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Abstract

Machine learning progress is often attributed to scaling model size and dataset vol-1

ume, yet the composition of data can be just as consequential. Empirical findings2

repeatedly show that combining datasets from different domains yields non-trivial3

interactions: adding code improves mathematical reasoning, while certain mixtures4

introduce interference that suppresses performance. We refer to these effects5

collectively as data synergy—interaction effects whereby the joint contribution6

of multiple domains exceeds (positive synergy) or falls short of (interference)7

the sum of their isolated contributions. In this work, we formalize and quantify8

dataset interactions in large language models. Leveraging observational variation9

across open-weight LLMs with diverse pretraining mixtures, we estimate both10

direct domain-to-benchmark synergy (how one domain contributes to performance11

on another) and pretraining data synergy (capabilities that require co-occurrence of12

multiple domains). Our framework improves the fit over domain-agnostic scaling13

laws, recovers stable synergy patterns such as math–code complementarity, and14

provides interpretable maps of cross-domain transfer.15

1 Introduction16

Recent improvements in Large Language Models (LLMs) are strongly shaped by their pretraining17

data [15, 25], yet most formulations abstract away composition and interactions, reducing data18

into an undifferentiated token count [13, 9]. Practitioners frequently observe that adding data19

from one domain improves performance on seemingly unrelated tasks–for example, code data20

enhancing mathematical reasoning [18, 1], while other combinations lead to interference and degraded21

performance [34, 16]. We refer to these cross-domain interactions as data synergy. Such findings22

suggest that tokens are not interchangeable: what matters is not only how much data we train on, but23

also what kinds of data are combined.24

There is growing evidence that interactions matter. Prior works find that continued pretraining25

on code improves reasoning-heavy benchmarks [32]; and targeted ablations reveal both positive26

transfer and occasional negative transfer across conceptually related sources [31, 34, 8]. These27

observations are not isolated anecdotes but point to regularities in how domain composition shapes28

learned representations; regularities that merit explicit modeling.29

Most existing approaches overlook this dimension, and instead treat pretraining corpora as homo-30

geneous. Classical scaling laws, for instance, relate loss to parameter count and total data but are31

domain-agnostic, since they assume all tokens contribute equally [13, 9]. and mixture-optimization32

methods often search over weights while implicitly assuming independent returns [30]. What is33

missing is an explicit, identifiably interaction-aware formulation: a way to separate the aggregate34

benefit of more data from domain-specific deviations, and to quantify when two domains together35

yield more (or less) than the sum of their parts.36

In this paper, we present a framework for quantifying and modeling data synergy in LLMs. Rather than37

treating data as homogeneous, we exploit natural variation across open-weight models trained on di-38
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verse data mixtures. Our approach formalizes two complementary notions: (i) Domain→benchmark39

synergy, measuring how pre-training data from one domain affects the performance on another,40

and (ii) Pretraining data synergy, capturing domain-domain interaction effects that depend on co-41

occurrence of multiple domains in the training data. Our estimation procedure jointly fits these effects42

across many (model, benchmark) observations, provides sparse, interpretable maps of cross-domain43

interactions that generalize beyond observed mixtures.44

Our contributions are as follows:45

• We provide an operational definition of dataset synergy that links empirical observations to46

formal modeling.47

• We introduce domain-aware estimators that improve predictive model performance over48

standard scaling laws by incorporating synergy terms.49

• We recover stable, interpretable synergy patterns, such as the recurring complementarity50

between code and math, that provide actionable insights for data curation and acquisition.51

2 Domain and Synergy-Aware Scaling Laws52

2.1 Problem Setup53

Let M1, . . . ,Mm denote a set of language models (e.g., open-weight LLMs on Huggingface), and54

let D1, . . . , Dn be evaluation domains. For every model-domain pair we observe the loss value55

