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ABSTRACT

Given two weighted graphs G = (V, E,w¢) and H = (V, F, wy) defined on the
same vertex set, the constrained clustering problem asks to find a set S C V that
minimises the cut ratio between wg(S,V \ S) and wy(S,V \ S). We develop
a Cheeger-type inequality that relates the solution of the constrained clustering
problem to the spectral properties of G and H. To reduce computational com-
plexity, we use the signed Laplacian on H, simplifying the calculations while
maintaining accurate results. By solving a generalized eigenvalue problem, our
algorithm provides improvements in performance, particularly in scenarios where
traditional spectral clustering methods face difficulties. We demonstrate its prac-
tical effectiveness through experiments on both synthetic and real-world datasets.

1 INTRODUCTION

Clustering is a fundamental technique in machine learning, with extensive applications across com-
puter science and various scientific disciplines. The primary goal of clustering is to partition data
points into clusters, such that points within each cluster are more densely connected than those in
other clusters. Traditional clustering, such spectral clustering (Von Luxburg, [2007) rely solely in
the structure of the data. However, in many real-world scenarios, additional domain knowledge is
available, introducing specific constraints that should be incorporated into the clustering process to
achieve more accurate and meaningful results (Basu et al.,|2008)).

Constrained clustering focuses on developing algorithms that effectively incorporate this domain
knowledge to enhance clustering performance (Wagstaff et al., 2001). The domain knowledge is
represented by two types of pairwise constraints: (1) MUST-LINK constraints, requiring that a pair
of data points be assigned to the same cluster, and (2) CANNOT-LINK constraints, requiring that a
pair of data points must be assigned to different clusters. In the context of graph clustering, the goal
is partition the vertices of a graph based on edge connectivity while satisfying the given constrains.

In this paper, we examine the constrained clustering problem by formalize these constraints using
the graphs G = (V, E,w) and H = (V, E’,w’), in which every data point corresponds to a graph
vertex, every MUST-LINK (resp, CANNOT-LINK) constraint corresponds to an edge in G (resp, H),
and the edge weights capture the strength of the user’s preference for satisfying the corresponding
constraint. For any set S C V, we define the cut ratio of S between G and H by

w(S,V'\ S)

cuth (S, V\ S) = wH(5,V\ 5)’

)

and the objective is to find S that achieves

¢ = min cut$(S,V\9).

A pcScv H( \ )

We develop an efficient approximation algorithm for the constrained graph clustering problem. The

key to our algorithm is a Cheeger-type inequality that upper bounds ®% with respect to Ao(A%)
and Ao (A, where

ACg) (w, AHz)

AG) = min &272) AP = mip 20

A (i) Faxs (x, AHg)’ and Az (A7) wi1 (x, )

2

and A“ and A are the Laplacian operators of G and H respectively. By introducing several tech-
niques to adjust G and H, we significantly reduce the time complexity for solving the generalised
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eigenvalue problem, while maintaining the one-to-one correspondence between the solution of the
new reduced instance and the initial one. The empirical studies on both the synthetic and real-world
data sets confirm that with the two sets of constraints our algorithm presents significantly better per-
formance than the classical spectral clustering algorithm, and the running time of our algorithm is
close to traditional spectral clustering methods.

Related work. Cheer-type inequalities for constrained graph clustering are studied in litera-
ture. For example, [Cucuringu et al.[ (2016) proved that @g . CI)IG( < 4)\2(A§); this inequality is
based on a third graph K, which they call the demand graph. [Koutis et al.| (2023)) showed that
Y < 16X2(A%)/®(G), where ®(G) is the standard conductance of G. These two result cannot
be directly compared with ours, since both inequalities upper bound ®% with respect to Ao (A%)
and parameters of H, i.e., @% in (Cucuringu et al [2016) and ®(G) in (Koutis et al., [2023). In
contrast, we upper bound ®% with respect to A\2(A%) and Ao (A). Trevisan (2013) studied the
computational complexity of the problem, and proved that under the Unique Games Conjectures it’s

impossible to find a cut that achieves O (\ / @g) approximation in polynomial time.

Our work also relates to the studies on constrained graph clustering from practical perspectives,
e.g., (Jia et al.}2021; 'Wang & Davidson, 2010; 'Wang et al., 2014) and signed cuts using the signed
Laplacian (Knyazev} 2017). Most of these studies, however, lack a rigorous analysis on the quality
of the resulting clusters compared to the optimal solution. Our work is further linked to Cheeger-
type inequalities for different graph Laplacians (Lange et al., 2015} [Li et al.l [2019) (including the
signed Laplacian (Atay & Liu, |2020)), and their higher-order generalisations (Lee et al.| 2014)).

