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ABSTRACT

Different federated optimization algorithms typically employ distinct client-
selection strategies: some methods communicate only with a randomly sampled
subset of clients at each round, while others need to periodically communicate
with all clients or use a hybrid scheme that combines both strategies. However,
existing metrics for comparing optimization methods typically do not distinguish
between these strategies, which often incur different communication costs in prac-
tice. To address this disparity, we introduce a simple and natural model of federated
optimization that quantifies communication and local computation complexities.
This new model allows for several commonly used client-selection strategies and
explicitly associates each with a distinct cost. Within this setting, we propose a
new algorithm that achieves the best-known communication and local complexities
among existing federated optimization methods for non-convex optimization. This
algorithm is based on the inexact composite gradient method with a carefully
constructed gradient estimator and a special procedure for solving the auxiliary
subproblem at each iteration. The gradient estimator is based on SAGA, a popular
variance-reduced gradient estimator. We first derive a new variance bound for
it, showing that SAGA can exploit functional similarity. We then introduce the
Recursive-Gradient technique as a general way to potentially improve the error
bound of a given conditionally unbiased gradient estimator, including both SAGA
and SVRG. By applying this technique to SAGA, we obtain a new estimator,
RG-SAGA, which has an improved error bound compared to the original one.

1 INTRODUCTION

Motivation. Federated Learning (FL) is a distributed training paradigm in which a central server
coordinates model updates across multiple remote clients—such as mobile devices or hospitals—
without requiring access to their local data (McMahan et al., 2017} Kairouz et al., [2021). This
framework enables collaborative learning on decentralized data, but introduces new algorithmic
challenges due to the distributed nature of optimization.

A key issue in FL is the high cost of communication between the clients and the server. Clients may
be intermittently available (Konecny et al.,2016) and connected over slow or unreliable networks.
These constraints make it critical to design optimization algorithms that minimize communication
costs, particularly in settings with partial client participation.

Various federated optimization algorithms have been proposed to address communication efficiency,
each often relying on distinct client-selection strategies. Some methods communicate only with
a randomly sampled subset of clients at each round, while others need to select the set of partici-
pating clients more carefully or employ hybrid schemes that combine both strategies. While prior
works (Woodworth et al.l 2018 |Korhonen & Alistarh| [2021} |Patel et al.| 2022; Zhang et al.|[2013};
Davies et al.,[2020; |Scaman et al., 2019)) introduced a few models for federated optimization, they
do not account for the varying costs of each client-selection strategy, which can in practice differ
due to factors such as client reliability, device heterogeneity, and network conditions. Consequently,
existing metrics such as the number of communication rounds are not entirely fair for comparing
methods in such scenario.
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For instance, optimization methods based on SARAH (Nguyen et al., 2017 |Li et al.,2021a) have
been shown to be communication-efficient in finding an approximate stationary point (Mishchenko
et al.| 2024} Khaled & Jin, 2023). This efficiency arises from the method’s ability to exploit
dissimilarity () between local and global objectives. In many practical scenarios—such as statistical
or semi-supervised learning (Chayti & Karimireddy, 2022} |Karimireddy et al., [2021}; |Khaled & Jin,
2023))—4 is often small, leading to substantial theoretical gains in communication cost. However,
S AR AH-based methods require periodic full synchronization with all clients in order to compute
full gradients. This can be impractical in real-world large-scale federated systems, where clients may
be intermittently unavailable due to energy constraints, network issues, or user behavior.

In contrast to SARAH, methods such as SAG (Schmidt et al., 2017) and SAGA (Defazio et al.|
2014])) are naturally better suited to the partial participation setting in FL. These methods update the
model by sampling a small subset of clients at each round and using locally stored gradients. As a
result, they avoid the need for periodic full synchronization, which makes them more compatible
with federated systems where only a fraction of clients may be available at any given time. Despite
this advantage, the existing communication complexity of such methods depends on the individual
smoothness constant L., (Reddi et al.,[2016; [Li et al., 202 1bj Karimireddy et al., [2020), which can
be significantly larger than the dissimilarity constant §. Consequently, it remains unclear whether
such methods are more communication-efficient than SAR AH-based methods, since they rely on
fundamentally different client-selection strategies with different constant dependencies.

Contributions. In this work, we aim to develop optimization algorithms that are efficient in both
communication and local computation in the setting where client-selection strategies incur different
costs. Our main contributions are as follows:

* We propose a new model formalizing the concept of federated optimization algorithms and defining
information-based notions of communication and local complexities. This model associates the
non-uniform costs with different client-selection strategies, enabling fair comparisons across
optimization algorithms. (Section [C))

* Within our new model, we propose a new gradient method that achieves the best communication
and local complexities among existing first-order methods for non-convex optimization. This
method is based on the inexact composite gradient method (I-CGM) with a carefully constructed
gradient estimator and a special procedure for solving auxiliary subproblem at each iteration.
(Section [6))

* Specifically, we first study the convergence of I-CGM for arbitrary gradient estimators and present
an efficient technique for solving the auxiliary subproblem. Our technique is based on running
the classical composite gradient method locally for a random number of iterations following a
geometrical distribution with a carefully chosen parameter. (Section

* We then analyze the SAGA estimator and establish a new variance bound for it that only depends
on § without requiring individual smoothness, improving upon previous results showing that
SAGA can exploit functional similarity. We also study SVRG as another example that can be
incorporated into I-CGM. (Section [4))

* Finally, we introduce the Recursive-Gradient (RG) technique as a general way to potentially
improve the error bound for a given conditionally unbiased gradient estimator, including both
SAGA and SVRG. Applying this technique to SAGA and SVRG, we obtain new RG-SAGA and
RG-SVRG gradient estimators with better error bounds compared to the original ones. (Section 3]

We discuss our results in detail in the context of related work in Appendix [D]and summarize them in
Table [T

2 PROBLEM FORMULATION
We consider the following distributed minimization problem:

min{f(x) = ;ifl(x)}, (D

xER

where each f;: R? — R is a differentiable function which can be directly accessed only by client i.

Notation. We abbreviate [n] := {1,2,...,n}. For a finite set A and an integer 1 < m < |A], (%)
denotes the power set comprised of all m-element subsets of A. ||-|| denotes the standard Euclidean
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Table 1: Summary of efficiency guarantees (in BigO-notation) for finding an e-stationary point. I-CGM-RG-
SAGA achieves the best communication and local complexities. For the precise description of the problem
classes, notations, as well as the discussions of the methods, see Appendix@}

Method ‘ C ication complexity A ption Local complexity VR type
Centralized GD Canm Lf:fﬂ FS N L‘;QFU None
FedRed (Jiang et al.|[2024a} Cangn 211 b1t L g, A None
FedAvg (McMahan et al.|[2017} Cr($al ¢ s 4 IS, BGD [ e None
FedDyn (Acar et al.||2021) Canm + Cring Lo 1S unknown None
MimeMVR (Karimireddy et al.[2021) | Ca (S 4 ; 1S, BGD, SD None
CE-LGD (Patel et al./2022) Cr(sal” ’ 4 2usF’) 3, BGD, SD None
2/3
Scaffold (Karimireddy et al.|2020) Canyy + Cp "o LepasF” 1S - SAG
SABER-full (Mishchenko et al.|[2024) Cangn + g Bt/ Tbn) 17 SD unknown PAGE
SABER-partial (Mishchenko et al.|[2024) Cang, + CR%A‘%QFU SD, BGD unknown SARAH
, — Li4+A1+4/SAn,,6,,)F°

I-CGM-RG-SVRG (ours) Cati, + CoVCalanab) qbolhsf oy, L2V et pG gyRa
I-CGM-RG-SAGA (ours) Coangy + C AL/t 2.1p.2f)23 P EENERG e S Ll RG-SAGA

norm in R%. We use E[] to denote the standard (full) expectation. We write E¢|[-] for the expectation
taken w.r.t. £. We assume that the objective function in problem (I)) is bounded from below and
denote its infimum by f*. We denote F° := f(x°) — f* where x is the initial point.

2.1 FEDERATED OPTIMIZATION ALGORITHMS AND THEIR COMPLEXITY

Due to space limitations, we defer the whole definitions of federated optimizaton algorithms and their
complexity metrics to Appendix [C} which is encouraged to read before proceeding.

2.2 PROBLEM CLASS

We study optimization problem (I)) in which the client objectives exhibit an underlying similarity
structure. Specifically, we use the following two assumptions that relax standard smoothness assump-
tions. The first quantifies the deviation between the delegate function f; and f. For an index i € [n],
we use h; := f — f; to denote the difference function.

Assumption 2.1. There exists A; > 0 such that for any x,y € R?, we have:
[Vhi(x) = Vhi(y)l < Arlx =y 2

Alternatively, one may define a uniform dissimilarity constant A, (Karimireddy et al.,[2020; Jiang
et al., 2024a)) such that for any ¢ € [n], it holds that | Vh;(x) — Vh;(¥)|| < Amax ||x — ¥||. In this
work, we focus on A; since it can be much smaller than A ..

The second assumption characterizes the average dissimilarity among all local functions.

Assumption 2.2 (Khaled & Jin|(2023)); Jiang et al.| (2024b)); [Lin et al.|(2024); Jiang et al.| (2024a);
Takezawa et al.| (2025)). There exists & > 0 such that for any x, y € R9, we have:

1 n
~ Y IVhi(x) = Vhi(y)[)* < 6% x — y|* - 3)
i=1

The left-hand side of (3) is equal to 2 3" |V fi(x) — Vfi(y)||> — IV f(x) — Vf(y)|*, which
can be interpreted as the variance of V f;(x) — V f;(y) where 7 is selected uniformly at random. If
each f; has L ,x-Lipschitz gradient, then we have A; < 2L, and § < Lp,.x. Therefore, both
conditions are weaker than assuming each f; is Lipschitz-smooth. We refer to discussions in (Jiang
et al.| 2024b) for more properties and details.

The previous two quantities 6 and A; will only affect the communication complexity of our algorithms,
while the local complexity additionally depends on L, which is defined as follows.

Assumption 2.3. There exists L; > 0 such that for any x,y € R%, we have:
IVi(x) = VAW < Lallx =yl - 4
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3 INEXACT COMPOSITE GRADIENT METHOD

Inexact Composite Gradient Method. We first introduce the Inexact Composite Gradient Method
(I-CGM), which serves as the backbone of our approach. Consider the composite reformulation of
the problem f=f+[f—-fi] = fi +hi. Let A > 0 and x° € R? be the initial point. At each
iteration ¢ > 0, -CGM computes an approximation of the gradient g* ~ V f(x*) and defines the
next iterate as:

A
xtt & argmin{Ft(X) = fi(x) +hi(x) + (g" - Vfi(x"), x —x") + §||x — XtHQ},

xeR4

(I-CGM)
where both the inaccuracy in solving the subproblem and the approximation error (defined below) are
assumed to be sufficiently small (to be specified later):

B 2

F () < Fx), o= [VEET), 5= g - Vi) . 5)
In the following statement, we provide the general convergence guarantee for [-CGM. The proof can
be found in Section [F.T]in the Appendix.

Theorem 3.1. Let[[-CGM|be applied to Problem (1). Suppose Assumption[2.1and condition () are
satisfied. Let A\ > Aq. Then for any T > 1, we have:

lew 2+ (A +Ay) an x' 712

T-1 T

1200+ Ay)? 12(/\+A .
F $2 44
ST A, +(()\ AY) )tz e

|
i
BN

I
=)

We see that each subproblem can be solved inexactly without affecting the convergence rate (up to
absolute constants), provided that the error term ZtT_Ol e; is of the same order as the first two terms
on the right-hand side. Moreover, if the approximation errors Zt 22 can also be bounded by the
first two terms on the left-hand side, then the convergence of the gradlent norm is guaranteed. If there
exists randomness either in solving the subproblems or in constructing the estimators, then these
conditions are required to hold in expectation. Specifically, we obtain the following corollary.

Corollary 3.2. Following the same settings as in Theorem If the inaccuracies in solving the
subproblems satisfy:

= (A+ A
R < R(x), Y Elef] < 55— At A o Z =7 (6)
t=0
and the approximation errors satisfy:
1200+ Ay) = 1 « d
(()(\A )Z 7§ZG?+()\+A1)2ZX$, (N
=0 t=1 t=1
then for any T' > 1, we have:
_ 32\ + Ap)? FO
(v /(") 2] < 2AT 2

A—A, T °

where G = E[|Vf(x")|?], x = E[lx" —x"!|*], £ := E[llg’' — Vf(x")|*], and T is
uniformly sampled from (x')]_,.

When g is the exact gradient V f(x!) for all ¢ > 0, thenis reduced to CGM that is widely
used for solving Problem (), particularly because of its ability to exploit functional similarity and
reduce communication costs (Hendrikx et al.,[2020; |Jiang et al., [2024a; [Lin et al.| [2024; Khaled &
Jin, 2023} Jiang et al., [2024b} [Mishchenko et al., 2024} Kovalev et al., [2022). Indeed, if A ~ A,

and the accuracy condition (6] is satisfied, then E[||V f(x7)||?] < 2 after T = O( Aéf 0) iterations.
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In contrast, the iteration complexity of Gradient Descent depends on Ly which can be larger than
Ay @) when f; is similar to f. However, CGM has sub-optimal communication complexity
in terms of n. Indeed, let us assume, for simplicity, that m = 1. Then each iteration involves:
1) computing the full gradient V f(x!), which requires n sequential communication rounds using
A-CSS, and 2) an additional round using D-CSS for solving the subproblem. Consequently, the total
number of communication rounds with A-CSS and D-CSS is N4 = nT and Np = T, respectively.
The communication complexity of CGM is thus: CaNy + Np = CanT + T = O(CynT) =

o A%QFO). This linear dependency on n can be prohibitive in large-scale federated learning
settings and is worse than the complexity of stochastic methods such as PROXSARAH (Pham et al.,
2020), SPIDERBOOST (Wang et al., 2019), and PAGE (Li et al.,[2021a), each of them achievin

O(Cxy ﬁLFO ), although they rely on a slightly different assumption of average smoothness
Moreover the dependence on CA can become much larger in scenarios where using A-CSS is costly.

Solving Auxiliary Subproblems. In this section, we assume that f; is L;-smooth and study how to
achieve the accuracy condition (6). Recall that each subproblem F; consists of a smooth function
¢(x) = fi(x) and a quadratic regularizer 1;(x) = (g' — Vfi(x'),x —x') + 5 [|x — xt||”. Let
us solve it using the standard composite gradient method (CGM), which proceeds as follows: For
k/’ = 0;1>~-~7Kt -1

L
Yiy1 = arg min{d)(}f%) +(Vo(yL),y — ¥i) + 71 ly = vilI* + wt(y)}
ver ®)

1
= m(LlyZ + x4 Vfl(xt) - gt - vfl(y}fc)) .

Each CGM step monotomcally decreases the function value of F; (see Lemma@ Therefore, we
can initialize y§ = x* and choose x'*! to be a certain iterate of (y;)&_,. Then the condition on
Fy(x!1) < Fy(x?) is satisfied. We next study the number of local steps K + required to achieve the
second inequality in condition (6).

Fixed Number of Local Steps. Let K; = K > 1 be a constant number and let xt*1 be the
iterate with the minimum gradient norm of F; among {y%}# /. We use the notation x'*1 =
CGM_onst (A, K, x¢, gt) for this process.