L =
[
li,j

]
∈ Rm×n. Alongside L we collect model-level covariates: parameter count Ni, total56

pretraining tokens di, and composition (mixture shares) of the pretraining data ui,k ∈ [0, 1], the57

fraction of tokens from training domain Dk that model Mi is pretrained on. Our goal is to quantify58

cross-domain data synergy: how training on pretraining domain(s) affects loss on a benchmark, after59

accounting for model scale and total tokens.60

2.2 Domain-agnostic scaling law61

We begin with a domain-agnostic baseline that explains loss variation using only model size N in62

terms of number of parameters, and total pretraining tokens D. This serves as the baseline model63

against which composition- and synergy-aware refinements will be evaluated. Following Chinchilla64

scaling laws [9], we have the parametric form L(N,D) = L∞ + AN−α + BD−β , where L∞65

is the irreducible loss, A,B are scale coefficients for parameter and data terms, and α, β are the66

parameter and data scaling exponent. In practice we fit this baseline per benchmark, and allow these67

parameters to vary across evaluation domains, after mapping heterogeneous metrics to a common68

monotone-transformed pseudo-loss. Let s = logN and d = logD, and for benchmark j define69

ej = logL∞,j , aj = logAj , and bj = logBj . Writing the parametric form in log-parameters gives70

the numerically-stable log-sum-exp (LSE) form:71

logLj(s, d) = LSE
(
ej , aj − αjs, bj − βjd

)
, (1)

where LSE(x1, x2, x3) = log
(
ex1 + ex2 + ex3

)
. Equation (1) is our domain-agnostic baseline: the72

expected log-loss depends only on total parameters and total tokens. In the next subsections we enrich73

the data term b− β logD to account for training mixture composition and to estimate cross-domain74

synergy, while keeping the same overall form of the scaling law recoverable.75

2.3 First-order Domain-Benchmark Synergy76

We now modify the data term so that different training domains can reduce loss at different rates77

on each benchmark. Recall that ui,k ∈ [0, 1] is the fraction of tokens from training domain Dk that78

model Mi is pretrained on. It is easy to show that log di =
∑

k ui,k log(ui,kdi) + H(ui), where79

H(ui) = −
∑

k ui,k log ui,k. To allow domain–specific data scaling exponent on benchmark j,80

βj + γj,k (faster if γj,k > 0, slower if γj,k < 0).81

We introduce domain–specific data scaling exponent parameters {γi,j}, which modify the per-task82

data scaling exponents additively: βj + γj,k. A positive γj,k indicates that data from domain k yields83

greater-than-expected scaling – i.e, a synergistic effect with benchmark j. Conversely, a negative84

γj,k implies diminishing returns, where data from domain k contributes less effectively than expected85

(interference). Substituting the log di decomposition equation into the third argument of the LSE86

in (1) and introducing these modifiers gives87

E[ li,j ] = LSE
(
ej , aj − αjsi, bj −

[
βj1+ γj,·

]⊤
zi − βjH(ui)

)
, (2)

with zi,k = ui,k log(ui,kdi) and synergy coefficients γj,k ∈ R.88

2



Books
Code

Ency
clo

ped
ia

Leg
al

Math Q&A

Sc
ien

ce
Web

HumanEval
(R²=0.44)

ARC-Easy
(R²=0.93)

HellaSwag
(R²=0.93)

LAMBADA
(R²=0.36)

MMLUP-Law
(R²=0.05)

NQ
(R²=0.62)

WikiText
(R²=0.89)

GSM8K
(R²=0.30)