Contribution. We present a constrained graph clustering method and establish a novel Cheeger-
type inequality that directly relates the problem to the spectral properties of the graphs G and H,
providing theoretical guarantees often missing in existing approaches. We also introduce an efficient
implementation leveraging the signed Laplacian, which simplifies computations and ensures stabil-
ity without requiring additional parameters. Finally, we demonstrate the robustness and efficiency
of our algorithm on both synthetic and real-world datasets.

2 BACKGROUND & PRELIMINARIES

We consider a finite, undirected graph G = (V, E), where V is the set of vertices and F is the set of
edges. Each edge uv € E denotes an undirected connection between vertices v and v. A self-loop
in this context is represented by uu, indicating an edge that starts and ends at the same vertex wu.
The notation v ~ v means that « and v are connected by an edge. We define weights in the graph
G through the function w : F — R™, where w,, = w,,, specifies the weight of the edge between
vertices u and v. By definition, each self-loop uwu contributes twice to the degree of vertex u.

For £y C E, we interpret w as a discrete measure on the corresponding sets, using the notation
w(Fy) = Zm} cEy Wuv- For V), V1 C V, we denote the set of unoriented edges between Vj and V
as E(Vp,V1) = {uv € E | u € Vyand v € V1}. We denote by E, the set of all edges connected
to v, and N, the neighbourhood of v as the set of vertices adjacent to v, i.e., B, = E({v},V) and
N, :={u € V | v ~ u}. The edge weights on a graph determine a weighted degree of a vertex,
defined by deg(v) = w(Ey) = Y cp. We-

The Laplacian. We define some standard spaces related to a finite and weighted graph G = (V, E)
with weight function w. We define the Hilbert spaces ¢, (V, w) and 45 (E, w) as:

L(Viw)={p:V =R}, L(E,w)={n: E— R}

Furthermore, we consider the natural inner product for these spaces. For £,(V, w), the inner product
between functions ¢ and ¢ is defined as (@, ¥)v = > oy @(v)¥(v) deg(v). For £y(E,w), the
inner product between functions 7 and £ is defined as (9, {) g = >, c g Nelewe. Let G = (V, W, w)
be a weighted graph. The derivative d is defined as

d: 62(‘/’ UJ) — 62(E7 U)), (dW)e:(u,v) = (p(u) - W(U)
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The adjoint d* : lo(E,w) — £3(V, w) is given by
1

@) = ——— 5 wer..

deg(v) 5,
The weighted Laplacian A : ¢5(V, w) — £5(V,w) is defined as A = d*d, and acts as

(BO0) = Fos 3 (500 = ol

Let G = (V, E,w) be a weighted graph, and for all ¢ € ¢2(V, w) we have that
<807AG90>€2(V) = <S07d*d99>£2(V) = <d807d90>€2(E) = Z |d90uv|2wuv = Z(‘p(“) - <P(v))2wuv~

u~v u~v

Graph Signature. A signature of a graph G = (V,E) isamap « : E — {41, -1}, which
assigns a sign to each edge. Let G = (V, E, w) be a weighted graph with a signature «. The signed
Laplacian, denoted as A, is a linear operator A, : £2(V,w) — ¢*(V,w), defined by

(D)) = —— 3 (9(0) — Cwup())wen,

deg(v) 5,

where w,,, is the weight of the edge wv, and «v,, indicates the sign of the edge as given by the
signature . Observe that the Laplacian is a particular case of the signed Laplacian by taking av,, =
1 for all edges and the signless Laplacian by taking «,, = —1 for all edges. The signed Laplacian
can be viewed as a special case of the magnetic Laplacian with a discrete magnetic potential taking
values in {0, 7}. A, (and therefore A) are positive semi-definite and self-adjoint operators, hence
all the eigenvalues are real and non-negative.

3 ALGORITHM & ANALYSIS

In this section, we present a constrained graph clustering algorithm called CC++. At a high level,
our algorithm consists of the following: in the preprocessing step, we adjust the edge weights of G
and add self-loops to the vertices of G, such that both of G and H have the same degree sequence.
Then, we show that a desired cut can be found by a sweep-set algorithm when the eigenvector corre-
sponding to a generalized eigenvalue problem is given as input. Taking the practical implementation
into account, we introduce a negative self-loop in H for efficient computation, and justify its perfor-
mance both in theory and in practice. Due to page limitations, proofs omitted from this section can
be found in the appendix.

