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Abstract

Machine learning progress is often attributed to scaling model size and dataset vol-
ume, yet the composition of data can be just as consequential. Empirical findings
repeatedly show that combining datasets from different domains yields non-trivial
interactions: adding code improves mathematical reasoning, while certain mixtures
introduce interference that suppresses performance. We refer to these effects
collectively as data synergy—interaction effects whereby the joint contribution
of multiple domains exceeds (positive synergy) or falls short of (interference)
the sum of their isolated contributions. In this work, we formalize and quantify
dataset interactions in large language models. Leveraging observational variation
across open-weight LLMs with diverse pretraining mixtures, we estimate both
direct domain-to-benchmark synergy (how one domain contributes to performance
on another) and pretraining data synergy (capabilities that require co-occurrence of
multiple domains). Our framework improves the fit over domain-agnostic scaling
laws, recovers stable synergy patterns such as math—code complementarity, and
provides interpretable maps of cross-domain transfer.

1 Introduction

Recent improvements in Large Language Models (LLMs) are strongly shaped by their pretraining
data [[15 25]], yet most formulations abstract away composition and interactions, reducing data
into an undifferentiated token count [13} |9]. Practitioners frequently observe that adding data
from one domain improves performance on seemingly unrelated tasks—for example, code data
enhancing mathematical reasoning [18l[1]], while other combinations lead to interference and degraded
performance [34} [16]]. We refer to these cross-domain interactions as data synergy. Such findings
suggest that tokens are not interchangeable: what matters is not only how much data we train on, but
also what kinds of data are combined.

There is growing evidence that interactions matter. Prior works find that continued pretraining
on code improves reasoning-heavy benchmarks [32]; and targeted ablations reveal both positive
transfer and occasional negative transfer across conceptually related sources [31, 34, [8]. These
observations are not isolated anecdotes but point to regularities in how domain composition shapes
learned representations; regularities that merit explicit modeling.

Most existing approaches overlook this dimension, and instead treat pretraining corpora as homo-
geneous. Classical scaling laws, for instance, relate loss to parameter count and total data but are
domain-agnostic, since they assume all tokens contribute equally [[13,|9]. and mixture-optimization
methods often search over weights while implicitly assuming independent returns [30]. What is
missing is an explicit, identifiably interaction-aware formulation: a way to separate the aggregate
benefit of more data from domain-specific deviations, and to quantify when two domains together
yield more (or less) than the sum of their parts.

In this paper, we present a framework for quantifying and modeling data synergy in LLMs. Rather than
treating data as homogeneous, we exploit natural variation across open-weight models trained on di-
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verse data mixtures. Our approach formalizes two complementary notions: (i) Domain—benchmark
synergy, measuring how pre-training data from one domain affects the performance on another,
and (ii) Pretraining data synergy, capturing domain-domain interaction effects that depend on co-
occurrence of multiple domains in the training data. Our estimation procedure jointly fits these effects
across many (model, benchmark) observations, provides sparse, interpretable maps of cross-domain
interactions that generalize beyond observed mixtures.

Our contributions are as follows:

* We provide an operational definition of dataset synergy that links empirical observations to
formal modeling.

* We introduce domain-aware estimators that improve predictive model performance over
standard scaling laws by incorporating synergy terms.

* We recover stable, interpretable synergy patterns, such as the recurring complementarity
between code and math, that provide actionable insights for data curation and acquisition.

2 Domain and Synergy-Aware Scaling Laws

2.1 Problem Setup

Let M, ..., M,, denote a set of language models (e.g., open-weight LLMs on Huggingface), and
let Dy,...,D, be evaluation domains. For every model-domain pair we observe the loss value
L = [l;;] € R™". Alongside L we collect model-level covariates: parameter count N;, total
pretraining tokens d;, and composition (mixture shares) of the pretraining data u, ; € [0,1], the
fraction of tokens from training domain Dy, that model M; is pretrained on. Our goal is to quantify
cross-domain data synergy: how training on pretraining domain(s) affects loss on a benchmark, after
accounting for model scale and total tokens.