0.07
±0.06

-0.05
±0.08

-0.01
±0.04

0.05
±0.03

-0.03
±0.04

-0.01
±0.06

0.08
±0.06

-0.09
±0.05

-0.01
±0.02

-0.03
±0.05

-0.00
±0.01

-0.01
±0.01

-0.01
±0.01

-0.01
±0.03

-0.02
±0.03

0.11
±0.03

-0.01
±0.03

0.02
±0.05

-0.02
±0.03

-0.01
±0.02

-0.01
±0.02

0.01
±0.03

-0.04
±0.03

0.08
±0.04

0.01
±0.02

-0.03
±0.05

0.00
±0.01

0.01
±0.01

-0.01
±0.02

-0.00
±0.02

0.01
±0.03

0.01
±0.03

0.04
±0.05

-0.08
±0.09

0.01
±0.03

0.03
±0.03

-0.04
±0.03

-0.03
±0.09

0.04
±0.06

0.05
±0.07

0.03
±0.04

-0.13
±0.10

0.00
±0.02

0.02
±0.03

-0.02
±0.02

-0.02
±0.06

0.04
±0.05

0.08
±0.05

0.01
±0.02

-0.01
±0.03

-0.00
±0.01

0.01
±0.01

-0.01
±0.01

-0.02
±0.03

0.01
±0.02

0.02
±0.03

-0.04
±0.04

0.18
±0.11

0.00
±0.01

-0.03
±0.02

0.02
±0.02

-0.04
±0.05

-0.04
±0.05

-0.06
±0.09

Domain Synergy Matrix (  mean ± SE)
1.32
±0.82

0.10
±0.62

0.15
±0.50

5.30
±23.73

0.73
±0.91

0.68
±0.78

1.71
±3.03

0.70
±0.67

 mean ±SE

0.2 0.0 0.2
 (90% CI, bootstrap)

Code  GSM8K

Code  NQ

Web  ARC-Easy

Science  HumanEval

Code  MMLUP-Law

Web  HumanEval

Web  HellaSwag

Code  HumanEval

Books  HumanEval

Web  NQ

Legal  HumanEval

Science  MMLUP-Law

Science  HellaSwag

Science  GSM8K

Science  NQ

Top 15 Domain Effects (B=50)

Synergy (CI excludes 0)
Interference (CI excludes 0)
Uncertain (CI includes 0)

0.10

0.05

0.00

0.05

0.10

0.15

1

2

3

4

5

Figure 1: We visualize first-order domain→benchmark synergy heatmap γj,k (median ± SE, B=50)
between pretraining domains (columns) and benchmarks (rows), and right panel shows βj with 90%
CIs. A few synergies (e.g., code → GSM8K) are reliably positive, while most synergies are small or
uncertain.
2.4 Second-order Pretraining Data Synergy89

We hypothesize that certain training domains interact synergistically and intrinsically, such that their90

joint presence yields learning benefits irrespective of the specific downstream benchmark. These91

synergies reflect fundamental complementarities between domains, though their effect size is still92

mediated by the benchmark-specific data scaling coefficient. The gain from such co-occurrence is93

bottlenecked by the scarcer source and can be understood as producing “additional bonus tokens”94

only when both domains are present. To capture this, we model synergy with a pairwise term that95

vanishes if either domain is absent and scales with the smaller per-domain log-token budget.96

Let ui,k ∈ [0, 1] be pretraining domain mixture weights and di the total token count and define97

zi,k = ui,k log(ui,kdi), z̄i,k = log
(
1+ui,kdi

)
, softminτ (a, b) := −τ log

(
e−a/τ+e−b/τ

)
.

Start from the first–order data term split into baseline and per–domain parts, −βj

∑
k zi,k −98 ∑

k γj,k zi,k − βjH(ui), and augment only the base effect with a co-occurrence correction99

−βj

∑
k

[
zi,k +

∑
k′ ̸=k

γj,kσkk′ softminτ
(
z̄i,k, z̄i,k′

)]
−

∑
k

γj,kzi,k − βjH(ui),

that is with a cross-domain synergy correction modulated by domain-benchmark synergy strength.100

Using z̄ (nonnegative and = 0 when ui,k = 0) ensures the interaction truly vanishes if either domain101

is absent and preserves the desired O(log di) scaling. We then scale the last term by βj to ensure that102

it moves at the same rate as the baseline. Symmetrizing (using σkk′ = σk′k), gives,103

Φi,j = bj −
[
βj1K + γj,·

]⊤
zi − βj H(ui)− βj

∑
k<k′

(γj,k + γj,k′)σkk′ softminτ
(
z̄i,k, z̄i,k′

)
(3)

where Σ = [σkk′ ] is symmetric with σkk = 0. The complete log-space law has the form logLi,j =104