3.1 PREPROCESSING G AND H

In the preprocessing step, our algorithm first scales the weights of all the edges in G by the same
factor, and adds self-loops to the resulting graph G. These two operations ensure that the constructed

graph G and H have the same degree sequence, while maintaining the optimal cut of the input
instance.

Scaling the graph G. For any ¢ € R™, we scale the edge weights of G by a factor of ¢ and define
G(c) = (V,E,c-w), where (¢ w). = ¢ - w, for each edge e. By equation|[I] we have that
G(c) G
G(c) w (S7V\S) w <S7V\S> G
t S, V\9S) = =c- =c-cutz(S,V\S).
CuH ( ) \ ) ’LUH(S,V\S) c ’LUH(S,V\S) c CuH( ) \ )
Thus, the minimum cut problem for the scaled graph can be expressed as
o6 — ¢. 9§,

This equivalence indicates that the choosing an appropriate scaling factor c is crucial for balancing
the edge weights between G and H. To ensure that the degrees of the vertices in the scaled graph
G(co) do not exceed those in H, we define the scaling factor ¢ by

H
comin{(w}. 3)

WV deg® (o)
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This choice of ¢y guarantees that for the scaled graph G(cp), the degree of each vertex v € V

satisfies that deg®(“®) (v) < deg’! (v) for all v € V. With this scaling factor ¢ established, we now
proceed to study the properties of the graph G = (V, E,w) and its corresponding minimum cut

value ®% in comparison to H = (V, E’, w'), under the assumption that deg® (v) < deg” (v) for all

veV.

Equalizing the Degrees of GG. To further refine this comparison, consider the subset of vertices
Vo={veV| deg® (v) < deg” (v)}.

We now construct a new graph G = (V, E, @), where E = E U {(v,v)}vev,, and the weight
function w is defined by

deg™ (v) — deg®(v)
2

Observe that the construction ensures that degé(v) = deg (v) for all v € V. Indeed, we have that

deg®(0) = N W= Y wit2 Y @(v,v) = deg® (v)+(deg” (v)—deg® (1) = deg™ (v).

wr u~v U U~V (v,v)

W |p=w and w(v,v)= Yv € Vp.

This modification of G demonstrates that, despite the additional restriction imposed by cg, the prob-
lems remain equivalent. Specifically, we observe that

i wé(S,V\ S) . w(S,V\S)
—— 4 = min ——————~
sev wH(S VA\S) scvag(S,V\S)
Therefore, the generalized cut problem for GG and H remains equivalent to that of Gand H, despite
the degree adjustments made in GG. The following remark will be used in our analysis.
Remark 1. For the weighted graph G = (V, E,w), and the previous G = (V,E,@) where E

includes additional self-loops at some vertices, and any function ¢ : V(G) = V(G) — R, the
following holds: Adding self-loops does not affect the quadratic form associated with the graph

Laplacian, i.e., (p, A%p) = (o, AG<p>. Specifically,

= Z ‘@(u) _90 wuv - Z |90 ‘ wu'” = <(p7Aégp>.

u~GU u~ G

oG = =

However, the addition of self-loops does aﬁ%ct the norm in the space of vertices:

<<P7<P>e2(v,w)zz ( degc Z%’ deg@ ) <<Pa<P>z2(v,u7)-
veV veV

Therefore, while the first quadratic form remains unchanged, the vertex norm in the extended space
is generally increased due to the additional self-loops.

3.2 A CHEEGER-TYPE INEQUALITY FOR CONSTRAINED CLUSTERING

Next we relate the constrained clustering problem to the generalized eigenvalue problem. Our key
result is a Cheeger-type inequality proving that the value of ®% can be upper bounded with respect
to A2(A%) and A2(AH), and the cut with the proven approximation guarantee can be found by a
sweep-set algorithm. Our result is as follows:

Theorem 1. Let G = (V, E,w) and H = (V, E',w') be graphs such that deg® (v) = deg™ (v) for
allv € V. Then, it holds that

A (AG)
G <4y 4
H ="V X (AH) @
where A denotes the normalized Laplacian of the graph H, Af[ is the operator given by
A%)
AG — <1’7
H(I) <.’17, AH.Z‘> )

and X5 is the smallest non-trivial eigenvalue of the corresponding operator defined in equation
Moreover, the cut achieving this approximation guarantee can be found with a sweep-set algorithm.
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Notice that we can assume that G is a connected graph. If H have m connected component, we will
work with \,,,_1(AH),ie. z | 1¢ for each connected component, ensuring = | ker(AH). Before
presenting the proof, notice that we can assume without loss of generality that the graphs G and H
have the same degree sequence due to the preprocessing step.