The goal is to upper bound Zt o €7 where e; := ||[VE,(x'*1)||. For each ¢t > 0, we have:
¢2 < MW -Fyie) < UG (i) +3 %
~ K

(\/

t (see Lemma|F.2|and b However, since y% and
x! are not necessarily the same, we cannot telescope f(x!) — f (y L) When we sum up €. Instead, the
“best” we can do is to upper bound f(x*) — f(y%) by f(x*) — f*. Then by further upper-bounding
the summation of Y1 ' [f(x") — f*] in terms of F° and 332, it can be shown that we need K ~ 4T
local steps to achieve the desired accuracy condition (). The proof can be found in Section
Lemma 3.3. Consider[[-CGM|with x**! = CGMconst (N, K, x, g) under Assumption[2.1)and[2.3]
Let T > 1 be the fixed number in condition (©). Then by choosing X > Ay and K = K¢ := [fflATl 1,
the accuracy condition (0)) is satisfied.

Random Number of Local Steps. We now allow the number of local steps K to follow a geometric
distribution—a common technique used to derive last-iterate recurrences (Allen-Zhul 2018b). When
applied to solve the subproblems in[[-CGM] this approach yields an algorithm that is efficient in local
computation.

Let us consider CGM (8) with K, = K, + 1 iterations where K; ~ Geom(p), that is P(K, = k) =
(1 — p)*p for each k € {0, 1,2,...}. The solution is set to be x'™! = yr,. We use the notation

xt1 = CGMana (A, Ky, xt, gt) for this process.
In contrast to the convergence rate of using a deterministic &', we can now show that E [e?] <

B2 B [Fi(x) — B, Using B [F(x!) — F(x)] S Bg [f(x) — f(xH1) + 152,
we get the telescoping term E[f(x!) — f(x!*1)] after passing to the full expectation, which allows to

improve the total amount of local computations.

'Vx,y € R?, itholds that 2 377" ||V fi(x) — Vfi(y)ll* < L?||x — y||* and we have § < L.
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Lemma 3.4. Considermwith Xt = CGM ana (A, Ky, xt, gt) where K, ~ Geom(p) under
Assumptionand Let T' > 1 be the fixed number in condition (6). Then by choosing A > A
ANY

and p = ﬁ < 1, the accuracy condition (6)) is satisfied.

To achieve the accuracy condition (6)), the number of local first-order oracle queries required by using
the random K at each iteration ¢ in expectation is E (K] = % Y %, which improves upon the
LiT obtained by using a fixed number of K.

previous result of

So far, we have studied how to solve the subproblems of I-CGM such that the accuracy condition (6)
is satisfied. We now turn to constructing the gradient estimator gt that has the desired approximation
error (7). Meanwhile, we aim to improve both the dependence on n and C'4 in the communication
complexity of CGM. The main strategy is to design a gradient estimator whose approximation error
depends only on the similarity constant § while avoiding periodic full synchronizations.

4 BASIC APPLICATION EXAMPLES: SAGA + SVRG

In this section, we present two algorithms that maintain an approximation of the gradient, G ~
V f(x;) for t > 0. Each algorithm starts with an initial point x". Then at each iteration t > 0, G! is

computed first, after which the next iterate xtt1 i computed. In what follows, for a set S € (["m]) and
m € [n], we use fg := = 3. o f; to denote the average function over this set.

For convenience of presentation, we use the following notations throughout the rest of the paper:

Mo = -\ G = and 02, = L2 ©))
m n—1 m

SAGA Estimator. SAGA estimator is a variance-reduction technique based on incremental gradient
updates, originally designed for centralized finite-sum minimization (Defazio et al.,2014). In this
section, we adapt this estimator to the federated optimization scenario and study its properties.

The SAGA estimator defines:

G'=Vf(x%, G'=Vf(x'), G'=bl -by'+b " t>2, (SAGA)
where S; € ([::L]) is uniformly sampled at random without replacement, bgt = % Dic s, bt,

b =23 o bi7h bt =137 bl and forany i € [n], b is recurrently defined as:

Vfi(Xt) ifi € St,

. t>2.
bt otherwise,© ~ —

b} =V/fi(x"), b; =Vfi(x'), bj= {

We have the following recurrence for bt (the derivation can be found in LemmalF.3):
1

b’ =b'""+ —[Vfs,(x') —bg '], t>2. (10)

m

Implementation. At the beginning, when ¢ = 0 and 1, each clienti = 1,...,n computes V f;(x*)
and initializes b} and sends the result to the server; the server then aggregates these results computing
V f(x!) to initialize G* and b’. This requires two full synchronizations (2[n,, | communications
rounds using A-CSS). At each iteration ¢ > 2, the server contacts the randomly selected set of
clients S; using R-CSS and sends x" to them. Each client i € S; computes b! = V f;(x") and sends
bl — bﬁ_l back to the server. The server then updates b? according to and constructs the gradient
estimator G' using the stored b’ ~! according to (SAGA).

Each client 4 thus needs to store a single vector bt. On the server side, only the aggregated vector b
and the iterate x* need to be maintained. The memory overhead of the SAGA estimator is thus very
small in the federated learning setting, similarly to the SAG estimator (Schmidt et al.l 2017) used in
SCAFFOLD (Karimireddy et al., 2020).

Properties of SAGA. It is not difficult to show that G is a conditionally unbiased estimator of
Vf(x!), namely, Eg, [G!] = V f(x!). We next present a new variance bound for SAGA that is
controlled by the constant . The proof can be found in Section
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Lemma 4.1. Consider the SAGA estimator (SAGA) under Assumption Then for any t > 2,
Es,[G'] = Vf(x') and for any T > 1, we have :

T
Zot < Py e LtV ZG2+4n?né?an?,

(n—1)

where o7 1= s, [|IG" = Vf(x)|%] G} = Es;,_ [IVf )P X7 == Es,_y [llx" —x""1[|?], and
S[t] = (SQ, ceey St)

Note that this variance bound depends on G%,...,G2%_; and X3, ..., x%, which aligns with the
terms on the right-hand side of the desired error bound (7). However, the coefficient in front of G2
in this bound can be larger than 1, whereas (/) requires it to be strictly less than 1. Consequently,
the requlrement is not met and we cannot directly incorporate the SAGA estimator into [FCGM]| by
settlng g! = Gt. We will show in Sectlonlthat this error bound can be significantly improved by
using the recursive gradient estimation technique.

Remark 4.2. Instead of computing the exact gradients V f(2°) and V f(x!) at the beginning which
requires full synchronizations, it is possible to start with an approximation G° ~ V f(x"). This
requires only one communication round using R-CSS. The resulting communication-complexity
estimate will now additionally depend on the inexactness of the initial approximation but this strategy
often works well in practice (Figure[J.T). See Appendix [G]for detailed discussions.

SVRG Estimator. Another possible choice of the gradient estimator is the SVRG estimator (Johnson
& Zhang|, 2013)). There are different variants of SVRG, and here we consider the so-called loopless-
SVRG estimator (Kovalev et al., [2020) for simplicity.

The SVRG estimator defines:
(GO =VI(&)., G’ = Vs (x') + V(W) - Vs, (w). t>1,

(SVRG)

where S; € (1)) is uniformly sampled at random without replacement,

W = .
w!~!  otherwise,

)

0_ 40 ¢ {Xt fowp =1, 51

and w; is a Bernoulli random variable with parameter pp, i.e., P(w; = 1) = pp € (0,1).

Properties: It is not difficult to show that the SVRG estimator G* is a conditionally unbiased
estimator of V f(x"), namely, Eg, [G'] = V f(x"). Moreover, the variance is controlled by . The
proof can be found in Section [F.3.2] where the implementation of the estimator is also provided.

Lemma 4.3. Consider the SVRG estimator G) under Assumptlon n Then for any t >
1, Es,[G!] = Vf(x') and for any T > 1, we have: Zt g0i < 45*" Zt | X2, where o} =

Es, g [|G" = V()] X7 = Buy,y [lx! = x|, and wy) = (wh---,wt)-

We can 1ncorporate the [SVRG| estimator into m by setting g! = G?. This requires setting
pp ~ — and A ~ A; + n,,d,, to achieve the error condition (7). The resulting communication

complex1ty of the method is O(Can,, + (CRA1+CAn"L§”L)F ), which still has a linear dependence on

Ny, (See Theorem E]wnh the proof that the reader can inspect if interested). Note that unbiasedness
is not needed to incorporate SVRG directly into I-CGM. However, it becomes necessary later for
the recursive gradient technique, which we discuss in the next section.

5 RECURSIVE GRADIENT ESTIMATOR + EXAMPLES (SAGA AND SVRG)

In this section, we present a general formular of the recursive gradient estimator that can potentially
improve the error bound for a given conditionally unbiased gradient estimator G ~ V f(x!).
Formally, we consider the following setting.

Assumption 5.1. For any ¢ > 0, it holds that: 1) S; is independent of x°, ..., x!*1, GY ... G!71;
2) Es,[GY] = Vf(x!).



Published as a conference paper at ICLR 2026

The recursive gradient estimator (RG) defines:

g’ =Vf(x%), g't!'=(1-p8)g"+BG" + Vfs (x') —Vfs,(x), t >0, (RG)

where 5 € (0,1] and S; € ( ) is uniformly sampled at random without replacement.

Note that the indexing here differs from the previous ones. The algorithm starts with an initial point
xY. At each iteration ¢ > 0, the estimator g’ ~ V f(x') is computed first and it depends only on
G!~!and S,_;. After that, the next iterate x'*! is computed. Therefore, x‘*! is independent from
S; while previously it was dependent on it (if we use the SAGA/SVRG estimator).

Inspired by previous works, the expression of g’ incorporates both recursive gradient update and
momentum (Chayti et al., 2025} |Gao et al.| | 2024). This expression unifies several existing methods:
When 8 = 0, the estimator reduces to the SARAH update rule (Nguyen et al.,[2017). When G!
is replaced with the estimator, then g* recovers the structure of ZEROSARAH (Li et al.,
2021b). When G! = Vfg, (x!*1) and Vs, (x!T1) — Vfs,(x?) is multiplied by 1 — £3, then it
becomes STORM (Cutkosky & Orabona, [2019). In our formulation, G! is a general similarity-aware
estimator of V f(x') that satisfies Assumption allowing us to flexibly instantiate the framework
with various variance-reduction techniques.

For instance, we can combine with SAGA|or SVRG| We refer to the resulting estimators as
RGHSAGA|and RG] Note that Sy in the formulas for[SAGA]and [SVRGis exactly the same

random index set that is used in the [RG|- they share the same randomness for the sake of efficiency.

Implementation. At the beginning, each clienti = 1,...,n computes V f;(x") and sends the result
to the server; the server then aggregates these results, computing V f(x°) to initialize g°. This
requires one full synchronization. Then x! is computed based on g”. At each iteration ¢ > 0, the
server uses R-CSS which generates a random subset .S;. For the server sends xt*+1, x*
to the clients in S;. Each clienti € S; updates b! = Vf;(x?) and sends V f;(x!*!) along with
bl — b!~" (when ¢ > 2) or bl (when = 1) to the server. For-| SVRG] the server sends x‘*1, x?
and w' to the clients which then return the gradients evaluated at these three points. If w; = 1, the
server additionally computes the new gradient V f (w?’) performing one full synchronization. After
receiving all the vectors, the server can compute V fg, (x!*1), V fs, (x!), G! and g .

For[RGHSAGA! each client i needs to store a single vector b! and the server needs to maintain two
points x* T and x?, and two vectors b? and g?. For SVRG| clients are stateless and the server is
required to maintain three points x‘ !, x!, w’ and one vector V f(w?).

Lemma 5.2 (Error bound for[RG). Consider the RG estimator @]} under Assumptions[5.1|and
Then for any T > 1, we have: ZZ;O ¥2 < % ZZ; o7 + 3 2557 Zt 1 X7 . where X2 =
Es,_,[llg® = V&)%), of = Es, [IG* = V)], x7 = St 2) [||X —x""1?], and Sy =
(SO7 L) St)

The proof can be found in Section [F4.1] We next show that the error bound of both SAGA]and
can be improved by combining them with[RG|and adjusting the parameter /3. For instance, by
combining Lemma[5.2]and Lemma4.T] we obtain the following result for[RGH{SAGA]

Corollary 5.3. Consider the RGSAGA| estimator under Assumptions[5.1]and 2.2} Then for any
T > 1, it holds that:

T T
-1 2 2 2
ZZ 4ﬁnmqul+ +4/n2, ZGQ 832n2 62, + 252, Z >
2 Sym v Ty g L
where E% = Es[nq][”gt - Vf(xt)|\2]’ G% = Es[t—’z] IV £(x )” ] Es[t 2] [”X —x' 1H2]

and Sy = (So, ..., St).

By choosing § =~ -, we get S SPS G+ L G 4 nnd2 S0, X3 Compared with

the original variance bound for[SAGA](Lemma[4.T)), the bound with RG achieves an improvement by
a factor of n,,.

The error bound for the|SVRG]estimator can be improved in a similar way.
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Corollary 5.4. Consider the RGHSVRG]| estimator under Assumptions[5.1)and Then for any T >
. T 83%5 202, T

1, it holds that: Etzo ZtQ < % Zt:1 X?’ where Z? = Es[t—l])w[t—l] [Hgt - vf(xt)HQ]’

X7 = Esy_ywpo X =72 Sy = (S0, - - -, Sp) and wiyy = (wi, - . ., wy).

Compared with the original variance bound for (Lemma [4.3)), the new bound achieves an
improvement by a factor of 1/pg by choosing 5 ~ pp.

We can now incorporate both enhanced estimators into [I-CGM]| It can be shown that the iterates
{x'}2°, generated by [-CGMURGHSAGA] or [-[CGMHRG][SVRG] and the corresponding sequence
{G}22, satisfy Assumption (See Lemma|F.5|and [F.6).

6 COMMUNICATION AND LocAL COMPLEXITY OF I-CGM-RG

We are ready to establish the complexity of equipped with the and RGl[SVRG
estimator. We first present the result for RG-SAGA. The proof can be found in Section|F.5.1}
Theorem 6.1 (I-CGM-RG-SAGA). Letmbe applied to ProblemlunderAssumptwns-

and|2.3| where x'*! = CGM,ana (A, Ky, X!, gt) with K; ~ Geom(p ) and gt is generated by the

SAGA|estimator. Then by choosing A = 3A1 +113 /N0, B = -and p = 8&% after T =

f(256(A1+332V nm Om) F ] iterations, we have E[||V f(x7)||?] < €2, where %1 is is uniformly sampled

0
from (x*)1_,. The communication complexity is at most 2C 4 [n,, ] +(Cr+1)[ (256(A +3882V o On ) F 1

512 7A1+283,Wm5m+2L1)F 4L,
= A1 +28/ MmO

112n

and the local complexity is bounded by 14 + 2[n,,, ] +

The communication complexity of I-CGM-RG-SAGA is of order Cyn.,, + Cr L VIS L
the local complexity is of order n,,, + (Aity nmé L) E when (it T Om) F? W > 1. The Ny, term
comes from n,, sequentlal rounds with A-CSS for computing the full gradients in  the beginning.

Comparison: 5] Estimator. The communication complexity of -CGM-RG-SVRG is

O(Canm + (CrA1ty CACR””(S SLak ), where C 4 also affects the term involving e (see Appendlx
for details and the result of the local complexity).

7 NUMERICAL EXPERIMENTS

In this section, we verify the theory of the proposed methods in numerical experiments. We set
C4 = Cr = 1 in the definition of communication complexity for all the experiments. We choose
this case to demonstrate that even when A-CSS and R-CSS are equally cheap, our proposed methods
already outperform several commonly used algorithms. (The study of the scenario when C'y > Cg

can be found in Appendix[J.1.1])

Quadratic minimization with log-sum penalty. Consider the problem of f(x) = % Yo fi(x)
with f;(x) = 4 2?‘21 1A j(x—b; ), x—b; ;) +ZZ:1 log(1+a|xy|), where a > 0, b; ; € RY,
A; ; € R¥d s a diagonal matrix, and -, is an indexing operation of a vector. We set v = 10, b = 5,
n = 100 and d = 1000. Each coordinate of b; ; is uniformly sampled from [0, 10]. To generate A, ;,
we first sample a diagonal matrix A with entries uniformly distributed in [0, 110], and then add bn
diagonal noise matrices whose entries are sampled from [0, 18]. Each resulting A, ; is clipped to the

interval [1, 100] on the diagonal, and some eigenvalues are further set close to zero. Consequently, the
dataset satisfies 0 < A,; ; =< 1OOI for any ¢, 7, with Ay & § & 5 and L.y ~ 100. We set m = /n.