LSE
(
ej , aj − αjsi, Φi,j

)
. In Appendix B.2, we interpret the new data term as “effective” number105

of pretraining data.106
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Figure 2: We compare first and second-order domain-aware scaling model vs. the domain-agnostic
one (Chinchilla) on a number of benchmarks. The synergy-aware estimators achieves lower test loss
on held-out models in these benchmarks.
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3 Results107

We estimate composition effects from observational variation across open-weight models and their108

publicly documented pre-training mixtures, rather than training models. Details on models and data109

are included in Appendix D.110

3.1 First-order Domain→Benchmark Synergy111

We estimate the first-order synergy of each pre-training domain on each benchmark, as explained112

in Appendix C. Figure 1 visualizes the estimated matrix Γ = {γj,k} with the benchmark-specific113

data exponent βj . To quantify uncertainty, we report standard errors from B=50 bootstrap resamples114

(80% subsampling) and show 90% confidence intervals for βj . The resulting map is sparse and115

interpretable: a few domain→benchmark synergies are reliably positive, while most γ values are116

small or statistically indistinguishable from zero synergy. Notably, code pretraining exhibits positive117

first-order synergy to math reasoning benchmark GSM8K, which is consistent with findings of prior118

work [1, 18].119

3.2 Second-order Pre-training Data Synergy120

Beyond first-order effects, we estimate pairwise data synergy between pre-training domains to capture121

gains that materialize only when two domains co-occur, across all benchmarks. We fit the symmetric122

synergy matrix Σ = {σk,k′} along with other parameters as in Equation 3 evaluate uncertainty via123

B = 50 bootstrap resamples (80% subsampling). Figure 3 summarizes the results the shared pairwise124

synergy across domains, along with the confidence intervals. Positive entries indicate domain-domain125

synergy (e.g. the expected Code×Math synergy), while negative entries show interference. We126

also observe negative synergy between Code×Encyclopedia/Q&A, which reflects that having both127

domains present in the pre-training dataset, may hurt average performance on selected domains.128

We also assess how predictive the model is on held-out samples. Figure 2 compares our domain-aware129

estimator with a domain-agnostic (γi,j = 0) baseline. Across a number of benchmarks, the synergy-130

aware models show better loss on residuals of held-out examples, on these datasets. A comparison131

of all fits is shown in Figure 4 Appendix E.1. These gains show that modeling composition, via a132

small number of non-zero γj,k (and universal σk,k′ ) adds explanatory power beyond total token count,133

which is especially effective for benchmarks that are different in distribution from typical pre-training134

datasets, such as in HumanEval, a coding benchmark.135
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Figure 3: Second-order pretraining domain×domain synergy matrix Σ = {σi,j} shows positive
synergy between domains such as Code×Math, Q&A×Web/Science.

4 Conclusion136

We formalize and quantify data synergy in LLM pretraining, and show that explicitly modeling137

domain-benchmark and pretraining data interactions can lead to interpretable estimates of data138

synergy, and improve predictive fit across multiple benchmarks. Our approach is limited by its139

observational design and future work will validate these measured synergies by training on domains140

we find to be synergistic. Beyond methodology, our estimates support practical applications in data141

curation, mixing, and acquisition, and performing synergy-aware mixture optimization to target142

specific capabilities.143
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A Related Work245

Scaling laws. A line of work shows that LLM loss follows smooth power laws as model capacity246

and data grow. Early results characterize scaling trends across parameters, data, and compute [13],247

while subsequent analyses refine the compute–data trade-off and argue that many models were248

under-trained for their size and recommend that token counts scale roughly with parameters to remain249

compute-optimal [9]. We treat these as the domain-agnostic baseline and study differences induced250

by heterogeneous data mixtures.251

Domain-aware scaling and mixture optimization. Beyond total token count, several works show252

that which tokens matter. Data pruning and curation can “beat” naive power-law scaling by shifting253

the effective constants and exponents in favorable ways [26]. Mixture-optimization approaches254

explicitly treat domain composition as a control variable: AutoScale automates scaling-law fitting255

and uses the fitted laws to recommend data-mixture and broader training-design choices with minimal256

additional training [12]. RegMix frames mixture selection as a regression problem with regularization257