Proof Sketch of Theorem([l] This is a proof sketch; the complete proof is provided in the appendix.

Step 1. Let 71 < 22 < ... < x, be the eigenvector associated with A2 (A%). It suffices to prove
the existence of a non-empty, proper subset ) C .S C V such that:

wg(S,V\ 9) 4 (x, ACz) - (z,)
wy (S, V\S) (x, AHg)2

&)

This suffices because the above inequality implies:

BG < 41/X(AG) - \/7% WD [z AH

Step 2. We reduce the problem to pr0v1ng equatlon ] for a scaled version of x, defined as z = cz,
where 22 + 27 = 1. The scaling ensures invariance of the expression:

\/(z,AG2>_\/ (2, 2) :\/02<x,AG;v>_\/ c2(z, ) :\/<x,AGm>.\/ (z, )
(z, AHz) (z, AHz) c2{x, Ag) c2(x, AHg) (x, AHz) (x, AHg)’

Thus, next equation is suffices to establish equation [5}:

wag (S, V\S) _4 (2, ACz2) - (z,2)
wg(S,V\9) (2, AHZz)2 7

(6)

Step 3. We now consider sweep sets S, defined as: Sy = {v € V' | z,, < t}. To establish equation@
it suffices to prove that there exists a threshold tg € [z, 2] an defining S = Sy,:

wG(Sto’V\Sto) <Z3AGZ> <Z,Z>
MENAY S 4\/ (2.AT2) ¢ (2 AT @

Step 4. To establish equation we will find a probability density function over [z1, 2, ], and prove:
E(we(S,V\Si) _ , [(2A%)(z 2)
E (wg(Se, V\Sy)) — (z, AHz)2 ~

Thus, equation [7|holds because the existence of a threshold ¢ is guaranteed by the next equation:

WSk V\ Si) _ E(wa(5:V\ 5) w5 V\ ) _, [ A% 2)
1SV \ Sr0) = Ewi(5,V\ 5) :>P{wH<StO,V\StO>§4 (- A2 }>0‘

(®)

Step 5. To establish equation it suffices to find a probability distribution over [z1, z,,] such that:

E (we (S V\S)) _ Lungo e = zol(12u] + |20 wuo
E (wg (S, V \ St)) — D unw 7|Z“_z'“|2wm, .

2

©))

Using the Cauchy-Schwarz inequality, the definition of A, and the property deg®(v) = deg’ (v),
we derive equation [8|as follows:

S 2= 2ol (lzal # zlwae ] 2 2w 2oPwun Y (2l + 20w
UG < Juey UG <4 (2, AC2)(z, 2)
|24 — 20| - 3(z, AHz) - (z, A 7)2
3 el

UN U
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Thus, finding a distribution that satisfies equation [9]is sufficient to complete the proof.

Step 6. We define a distribution, and choose ¢ according to the probability density function 2|t|.
Specifically, the probability that a value between [a, b] is chosen is

Pit € [zu,z)) = [ 2ltldt = sgnz) -2 — sgn(z) - 2

v

Since 27 + 22 = 1, we have that P[t € [21, 2,]] = 1.
Step 7. For this distribution, and regardless of the sign of z,, and z,,, we have:
Ewg(S:, V' \ St)] = Z Plz, <tandt < zy| Wy < Z |20 — 2o|(|2u] + |20]) W,

u~GU u~GU
2
Zu — %
E[wg (S, V\ S)] = Z Plz, <tandt < z,| wyy > Z %wuv.
U~HgU U~HgU
This establishes equation [9]and conclude the proof. The complete details are in the appendix. O

Based on the proof of Theorem [I] to find the cut with the guaranteed approximation, we only need
to order the vertices based on the entries of the eigenvector for the generalised eigenvalue problem,
and construct n sweep sets. See Algorithm [I]for the formal description of our algorithm.