For I-CGM-RG, wesetp = 4, A = ‘F(S + A1, = 2L« and f = ™. We compare two proposed
algorithms against SCAFFOLD (Karlmlreddy et al., 2020), FEDAVG (McMahan et al.,|2017) (with
sampling), SABER-FULL (Mishchenko et al.| 2024)) (with PAGE), SABER-PARTIAL (Mishchenko
et al.| 2024)) (only compute full gradient once) and GD (running directly on f). For SVRG-based
methods, the expected number of communication rounds at each iteration is roughly n + m, which
is twice as large as other methods. From Figure[I] we observe that: 1) -CGM-RG-SAGA is the
most efficient in both communication and local computation. 2) SCAFFOLD cannot fully exploit
d-similarity as its local complexity is comparable to GD (the theoretical local complexity of both
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Quadratics minimization with log-sum penalty (m = 10, n = 100)
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—e— |-CGM-RG-SVRG (ours) == Scaffold —8— |-CGM-RG-SAGA (ours) —»— FedAvg SABER-partial —e— SABER-full ~&— GD

Figure 1: Comparisons of different algorithms for solving the quadratic minimization problems with non-convex
log-sum penalty.
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Figure 2: Comparisons of different algorithms on two LIBSVM datasets using logistic loss with non-convex
regularizer.

methods depends on Ly, ,x). Finally, -CGM-RG-SAGA with different initialization strategies can
be found in Figure[J1]

Logistic regression with nonconvex regularizer. We now experiment with the binary clas-
sification task on two real-world LIBSVM datasets (Chang & Lin, 2011). We use the
standard regularized logistic loss: f(x) = 37", f;i(x) with fi(x) := 17 25 log(1 +
exp(—y;,; (ai;,x))) + aZizl % where o > 0, (a;,:,;) € R are feature and la-
bels and M := ) ©  m; is the total number of data points. We use m = 1 and n =

10.  We plot the local L; and § by computing ||V fi(x!) — Vfi (x| /||x! — x'*!|| and
\/% S I Vhi(xt) — Vhi(xt+1)||” / ||xt — xt+1||* along the iterates of I-CGM-RG-SAGA.
From Figure @ we observe that ¢ is much smaller than L for the mushrooms dataset, while

being comparable for the duke dataset. However, for both cases, [-CGM-RG-SAGA remains the
most efficient in communication complexity.

Deep learning tasks. We defer the study of neural network training to Appendix |{J, where more
experiments and details can be found.

8 CONCLUSION

We introduced a new simple model for comparing centralized distributed optimization algorithms,
where different client-selection strategies are associated with non-uniform costs. Within this model,
we developed a new family of algorithm based on inexact composite gradient method with recursive
gradient estimator. This design enables us to exploit functional similarity among clients while
supporting partial client participation—a key requirement in practical FL systems. It is efficient when
full synchronizations (requiring sequential communications with all clients) are costly compared
to client sampling. The key technical contribution of this work is a new variance bound for the
SAGA estimator, which depends on the functional similarity constant ¢ rather than individual
smoothness. This allows the SAGA-based variant of -CGM-RG to outperform the previously best-
known communication complexity of SARAH-based methods. Limitations and future extensions are
discussed at the end of the Appendix.

10
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C FEDERATED OPTIMIZATION ALGORITHMS AND THEIR COMPLEXITY

Federated Optimization Algorithm. We consider the standard federated optimization setting with a central
server and n clients. The server is the main entity that implements the optimization algorithm, but cannot directly
access any of the local functions (f;)j-;. Instead, it interacts with problem (I)) through communications with
the clients, allowing certain information to be exchanged between them. Each client ¢ € [n] has access to the
information provided by the server and can interact with its own local function f;, but only through the oracle
Oy, . An oracle is a standard notion in optimization (Nemirovsky, 1994; Nemirovsky & Yudin, [1983), which is a
procedure that takes as input a point and returns certain information about the function at this point. The most
commonly used oracle is the first-order oracle, which returns the function value and its gradient. In general, an
oracle can be stochastic; however, in this work, we mainly consider the standard deterministic first-order oracle
Oro, (x) := (fi(x), V fi(x)). Throughout the paper, we assume that the server can communicate with up to
m € [n] clients simultaneously in parallel. We formalize optimization algorithms in this setting as follows.

Given the oracles Oy, , ..., Oy, , a federated optimization algorithm for a problem class F is a procedure that
proceeds across communication rounds. A problem class is the collection of all problems of form (T) satisfying
certain assumptions. (We will introduce a specific problem class considered in this work in Section[2.2]) At the
beginning, the server and each client i € [n] initialize the empty information sets Z° and #{, respectively. At
each round r > 0, the server chooses a subset of clients S, C [n] with at most m elements (to be discussed later).
The server then communicates with the clients in S;., providing each client ¢ € S, with certain information Z;
constructed from the server’s information set Z". Then it specifies a certain method M (often called a local
method) for each client ¢ € .S, to run locally. The method M starts with the initial information (Z; , H7 ), and
iteratively queries the oracle Oy, , obtaining a response R}, which is then sent back to the server. (The details
of this procedure are discussed in the next paragraph.) The server collects the output responses and updates
the information set Z" "' = (Z", (R} ):es, ). At each round r > 0, the server also performs a termination test
based on the current information set Z". After the algorithm terminates at a certain round R > 0, the server then
constructs and outputs an approximate solution X to problem (1) based on T using a certain rule specified by
the algorithm. To summarize, a federated optimization algorithm is a collection of rules prescribing what to do
at each communication round r: 1) how to select clients, 2) how to compute the information f{ that is sent to
each selected client, 3) which local method each selected client runs, 4) when to terminate, and 5) how to form
the approximate solution. We allow each of these rules to be randomized. See Figure [D.T]for an illustration
summarizing the procedures described above.

At the beginning of each round r, each selected client ¢ € S, receives the information Z7 from the server. Using
this new information, it enriches its information set #; o := (#;,Z; ) and runs the specified method M. At
each step k > 0, this method first computes a point x; ;, based on H; ;., queries the oracle at this point, and then
updates its local information: H; ,; = (H] 5, Oy, (x] ;)). At the beginning of each step k, the method also
performs a termination test T}, (7 ;,); Once this test is satisfied at a certain step K, the method terminates
and constructs the output R} from the final information H; KT The information sets are then updated as

Hf“ := H; kv, and remain the same (’J-LZ-TJrl := Hj) for each non-selected client ¢ ¢ S,.. To summarize, a
local method M is a collection of 3 rules: 1) how to compute the next point at each step, 2) when to terminate,

and 3) how to form the result. We allow each of these rules to be randomized (resulting in a randomized local
method); if all the rules are deterministic, the local method is called deterministic.

Note that the above definition of a distributed optimization algorithm is rather general and only constrains
how the algorithm accesses information about the optimization problem. In particular, we do not impose
any restrictions on the arithmetic or memory complexity of each step of the algorithm, nor on the size of the
data transmitted between the server and the clients. This general definition is sufficient to introduce the two
information-based notions of complexity that we focus on in this work: communication and local complexities
(defined below). In practice, however, both memory storage and information usage should be implemented
efficiently. Typically, the accumulated information sets maintained by the clients and the server, as well as the
information exchanged between them, are simply a collection of a few vectors and scalars.

Client-Selection Strategies. We next introduce three commonly used client-selection strategies and associate
them with different costs. The distinction among them lies in how the set S is selected.

* Arbitrary Client Selection Strategy (A-CSS): The set S, can be chosen in any way from ([:l]) We define the
cost of this operation as C'4.

* Random Client Selection Strategy (R-CSS): The set S, is sampled uniformly at random from (I")). We
define the cost of this operation as Cr.

¢ Delegated Client Selection Strategy (D-CSS): The set .S, is chosen to be Sp, where Sp is a fixed set of
so-called delegate clients (to be discussed later) with |Sp| < m. We define the cost of this operation as 1.

Clearly, A-CSS is the most powerful among the three strategies, as the other two could be easily implemented in
terms of A-CSS. Further, this strategy allows the server to collect information from any subset of clients. This
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flexibility enables the implementation of full synchronization, where the algorithm needs certain information to
be collected from all clients. This feature appears in many algorithms, the most basic example being the usual
gradient descent (GD). Specifically, if an algorithm requires computing the full gradient V f (x) at a point x, the
server can split [n2] into m disjoint sets and repeatedly use A-CSS to make [ *] sequential communications with
each set of clients, sending to each client the point x and asking it to compute and return the gradient V f;(x)
(this corresponds to the simplest one-step local first-order method M3).

However, when clients are unreliable or slow to respond, using A-CSS can become costly. In cross-device
settings, it is often more efficient to communicate only with a randomly sampled subset of clients at each
communication round—a strategy commonly known as partial client participation (McMahan et al.| 2017),
which is modeled by the R-CSS. Therefore, we treat R-CSS as a cheaper strategy compared with A-CSS.
Unlike A-CSS, the full-gradient computation cannot be directly implemented with R-CSS. (But it can be
recovered with high probability by using R-CSS multiple times (Arjevani et al., [2020).)

In addition to the previous two strategies, there are scenarios where there exist so-called delegate clients that
are always reliable and efficient both in communication and performing local computations. Sometimes, it
is sufficient—or even preferable—to interact with these clients. With D-CSS, the server can always query
information about the specific functions in the delegate set. In this work, we focus on the setting where there is
one delegate client (number 1), i.e., Sp = {1}.

Based on the properties of each strategy discussed above, we assume that the above costs satisty the following

natural relations:
1<Cr<Cyul.

Communication-and Local Complexities. Consider a federated optimization algorithm A for solving a
problem f from the problem class F. Let R be the (possibly random) number of communication rounds made
by A on f and let %™ be the corresponding output of A. We define the accuracy of the algorithm A at the
problem f as:

‘ Accur(A, f) = E[HVf(f(R)Hﬂ ‘ .

Further, let N4, Nr, and Np be the (possibly random) total number of times that the client-selection strategies
A-CSS, R-CSS, and D-CSS are used by A during the R communication rounds, respectively. We define the
communication complexity of A on f as:

[N =E[CANA + CrNr + N |,

and the local complexity of A on f as:

K _E[Rzlm]

=0

where K := max;es, K; and K > 0is the number of queries to the oracle Oy, by the client ¢ at round r. We
next define the worst-case complexities of .A over the entire problem class F. The communication complexity
of A for solving the problem class F up to € accuracy is defined as:

Nz(g) = sup{Ny| Accur(A, f) < 52} ,
fer

and the corresponding local complexity is defined as:

Kr(e) = sup{ K| Accur(A4, f) < 62}
fer

If there exists some f € F such that A fails to reach Accur(A, f) < €2, then both complexities Nz () and
K 7 () are defined as +o0.

After fixing the desired accuracy e, we consider only federated optimization algorithms that can achieve
Accur(A, f) < e*forall f € F. Among these algorithms, we say that the one with smaller communication
complexity Nx(e) is more efficient. If two algorithms have the same communication complexity, the one with
lower local complexity K r(¢) is preferable.

D RELATED WORK

D.1 FORMALIZATION OF FEDERATED OPTIMIZATION ALGORITHMS AND THEIR COMPLEXITY

Several prior works have proposed oracle models and complexity metrics for distributed and federated opti-
mization. These works typically consider solving the same problem as in (I, where each of the n clients or
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Figure D.1: Illustration of the sequence of procedures performed by a centralized distributed optimization
algorithm at each communication round 7.

workers only has access to its own local function. The primary distinctions among these models lie in how
communication and computation are formalized. One line of work focuses on the settings where each worker
can compute arbitrary information about its local objective, but only a limited number of bits is allowed to
transmitted during each communication round (Braverman et al., 2016} |Garg et al., 2014} Zhang et al.l|2013). In
this setting, complexity is often defined as the number of rounds required to reach a target accuracy. Alternative
models remove this constraint and instead measure the total number of bits communicated over the entire opti-
mization process (Korhonen & Alistarhl [2021). Other works impose structural restrictions on the communicated
information, such as requiring exchanged vectors to lie in a certain subspace (e.g., linear combinations of local
gradients) (Arjevani & Shamir, 2015; |Lee et al.|[2017).

The closest related model to ours is the Graph Oracle Model (GOM) (Woodworth et al., 2018, |Patel et al.,
2022; [Woodworthl, 2021). GOM introduces a computation and communication graph that determines how
each device queries its local oracle and how the computed information propagates through the devices during
optimization. Once the oracle and the graph structure are fixed, we obtain a specific model that allows to define
the corresponding optimization algorithms. A commonly studied setting is the intermittent communication
model, where n devices work in parallel and synchronize after every K local oracle queries. This setting
becomes conceptually equivalent to our model when 1) all clients participate in every round, 2) the number of
local oracle queries K. is uniformly bounded across all communication rounds, and 3) the server and the clients
are allowed to send its entire accumulated information.

Beyond this scenario, there are several main differences between GOM and our proposed model. 1) GOM does
not distinguish between different client-selection strategies that might have non-uniform associated costs. 2)
Even when all the strategies have the same cost, GOM fixes the maximum number of local oracle queries for
each round, whereas our model allows K. to vary across rounds. This flexibility enables modeling algorithms
such as DANE (Shamir et al., 2014; Jiang et al.|[2024a), which needs to solve each local subproblem sufficiently
accurately, making K, dependent on the round 7. 3) While partial client participation can be modeled in GOM
by generating a random graph, the resulting algorithms are generally restricted to using pre-specified groups of
clients at each round. This effectively enforces an offline client-selection strategy for GOM, since it may not
account for the need to know the past responses of specific clients before deciding which clients to contact next.
In contrast, our model fully supports online and adaptive client-selection strategies.

We believe that our model is reasonably simple and it appears to sufficiently capture how federated optimization
algorithms work in practice. Even in the cases where our model is mathematically equivalent to existing ones,
our model could still be more convenient to be used.

D.2 COMPARISON WITH EXISTING FEDERATED OPTIMIZATION METHODS

Notations in Table[l} We denote 0 := f(x%)— f*,n, = 2,63, := 2= 5 (2 .= & and 1 < On < Ca

n—1

are the costs of communicating with a random set of m clients and a speczﬁc set of m clients, respectively.

In this section, we compare our proposed methods with several popular federated optimization algorithms in
terms of their communication and local complexities (Section[C). For simplicity and to ensure fair comparisons
across algorithms, we assume that all methods use the deterministic first-order oracle locally, i.e., Oy, = Oro,,
for all ¢ € [n]. We first state and discuss the assumptions under which each algorithm was analyzed in the
literature. The abbreviations used in Table[T] are defined as follows.
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Assumption D.1 (FS (Function Smoothness)). There exists Ly > 0 such that for any x,y € R?, we have:
[Vf(x) = VW) < Lflx =yl

Assumption D.2 (IS (Individual Smoothness)). There exists Lmax > 0 such that for any x,y € R? and any
i € [n], we have: [V fi(x) = Vfi(y)|| < Limax|lx =y

Assumption D.3 (SD (Second-order Dissimilarity) (Karimireddy et al.| [2020; Jiang et al.} 20244} |Gao et al.,
2025)). There exists Amax > 0 such that for any x,y € R® and any ¢ € [n], we have: ||[Vh;(x) — Vhi(y)|| <
Amax|x =y

Assumption D.4 (BGD (Bounded Gradient Dissimilarity)). There exists ¢ > 0 such that for any x € R?, we
have: 377, IV fi(x) = Vfi(y)lI* < ¢*

Note that the problem class of IS belong to SD, and SD implies Assumption[2.T]and2.2] Moreover, any functions
that satisfy Assumption[2.T]and 2.3]belong to the class of FS. Finally, the class of FS partially overlaps with the
problem class defined by Assumptions[2.1]and 2.2} In Table[T} the assumption under which Centralized GD is
analyzed is the most general one, and those for -CGM-RG are the second most general. Finally, the smoothness
constants satisfy the following relations:

57A1 S Arnanx S_, Lmax, Llny 5 Lmax .