to stabilize estimates under limited supervision [17]. More recently, “data mixing laws” relate258

performance to mixture weights and document nonlinear returns, including phase-transition-like259

effects as specific domains are increased [31]. Our formulation contributes to this line by modeling260

domain effects via the empirical domain frequencies ui,k (fraction of tokens from domain k in the261

dataset used for model i), which allows the data term’s exponent to vary for different domains and262

compositions, rather than only with D.263

Observational inference of skills and benchmark structure. Orthogonal to controlled pretraining,264

a complementary literature uses observational variation across many (model, task) points to infer265

latent capability structure and transfer patterns. Perplexity-correlation methods identify promising266

upstream corpora for a target benchmark using only readily available statistics, providing a zero-shot267

signal for mixture selection [28]. Hierarchical latent-variable models on leaderboard matrices recover268

shared factors that explain co-movement of benchmark scores across models, offering a data-driven269

map of “skills” without interventional training runs [11]. Our estimator follows this observational270

spirit but focuses on predicting performance under counterfactual mixtures by leveraging the fraction271

of tokens in pre-training data from a specific domain.272

Evidence for data synergy. Multiple empirical studies report positive transfer between code and273

mathematical reasoning. Continued pretraining on math+code corpora improves math benchmarks274

beyond either domain alone [1, 18]. Controlled ablations further indicate that injecting code during275

pretraining (rather than only SFT) yields broader reasoning gains with minimal negative transfer276

[19]. These findings motivate sparse, domain-specific parameters that can capture synergy between277

conceptually related domains.278

B Additional Details279

B.1 First-order Domain→ Benchmark Synergy280

De-confounding global and domain effects. To decouple the aggregate data-scaling coefficient281

βj from domain synergies γj,·, we impose the mean-zero (orthogonality) constraint 1⊤γj,· = 0.282

Let P⊥ := I − 1
K11⊤ be the projector onto the subspace orthogonal to 1. We enforce this either283

by reparameterization γj,· = P⊥ηj,· with free ηj,·. Using zi,k = ui,k log(ui,kdi) and H(ui) =284

−
∑

k ui,k log ui,k, recall 1⊤zi = log di −H(ui). Without the constraint, the data term285

(βj1+ γj,·)
⊤zi + βjH(ui)

lets the mean of γj,· shift the effective coefficient on log di and spuriously couple to H(ui). Enforcing286

1⊤γj,· = 0 removes this confounding and reduces the data term to287

Di,j = βj log di + γ⊤
j,·zi,

so βj is identifiable as the aggregate token-scaling coefficient while γj,· captures only domain-specific288

deviations. We apply sparsity and shrinkage penalties to the projected coefficients P⊥γj,·.289
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B.2 Second-order Pre-Training Data Synergy290

Scaling–law interpretation (effective tokens). Define the benchmark-specific effective tokens291

logDeff
i,j := log di +

∑
k<k′

(γj,k+γj,k′)σkk′ si,kk′ , Deff
i,j = di exp

(∑
k<k′

(γj,k+γj,k′)σkk′ si,kk′
)
,

so that292

exp(Φi,j) = exp
(
bj − γ⊤

j,·zi
) (

Deff
i,j

)−βj
.

In a Chinchilla-style view,293

Li,j(Ni, di) ≈ L∞,j +AjN
−αj

i + B̃i,j︸︷︷︸
=exp(bj−γ⊤

j,·zi)

(
Deff

i,j

)−βj
,

and for small interactions,
(
Deff

i,j

)−βj ≈ d
−βj

i

[
1− βj

∑
k<k′(γj,k + γj,k′)σkk′ softminτ (z̄i,k, z̄i,k′)