Algorithm 1 The Constrained Clustering Algorithm

Input: Graph G and graph H.
Output: A bi-partition of the vertex sets.
Compute the scaling factor ¢y defined in equation [3]
Scale all edge weights in G by multiplying them with c¢g.
for each vertex v € V do
if deg,; (v) > deg(v) then
Add a self-loop at v with weight 1 (deg, (v) — degg (v)).
end if
end for
Compute the Laplacians A“ and A¥ for the graphs G and H.
Solve the generalized eigenvalue problem

G
B2 Gbjectto £ L1, (10)

(f, AT f)
where f is the eigenvector that minimises the ratio.
Apply a sweep-set algorithm on the eigenvector f to partition the vertices of G into two clusters.
Return: a bi-partition of the vertex set

Remark 2. Theorem |l| can be viewed as a generalization of the classical Cheeger inequality for
graphs (Chung| [1997). Specifically, if we consider the graph H as the complete graph with w,, =1
for all edges, then it is straightforward to show that

—2 7 V2 <A M (AG
oI T v g S WA,
where Ao (AC) is the second smallest eigenvalue of the normalized graph Laplacian of G. Similarly,

if we consider the graph H = (V, E',w') as the complete graph with self-loops where wi =

deg® (u) deg® (v)
8 V‘;l(;)g Y) | then

. wa(S,V\S) . vol(G)wg(S,V\ S)
oS, i (vol(9),vol(V 1 9)) = 08By olisivol(V 1 5) = V(A

3.3 PRACTICAL CONSIDERATIONS
The proof of Theorem [I] not only establishes the general cut bound but also provides a constructive

method to find a subset S C V that is close to minimizing the generalized cut problem. How-
ever, this approach can be computationally expensive, particularly because the Laplacian H is not
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invertible. To address this issue, we modify the graph H by adding a “negative” self-loop at any ver-
tex, effectively making the Laplacian invertible. This modification leverages the signed Laplacian,
which adjusts the operator to ensure invertibility, and the introduction of a negative self-loop has
little impact on the overall results, which will be demonstrated in Section [ through experiments.

Formally, we prove that adding a negative self-loop to H makes the signed Laplacian A " invertible,
ensuring Ay (AH") > 0. Since A\ (AH") < \y(A™), we can replace Ao(AH) with A (A in
Theorem [I] maintaining the theorem’s validity.

Lemma 2. Let H = (V, E,w) be a weighted graph, and let H' = (V, E' ,w’) be another weighted
graph such that E' = E U {(vg,vg) }, where vy is a vertex with a self-loop. Assume that w'|g = w
and consider the signature s = 1 for all E and $(y,,v,) = —1. Then,

0 < A(AF) < xp(AT),
where A is the Laplacian of graph H.

The proof of Lemma [2| shows that (g, A g) ~ (g, A¥ g) for a small weight in the self-loop, then
we will solve equation |10 for the self-loop, because

(f,ASf) | (f,A%])

(AL (AT
The problem involves identifying the eigenfunction and eigenvalue of a linear operator using a
Lagrangian-based framework. The Lagrangian £(¢, A) is defined as

L, 2) = (A%, 0) = A(AT ¢, 0) = 1),
where ¢ is the function to be optimized, and ) is the Lagrange multiplier. To find the minimizer ¢,
we set the gradient of £ with respect to ¢ to zero, i.e., V,L(p, \) = 0. Expanding this condition
yields that 2A%p — 2AAH "¢ = 0, which simplifies to A€y = AAH "¢. This formulation leads to
a generalized eigenvalue problem where ¢ is the eigenfunction, and \ is the eigenvalue. If A "is
invertible, the equation can be reformulated as
(A T1A% = X,

illustrating the relationship between the linear operators and providing a solution to the eigenvalue
problem via the Lagrange multiplier method. This eigenvalue equation is crucial for extracting
the optimal partitions of the graph based on the constraints encoded within A . We prove that

solving the generalized eigenvalue problem for A“ and Af / produces all feasible solutions, as all
eigenvalues are real and non-negative. This contrasts with the approach by Wang et al.|(2014).

Lemma 3. Let A " be the signed Laplacian of the weighted graph H', and A® the normalized
Laplacian of the weighted graph G. The operator (A ,)’1AG is a positive, self-adjoint operator,
with all its eigenvalues are real and non-negative.