We next briefly describe each method in Table[I]and discuss how the communication and local complexities are
computed for each method. There are two operations that are commonly used in these methods. We describe
them here to avoid repetition later. Denote n,, := n/m. The first operation is to compute the full gradient V f
at the server at a certain point x. As discussed in Section |C] this can be implemented with [n,,] successive
communication rounds, each involving the use of A-CSS and one local gradient computation. Each such
operation adds therefore Ny ¢ := Ca[ny,| to the total communication complexity and Kv ¢ := [, ] to the
total local complexity of an algorithm.

Another commonly used operation is to compute several mini-batch gradients V fg at b > 1 points where

S e ([:L]) is sampled uniformly at random. This requires one communication round using R-CSS. The
communication complexity of this operation is Nv ¢4 » := Cr and the local complexity is Kv g5 := b.

In what follows, we omit the subscript F in the notation for the complexities Nz (¢) and K #(¢); the correspond-
ing problem class is specified in Table ] for each method.

Centralized GD. The method iterates:
1
M =x' - V().
Ly

0
The iteration complexity of GD is T = O( L;f

) (Nesterov,[2018), implying that the communication complexity

. 0 0
is N(e) = TNvs = O(Canm Lif ) and the local complexity is K(¢) = TKvy = O(nm Lif )

FEDRED (Jiang et al.| [2024a). We consider FEDRED-GD, which initializes Xo = xo and iterates:

. - - A -
xerr = arg min{ f1(xe) + (V1 (xe) + V(%) = V(&)%) + 3 lx = xill” + 5 [x = %*}
x€Rd

where X¢4+1 = X¢+1 W.p. p and X¢4+1 = X¢ w.p. 1 — p. The solution of the subproblem can be computed
in a closed-form. For p ~ ﬁ, n =~ L1 and A ~ A, the iteration complexity of the method is T =
@ Lif 2 ) (Jiang et al.,[2024a). In expectation, once every 1/p iterations, the server computes the full gradient
Vf(x:) = Vf(x:), which adds Ny to the total communication complexity and Kv to the total local
complexity. Then the server makes another communication round with D-CSS, sends V f (x;) to client 1 which
then performs 1/p local steps in expectation and sends the result back to the server. The expected number of
times the full gradient V f (%) is computed is pT" = O( A;f > ). The expected number of communication rounds
where D-CSS is used is E[Np] = pT. Therefore, the communication complexity is

AlFO) .

£2

N(e) = E[CANA + Np] = OT Ny + pT) = o(cAnm

The local complexity is bounded by

A F? L F°
1 + 1 )

K(#) = OpTKvs +T) = OpTnm +T) = O(nn =5— + =4

FEDAVG (McMahan et al.,[2017). At each communication round r > 0, the server uses R-CSS to select clients,

sends X" to each client ¢ € S,., which then returns an approximation solution x:H ~ arg min, f;(x) by
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running local GD starting at x” for K, steps. Then the next iterate is defined as x"*' = L 5> o xI*! When

using local-GD, the optimal number of local steps is of order 1 (Karimireddy et al.,2020). Therefore, the local

® o VImaxC | LmaxF°
+ Emaxt | Smagt)

2
complexity is of the same order as the iteration complexity 7' = O( Sm
et al}[2020), and the communication complexity is CrT.

(Karimireddy

MIMEM VR (Karimireddy et al.,|2021). At each iteration ¢t > 0, the server first uses R-CSS to get a random
client set S; and computes the mini-batch gradient V fs, (x"). Then the server uses A-CSS to establish
communication with the same set of clients Sy, sends V fs, (x*) to them which then updates:

X!~ argmin{ fi(x) + (V fs, (x') = Vfi(x"), %)}

x€ER4

by running momentum-based first-order methods locally for ©(% Lmax ) steps. The next iterate is defined as:
xitt =1 Zzest %!t The communication complexity is thus N (e ) E[CaNaA+CrNRg] = (Ca+Cgr)T

m

where T = O( == Con 5 + Sm A;‘ga"F + Am;;‘F ) is the iteration complexity (Karimireddy et al.,[2021). The local
complexity is O( L’}:i’; 7).

CE-LGD (Patel et al.. 2022). The method initializes x ' = x° and v~ € R?. At each iteration t > 0, the
server first uses R-CSS to select clients Sy, sends x° ! and x! to the client i € S; which then computes V f; (xt)
and Vfi(xt’l) and sends them back to the server. The server computes v = V fg, (x%) + (1 — p)(v*™* —
V fs,(x'™1)) where p € [0, 1]. Then the server uses R-CSS again to communicate with a random client. The
client returns x‘*' by running the local SARAH method using v* for ©(% Inax) local steps. The iteration
complexity is T = O( Con f + m \/EEXF + Am;"F ) (Patel et al.|[2022). The communication complexity is
N(g) = O(CRT) and the local complexity is K (g) = O(Z=exT).

Amax

SCAFFOLD (Karimireddy et al.,[2020). At the beginning, each clienti = 1,...,n computes by = V f;(x°)
and sends the result to the server; the server then computes b® = V f(x°), which adds Ny and Ky to the
total communication and local complexities, respectively. At each iteration ¢ > 0, the server uses R-CSS to
generate the client set S; and sends x’ to each client i € S;, which then computes b’ = V f;(x") and sends
bl — bffl back to the server. The server then updates b’ (SAG (Schmidt et al.,[2017)) according to (T0) (for
t > 1). Then the server uses A-CSS to contact the clients in S; again and sends b* to them. Each client i € S,
computes
xT & arg mm{fZ )+ <bt Vfi(x x>}
x€Rd

by running local GD for K =~ 1 steps and sends the result back to the server. The server computes the
next iterate as x' "' = L 37 o x{*!. The iteration complexity is T = O((%)3 M) (Karimireddy,
et al.;2020). The communication complexity N(¢) = O(Ca[nm| + (Ca + Cr)T). The local complexity
K()=[nm]|+ 1+ K)T =0(nm+

The final three algorithms do not strictly satisfy our definition of an algorithm because they do not clearly specify
when to terminate the local method. However, we still present the conceptual methods and their communication
complexity estimates, assuming (rather informally) that certain "local" operations can be implemented by running
a certain local method for a sufficiently long time.

FEDDYN (Acar et al.,[2021). During initialization, the server needs to collect x? that satisfies V f;(x9) = 0
from all clients. Therefore, the communication complexity of this operation is C'a [, |. At each communication
round 7 > 0, the server uses R-CSS to select clients .S, and sends x" to each client ¢ € S, which then sends

X = argmin{ fi(x) — (Vfi(xin), %)+ 5 [x = <[P}, i€Se,

back to the server. For ¢ §Z Sy, xr"'1

r+1 r+1 r4+1 _ y.r 1 r+1 T
— E — h , h"7"=h" - )\E( E X, —x)
ZEST i€Sy

= x; . Then the next iterate is updated as:

The iteration complexity is T' = O(nm%gw) (Acar et al., 2021) and the communication complexity is
N(E) = O(CAnm + CRT).

SABER-FULL (Mishchenko et all 2024). The method initializes x ' = x° and v™! = v° = Vf(x%).
At each iteration ¢ > 0, w.p. 7% the server updates v! = Vf(x") which adds Ny and Ky to the
total communication and local complexity, respectively. With probability 1 — ——, the server uses R-CSS,

obtains the random set Sy, and computes two mini-batch gradients V fs, (x") and V fst (x"™1). This operation
adds N2 fs, and K2 fs, 1O the communication and local complexity, respectively. Then the server updates
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vl =viTl £ Vs, (x') — Vfs, (x*™1). (The original method samples a single index 1. Here we extend it to
S;.) After the computation of v*, the server uses R-CSS, samples a random index 77; € [n], and sends v* and
x! to the client M., which then returns

x Tt %argmin{fmt(x)+<v —Vim (x),x ,H tHQ}

x€Rd

back to the server. The iteration complexity of the method is 7' = (’)(7”””&““1?)

solved exactly. The total communication complexity is

if each subproblem is

1 1
N(e) = E[CANA +CrNg] = O (cAnm +—CaTny+ (1= —)CaT + CRT) — O(Canim +CaT) .

SABER-PARTIAL (Mishchenko et al., 2024). We refer to Algorithm 2 in the original paper as SABER-
PARTIAL. By Theorem 3 in that paper, the best p is 1. The algorithm initializes v = V f(x°), which adds
Ny and Kvy to the total communication and local complexities, respectively. At each iteration ¢ > 1, the
method also needs to compute a mini-batch gradient v¢ = % D ie s V fi(x") where S; is sampled uniformly

at random with replacement and |S;| = s where s is a parameter of the method. Since we assume that the
server can communicate with at most m clients at each round, implementing this operation requires [s/m/|
sequential communication rounds with R-CSS. After that, the method needs to choose another random set St
with |S¢| = s. This adds Cr[s/m] to the total communication complexity. The server sends x* and v* to the
client ¢ € S¢, which then computes

xT argmin{fi(x) vl - Vfi(x x> + = Hx — xtH }

x€Rd

and sends the result back to the server. The next iterate is updated as x**' = 1 > ies, XTI C Snandsis

chosen as 6(2—2) then the method can output an e-approximate stationary point after 7" = O(%) iterations
if each subproblem is solved exactly. The communication complexity is N(¢) = E[CrNr + CaNa] =
O(CRT[ 51 + Canm).

Discussions. FEDDYN, SABER-FULL and SABER-PARTIAL do not strictly satisfy our definition of an
algorithm since they do not precisely specify when to terminate the local methods. The problem class for
which FEDAVG, MIMEM VR, CE-LGD, and SABER-PARTIAL are analyzed is the smallest among all methods.
Specifically, in addition to IS, they also assume BGD, which can be restrictive and exclude simple quadratics.
Among these four, MIMEM VR and CE-LGD improve upon FEDAVG and SABER-PARTIAL in terms of their
dependence on the target accuracy €. Except for FEDAVG, the remaining three methods replace the dependence
on Lmax With Apax in the communication complexity. Furthermore, compared to MIMEM VR, CE-LGD
achieves a better dependence on m in the term involving £ 3

For the remaining methods, SCAFFOLD improves the dependence on n from n,, (as in FEDDYN) to n2/ 3
SAVER-FULL further reduces the dependence on n to y/n., and simultaneously improves the smoothness
dependence from Lmax to Apmax. [FCGM-RG-SVRG achieves a tighter bound of CrA1 + v/ CaCrNmm S
C’A\/@Amax. Finally, I-CGM-RG-SAGA improves the communication cost constant from C'4 to Crg,
compared to I-CGM-RG-SVRG, while maintaining the same local complexity—the best among all existing
methods.

Remark D.5. According to|Arjevani et al.[(2020), one may alternatively compute the full gradient using only
R-CSS. Let m = 1 for simplicity. Lemma 2 in (ArJevam et al.| |2020) shows that w.p. 1 — §, we can recover
the full gradient V f(x) at a glven point x by making 2n* log( ) communication rounds with R-CSS. This
can be helpful when the cost Cy4 is extremely large. Indeed, the current communication complexity of I-CGM-
RG-SAGA is of order Can + Cr((A1 + /nd)F°/e?). Assoonas Ca > Cr((A1 + /nd)F°/e?)/n, the
complexity is dominated by C'an. This term arises from 2n sequential communication rounds with A-CSS
for computing the full gradients. Now if we replace these operations with 4n? log(%”) sequential rounds
with R-CSS, the total complexity might be reduced to Cr (n” log(n) + (A1 + /nd)F° /e*). We leave a full
theoretical development of this direction as interesting future work.

E TECHNICAL PRELIMINARIES

We frequently use the following lemmas for the proofs.
Lemma E.1. For any x,y € R% and any v > 0, we have:

¥ 1
(=, ¥)] < 2 IIx)1* + > lyll*, (E.1)

1
ety < (L) Il + (142 ) vl (E2)
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Lemma E.2 ((Jiang et al.| [2024b), Lemma 13). Let {g;}" be vectors in R* with n > 2. Let m E [n]

and let S € ([”]) be sampled umformly at random without replacement. Let g = le > g 0° =
%Z?:1 llg: — & and gs: Z]es g;. Then,
2
_ _ _ _ n—moao
Eslgs]=& and  Es|lgs —&|’] = —. (E.3)
n—1m
Lemma E.3 ((Allen-Zhu, 2018a)), Fact 2.3). Let Ao, A1, ... be reals and let K ~ Geom( ) with p € (0,1],
that is P(K = k) = (1 — p)*p for each k € {0,1,2,...}. Then it holds that: E[K] = 1 — 1 and
E[Ak] = (1 —p)E[Ak 1] + pAo . (E4)
Proof. Using the identity 3, -, kq" = ﬁ for any |g| < 1, we have:
1— 1
(Kl=p> k(l—p)f=p—T =~ —1.
k>0 p p
To prove the second part, using the definition of K,
1
AK+1 pZAk+1 17 ZAk 17 = 1_p(E[AK]7pA()) .
k>0 Pi=
Rearranging gives the claim. O

Lemma E4. Let (A:)2, (B:)$2o and be two non-negative sequences such that
Ai+1 S (1 — (X)Al =+ Bz
foranyi > 0 witha € (0,1]. Then foranyt > 1,

t
At S (1 — a)tAo + Z(l — Oz)t_iBi_l 5
i=1
and forany T > 1,

zT:Atg (1—a)(1—(1—a)T)AO+TZ*11—(1;a)T*f

(e
t=0

Bo< %A1t ZBt.

Proof. When a = 1, the claim clearly holds. Let 0 < o < 1. Dividing both sides of the main recurrence by
(1 — a)™*, we have for any i > 0:
Az‘+1 < A; B;
(1-a)t! = (1—a)  (1—q)tt’

Summing up from¢ =0toi =1¢ — 1, we get forany t > 1:

A
i-a t_AoJrZ — l+1 A0+Z 1—a

This proves the first claim. To prove the second part we sum up the ﬁrst claun fromt=1tot =T,

ZAt<Zl—a AO+ZZ a)' ' Bi-

t=1 i=1

(1—a)(1—(1—a) )A +ii 1fogt ZBz 1

«
T
1—a)(1—(1- (1 — )Tt
= 1) a( o) A0+E —a Bi—
. e . Tt
:(1 Oé)(la(l Z 1 Oé Bt. 0

=0

Lemma E.5. Let p € (0,1). The minimizer of the problem min, e 1) {f(v) := ﬁ} is attained at

V= 1_\;m.