2.2 Domain-agnostic scaling law

We begin with a domain-agnostic baseline that explains loss variation using only model size N in
terms of number of parameters, and total pretraining tokens D. This serves as the baseline model
against which composition- and synergy-aware refinements will be evaluated. Following Chinchilla
scaling laws [9]], we have the parametric form L(N,D) = Lo, + AN~ 4+ BD~5, where L,
is the irreducible loss, A, B are scale coefficients for parameter and data terms, and «, 8 are the
parameter and data scaling exponent. In practice we fit this baseline per benchmark, and allow these
parameters to vary across evaluation domains, after mapping heterogeneous metrics to a common
monotone-transformed pseudo-loss. Let s = log N and d = log D, and for benchmark j define
ej =log L j, a; =log A;, and b; = log B;. Writing the parametric form in log-parameters gives
the numerically-stable log-sum-exp (LSE) form:

log Lj(s,d) = LSE(ej, a; —a;s, by — Bjd), )

where LSE(z1, 22, 23) = log(e”* + €”* 4 ¢#). Equation (I) is our domain-agnostic baseline: the
expected log-loss depends only on total parameters and total tokens. In the next subsections we enrich
the data term b — [31log D to account for training mixture composition and to estimate cross-domain
synergy, while keeping the same overall form of the scaling law recoverable.

2.3 First-order Domain-Benchmark Synergy

We now modify the data term so that different training domains can reduce loss at different rates
on each benchmark. Recall that u; , € [0, 1] is the fraction of tokens from training domain Dy, that
model M; is pretrained on. It is easy to show that logd; = _, u;  log(u; rd;) + H(u;), where
Hu) = => i Wi,k log u; 1. To allow domain—specific data scaling exponent on benchmark j,
Bj + ;1 (faster if y; . > 0, slower if y; . < 0).

We introduce domain—specific data scaling exponent parameters {~y; ; }, which modify the per-task
data scaling exponents additively: 3; 4 7, x. A positive y;  indicates that data from domain k yields
greater-than-expected scaling — i.e, a synergistic effect with benchmark j. Conversely, a negative
7v;,% implies diminishing returns, where data from domain k contributes less effectively than expected
(interference). Substituting the log d; decomposition equation into the third argument of the LSE
in (I) and introducing these modifiers gives

E[ li,j ] = LSE ((ij, aj; — Q;Sq, bj — [ﬁjl + ’Yj,‘] TZi — ﬁjH(ui)), 2)

with 2; ;, = u; ; log(u; 1d;) and synergy coefficients v; , € R.
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Figure 1: We visualize first-order domain—benchmark synergy heatmap y; . (median &= SE, B=50)
between pretraining domains (columns) and benchmarks (rows), and right panel shows 3; with 90%
CIs. A few synergies (e.g., code — GSM8K) are reliably positive, while most synergies are small or
uncertain.

2.4 Second-order Pretraining Data Synergy

We hypothesize that certain training domains interact synergistically and intrinsically, such that their
joint presence yields learning benefits irrespective of the specific downstream benchmark. These
synergies reflect fundamental complementarities between domains, though their effect size is still
mediated by the benchmark-specific data scaling coefficient. The gain from such co-occurrence is
bottlenecked by the scarcer source and can be understood as producing “additional bonus tokens’
only when both domains are present. To capture this, we model synergy with a pairwise term that
vanishes if either domain is absent and scales with the smaller per-domain log-token budget.

5

Let u; 1 € [0, 1] be pretraining domain mixture weights and d; the total token count and define

Zi = g g, log(u; xd;), Zik = log(1+u; kd;), softmin, (a, b) := —Tlog(e*“/TJre*b/T).

Start from the first-order data term split into baseline and per—domain parts, —3; >, 2k
>k Vik Zik — BjH(u;), and augment only the base effect with a co-occurrence correction

—B; Z {sz + Z Y,k Okk softmin: (%, Zi,k’)} - Z Vikzie — BiH(us),
k k' £k k

that is with a cross-domain synergy correction modulated by domain-benchmark synergy strength.

Using z (nonnegative and = 0 when u; ;, = 0) ensures the interaction truly vanishes if either domain

is absent and preserves the desired O(log d;) scaling. We then scale the last term by 3, to ensure that

it moves at the same rate as the baseline. Symmetrizing (using o = og/1), gives,

T .o
D, =bj — [Bilx +5.] 2z — B H(w) - B Z (Vik + Vi) Ok softming (Zi ke, Zi k) (3)
k<k’
where ¥ = [o4/] is symmetric with o, = 0. The complete log-space law has the form log L; ; =

LSE(ej, a; — a;si, ®; ;). In Appendix [B.2| we interpret the new data term as “effective” number
of pretraining data.