]
,294

which makes explicit the benchmark-gated “bonus tokens” contributed by co-occurence through the295

universal Σ.296

C Training and Uncertainty297

Loss and optimizer. We fit all parameters by minimizing a single Huberδ risk [10] over the LSE298

scaffold (Section 2):299

min
Θ

n∑
j=1

m∑
i=1

Huberδ

(
LSE

(
ej , aj − αjsi, Φi,j

)
− li,j

)
+ λ1

∑
j

∥γj,·∥1 + λ2

∑
j

∥γj,·∥22,

where si = logNi and Φi,j is either from the domain-benchmark data term (i.e., Σ = 0) or the300

pretraining data synergy term in Eq. (3). We optimize with full-batch L-BFGS [22] The pretraining301

domain synergy matrix Σ is parameterized on the upper triangle only (σkk′ = σk′k, σkk = 0). In302

all reported runs we use δ = 0.5, τ = 0.1, λ1 = 0.01, and λ2 = 10−5. For the synergy model we303

first optimize (ej , aj , bj , αj , βj , γj,·) with Σ fixed to 0 and then continuing optimizing all parameters304

(including Σ) jointly.305

Uncertainty via bootstrap. first-order fits. We estimate variability by resampling 80% of306

models (without replacement) B = 50 times and refitting; we report percentile intervals for307

(ej , aj , bj , αj , βj , γj,·).308

second-order fits. We warm-start with training on all models, and then we cluster bootstrap over309

model families: each replicate resamples families with replacement, retains all domains per sampled310

model, and refits the full objective from the warm start. With B = 50 replicates we report 90%311

percentile intervals for (αj , βj), the per-domain effects γj,k, and the shared pairwise coefficients312

σkk′ .313

D Observational Data: Models and Data314

We estimate composition effects from observational variation across open-weight models and their315

publicly documented pre-training mixtures, rather than training models. This provides variation in316

both scale and composition, and enables identifying of domain-specific returns using our framework.317

Throughout we denote by ui,k the fraction of tokens from training domain k in the dataset used for318

model i.319

Model families Our panel spans six open-weight families with heterogeneous scales and training320

mixtures: GPT-Neo/J/NeoX [24] (125M–20B; 5 checkpoints), Pythia [2] (70M–12B; 8 check-321

points), DataDecide [20] (150M–1B; 30 checkpoints across Dolma variants with systematic abla-322

tions: no-code, no-flan, no-math-code, no-reddit), OLMo [7] (1B–13B; 5 checkpoints), OpenLLaMA [6]323

(3B–13B; 5 checkpoints), and RedPajama-INCITE [29] (3B–7B; 2 checkpoints). The DataDecide324

ablations provide controlled composition shifts that are especially informative for informing counter-325

factual domain effects. We map each subset in each model’s pretraining data to one of the following326

domains: books, code, encyclopedia, legal, math, Q&A, Science, and Web.327
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Benchmarks and normalization. We evaluate on eight benchmarks chosen to roughly cover our328

domains: mathematical reasoning (GSM8K [5]), code generation (HumanEval [3]), science/general-329

knowledge MC (ARC-Easy[4]), commonsense inference (HellaSwag [33]), broad-context cloze330

(LAMBADA [23]), professional legal knowledge (MMLU-Pro-Plus, Law [27]), open-domain QA331

(Natural Questions [14]), and encyclopedia (WikiText [21]). To compare different evaluation332

metrics, we convert accuracy-/pass@1-type scores to error (1−success), and apply a per-task rank333

transform to obtain the pseudo-loss used for fitting.334

Evaluation. In most benchmarks we do not directly observe direct loss li,j but a task metric mi,j335

(accuracy, pass@1, etc.). We map metrics to a pseudo log-loss via a domain-specific monotone336

transform gj (e.g., rank–Gaussian (inverse normal) transform gj(m) = Φ−1
(
F̂j(m)

)
, where F̂j is337

the empirical CDF of metric values on Dj and Φ−1 is the standard normal quantile function):338

li,j = gj(mi,j) ∝ logLi,j , so different metrics lie on a common (log-loss) scale.339

E Additional Results340

E.1 Comparison Results341

We also assess how predictive the model is on held-out samples. Figure 2 compares our domain-342

aware estimator with a domain-agnostic (γi,j = 0) baseline. Across a number of benchmarks, the343

synergy-aware models show better loss on residuals of held-out examples, on these datasets.344
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E.2 Second-order Pre-training Synergy345

We provide γ and β values for the second-order synergy model.346
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