Proof. Differentiate f(v), we have f'(y) = %ﬁ;’)’zﬁ. Setting f'(v) = 0 with v € (0,1) gives v* =

1=vi-p Vpkp. Since f(v) — oo asy — 0% ory — 17, the critical point * is the minimizer over (0, 1). O
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F PROOFS FOR [-CGM

Lemma F.1. Let[[-CGM|be applied to Problem () under Assumption[2.1) Let A > A1. Then for anyt > 0,
HVf(XtH)H <A+ A)Re1 + St e,
where %; = ||xt — x*7Y||. For any x € R% we have:
Fi(x") = Fi(x) < f(x") = f(x) + =
20— Ay)
Suppose the iterates satisfy (), then the function value decreases as:

A=A 37
1 Xt41 YA,

FETH < F(x -

Proof. By the definition of F}, we have:
VEET) = VARET) +g' - VAKX) + A= —x)
=V T+ (8" - V) + (Vhi(x") = VA (x")) + Ax"T" —x") .
It follows that:
[VFETH] < ARer + [IVh () = Vi (x| + 2 + e

g A+ A)Xe+1 + S+ e,
which proves the first inequality. Using the definition of F}, for any x € R%, we have:
Fr(x") = Fi(x)

= Fulx) () — filx) — ()~ (8"~ VA, x - x) — S lx - x|

= f(x") = f(x) + f(x) = fu(x) = ha(x") = (g" = VAi(x"),x —x") — *II -x'|?
= FO) = F69) + () = b () = (Tha (), x = x)) = Sl =X = (g = V'), x - x')
) - £ - AP - P - (g - V) x - x)
Using (E-I), we can bound the last two terms by: M which proves the second claim. Substituting
x = x"*! and using @), we get:
FOH) < 7y = AR — (g - V) - x)
@f _AC A1A§+1+/\221. m

F.1 PROOF FOR THEOREM 3.1

Proof. Lett > 0. By LemmalFI] we have:

A=A 5 t 41 ZA?
< f(x") — f(x + .
4 Xt+1 ( ) ( ) A — A

Using the first claim of Lemma[F.I] we have:
IVAETHI? < (A4 An)Xer + S0+ e)® <200+ A1) R + 25 + e0)°
Adding (A 4 A1)? )Zf_H to both sides of this inequality and substituting the first display, we have:
IV DI+ A+ A1)’
4 4 2 .
< A2 B prttl t o($: 2
<30+ A (& (6 = F&) + i gy 2 e

< %(f(xt) — FTY) + (% +4>f}f +4éf .

Summing up from ¢ = 0to T" — 1, we get the claim. O
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F.2 PROOFS OF LOCAL CGM FOR SOLVING THE SUBPROBLEMS
Lemma F.2 (Composite gradient method). Consider the composite problem:

min {F(x) := ¢(x) +v(x)} ,

where ¢ is Lgy-smooth and 1) is Ay-strongly convex and simple with Ay > 0. Let n = Lg. Consider the
composite gradient method:

s = argmin{Li(x) i= $(x) + (V(01)x = i) + 2 x = xi” + ¥((0)} -

x€R4

Then for any k > 0, F (Xx+1) < F(xx). Forany K > 1, it holds that:

« 2 _ BLI[F(x0) — F(xxk)]
IVF(x)I™ < Lo+ 2K ;

where X} = arg ming ok |V F(x1,)|. Furthermore, if K ~ Geom(p) withp € (0,1], then we also have:

2
< 8Lyp

Eg[IVF(xg )7 < ot

[F(XO) _ER[F(XR-H)H .

Proof. Let k > 0. By (Lg + \y)-strong convexity of Ly, for any x € R%, we have,

Ly + Ay

[ — Xk+1H2 :
2

Li(x) > Li(Xk11) +

Substituting x = xy, it follows that,

L Ly + A
F(xx) > ¢(xx) + (Vo (Xk), X1 — Xx) + 7¢ lIxh+1 = xall* + (xn1) + %w lIxks1 — x|
Lo+ A Ly + A
2 P(Xk41) + P (Xpt1) + % Ixkt1 — xk|* = F(xk41) + quw k1 — x| -

This proves that the function value of ' monotinically decreases. By the definition of xx1, we get:
Vo (xi) + Lo (xs1 = %) + Vi (xp41) = 0 .
It follows that:
VFE(xp41) = Vo(Xpt1) + VY (Xpt1) = VO(Xit1) — VO(xk) + Lo (X — Xit1) 5
and hence,
IVE(xk1)|| < [Vh(xrr1) — Voxi)l| + 1 l|1x641 — xil < 2L X641 — x| -

Substituting this inequality into the second display, we get, for any k£ > 0:

8LZ
|WF@Hmst;%@wwwa@Hm-
Summing up from k = 0 to K — 1, we have:
K 2
8L
2 ¢
; IVF(xe)|” < m [F(XO) - F(XK)] .

Dividing both sides by K, we get the first claim.

For the second claim, substituting k = K with K ~ Geom(p) into the last second display, passing to the
expectations and applying Lemmal[E3] we have:

) 8L3
ExllIVF(xz )] < ﬁ ExF(xg) — F(xg40)]
8L>2
< ﬁ((l —P)Eg[F(xz )]+ pF(x0) — E4[F(xz41)])
8L2p
= T_‘:ﬁ)\qb[F(xO)_Ef([F(xf(qu)]] . D
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F.2.1 PROOF OF LEMMA[3.3]

Proof. Applying Lemma(with B(x) = fi(x) and p(x) = (g' — Vfi(x"),x —x") + % Hx — xtH2), we
have for any ¢ > 0:

it = VG| < ST ED
where Fy' := min, cpa{F3(x)}. Applying Lemma we get:
2
F(x") - F < f(x")— "+ m :

It follows that:
T—1 T—1

— 8L? N 52
;etﬁm(;(ﬂx)—f )+;m)-

We next upper bound ZtT:_Ol (f(x") — f*). Applying Lemma we have for any i > 0:

. v 2
R AT Wi
Summing up from ¢ = 0toi = ¢ — 1, we have:
) <16 + Y 2
- pare 20— Ay)
Hence,
T—1 . . . X T—1t-1 52 . T2 52
;(f(x)_f )ST(f(x") = f )+§i:0m§TF +T;m-
It follows that: . .
. L3 —~ 37
;e? < ﬁ(TFO+(T+1);M) :
To achieve the accuracy condition[f] by the choice of K, we have
(L?fi)[( = SLI;T SA-fis % , and (ng-fi)l( 2((ATji)1) = EiLg)K =1
Passing to the full expectation, we get the claim. O

F.2.2 PROOF OF LEMMA [H.2]
Proof. Applying Lemma|F.2]and[F.I] we have for any ¢ > 0:

8Lip
L1+

8Lip )34 )

Ef(t [6?] < Ef( [Fz(Xt) — Ft(XH—l)] < L.+ by (Ekt [f(xt) — f(xH'l)] + m

t

Taking the full expectation and summing up from¢ = 0Oto¢t = 1" — 1, we have:

T-1 8L2p 1 T-1
2 1 0 * 2
> Bl < L5 (160 = 1+ gy )

t=0

By the choice of p, it holds that:

2 2 2
8Lip _ Li(A = A1) <A—A; < A+ A1) 7
L1+ )\ (L1+)\)2 A=A
and
4L3p L3 -1
(Li + M)A — A1) 2(Ly + )2 '
Hence, accuracy condition () is satisfied. O
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F.3 PROOFS OF PROPERTIES OF THE SAGA AND SVRG ESTIMATORS

Lemma F.3. Consider the@estimaton Then for any t > 2, it holds that:

_ 1 _
bt =bi"! + a[VfSt(xt) -b5 .
Proof. Indeed,

bt

%ibﬁ LS e v = L[ b+ v - b

¢St 1€S¢ 1=1 1€St

_ 1 _
b+ Vs, (x") — b, ] D

F.3.1 PROOF oF LEMMA[4.]]

Proof. Let t > 2. By definition, G' = L3 .o G{, where G} := Vf;(x) —b;™' + b'"" and S; is
independent from x* and (b ™")7,. Therefore, according to Lemma we have:

Es,[G ZGf:Vf and  Es,[|G" — V()" =

where 67, := 237" [[(Vfi(x") —bi™") — (Vf(x") — b ")||>. Taking the expectation w.r.t. Sj;_1) on
both sides, we get:

s> n—m1l 2 dm 2
oy = —Es Gi1] = —op1 .
n—1m [t— 1][ s ] m ’
We next derive the recurrence for o7 ;. Denote X¢ := ||x* — x"~"||. For any o > 0, we obtain:

611 = DOI(TAG) = bE) = (V) — b))
(Vi) = ) = (VS (x') = b) + [Vhi(x') = VA=)
20 (1) S ae) b — () -+ (14 D),

= (1+a)[5 SIVAG) = bl = V6 = Ib] + (14 5 )0

= (1 ) [ IVAEOI 4 5 ST IVAG — b = VeI = ] + (1 )6

1¢St

where the last second equality follows from the identity £ 37 [V fi(x") — b} — Vf(x")] = b’, and the last
equality follows from the definition of b!. Further note that

Bs, [ 3D IVAG) — b - V6] = ZP ¢ SV fix") = bl = Vi)

¢St
_ 1\ _

-(1-2) Z I R e O [ e LA

Taking the expectation w.r.t. S; on both sides of the last second display and plugging in this identity, we obtain:
. 1\ _ 1
Es (62,1 + (1L @lIb! 7] < (1+a) (1= =) [62 + b 7] + (1 + @) — V()]
Nm Nm
1 -
+ (1 + 5)52 Es, [Ri11] -
Taking the expectation w.r.t. Sj;_1) on both sides and denoting B := (1 + «) Es, [[Ib*]|?], we get:

14+«

1 1
U1£2+1,1 +B; < 14 a) (1 - F)[Uf,l + Bffl] + Gt 1+ 5)52X?+1 .
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Let 1 —/nm = (14+ a)(1 = 1/nm) € (1 —1/nm,1). We then have: v € (0,1), 1 + a = 7= and
1+ i = % The previous display can thus be reformulated as:

0t2+1,1 +B; < ( - %)[03,1 + B?—l] + (ﬂm jl)Gt m_iyﬁ’dzxgﬂ .

Let T > 3. Applying Lemma[E-4](starting from ¢ = 2), we have:

T-1

L 1—~/n 1
Slo?i + B < — o3 + Bl +

- ¥/Mm

7 Gt fm — 752X$+1] .
i—3 ¥/1m -7

po [nm(nm —-1)

Adding 0371 to both sides and dropping the non-negative B?, we obtain:

T
2 Nm 2 Nom — 7Y 2 nm 2

E <= B E G? 5 § .

2 i1 < 5 021+ 5 1+ (o = 1 t Xt

Recall that b} = V fi(x") for all i € [n)]. It holds that:

Pa=0da = LS TR VA - (VI -V S 828 =, BE = "

T N2
So2, < ji)GQ 71 ZGﬁ”’" ™ 52th+1.

— ¥(nm

Let us choose v which minimizes the coefficient in front of Z;‘F;ll Xi4+1 over (0,1). By Lemma we get
Y* = Nm — VN2, — Ny, Substituting v = v*, we have:

T T-1 T-1
2 ot < (Vi —m 4 )G + (14 2EE) 32 G (Wi Vi =19 3
t=2 7 Nm — 1 t=2 t=1

T—-1 T—-1
< 2G4 (14 ) 3G 4+ 4nd” > xd -
Vim — 1775 t=1

Multiplying both sides by %=, substituting the identity o7 = %207, and %= (1 + \/L‘l) =n-ml g
7M, we obtain:

T

2nmq —1++vn2, —n
2 mdm 2 m m 2
< G G? +4n2,62, .

;Utf m it (n—1) Z ¢t +an ZXt
Adding 02 = 0 and o7 = 0 to both sides, we prove the variance bound for T' > 3, since G® = Vf(x°)
and G' = Vf(x'). The same inequality also holds for T = 1 and T = 2, since 6§ = o = 0 and

2 — 9m 2 < m52 2

o3 m 92,1 = 0 X2

O

F.3.2 PROOF OF LEMMA [£.3]

Proof. Lett > 1. By definition, G = - 37, o Gi, where G} := Vfi(x") — Vfi(w") + Vf(w") and S;
is independent from x* and w’. Therefore, according to Lemma we have:

-m 1,
Es,[G ZG’f =Vf(x') and Es[|G' = VI =~ —F 57,
where 67, := 2 3" ||| Vhi(x") — Vhi(w")||*. Since w41 is independent of x**' and w*, we have for any

a>0:

w1 [6741,0] = (1= p5)— ZHVh ) = Vhi(wh)?

=}
I/

(1= pe)(1 + )5ty + (1= p) (1 = )R

27



Published as a conference paper at ICLR 2026

where X¢41 := ||x"" — x'||. Let 1 — ypp := (1 —p)(1+ ) € (1 — pp,1). We then have v € (0,1) and

1+1/a= pl (’1’5’ Ok Therefore, the previous display can be reformulated as:

. . 1— 1— N
Ewtﬂ [Ut2+1,1] < (1 - ’YPB)Ut2,1 + ( ;zif()l(— ,nyy) 52X?+1 .

Taking the expectation w.r.t, wy;) on both sides and denoting ail = IEW[ . [{7? 1], we have:

(1-ps)1 -pB7) 5232

Ut2+1,1 <(1- ’YPB)U?J +

t+1 .
pe(l—"7)
Let T > 2. Applying Lemma[E-4](starting from ¢ = 1), we obtain:
- 1—p (1-p l—p )
Uilfﬁ %1 5) Z ZZXt-H
—~ YpB ppy(1—

Adding ail to both sides and using (J’il =E., [0'1 1< (1- p3)62xl = (1 - p3)5 2x2, we obtain:

T
2 1 2 2 (1—pB)(1 —pB’Y 52

E op1 < —(1- 0°x1 + E
t1 S ’YPB( PB)O XT pQ A= Xf+1

(1-ps) (1—pm 2
< 1 E Xii -
pB'Y(l - .

According to Lemma | the minimizer of W overy € (0,1) is y* = =1=p Vpl};m. Substituting
B
v =~*, we get:

1-p L
—PB)
Moot < s
=1
Multlplymg both sides by <= and using the identity ol = Est,“,[t] IG! = VfEH|?] = wi [67.] =
Im Ut,h we have:
T 2 T

ot < =P QZ <2y
(1 g

Adding 0§ = ||G® — Vf(x°)||* = 0 to both 81des we get the variance bound for 7' > 2. The same bound
holds for T' = 1 since 02 = 0 and 02 = qﬂal 1 < (1—pB)oZxi. O

Theorem F.4. Let[I-CGM]be applied to Problem[I|with the estimator under Assumption 2.1 and 2.2)]
Suppose the inaccuracies in solving the subproblems satisfy (6). Then by choosing A = 3A1 + 160, /ps,

0
after T = [(256(A1+ng [2B)E7Y iterations, we have B[||V f(XT)||?] < €2, where XT is uniformly sampled

from (x*)_1. By choosing pp = The communication complexity is at most Ca[nm| + (2Cr +

256(A1 468, Cal[nm]/Cr)F°
1)[( (A + Eé“[" 1/Cr) 1

Cr
Calnm]

The proof strategy is the same as the one for Theorem [F7]

Implementation of SVRG. At the beginning when ¢ = 0, each client i = 1,..., n computes V f;(x°) and
sends the result to the server; the server then aggregates these results, computing V f (x°) to initialize G°. This
requires one full synchronization. At each iteration ¢t > 1, the server uses R-CSS and sends wt and x? to the
clients in S; and then receives the gradient difference V f;(x") — V f;(w") from them. If w; = 1, the server
computes the new gradient V f(w') performing one full synchronization and stores it in memory; otherwise, it
continues with V f(w') = V f(w' ') which is already stored in memory. In total, the server needs to maintain
two points x* and w' and one vector V f(w") and the clients are so-called stateless.