LAMBADA HellaSwag ARC-Easy HumanEval
15 Nomss 10 15
on-synergy 15
1st Synergy 8
. 10 . 1.0
z 2nd Synergy 0 6
5
a 4
5 5 ‘ 05
2
0 2 4 6 00 05 10 15 20 25 00 05 10 15 20 25 0.0 05 1.0 15
Huber loss value %10 Huber loss value %10 Huber loss value x10" Huber loss value x10'

Figure 2: We compare first and second-order domain-aware scaling model vs. the domain-agnostic
one (Chinchilla) on a number of benchmarks. The synergy-aware estimators achieves lower test loss
on held-out models in these benchmarks.
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3 Results

We estimate composition effects from observational variation across open-weight models and their
publicly documented pre-training mixtures, rather than training models. Details on models and data
are included in Appendix

3.1 First-order Domain—Benchmark Synergy

We estimate the first-order synergy of each pre-training domain on each benchmark, as explained
in Appendix Figure visualizes the estimated matrix I' = {~, »} with the benchmark-specific
data exponent 3;. To quantify uncertainty, we report standard errors from 5=50 bootstrap resamples
(80% subsampling) and show 90% confidence intervals for 8;. The resulting map is sparse and
interpretable: a few domain—benchmark synergies are reliably positive, while most « values are
small or statistically indistinguishable from zero synergy. Notably, code pretraining exhibits positive
first-order synergy to math reasoning benchmark GSM8K, which is consistent with findings of prior
work [} [18]].

3.2 Second-order Pre-training Data Synergy

Beyond first-order effects, we estimate pairwise data synergy between pre-training domains to capture
gains that materialize only when two domains co-occur, across all benchmarks. We fit the symmetric
synergy matrix ¥ = {0}, 1 } along with other parameters as in Equationevaluate uncertainty via
B = 50 bootstrap resamples (80% subsampling). Figure 3] summarizes the results the shared pairwise
synergy across domains, along with the confidence intervals. Positive entries indicate domain-domain
synergy (e.g. the expected CodexMath synergy), while negative entries show interference. We
also observe negative synergy between Code x Encyclopedial/Q &A, which reflects that having both
domains present in the pre-training dataset, may hurt average performance on selected domains.

We also assess how predictive the model is on held-out samples. Figure[2]compares our domain-aware
estimator with a domain-agnostic (y; ; = 0) baseline. Across a number of benchmarks, the synergy-
aware models show better loss on residuals of held-out examples, on these datasets. A comparison
of all fits is shown in Figure ] Appendix [E.I] These gains show that modeling composition, via a
small number of non-zero ; 5, (and universal o, /) adds explanatory power beyond total token count,
which is especially effective for benchmarks that are different in distribution from typical pre-training
datasets, such as in HumanEval, a coding benchmark.

Shared Sigma Matrix Top 10 Effects

100

Books 48 -01 -24 48 -36 -07 46 Code x Math T
7 Code x Science —e—

Code{ 4.8 47
50 Q&A x Web o

Encyclopedia{ -0.1 3.7
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Encyclopedia x Science { ——@—

Math{ 4.8 4.6 Code x Q&A ————
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(SSHE0x p;[ms) 0 A313ufs astmire
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s Legal x Q&A{ —@——
web{ 46 47 37 0.7 | 46 5.0 Math x Q&A o
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Figure 3: Second-order pretraining domainxdomain synergy matrix ¥ = {o; ;} shows positive
synergy between domains such as Code x Math, Q&A x Web/Science.

0 2
Synergy Effect o

4 Conclusion

We formalize and quantify data synergy in LLM pretraining, and show that explicitly modeling
domain-benchmark and pretraining data interactions can lead to interpretable estimates of data
synergy, and improve predictive fit across multiple benchmarks. Our approach is limited by its
observational design and future work will validate these measured synergies by training on domains
we find to be synergistic. Beyond methodology, our estimates support practical applications in data
curation, mixing, and acquisition, and performing synergy-aware mixture optimization to target
specific capabilities.
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A Related Work

Scaling laws. A line of work shows that LLM loss follows smooth power laws as model capacity
and data grow. Early results characterize scaling trends across parameters, data, and compute [[13]],
while subsequent analyses refine the compute—data trade-off and argue that many models were
under-trained for their size and recommend that token counts scale roughly with parameters to remain
compute-optimal [9]. We treat these as the domain-agnostic baseline and study differences induced
by heterogeneous data mixtures.