We remark that solving equation becomes significantly more efficient for A " because it is
symmetric positive definite and invertible. For dense matrices, this property allows for the use of
the Cholesky decomposition with computational cost O(n?/3), reducing the problem to a standard
eigenvalue problem (Saad,[2011). This is an improvement over the general case for the QZ algorithm
(generalized Schur decomposition) where it is used with a complexity of O(n?). Moreover, the
Cholesky decomposition enhances numerical stability, leading to fewer round-off errors. For large,
sparse graphs and positive definite operators, iterative methods such as the Lanczos algorithm could
be used. The complexity of these solvers are O(nkm), where k is the number of eigenvalues to
find (smaller that n) and m related with the iterations required for convergence and the condition
number.

4 EXPERIMENTS

We conducted experiments to compare the spectral clustering method with the constrained clustering
approach, using both synthetic and real-world datasets. The clustering accuracy was evaluated using
the Adjusted Rand Index (ARI). All simulations were run on a PC equipped with an Intel® Core™
i7-10610U CPU running at 1.80 GHz and 32 GB of RAM, using MATLAB R2024a for computation.
The three clustering algorithms compared in our experiments were:
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* SPECTRAL CLUSTERING (SC): We computed the normalized Laplacian A“ and we used its
second smallest eigenvector (Fiedler vector) for clustering the vertices.

* CONSTRAINED CLUSTERING (CC): We solved equation[I0]and used the eigenvector correspond-
ing to the smallest positive eigenvalue (excluding the trivial zero eigenvalue) for clustering.

* CONSTRAINED CLUSTERING WITH NEGATIVE SELF-LOOPS (CC++): Our algorithm consists
in adding a negative self-loop and solve equation [I0] for the signed Laplacian.

4.1 STOCHASTIC BLOCK MODEL

We considered a binary Stochastic Block Model (SBM) with n = 1,000 vertices divided into two
equal-sized communities. Edges between vertices were generated based on intra-cluster probability
p and inter-cluster probability ¢. Specifically, we fixed p = 0.2 and varied ¢ from 0.12 to 0.2 in 30
equidistant steps. For each value of ¢, we generated two graphs generated from the SBM:

* (G: a graph with intra-cluster edge probability p and inter-cluster edge probability g.

* H: a graph generated with intra-cluster edge probability ¢ and inter-cluster edge probability p,
effectively the complement of G in terms of edge probabilities.

The vertex labels were kept consistent between GG and H. This variation allows us to observe how the
clustering performance changes as the distinction between communities becomes less pronounced
(since higher ¢ implies more inter-cluster edges). The experimental results, visualized in Figure
illustrate the superior performance of CC++ compared to traditional SC, particularly as the inter-
cluster edge probability g increases.

At low values of ¢ (i.e., when the distinction between communities is clear), both methods perform
well, achieving near-perfect ARI values. As seen in Figure[Ta] both methods maintain ARI values
close to 1.0 when ¢ < 0.14. This is expected, as the strong intra-cluster edge probability p = 0.2
dominates the inter-cluster connections, making the community structure relatively easy to detect.

However, as g increases, the performance of SC deteriorates rapidly. For instance, between ¢ = 0.16
and ¢ = 0.18, the ARI for SC drops sharply from approximately 0.7 to near 0.1. This decline
occurs because higher values of ¢ increase the number of inter-cluster edges, blurring the distinction
between communities. SC relies solely on the structure of G, struggles to correctly partition the
vertices under these conditions.

In contrast, both of CC and CC++ are significantly more robust to increasing ¢q. Even as ¢ ap-
proaches 0.17, the ARI remains above 0.5, significantly outperforming SC in this regime. This
robustness stems from the ability of the Generalized Eigenvalue method to leverage the structural
information of both G and H, balancing the cuts between them, the method mitigates the negative
impact of increased inter-cluster edges, thus maintaining better clustering accuracy even when the
community structure is less pronounced.

This set of experimental results clearly demonstrates that the CC++ algorithm outperforms the tra-
ditional SC, particularly in challenging scenarios where the inter-cluster edge probability g is high.

