizhevsky et al.) using ResNet18 (He et al.,
2016). We use n = 10 and m = 3 ≈

√
n, and split the dataset according to the Dirichlet distribution with

α = 0.1 (highly heterogeneous). We use a batch size of 128 for computing both the local stochastic gradient
and the control variates m. We report the best local stepsize 1

η
among {0.1, 0.05, 0.01, 0.001} and the best λ

among {0.001, 0.01, 0.1, 1}. The final choices of the parameters can be found in Table J.3. The convergence
behaviours can be found in Figure J.8. The best validation accuracy within 100 outer iterations can be found in
Table J.4.

0 20 40 60 80 100
Communication complexity

0.2

0.4

0.6

0.8

Va
lid

at
io

n
ac

cu
ra

cy

0 2500 5000 7500 10000
Local complexity

0.2

0.4

0.6

0.8

Va
lid

at
io

n
ac

cu
ra

cy

0 20 40 60 80 100
iterations

101

va
lu

e

Second-order Similarity

local smoothness
average dissimilarity

CIFAR10-Resnet18 (m=3, n=10, = 10, batch size=128)

I-CGM-RG-SAGA (ours)

Figure J.9: Performance of I-CGM-RG-SAGA on the CIFAR10 dataset using ResNet18.

42

Published as a conference paper at ICLR 2026

optimizers hyper-parameters used for multi-classification tasks

I-CGM-RG-SAGA 1
η = 0.05, λ = 0.01, p = 0.01, β = 0.2, q = 0.001, t0 = 0

I-CGM-RG-SVRG 1
η = 0.05, λ = 0.01, p = 0.01, β = 0.2, q = 0.001

SCAFFOLD (Karimireddy et al., 2020) 1
η = 0.05, K = 100, q = 0.001

FEDAVG (McMahan et al., 2017) 1
η = 0.05, K = 100

SCAFFNEW (Mishchenko et al., 2022) 1
η = 0.05, p = 0.01, q = 0.001

SABER (Mishchenko et al., 2024) 1
η = 0.05, λ = 0.01, p = 0.01, β = 0.2, q = 0.001

Table J.3: Hyper-parameters of the considered optimizers used in the multi-classification task for the CIFAR10
dataset.

Optimizers I-CGM-RG-SAGA I-CGM-RG-SVRG SABER-FULL SCAFFOLD SCAFFNEW FEDAVG
Accuracy 76.1 77.0 74.5 72.3 74.2 74.3

Table J.4: Comparisons of validation accuracy for different optimizers used in the multi-classification task for
the CIFAR10 dataset within 100 outer iterations.

Algorithm 1 I-CGM-RG-SAGA with CGMrand

1: Input: x0 ∈ Rd, m ∈ [n], λ > 0, β ∈ (0, 1], p ∈ (0, 1), η > 0, g0 = ∇f(x0)
2: for t = 0, 1, 2, . . .
3: K̂t ∼ Geom(p)
4: yt

0 = xt

5: for k = 0, 1, 2, . . . , K̂t

6: yt
k+1 = 1

η+λ

(
ηyt

k + λxt +∇f1(xt)− gt −∇f1(yt
k)
)

7: xt+1 = yt
K̂t+1

8: Sample St ∈
(
[n]
m

)
uniformly at random without replacement

9: Update Gt according to (SAGA)
10: Update gt+1 using Gt according to RG

Limitations and Future Extensions. 1) In this work, we have assumed that there exists one delegated
client that is reliable for communication. If we modify the setting and remove this delegated client, then we can
still guarantee similar complexity with minor modifications. Specifically, instead of fixing the index 1 in I-CGM,
we can sample it ∈ [n] uniformly at random and define the updates as xt+1 ≈ argminx∈Rd

{
Ft(x) :=

fit(x) + hit(x
t) + ⟨gt −∇fit(xt),x− xt⟩+ λ

2

∥∥x− xt
∥∥2}. This variant uses R-CSS instead of D-CSS

at each iteration. To ensure the convergence rate of λF
0

T
, we need to choose λ ≃ ∆max (Jiang et al., 2024a),

where ∆max ≲ ∆1 is defined in D.3. However, suppose there exists more than one delegated client, then it is
interesting to check if we can further improve the current complexity. 2) We have shown that the variance of the
SAGA estimator is bounded by the function similarity constant δ. An interesting question is whether something
similar can be done for another closely related popular gradient estimator, SAG (Schmidt et al., 2017), used
in Scaffold (Karimireddy et al., 2020). It turns out that the answer is negative (see Section I). 3) Our analysis
focuses on the deterministic first-order oracle Ofi = OFOi . It is interesting to develop efficient algorithms
with stochastic, zero-order, or higher-order oracles. 4) The current model does not impose constraints on the
size of information that is transmitted between the server and clients. A promising direction is to incorporate
communication compression and study how such constraints affect the algorithm design and overall complexity.

43

	Ethics statement
	LLM usage
	Federated Optimization Algorithms and their Complexity
	Related Work
	Formalization of Federated Optimization Algorithms and Their Complexity
	Comparison with Existing Federated Optimization Methods

	Technical Preliminaries
	Proofs for I-CGM
	Proof for Theorem 3.1
	Proofs of Local CGM for Solving the Subproblems
	Proof of Lemma 3.3
	Proof of Lemma H.2

	Proofs of Properties of the SAGA and SVRG Estimators
	Proof of Lemma 4.1
	Proof of Lemma 4.3

	Properties of the RG Estimator
	Proof of Lemma 5.2
	Proof of Corollary 5.3.
	Proof of Corollary 5.4.

	Proofs for I-CGM with RG-SAGA
	Proof of Theorem 6.1.

	Proofs for I-CGM with RG-SVRG

	I-CGM-RG-SAGA with Inexact Initialization
	Solving the Subproblems with Local Stochastic CGM
	Discussion on the SAG estimator
	Additional details and experiments
	Quadratic minimization with log-sum penalty.
	Ablation studies of I-CGM-RG-SAGA

	Logistic regression with nonconvex regularizer.
	EMNIST with Residual CNN
	CIFAR10 with ResNet18