F.4 PROPERTIES OF THE RG ESTIMATOR

F.4.1 PROOF OF LEMMA[5.2]
Proof. Lett > 0. By the definition of we obtain:
SP = [lg" Tt - )P
=||(1 - B)g" + BG' + Vfs,(x'*") = Vs, (x') — V(")
= (1= B)(g" - VF(x")) + B(G" = VF(x")) + (Vhs, (x) = Vhs, (x) ||
= (1= B)S7 +||B(G" = VF(x")) + (Vhs, (x') = Vhs, (x|
+2(1-8)(g' = Vf(x),8(G' = Vf(x")) + (Vhs, (x") = Vhs,(x'T))) .
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By Assumption S; is independent of x*, x!*1 and G'~!. Furthermore, since g’ is a deterministic function
of G'71 x*, x*~T, S, ; and g' !, by induction, S; is also independent of g'. Hence, it holds that:

Es,[(g' — Vf(x"),8(G" — Vf(x")) + Vhs,(x") — Vhs, (x'))]
= <gt — Vf(x"),BEs, [G" — Vf(x")] + Es,[Vhs, (x") — Vhs, (x'T)]) .

By Assum 1ptlon we have Es, [G'] = Vf(x'). Using Lemma we have Es,[Vhs, (x") —
Vhs, (x " [Vhi(x") — Vhi(x'™1)] = 0 and

m 1\ )
B 70, () — Vs e 2 22 05 mo) = O i

Taking the expectation w.r.t. Sy on both sides of the first display, we get:
Es, [iﬁ“]
= (1= 8)"5¢ + Es, [IB(G" = VI(x")) + (Vhs, (x') = Vhs, (x"")) ]
< (1= B)"%8 +26°Es, [IG" = VF(x")II*] + 267.%011 -
Taking the expectation w.r.t. Sj;_1) on both sides and substituting the notations, we get:

E?—»—l <(- 5)225 + 25202 +2572an+1 .

Applying Lemma[E4] we get for any 7" > 1:

T 9  T-1
g2 o (1= B8)? 28 265,

Z:: : < 20 — BQEO‘F 520‘+ P ZXt+1- (E.1)

This proves the claim since g° = V f(x°) and so £ = 0. O

F.4.2 PROOF OF COROLLARY[3.3]

Proof. Let T' > 1. Note that, under Assumption we have IES“_” [Ix* — <12 = ]ES[t_Q] [l —
x"71|)? = x7 and Esp,_y) IV F(xH]? = Esp,_y [V £(x")]|?] = G%. Applying Lemma we have:

T

2mm 1 m
>t < ming ML EAE I S G 37
t=0

Applying Lemma[5.2], we obtain:

T 28 T-1 252, T
;Efﬁm;ff? 522

Combining the previous two displays, we have:

Zzt < 4ﬂilmqm Gl 2B(nm — 14+ v/n2, — ZGt + 52 +25m Z 2. 0

B)m (2-8)(n—1) 25 B2
F.4.3 PROOF OF COROLLARY [3.4]
Proof. LetT > 1. Applying Lemma[d.3] we get:
T 522 &
ZEStW[t][HGt —Vf( S Tmz W[t—l][th_xt_IHQ] .
t=0 Py t=1

Note that, under Assumption|5.1} S;_; is independent of x* and x'~*. Moreover, the first iterate that might
depend on w;_1 is xt*1 since g’ is computed using x* and G*~! which is a function of w;_1. Therefore, w;_1
is also independent of x* and x*~*. Hence, we have s, wr, _y [IIX" = x"71[1*] = Esy, _y) oy, _o [XE] = XF-
Taking the expectation w.r.t. Sj;_1) on both sides of the first display, we get:

T 2 T
Z SPTMZ
P B
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where 07 := Espy.wpy [[|G* — V £(x")||?]. Applying Lemma taking the expectation w.r.t. wy;) and substitut-
@I [Z%] = ]Es[t—l]’w[t—l] izﬂ =X and ]ES[t72]’w[t] [f(%] = ]ES[t—Z]vw[t—2] i)zfi = Xt

T 252 T
ZE?— Zat+25 /@2ZX%'
t=0 =1

Combining the previous two displays, we have:

ing the identity Eg;, ,
we obtain:

T
5 _ 8B°6,,/p% + 260, 2
ZOEt <t Z O

F.5 PROOFS FOR[[-CGM|WITH|[RGHSAGA]
Lemma F.5. Ler x* be the iterates o RGHISAGA|and let G* be the{SAGA|estimator for all t > 0. Let (;

denote the randomness generated during the process of solving the subproblem Fy_1 in @for anyt > 1.
Assume that {(;}§2, are mutually independent across t. Then the iterates {x'}$2 o and the estimators {G*}$2,

satisfy Assumption[5.1]

Proof. The equation Eg,[G!] = V f(x") has been proved in Lemma- We next verify the dependency

of randomness. Let ¢ > 1 and denote S = (So,...,S5¢) and (i) = (C1,...,¢t). Assume that x* is a
deterministic function of (Sj;_sy, (¢7). Then Glisa deterministic function of (Spy, Cy) since G depends only
onxp == (x% x",...,x") and S;. Next observe that g' " is a function of S;—2, x" ™", x*72, G' % and g" 2.

Therefore, gt’1 is a deterministic function of S[t_g] and ([;_1). Finally, from the update rule of [[-[CGM,| xtisa

deterministic function of gt’l, (¢ and x?~!. Therefore, the assumption that x? is determinsitic conditioned on

(S[t—2), C[y) is satisfied. This implies that .S; is independent of x}, 1], Gt ..., GY. O

F.5.1 PROOF OF THEOREM [6.]]
Proof. According to Lemma , by choosing p = m, the accuracy condition (6) for solving the
subproblems is satisfied. Applying Corollary [5.3]and taking the full expectation, for any 7' > 1, we have:

ZEt 4ﬁqmnm G ﬁ( -1 + \/’I’Lm Z Gt + 62 + 26m Z 2

B)ym (2-B)(n—1) 25 52
where X2, G? and x? are defined in Corollary Using 2i5 <1, im m <1, ”;L”_’ll < 1 < ngy, and
7‘713”:17“" < nmasn > 2, we get:

T T-1 9252 T
Do < 4B D0 G+ (8808 + 5 ) SoxE
t=0 t=1 t=1

Let A = A1 4+ by/Nymbm and B = ﬁ where 0 < @ < 1 and b, ¢ > 0. To achieve the error condition (7)), the
constants should satisfy:

(12()\+A1)2 12(1 +a)? <

oA +8) 4B < (W +3)

o |
N

and

(% +8) (38n%0% + 2‘; ) < (% £8)(8/c +20nn8 < Bl < (+ A1),
A, -

which gives:

12(1 + a)? 12(1 + a)? 2
_ < = _— < . X
( 1 —ap2 +8> 57 ( =E +8)(8/c+20) <b (E2)
Let a, b, ¢ satisfy (E:2). We can apply Corollary@and obtain:
- 3200+ A1) F 32(1+a) 1 F°
E M7 —A mOm |
VI < o m AT < T (G A+ b/imdn) 7

Minimizing the coefficient in front of A; gives a* = % Choosing b = 113 and ¢ = 112, the condition (E2)) is

satisfied and we have: ( ) 0
_ 256(A1 + 38/Nmdm ) F
B[V (&I < T
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Therefore, to achieve E[||V f(X7)||?] < 2, we need at most T' = [<256(A1+3§W5W)F0] iterations. We next
compute the communication and local complexity. At the beginning when ¢ = 0 and ¢ = 1, we need 2[n., ]|
communication rounds with A-CSS to compute two full gradients and the associated local complexity is 1 for
each round. Additionally, 2 communication rounds with D-CSS are needed to compute x* and x?, where the

local complexity is % for each round. For subsequent iterations ¢ > 2, one communication round with R-CSS

is needed for updating g and its associated local complexity is 2 since each client in S;_; needs to compute
V fi(x") and V f;(x"~'). Then another round with D-CSS is required to compute the next iterate, where the
local complexity is % Therefore, the total communication complexity is at most:

N(e) =E[CaANa + CrNgr + Np]
<2CaA[nm|+CrRT+T

=2Ca[nm] + (Cr +1) [(256(& + 38\/@5m)F0-‘ |

52
The local complexity is bounded by:
K(E) = E[NA + ND/p+2NR]

< 2fnm] + 1T+ 2T
p

8(Ly + A
< 2fnu] 4 281 + 11301 /T 6m + 8L1 ((256(A1 + 38 /T 6 ) F° N 1)
= 2lftm 2A1 + 113/ om 2
512(7A1 + 283/ 0 + 2L1) F° 4L,
< m _
< 2nm] + 2 R T e =

F.6 PROOFS FOR [[-CGM|WITH|[RGHS VRG]
Lemma F.6. Let x* be the iterates o RGHISVRG|and let G be thelSVRG|estimator for all t > 0. Let (;

denote the randomness generated during the process of solving the subproblem F;_1 in @for anyt > 1.
Assume that {(; }§21 are mutually independent across t. Then the iterates {x'}32 and the estimators {G}52,
satisfy Assumption

Proof. The equation Eg, [G'] = V f(x") has been proved in Lemma We next verify the dependency of
randomness. Let ¢ > 1 and denote x; = (x°,..,x"), wy = (w1, ...,ws) and ¢y = (C1, .-+, Ce). Assume
that x* is a deterministic function of (Spt—2), wit—2), fy)- It follows that w' is a deterministic function of
(Sp— 2],w[t] () since w* depends only on x’, w'~' and w;. Then G' is deterministic conditioned on
( t], C[t ) since G is a function of x;, w; and S;. Next observe that g'~* is a function of S;_», x' ™%,

, Gt and g'. Hence, g’ is a deterministic function of (Sj;_a], wi¢—2], (j¢—1]). Finally, from the
update rule of x! is a deterministic function of g' !, ¢; and x'~*. Therefore, the assumption that x’
is deterministic conditioned on (S[;_2), wz—2), {[¢)) is satisfied. This implies that S; is independent of x[; 13,

G°,...,GI™, 0

Theorem E.7 (I-CGM-RG-SVRG). Let@be applied to Problemmunder Assumpl and@
RGHSVRG]

where X' = CGMyana(A, K¢, xt, g!) with K; ~ Geom( ) and gt is generated by the estimator.
0
after T = "(256(A1+8:;n/\/PB)F T

Then by choosing A = 3A1 + 220,/ /pB, B8 =28 andp = m,
iterations, we have E[||V f(XT)||?] < &% where xT is is uniformly sampled from (x*)_,. Further let pp =

o (256(A1+86m4/Canm]/CRrF°
Ca frIme ’ = -| d
the local complexity is bounded by 16+ 1., |+ 10241 #0133 E2CAr 1CrPm A1+11\/Ci1’i;m-|/cR6m

The communication complexity is at most Ca[nm |+ (2Cr+1)[

Proof. According to Lemma , by choosing p = ﬁ, the accuracy condition (@) for solving the
subproblems is satisfied. Applying Corollary [5.4and taking the full expectation, for any 7' > 1, we have:

T

88267, /pE + 267, 880 , 20m
S« S L 5 < (S 4 22) 5.

t=0
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Let A = éAl + b0y /+/pB and B = EE where 0 < ¢ < 1 and b, ¢ > 0. To achieve the error condition [, the
constants should satisfy:

1200+ Ar)? 8662, 262, 12(1 + a)? 5 2 5
_ — ) < | — < <
Cozay 8+ 55) < (Fasap +8)®le+ 208, /pn <867 /pp < (- A0)°,
B

which gives:

(12(1 +a)?

(I—-a)

Let a, b, c satisfy (F3). We can apply Corollary[3.2]and obtain:

+ 8) (8/c+2¢) < b2 (F3)

320+ A)? F? _ 32(1+a)®

0
BV ")) < HE R 2 < B (D 406,/ ) o -

Minimizing the coefficient in front of A; gives a* = 1. Choosing b = 22 and ¢ = 2, the condition (F3) is
satisfied and we have:
256(A1 + S(Sm/1 /pB)FO

T .

E[IVF&I] <

0
Therefore, to achieve E[||V £(X7)||?] < €2, we need at most T' = ((256(A1+8§;”'/VPB)F ] iterations. We next

compute the communication and local complexity. At iteration ¢ = 0, the full gradient V f(x°) is computed
which requires [n,, | communication rounds with A-CSS. At each iteration ¢ > 1, with probability pgs, the
full gradient is computed, which requires [n,, | rounds with A-CSS. The expected total number of rounds
where A-CSS is used is thus bounded by: [7m ]| + [nm |pBT . The associated local complexity for each round
with A-CSS is always 1. For t > 1, one communication round with R-CSS$ is needed for updating g’ and
its associated local complexity is 3 since the client s € S;_; needs to compute V f;(x* 1), V f;(w'™') and
V fi(x"). Then another round with D-CSS is established, which has the local complexity of 1/p. Therefore, the
communication complexity is bounded by:

N(g) = E[CaANA+CrNr+Np] < Ca([nm]+[nm|psT)+CrT+T = Ca[nm]+(Ca[nm|ps+Cr+1)T .
Let Ca[nm|pe = Cr. We have

N(2) < Calnm] + (2Cr +1) [(256@1 + 80 W)FW |

The local complexity K (£) is bounded by:

E[Na+ Np/p+3Ng| = [nm] + [nm|psT +T/p+ 3T
8(Li + 1))
< - - 7
> |—nm-‘ +( N Al
8Ly + 3221 + 2640, /\/PB ( (256(A1 + 80m /\/PB) F°
2A1 + 226,/ /DB g2

(8L1 + 32A1 + 2648,/ /p5)F° 4L,

1 _
€2 + 6+A1+116m/1/p3 -

+4T

= [nm] + +1)

< [nm] + 128

G I-CGM-RG-SAGA WITH INEXACT INITIALIZATION

In the main paper, we consider the RG} [SAGA] estimator with two full gradient computation during initialization.
This allows to satisfy the desired error condition (7) without incurring additional error. In this section, we
discuss the case where only one or no full gradient is computed for this estimator. Let us introduce the parameter
to € {0,1,2} to determine how many times the full gradient is computed at the beginning. We have the
following definition for the general SAGA estimator:

‘ G’ =Vfs,(x"),to =0, G'=Vf(x"),0<t<to—1, G'=b§ —bs'+b"" t>max(to,1) ‘
(G.1)
where S; € () is uniformly sampled at random without replacement, b%, = L 3 _ s, bl bG =

% Zz‘es,, bi~! bt = % >°r bl forall t > max(to, 1), and for any 4 € [n], b} is recurrently defined as:

O . .
i f ; )
bg_{OVf > Ltﬁefvise o =0, bi=Vfilx'), 0<t <to—1,Vi € [n],
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and

Vfi(xt) ifi € Sy
b = ’ t> to,1) .
‘ {bi1 otherwise, ’ = max(to, 1)

We have the following recurrence for b:

0 ; —
bo_{WSO(X) i b= b Vs () b5t 2 max( 1)

1 n 0 :
=2 i, b; otherwise, Nm

Lemma G.1. Constder the SAGA estimator (G under Assumption2.2] Let to € {0,1}. Then for any t > 0,
Es, [G'] = Vf(x") and for any T > 1, we have :

T
op < T | £+ 2 (n_Vl ZGt+42522xt, (to =1)
t=0

Mq

o2 < (12 N2, — 1 + 2 )CO+8\/n2 ||V f(x

—14+vnZ —nm 2 2
+ 0 D) ZGf+4 2 62, th, (to = 0)
where o} := Es, [|G' = VF(x")[]*], Gf = Es;,_,, VI, x¢ = Esp,_y [lIx" = x"7%), Sy =
(Stos - St) and Co =LA IVAEY) = VO

Proof. When tg = 0 we have Eg,[G°] = Es, [V fs,] = Vf(x%). When ty = 1, we have G® = V f(x°).
Fort > 1,G! = —b%, ! +b'" and the unbiasedness has been proven in Lernrna We next study the
variance bound. Followmg the proof in Section[F:3:1] we have for any ¢ > 1:

Nm Nm, —

ot +BY < (1 - %)[0?,1 + B+ nm(nm — 1)Gi — 7752X?+1 ;

where 071 == Es;,_, [ 20 [(VAi(x") = bi™h) — (Vf(x") = b'H)|Pl Bf == 3==7 Es, [b']]*] and
v € (0,1). Let T > 2. Applying Lemma(starting from ¢ = 1), we have:

- 1—7v/n 1« - N =
> lofs + B < —— ot 4+ B + | G?+ M
pos v/ nm V/nm = nm(nm -1 1—v
Adding ail to both sides and dropping the non-negative BZ_;, we obtain:
N, — nm
ZUti_ 011+ 5 ’YB3+ _1 ZGt 5 ZXt+1' G.2)
Suppose to = 1. Then we have by = V f;(x°) for all i € [n]. It holds that:
1 <& —
= EZ[H(VJ%(XI) — V(") = (Vf(x") — @52 TIVFEOIE
i=1 Nm
It follows that:
n n
zaﬂ,i))nw O + o ZGf+ : WZM .
Substituting v = v* = n;, — VN2, — ny, that minimizes the coefficient in front of ZZ:OI X341 over (0, 1),
multiplying both sides by <=, substituting the identity ol = q—’"af 1, we have:
T
S of < T g ()1 + — Vi 5 th +4n2,02, th.