Domain-aware scaling and mixture optimization. Beyond total token count, several works show
that which tokens matter. Data pruning and curation can “beat” naive power-law scaling by shifting
the effective constants and exponents in favorable ways [26]]. Mixture-optimization approaches
explicitly treat domain composition as a control variable: AutoScale automates scaling-law fitting
and uses the fitted laws to recommend data-mixture and broader training-design choices with minimal
additional training [12]. RegMix frames mixture selection as a regression problem with regularization
to stabilize estimates under limited supervision [17]. More recently, “data mixing laws” relate
performance to mixture weights and document nonlinear returns, including phase-transition-like
effects as specific domains are increased [31]. Our formulation contributes to this line by modeling
domain effects via the empirical domain frequencies u; ;. (fraction of tokens from domain & in the
dataset used for model ¢), which allows the data term’s exponent to vary for different domains and
compositions, rather than only with D.

Observational inference of skills and benchmark structure. Orthogonal to controlled pretraining,
a complementary literature uses observational variation across many (model, task) points to infer
latent capability structure and transfer patterns. Perplexity-correlation methods identify promising
upstream corpora for a target benchmark using only readily available statistics, providing a zero-shot
signal for mixture selection [28]]. Hierarchical latent-variable models on leaderboard matrices recover
shared factors that explain co-movement of benchmark scores across models, offering a data-driven
map of “skills” without interventional training runs [[L1]. Our estimator follows this observational
spirit but focuses on predicting performance under counterfactual mixtures by leveraging the fraction
of tokens in pre-training data from a specific domain.

Evidence for data synergy. Multiple empirical studies report positive transfer between code and
mathematical reasoning. Continued pretraining on math+code corpora improves math benchmarks
beyond either domain alone [[1,[18]. Controlled ablations further indicate that injecting code during
pretraining (rather than only SFT) yields broader reasoning gains with minimal negative transfer
[19]. These findings motivate sparse, domain-specific parameters that can capture synergy between
conceptually related domains.

B Additional Details

B.1 First-order Domain— Benchmark Synergy

De-confounding global and domain effects. To decouple the aggregate data-scaling coefficient
B; from domain synergies vy; ., we impose the mean-zero (orthogonality) constraint 1T7j}. = 0.
Let P, :=1— %11—r be the projector onto the subspace orthogonal to 1. We enforce this either
by reparameterization vy;. = Py n;. with free n; .. Using z; , = u; ; log(u; xd;) and H(u;) =
— > Wik log u; i, recall 172; = logd; — H(u;). Without the constraint, the data term

(Bi1+ ;) "z + BiH (u;)

lets the mean of +y; . shift the effective coefficient on log d; and spuriously couple to H (u;). Enforcing
17+, . = 0 removes this confounding and reduces the data term to

D, ; = Bjlogd; + ’ij,zi,

so 3, is identifiable as the aggregate token-scaling coefficient while ;. captures only domain-specific
deviations. We apply sparsity and shrinkage penalties to the projected coefficients P, ;..



290 B.2 Second-order Pre-Training Data Synergy

291 Scaling-law interpretation (effective tokens). Define the benchmark-specific effective tokens
log ng = logd; + Z (Vik F ik ) Okke Si ke s D?,fjf' =d; eXP(Z (Vik FYj k') Thk? Sistek )
k<k’ k<k’
292 SO that s
exp(®; ;) = exp(bj — fij_zi) (foj) 7.
293 In a Chinchilla-style view,
Lij(Niydi) = Leoj+A;N; %+ Bi;  (D55) ",
~~

=exp(b; 77;_21')

204 and for small interactions, (ngf)_ﬁj ~ d;ﬁj (1= 85 3 e (Vi + Vi) Ohrr softming (5, Zier)]

295 which makes explicit the benchmark-gated “bonus tokens” contributed by co-occurence through the
206 universal X.