4.2  VARYING CLUSTER DISTANCE

Based on the Geometric Random Graph (RGG) (Avrachenkov et al., 2021 |Dall & Christensen)
2002), we generated two clusters of vertices, each containing 500 points, randomly distributed
within two-dimensional circular regions (disks) of radius 0.2. The separation between the clusters’
centroids varied between -0.35 and 0.35, in 25 equidistant steps. This range allows us to simu-
late different levels of overlap between the clusters. Each configuration of cluster separation was
repeated 10 times and we generated two graphs, G and H, on the same set of vertices, but with
different connectivity structures:

* (G : Vertices within the same cluster were connected with a large radius 7, = 0.1, and vertices
between clusters were connected with a smaller radius 7y, = 0.05.

e H : The intra-cluster connection radius is reduced to 7, = 0.05, while the inter-cluster radius is
increased to riner = 0.1. Edges more likely connect vertices across the two clusters
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Figure 1: (a) Mean ARI vs Inter-cluster Edge Probability ¢ with error bars. CC (red) and CC++
(blue) consistently outperforms SC (yellow), especially as ¢ increases. (b) Mean execution time
versus the number of vertices. The plot shows that CC++ (blue) performs similarly to SC (yellow)
for smaller graphs but scales more efficiently than CC (red) as the number of vertices increases.
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Figure 2: (a) Two clusters generated by a RGG with varying separation. (b) Comparison of ARI vs
Cluster Distance for SC, CC, and CC++.

Figure [2a] shows the RGG used in the experiments. The cluster distance is varied to simulate dif-
ferent levels of overlap between clusters. Figure 2b]shows the ARI scores for both methods across
different cluster distances. Each point represents the mean ARI, with error bars indicating standard
error across 10 repetitions. When the cluster distance is large (above 0.3), both methods achieve
near-perfect ARI values. The separation between clusters is clear, and both algorithms can detect
the underlying structure accurately. As the clusters get closer, SC shows a significant drop in perfor-
mance. For distances near zero, where clusters overlap, the ARI scores for SC drop to nearly zero,
indicating its struggle to differentiate overlapping clusters. In contrast, the Generalized Eigenvalue
method is more resilient to cluster overlap, maintaining significantly higher ARI values even when
the clusters become indistinguishable by conventional means. This robustness is due to the method’s
ability to leverage information from both graphs GG and H, capturing both intra- and inter-cluster re-
lationships.

4.3 EXPERIMENTS WITH TEMPERATURE DATA

We evaluated SC and CC++ on real-world temperature data from ground stations in Brittany, Jan-
uary 2014 2015). The experiments considered three data types: temperature, maximal
temperature, and minimal temperature. Temperature values con be seen as graph signals
[2018), with vertices representing readings. The aim is to cluster stations by proximity and
similar temperature patterns, combining spatial and temperature data. This approach can be applied
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Figure 3: (a) Clustering based on SC, grouping stations by geographical proximity. (b) Clustering
using CC++, which considers both location and temperature similarity. (c) Mean and SE of temper-
ature, illustrating no overlap for CC++ compared to SC.

Table 1: Percentage of successful separation of regions using temperature and location data.

Data Type SC (%) CC(%) CC++ (%)
Temperature 63.30% 79.16% 79.16%
Maximal Temperature 62.90% 80.91% 81.04%
Minimal Temperature ~ 62.63%  79.16% 77.95%

to identify micro climates (Cao et al.| 2021)) or to segment regions for agricultural (Yao et al.||[2022),
where both location and temperature are important factors.

We construct a graph from the input data as follows: every station is represented as a vertex, and
N3
the edge weight is defined by spatial similarity via a Gaussian kernel: W;; = exp (—%) if
1

d(i,7) < o9, and 0 otherwise, where d(i, j) is the Euclidean distance. Parameters were set to
o = 5x10% and o5 = 10° (Girault,2015). SC primarily grouped stations by proximity (Figure[3p).

To construct the constraint graph H, we use the temperature values and an inverse Gaussian kernel,
assigning edge weights close to 1 for large temperature differences and O for similar temperatures,
analogous to how G is built using spatial proximity. This allows the clustering algorithm to in-
corporate both geographical and temperature constraints for a more nuanced partition. The output
of CC++ is shown in Figure [3p, where only two cities differ from the clustering based on spatial
proximity alone (SC). Finally, we compute the mean and standard error (SE) for each cluster and
method. For this specific hour, SC shows overlap between clusters’ temperature values, whereas
CC++ achieves no overlap, indicating better clustering of stations with similar temperatures Fig-

ure Bk.

We repeated this process for all available measurements, one per hour, across 24 hours over 31
days, totaling 744 observations. To evaluate clustering accuracy, we calculated the mean and SE
for clustering using both methods. A separation was considered correct if the clusters’ values did
not overlap, as determined by their SE. Table [T| summarizes the results, showing the percentage of
correct separations for each temperature data type when comparing SC and CC++.