Adding ag = 0 to both sides, we prove the variance bound for 7" > 2, since G =V f (XO). The same
inequality also holds for T = 1, since o7 = %Uil < %52)(%.
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We next prove the case for to = 0. Going back to (G:2), substituting v = v* = nm — V/n2, — n,, that
minimizes the coefficient in front of Zt o X741 over (0, 1), multiplying both sides by L=, substituting the
identity o7 = qﬂat 1, we have:

T
2qmNm 2qmNm —1++vn2, —nm Z
E a—tz S g O—%,l + g Bg + o § Gt + 4n7n§2 Xt -
1 m m

(n—1)

Let v be such that (1 4+ «)(1 — 1/nm) = 1 — 4" /N, as specified in Lemrna By the definition of b?, we
have:

- %ZH(WZ-(xl) —b0) = (V46— B

B8, Zn V() — b) — (V1) ~ B + (1 + ey
a>g[Z IV76) = Vs GO + S0 IVAGE) = VI6) + Vo ()] + (14 )84
i€Sp i€ So
= (14 a) - [l VA) = Vs GO + 32 IVAGE) = VIO +m(V (), sy ()
i¢So

+ (0 —2m) |V fs, <x0>||2] +(1+ é)ﬁﬁ .
It follows that:
Uil = Es, [(3%,1]
D 1t )2 [0+ (0= m)E 4 mITFEO + (0~ 2T FC) + (1= 2m) 23] + (14
=)+ 22 0 NG (1)1 - ) VA + (14 )

= P[0 U+ /= g )GE + (1= ) [V O] + 7 T g
S\ — 1 [(1 = 1/nm 4 G /m = i /0)C5 + (1 = l/nm)||Vf(xO)||2} + 20677

By the definition of BZ, we get:

2 Nm — " 02 oy2 , 9m 2
By = mESo[Hb l ]@ 1[||Vf(x i T o -

Substituting the bound of O’%’l and B2, we have:

T T
—14++vn2, —n
3" 0? < a0l + oG+ 5 mZGt+4 mom > Xt
t=1 (n t=1

where ag = 2dmfm [ onm (1 — 1/n,, + 2¢m/m — qm/n) and bp = 24mlm [ oim (2 —1/n,,). Using
72qmm"m [ pmy = 2 /nZ, = nm < 4v/n2, — i, since n > 2, we have ag < 12v/n2, — 4, and by <
8v/n2, — nm. By the definition of o2, we have:

0% = Esy[1Go — VF()P) = Esq IV £, () = V£6<))1?) B I3

Adding o2 to both sides of the previous display, we conclude the proof. O

We next consider the RG estimator with inexact initialization.

\ g~ Vi), g7 =(1-p8g +B8G" +Vfs,(x") - Vs (x), >0, (G3)

Let us now combine RG (G.3) and SAGA (G.I). They share the same randomness S; starting from ¢ > 0.

34
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Lemma G.2. Consider the RG SAGA estzmator (G3)-(G) under Assumptions[5d|and 2.2} Let T > 1.
Suppose to = 1, by setting g° = G® = V f(x°), we have:

t()—l

4ﬁnmqm 2, 2B8(nm — 14+ /N2, —nm) 262 + 262,
Zzt_ 2-8m IV (x%)I1°+ 2-An-1) ZGHFWZ

Ifto = 0, then by setting g° = Vifs_, (x") where S_1 € ([:L]) is sampled uniformly at random without
replacement, we have:

Me

2 2 m | 24Bv/NZ, — o 16
(25 ﬁ6)2+1+ ﬁﬁ)er g;ﬁn )éi+ BV — G
2B(nm — 1+ V/n3, — 2 86°n7 0 + +267, 2
L O Ty ZG 2 — P Z
where 3} = Es,_, [llg" — V()2 G = Es,,_y [|[ VL&)l X7 1= Es,_y [Ix* — x|, Sy =

(S-1,80,...,5¢) and ¢§ ::%Z?zl\lvfz( %) = VI

Proof. Suppose to = 1. Then g = Vf(x°). Applying Lemma and using the assumption that x* is
independent of S[t—l]s we have for any 1" > 1:

T T-1 o T

2 28 2 26, 2
Zztgf_ Zat+2ﬁ_62 Xt
t=0 =0 t=1

Applying Lemma[G.I| with to = 1, we have:

T
2Mmqm -1+ ’I’Lm Nm
S ot < Zmln g 4 Pm LR Z G+ an, 7, th -

— (n—1)
Combining the previous two displays, we get the first claim.

We next prove the case for to = 0. Since Es, [G¢] = V f(x*) for any t > 0 and Assumption is assumed,
inequality (5.1) is thus satisfied. Taking the expectation w.r.t. S_1 on both sides of (3.1)), we have for any 7' > 1:

T 52, T—1
2% s e 25/32‘”+ ; 257 2 N

Adding 35 = Es_, [|lg” — Vf(x")||’] = £2¢5 to both sides and applying Lemmawith to = 0, we
conclude the proof. O

Theorem G.3. Let[I-CGM|be applied to Problem[I|with RG-SAGA (G.3)-(G-1)) estimator under Assumption|2.1]
and Letg® = Vf(x°) ifto = 1and g° = Vfs_, (x°) ifto = 0, where S_1 € ([ ]) is uniformly sampled
at random without replacement. Suppose the inaccuracies in solving the subproblems satisfy (©). Then by
choosing A = 3A1 4 1136, /pp and B = 112” , the total communication complexity N (€) required to find
an e-approximate stationary point is at most:

256(A1 4 38/ Mmdm)F° 8¢ G2 B
CA |—n7n.| + (CR + 1)’7 82 + m52 -‘ (tO - 1) )
and
256(A 38+/Tom Om ) F°
(CR—i-l)[ (A1 + = i ) + (112¢m/m 4+ 28y/1 — 1/nm) {0—|—16\/1—1/an0—‘ (to = 0),

where G3 = ||V f(x°)||* and ¢§ := 3 377, IV fi(x°) = VF(x°)[|*.

Proof. LetT > 1. Applying Theorem 3.1} taking the full expectation and using condition (6), we have:

)\ + Al)
— A

P (R )

HMH

T
ZG?+(/\+A1
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where G, x? and X7 are defined in Corollary Let us first assume tp = 1. Applying Lemmawith

to = 1, we get:
& 45n q L 2B(nm 1 + \/n2 - nZ,62, + 262
22 m{m m
4ﬂanm 2 — 2 =
S G 4 4B § :Gt (8/3nm5 ) Zj ,

where we used ﬁ O R e e T i —™ < ny, asn > 2. Using the same choice

of parameters as used in Theoreml@ 1t holds that:
1200 4+ Ap)? 1 71200+ Ay)? 9 o 202
( Ay +8)48nm < 5, ( A +8) (86n%.6% + : =) < (A2
It follows that:

T

1 s 16N+ A1) 1200+ Ay)? 4BNmGm 2
= <

QZ:G“ = A F+((/\7A1)2 +8) G

4qm

< 128(A1 + 38/ Mmdm ) F° + —2GE .

256(A1+38m5m>F0 84m G
’— e2 + me?2 —I

Therefore, to achieve E[||V £(X7)||?] < €2, we need at most T = iterations.
We next compute the communication complexity. At the beginning when ¢ = 0, we need [n,, | communication
rounds with A-CSS to compute one full gradient and the associated local complexity is 1. Additionally,
one communication round with D-CSS is needed to compute x*. For subsequent iterations ¢+ > 1, one
communication round with R-CSS is needed for updating g‘. Then another round with D-CSS is required to
compute the next iterate. Therefore, the total communication complexity is at most:

N(e) =E[CaNas + CgrNr + Np| < Ca[nm| +CrT + T .

We next consider the case where to = 0. We follow the same reasoning strategy as for tc = 1. Applying
Lemma@with to = 0, we get:

Zzt _( 2 55)2 +1+—2'36)—’”+245V2n_’”57n’")43+;fﬁﬁ\/mcv‘3

2B8(nm — 1+ VN2 — 1) < ny,0m + +252,
S ) oy ZGt i Z

_ o T
< (4gm /m + 24812, — nm)C3 + 168v/n2, — nmGE + 48nm Z G2+ (Sﬁnfnéfn + 257’”) Sx?
t=1 t=1

Using the same choice of parameters as used in Theorem [6.1] it follows that:

2
ZGt < 16O+ A b (12(A A", 8) (4am /m + 245+/n2, — mm) 3 + 165+/n2, — nmG)

A=A A=Ay)
< 128(A1 + 38y/Mm0m ) FO + (56qm/m + 141/1 — 1/nm )¢5 + 8/1 — 1/nmGh

Therefore, to achieve E[||Vf(X7)|*] < &2, we need at most T = [2”6(A1+3852V P dm)F0 (112G /m +
284/1 — 1/n,)(E + 16+/1 — 1/n,, G| iterations. We next compute the communication complexity. At the
beginning when ¢ = 0, we need one communication round with R-CSS to compute g° = V fs_, (x°) and the

associated local complexity is 1. Additionally, one communication round with D-CSS is needed to compute x*.
For subsequent iterations ¢ > 1, one communication round with R-CSS is needed for updating g*. Then another
round with D-CSS is required to compute the next iterate. Therefore, the total communication complexity is at
most:

N(e) =E[CaNa + CrNr+ Np] < CrT +T . O

Summary. The communication complexity of I- CGM RG-SAGA with one full gradient computation (to = 1)
0
isN(e) SCanm +Cr A1ty z;”a’")F + R4 g . Compared to the case where to = 2, this complexity has

m52
an additional error term depending on ||V f(x°)||?. Furthermore, if £y = 0 (no full synchonization is needed),

the resulting communication complexity is N(g) < CRMziizmé'”)Fo + Cr(gm/m + V1 — nm)g—é +
CrvI —nmG3. This quantity does not depend on C4 but has two additional error terms depending on

"IV E(x%) = V£(x)]]? and ||V £(x")||?, due to inexact initialization. Note that when m — n, these
error terms eventually disappear.
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H SOLVING THE SUBPROBLEMS WITH LOCAL STOCHASTIC CGM

In this section, we discuss how to achieve the inaccuracy condition (6) by running stochastic CGM locally.

Lemma H.1 (Stochastic composite gradient method). Consider the composite problem:
min { F(x) = ¢(x) + $(x)} ,
x€Rd

where ¢ is Ly-smooth and ¥ (x) := A;’ lx — %||? where % € R? is a fixed point and Ay > 0. Suppose we have

access to an unbiased stochastic gradient oracle g° for V¢ such that:
Eclg’(x;0)] = Vo(x), Ec[lg”(x¢) — Vo(x)[’] <o®, vxeR”.

Consider the stochastic composite gradient method:

xp1 = arg min{ Li (%) := ¢(xx) + (8 (x: G x = 1) + 7 |1x = e |* +(0)} -

x€ER!

Letn) > Ly and K ~ Geom(p) with p € (0, 1]. Then we have:

(=P E[IVF (kg )IIP] +plIVF(xo)|? < 2 2w P

L¢+)\w 0_2
- 277—L¢+)\¢

F(x°)—E[F(x —_—
[ (x7) [ (XK+1)]] + 2 — Ly + Ay
Proof. Let k > 0 and denote g := g®(xx; (k). By (17 + Ay )-strong convexity of Ly, for any x € R<, we

have:
+ Ay

2

Li(x) > Li(xis1) + T2 x — x|

Substituting x = X, it follows that,

+A
F(sek) 2 ¢(x) + (@ Xne1 = %) + 3 [k =i [* + (ocken) + 1577 [enn — i
2n — Lg + A
> §(xk41) Y err1) + T ke = Xkl + (g — TO0xk), xe1 — xi)
2n—Lg + Ay

= F(Xp41) + k41 — Xkl|* + (8r — VO(xXk), Xpt1 — Xi) -

2
Letn > Ly. By the definition of x54.1, we get:

1
N+ Ay

gr + n(Xkt1 — Xk) +F Ap(Xpr1 —X) =0 = Xpp1 — Xk = (=V(xk) — 8k) -

It follows that:

(gr — Vo(X1),Xp41 — Xz) = (gr — Vo(xi), —VF(xx) — (gx — Vo(xx))) ,

1
N+ Ay
and that:

_ llge = Vo(xr) + VE (x|
(n+Av)?
Substituting these identities into the second display and taking the expectation w.r.t. (x, we have:

2n — Ly + Ay 1

[

2n — Ly + Ay 2
F(xy) > B, [F +( - JE -V Nyl e T gp
(xk) = Ch[ (Xk+l)] 2(77+)‘11))2 77+>‘¢ Ck[”gk ¢(xk)|| ] 2(77+)‘1P)2 || (xk)H
20— Lo + Ay 2 Loty o
> TR T Y _ T
Z ECk [F(X’H-l)] + 2(77+)‘¢)2 ||VF(X’€)H 2(n+A¢)20
Let ) := (Co, - - -, (k). Taking the expectation w.r.t. {j;—1] and rearranging, we get:
2 2(n +Ay)? Lo+Xy 2
EC[k—l][”VF(Xk)” ] < 2 — Ly + Ay (EC[k—l] [F'(xk)] *EC[I«] [F(Xk+1)]) + 20 — Ly +)\wg

Substituting k = K with K ~ Geom(p), taking the expectation w.r.t. K and applying Lemma we have:
Egcp VPRI = (1=p)Eg e IVFGz )]+ plIVE(x0) |

2(n + Ay)? Lo+Xy o
———(Ex F(xz)] —Eg F(xz —0" .
S T Ty + Ay ey PO = B PO ) o+ 52 =550
2(n + ) 0 Loty 2
1—-p Eg F(xz F —Ex F(xg —_—
S o — Lo+ (( p) K’C[f(—ll[ (XK+1)] +pF(x") K,g[m[ (XK+1)]) + 2 — Ly + /\wo'
Taking the full expectation on both sides, we get the claim. O
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Let us now apply SCGM to solve the subproblem of (CCGM) with ¢(x) = fi(x) and 9:(x) =
<gt —Vfl(xt),x—xt>+%Hx—xtHZ. Fork=0,1,...,K: —1

Yit1 = argmin{qb(yi) + (&’ (yh),y —yi) + g ly — vi|* + wt(y)}
yERY

(H.1)

/\i (nyr +Xx" + Vi(x") — g —g1(yk)) ,

where g, is the unbiased gradient estimator of V f; with bounded variance 02, K = K, + + 1 where K b~

Geom(p). The solution is set to be x**! = yx,. We use the notation '+ = SCGM,ana (X, 7, K¢, x*, gt) for
this process.