27 C Training and Uncertainty

298 Loss and optimizer. We fit all parameters by minimizing a single Hubers risk [[10] over the LSE
299  scaffold (Section 2):

n m

rrgn ZZHuberg(LSE(ej, a; — a8, (I)i,j) — li,j) + )‘IZHVJ’-Hl + )\QZ l175,-
J J

j=1i=1

2
29

300 where s; = log IV; and ®; ; is either from the domain-benchmark data term (i.e., X = 0) or the
01 pretraining data synergy term in Eq. (3). We optimize with full-batch L-BFGS [22] The pretraining
302 domain synergy matrix 3 is parameterized on the upper triangle only (0xr = o'k, ok = 0). In
303 all reported runs we use § = 0.5, 7 = 0.1, \; = 0.01, and A\ = 107°. For the synergy model we
so4 first optimize (e;, a;, bj, o;, 55,7y;,.) with X fixed to 0 and then continuing optimizing all parameters
305 (including ) jointly.

306 Uncertainty via bootstrap. first-order fits. We estimate variability by resampling 80% of
307 models (without replacement) B = 50 times and refitting; we report percentile intervals for
308 (6j,dj,bj,0[j,ﬂj,’)/j7.).

309 second-order fits. We warm-start with training on all models, and then we cluster bootstrap over
310 model families: each replicate resamples families with replacement, retains all domains per sampled
311 model, and refits the full objective from the warm start. With B = 50 replicates we report 90%
stz percentile intervals for (o, §;), the per-domain effects y; 5, and the shared pairwise coefficients
313 Okk’.

siz. D Observational Data: Models and Data

315 We estimate composition effects from observational variation across open-weight models and their
316 publicly documented pre-training mixtures, rather than training models. This provides variation in
317 both scale and composition, and enables identifying of domain-specific returns using our framework.
318 Throughout we denote by u; j, the fraction of tokens from training domain & in the dataset used for
319 model 7.

320 Model families Our panel spans six open-weight families with heterogeneous scales and training
321 mixtures: GPT-Neo/J/NeoX [24] (125M-20B; 5 checkpoints), Pythia [2] (70M-12B; 8 check-
322 points), DataDecide [20] (150M-1B; 30 checkpoints across Dolma variants with systematic abla-
323 tions: no-code, no-flan, no-math-code, no-reddit), OLMo [7] (1B-13B; 5 checkpoints), OpenLLaMA [6]
324 (3B-—13B; 5 checkpoints), and RedPajama-INCITE [29] (3B-7B; 2 checkpoints). The DataDecide
325 ablations provide controlled composition shifts that are especially informative for informing counter-
s26 factual domain effects. We map each subset in each model’s pretraining data to one of the following
327 domains: books, code, encyclopedia, legal, math, Q&A, Science, and Web.
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Benchmarks and normalization. We evaluate on eight benchmarks chosen to roughly cover our
domains: mathematical reasoning (GSM8K [53]]), code generation (HumanEval [3]]), science/general-
knowledge MC (ARC-Easy[4]), commonsense inference (HellaSwag [33]]), broad-context cloze
(LAMBADA [23]), professional legal knowledge (MMLU-Pro-Plus, Law [27]), open-domain QA
(Natural Questions [I4]]), and encyclopedia (WikiText [21]]). To compare different evaluation
metrics, we convert accuracy-/pass @ 1-type scores to error (1—success), and apply a per-task rank
transform to obtain the pseudo-loss used for fitting.

Evaluation. In most benchmarks we do not directly observe direct loss [; ; but a task metric m;_;
(accuracy, pass@1, etc.). We map metrics to a pseudo log-loss via a domain-specific monotone
transform g; (e.g., rank—Gaussian (inverse normal) transform g;(m) = ®~! (FJ (m)), where Fj is
the empirical CDF of metric values on D; and ® ! is the standard normal quantile function):

lij = g;(m; ;) o logL; j;, so different metrics lie on a common (log-loss) scale.

E Additional Results

E.1 Comparison Results

We also assess how predictive the model is on held-out samples. Figure [2|compares our domain-
aware estimator with a domain-agnostic (vy; ; = 0) baseline. Across a number of benchmarks, the
synergy-aware models show better loss on residuals of held-out examples, on these datasets.
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Figure 4: Comparison of performance between first- and second-order synergy-aware model vs.
non-synergy-aware model
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Figure 6: Comparison of test loss between first- and second-order synergy-aware model vs. non-
synergy-aware model

345 E.2 Second-order Pre-training Synergy

346 We provide « and 3 values for the second-order synergy model.
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