Lemma H.2. Conszderwzth x!T1 = SCGMana (A, 0, K1, %', gt) where K, ~ Geom(p) under
Assumption (2. 1| - 1| and @ LetT > 1 be the fixed number in condition ). Then by choosing A > A,
n=1ILi+ 2(/\+EL21)U P = ;Enf)}) < 1, the accuracy condition Y., ' E[e?] < % +37 ) N+ TQE
is satisfied where ¢ is the target accuracy for achiving E[||V f(xT)||?] < &?
Proof. Applying Lemma[H.T]and Lemma[FI} we have for any ¢ > 0:
2(n+A)°p t t+1 Li+X o
1—p)E[ef] + pEle; ] < — L B[R, (x") — Fy(x'" —
(1= DBl + pBlet1] < 2 A pir ) - ]+ 2 Ao
2(n+A)°p t+1 i Li+X
< PN (BAG) ~ S i w) 5 iy
where €2 | = ||V Fp(x%)||>. Summing up from ¢ = 0 to ¢ = T and dropping the non-negative E[e%] and €2 1,
we have:
T—1 T
2(n+A)°p 0 * PN L1+ A 2
Elef] < 1220 - T
; e < 5 T A =S +;2(/\7A1)) Tt

20+ Np(f () - 1) + LERP Z Ll“

By the choice of 1 and A, we have:

A+A1)7 n+A _l_g LitAg s L1+ A
XA AT 2SS T S (L 02022

To® =Te*/2.
O

2+ ANp=A—A1 <

To ensure convergence of I- CGM the expected number of local steps by using stochastic CGM is thus

% ~ Ll + >‘+L1 0. When 6% — 0, it recovers the result of deterministic CGM with randomized local steps.

I DISCUSSION ON THE SAG ESTIMATOR

SAG is another incremental gradient method (Schmidt et al.|, [2017). SCAFFOLD has successfully applied it to
the FL settings. Specifically, the local update rule of device 1 at outer iteration ¢ (assuming no stochasticity for
simplicity) is:

Yit1 = Vi — 1(Vfl(yir) +b' - VA(x") .

Compared with the local CGM (B), Scaffold sets A = 0 and uses b’ (T0)(SAG) instead of G* (SAGA) in
the control variate. we next show that the variance of b’ cannot be controlled by §. Letn = 2,t = 1,

= Vfi1(x°) and b = Vf2(x°). Then we get: b' = (Vfi(x') + Vfa(x")), if S1 = {1} and
b1 = 3(Vf2(x") + Vf1(x°)), if S1 = {2}. Then the variance can be computed as:

2
B, [[[b' - V5G] = 5 3V - Va6
=1
While for SAGA, we have:
2
Es, [[G = VA6 = 5 20 IVhix) = Vi)
=1

where h; := f — f;. Therefore, the SAG estimator cannot fully exploit functional similarity as efficiently
as SAGA in the worse case from a theoretical perspective. Nevertheless, SCAFFOLD can still perform well
empirically on some problems, as shown in Figurem
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Quadratics minimziation with log-sum penalty (m = 10, n = 100)
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Figure J.1: Comparisons of different initialization strategies of -CGM-RG-SAGA for solving the quadratic
minimization problems with non-convex log-sum penalty.

Quadratics minimziation with log-sum penalty (m = 10, n = 100)
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Figure J.2: Comparisons of different p (number of local steps) used in local CGM for -CGM-RG-SAGA when
solving the quadratic minimization problems with non-convex log-sum penalty.

J ADDITIONAL DETAILS AND EXPERIMENTS

We simulate the deep learning experiments on one NVIDIA DGX A100. All the other experiments are run on a
MacBook Pro laptop.

J.1 QUADRATIC MINIMIZATION WITH LOG-SUM PENALTY.

Everywhere in the paper, we use the first choice of the control variate for SCAFFOLD (Karimireddy et al.| [2020).
We set the number of local steps K to be 20 and the local learning rate to be 0.003 (0.005 diverges at the
beginning) for FEDAVG and SCAFFOLD. For SABER-FULL, we use the standard gradient method as the local
solver and set K to be 20, local learning rate to be 0.005 and the probability for computing the full gradient
to be 0.1, matching I-CGM-RG-SVRG. For GD, we run 14000 = 20 * 700 iterations to match the local
gradient computations of other algorithms. Finally, the comparisons of different initialization strategies for
[-CGM-RG-SAGA can be found in Figure[lT| (to = 0, 1, 2 correspond to computing the full gradient 0, 1, 2
times at the beginning).

J.1.1 ABLATION STUDIES OF I-CGM-RG-SAGA

Initialization strategies. The comparisons of different initialization strategies for -CGM-RG-SAGA can be
found in Figure[JlI] (to = 0, 1, 2 correspond to computing the full gradient 0, 1, 2 times at the beginning. See
Section[G]for the details). The result shows that the method works well without any full gradient computations.

Local steps. We now compare the performance of -CGM-RG-SAGA under different choices of the parameter
p, which is defined in Local CGM (B). Theoretically, p ~ ﬁ Since the expected number of local steps per

iteration is %, a smaller p corresponds to more local computations. In the previous experiments, we used the

default value p = L% =~ 1(5)0 = 0.05. We now vary p € {0.5,0.05,0.005}. From Figure we observe that
1) Large p = 0.5 results in worse communication complexity since the local accuracy condition is not fully
satisfied; 2) Small p = 0.005 achieves similar performance to p = 0.05 in terms of communication complexity.
This is expected, since communication complexity is determined by the fixed parameter A\. However, the local

complexity becomes worse, as the total number of local steps increase and becomes unnecessarily large.

Constant A\. We now study the impact of the constant A on the performance of -CGM-RG-SAGA. Note
that A directly determines the iteration complexity. Theoretically the best A ~ A + /n,0. In the previous
experiments, we used the default value A = /n.,,d ~ 15. We now vary A € {1,10,100}. From Figure
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Quadratics minimziation with log-sum penalty (m = 10, n = 100)
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Figure J.3: Comparisons of different A used [-CGM-RG-SAGA for solving the quadratic minimization problems
with non-convex log-sum penalty.

Quadratics minimziation with log-sum penalty (m = 10, n = 100)
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Figure J.4: Comparisons of different 8 used I-CGM-RG-SAGA for solving the quadratic minimization problems
with non-convex log-sum penalty.

we observe that: 1) Large A = 100 results in worse communication complexity since it does not fully use the
similarity structure; 2) Small A = 1 does not converge as the theory requires A 2 A1 + /7,0, all matching
the theory.

Constant 3. We now test the effect of 3 used in the @ estimator. Both larger or smaller 5 can the-

oretically increase the variance bound (Lemma . Theoretically, the best 5 =~ n%n We now vary
B8 € {0.5,0.1,0.05,0.01,0.005,0.001}. From Figure we see that 8 € [0.05,0.5] results in relatively

better performance as
complexity.

nlm = 0.1 and the values that fall outside this range lead to worse communication

Ratio of g—“. In the main text, we report results under the extreme setting where C4 = Cr = 1. Now
we test how increasing the ratio C4 /Cr affects the performance. Specifically, we vary Ca € {1,5,10,20}
while keeping Cr = 1, and repeat the same experiments. From Figure[[:5] we observe that the performance
of I-CGM-RG-SVRG degrades as C4 increases since each use of A-CSS becomes more costly. In contrast,
[-CGM-RG-SAGA remains largely unaffected, as ASS is only used during initialization. This result further
confirms the advantage of [-CGM-RG-SAGA in settings where full synchronization is costly.

Ratio ;. Finally, we examine how the ratio ;- influences the performance of our method. Theoretically, both the
communication and local complexities scale with /7, 0. F Y /&%, We fix m = 1 and vary n € {10, 100, 1000}.
The datasets are generated in a consistent manner so that the values of § and Ly,ax remain approximately
unchanged. We set A\ = \/nmd = 5\/nm, f = n%n and p = ﬁ ~ ﬁ with n,, = n. From
Figurem we observe that increasing n,, indeed leads to higher communication complexity. However, the
growth is moderate: the additional cost scales by roughly +/100/4/10 = 1/1000/+/100 ~ 3 rather than linearly
100/10 = 100/10 = 10, confirming that the dependence is on /M instead of 1y,

J.2  LOGISTIC REGRESSION WITH NONCONVEX REGULARIZER.

For both datasets, we set p = 0.1 in Local GD for CGM-RG methods and SCAFFNEW, and use K = 10 local
steps for the other algorithms. We select the best local learning rate for each method from {0.1,0.2,0.5,1.0}
for Mushroom and {0.002, 0.001, 0.0005} for Duke. For proximal-point methods, we choose the best A from
{10,1,0.1,0.01} on both datasets. We use 3 =  for both I-CGM-RG methods.
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Figure J.5: Comparisons of I-CGM-RG-SAGA against [CGM-RG-SVRG under different C'4 /Cr for solving
the quadratic minimization problems with non-convex log-sum penalty.

Quadratics minimziation with log-sum penalty (m = 1)
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Figure J.6: Comparisons of [-CGM-RG-SAGA under different n,, for solving the quadratic minimization
problems with non-convex log-sum penalty.

J.3 EMNIST wWITH RESIDUAL CNN

We now extend our study to neural network training. Specifically, we train a 6-layer Residual CNN on the
EMNIST dataset (Cohen et al.l 2017), which consists of a collection of 26 letter classes. We use n = 26
and m = 5 &~ +/n, and split the dataset according to the Dirichlet distribution with & = 0.1 (the smaller
the «, the higher the heterogeneity, & = 0.1 is highly heterogeneous). We use a batch size of 128 for
computing both the local stochastic gradient and the control variates. For all the methods that use control
variates, including I-CGM-RG, SCAFFOLD, SABER and SCAFFNEW, we add a damping factor ¢ in front
of the control variate to enhance their empirical performance, i.e., on line 5 of Algorithm E we use y& 1=
arg ming cpa { f1 (y5) + (€1 (vh) +a(g' —&1(x")),y —yi) + 2 ||y — yilI” + 3lly —x'|[*}, where ¢ € (0, 1]
is a tuned parameter and g is the stochastic mini-batch gradient of V f;. This approach is suggested by |Yin
et al.| (2025). We report the best local stepsize % among {0.05,0.02,0.01,0.001} and the best A among
{0.001,0.01,0.1, 1}. The final choices of the parameters can be found in Table The convergence behaviours
can be found in Figure[J.7] The best validation accuracy can be found in Table[J.2] where I-CGM-RG-SAGA
performs the best.

optimizers hyper-parameters used for multi-classification tasks
I-CGM-RG-SAGA ,l =0.02, A =0.01,p=0.01,8=0.2,¢g = 0.001, ¢, =0
I-CGM-RG-SVRG % =0.02, A =0.01,p =0.01, 8 = 0.2, ¢ = 0.001
SCAFFOLD (Karimireddy et al.|[2020) l] =0.02, K = 100, ¢ = 0.001
FEDAVG (McMahan et al.|[2017) l] =0.02, K = 100
SCAFFNEW (Mishchenko et al.|[2022) % =0.02, p = 0.01, ¢ = 0.001
SABER (Mishchenko et al.|[2024) 1—0.02,A=0.01,p=0.01, 8 =0.2, ¢ = 0.001

n

Table J.1: Hyper-parameters of the considered optimizers used in the multi-classification task for the EMNIST
dataset.

Optimizers | -[CGM-RG-SAGA I-CGM-RG-SVRG SABER-FULL SCAFFOLD SCAFFNEW FEDAVG

Accuracy \ 86.2 86.0 85.3 85.9 84.9 85.6

Table J.2: Comparisons of validation accuracy for different optimizers used in the multi-classification task for
the EMNIST dataset within 100 outer iterations.
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EMNIST 6-layer Residual CNN (m=5, n=26, a = 0.1, batch size=128)
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Figure J.7: Comparisons of different algorithms on the EMNIST dataset using a 6-layer residual CNN.
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Figure J.8: Comparisons of different algorithms on the CIFAR10 dataset using ResNet18.

J.4 CIFAR10 WITH RESNET18

We now consider multi-class classification tasks with CIFAR10 using ResNet18
2016). We use n = 10 and m = 3 ~ +/n, and split the dataset according to the Dirichlet distribution with
a = 0.1 (highly heterogeneous). We use a batch size of 128 for computing both the local stochastic gradient
and the control variates m. We report the best local stepsize % among {0.1,0.05,0.01,0.001} and the best A
among {0.001,0.01,0.1, 1}. The final choices of the parameters can be found in Table The convergence
behaviours can be found in Figure[J.8] The best validation accuracy within 100 outer iterations can be found in

Table [T/ 4
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Figure J.9: Performance of [-CGM-RG-SAGA on the CIFAR10 dataset using ResNet18.
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optimizers hyper-parameters used for multi-classification tasks
I-CGM-RG-SAGA }I =0.05, A =0.01,p=0.01, 8 =0.2,¢g = 0.001, ¢, =0
I-CGM-RG-SVRG % =0.05, A =0.01,p = 0.01, 8 = 0.2, ¢ = 0.001
SCAFFOLD (Karimireddy et al.|2020) %] = 0.05, K = 100, ¢ = 0.001
FEDAVG (McMahan et al.|[2017) l] =0.05, K = 100
SCAFFNEW (Mishchenko et al.|[2022) % =0.05, p = 0.01, ¢ = 0.001
SABER (Mishchenko et al.|[2024) 1 —0.05,A=0.01,p=0.01, 8 =0.2, ¢ = 0.001

n

Table J.3: Hyper-parameters of the considered optimizers used in the multi-classification task for the CIFAR10
dataset.

Optimizers\I-CGM-RG-SAGA I-CGM-RG-SVRG SABER-FULL SCAFFOLD SCAFFNEW FEDAVG

Accuracy | 76.1 77.0 74.5 723 74.2 743

Table J.4: Comparisons of validation accuracy for different optimizers used in the multi-classification task for
the CIFAR10 dataset within 100 outer iterations.

Algorithm 1 I-CGM-RG-SAGA with CGM;,n4q
1: Input: x° e R, m € [n], A\ >0,8€(0,1],p€ (0,1),7>0,g° = VF(x")
2: fort=0,1,2,...
3 K; ~ Geom(p)
yo =" .
fork=0,1,2,..., K;
Vi1 = mx vk +Ax" + Vi(x") —g' = Vfi(y})
S}

I
=Yk
Sample S; € ([:nb]) uniformly at random without replacement

Update G* according to (SAGA)
Update g'+! using G* according to[RG|

SV *® 3 U0k

—

Limitations and Future Extensions. 1) In this work, we have assumed that there exists one delegated
client that is reliable for communication. If we modify the setting and remove this delegated client, then we can
still guarantee similar complexity with minor modifications. Specifically, instead of fixing the index 1 in[[[CGM]

we can sample i; € [n] uniformly at random and define the updates as x'™' &~ argmin, cgpa {Fi(x) :=

fio(x) + hiy(x") + (8" = Vfi,(x), x —x") + 5 ||x — xtH2}. This variant uses R-CSS instead of D-CSS

at each iteration. To ensure the convergence rate of E, we need to choose A ~ An,x (Jiang et al.| [2024a),
where Apax < Aq is defined in However, suppose there exists more than one delegated client, then it is
interesting to check if we can further improve the current complexity. 2) We have shown that the variance of the
SAGA estimator is bounded by the function similarity constant §. An interesting question is whether something
similar can be done for another closely related popular gradient estimator, SAG (Schmidt et al.,[2017), used
in Scaffold (Karimireddy et al.|[2020). It turns out that the answer is negative (see Section[I]). 3) Our analysis
focuses on the deterministic first-order oracle Oy, = Oro,. It is interesting to develop efficient algorithms
with stochastic, zero-order, or higher-order oracles. 4) The current model does not impose constraints on the
size of information that is transmitted between the server and clients. A promising direction is to incorporate
communication compression and study how such constraints affect the algorithm design and overall complexity.
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