As shown in Table [T} CC++ consistently outperformed CC across all temperature data types. This
can be attributed to the method’s ability to leverage both the spatial structure of the stations and the
actual temperature data. In contrast, SC, which relies solely on the graph structure, struggled to
accurately separate stations into distinct clusters when the temperature differences were subtle.
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A OMITTED DETAILS FROM SECTION 3]

This section presents the details omitted from Section 3]

Proof of Theorem[I] We aim to prove the inequality:

A (AG)
BG < 4 1! 11
Step 1. Let # : V — R be the eigenfunction associated with A2(A%). Without loss of generality,
we renumber the vertices such that the coordinates of x satisfy 1 < z9 < ... < x,,. It suffices to
prove the existence of a non-empty, proper subset ) C S C V such that:
wg(S,V\ 9) 4 (x, ACz) - (z, ) (12)
wH(SaV\S) B <1‘,AH$>2 .
This is sufficient because:
S, V\S
@g < M (Definition of ®$ as the minimum ratio cut)
(x, ACz) (x, ) ,
=4 . B tion |12
\/(I,AHI> (2, A ) (By equation[12)
=44/ Ao AG —_— {z,2) (Using z is the eigenvector of AQ(AE))

AHac

1 z, A"z H
<44/ A2(AG) - m (Since % > X2 (A7),

This inequality proves that establishing equation [T2] suffices to derive equation

Step 2. We now show that proving equation[I2|for x is equivalent to proving the existence of .S such
that :

wg (S, V\ 9) 4 (2, AG2)(z, z)

wr(S,V\9) (2, AHz)2 (13)

where z = ca is a scaled version of z, defined such that 22 + 22 = 1.

Because x L 1, we have 21 < 0 < z,, and thus scaling = does not affect the ratio. Specifically:
(2,462)  (22)  [P@A%) E@a)  [@A%)  (ea)
(z, AH2) (2, AHz) \| 2(x,AHz) 2(x,AHz) \| (x,AHz) (x,AHz)

Thus, proving equation [I3]suffices to establish equation[I2]
Step 3. Let t € R, and define the set:

St:{’UGV|Zv§t},

commonly referred to as a sweep set. To establish equation[I3] it suffices to prove that there exists
a threshold ¢, such that:

we(Si, V\S) _ . [@A%) [ (z2)
W (S, V\ Sh,) 4\/ (2, AT \/ (2, A2y (1

Establishing S = Sy, equation[I4]directly implies equation [I3}

12
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Step 4. To establish equation [14]} it suffices to show that there exists a distribution f(¢) over [21, 2y,
such that the expectation satisfies:

E (wg(S:, V \ S)) (2, AC2)(z, 2)
E (0 (5, V\S) =\ (s A2 (15)

Here, S, is treated as a random variable parameterized by ¢ € [z1, z,,], where ¢ is drawn from a
probability density function f(¢). S; depends on the distribution of ¢, which influences the likelihood
of including a vertex v in S; based on its value z,.

This suffices because, if we define

_ E (wG(Sta |4 \ St))
7T E(wn(S, V\S))

€R,

then, by linearity of expectation:

E[wg (S, V\ St) — owu (S, V\ Sp)] = Ewg (S, V\ St)] — ¢ E[wr (S, V' \ St)] = 0.

This implies that for some %(:
Plwe(St,. V \ St,) — pwn (S, V\ S,) < 0] >0, (16)

because if for all ¢:
IP [’LUG(St, V \ St) — (p’LUH(St, V \ St) S 0] = O7

it would follow that we (Se, V' \ St) — ¢ wg (Se, V' \ S¢) > 0 for all ¢, contradicting the fact that:
Ewa(Se, V\ St) — pwn (S, V' \ S¢)] = 0.

Thus, equation @] holds, which implies that for some #(:
wG(Stov vV \ Sto) - SOU/H(StO, 14 \ Sto) < Oa

and equivalently:
wG(Sto V \ Sto)
wr (Sto, V' \ Sty)

E(wG(StaV\St))
E (wg (S;, V'\ St))

<

Combining this with equation [I6] we obtain:

{wG(St(J?V \ Sto)
wH(Stoﬂ 14 \ Sto)

IN

E (we(Se, V '\ Sy))
E(wmst,V\st))} >0

From Eq. equation[T3] it follows that:

wa(Sty, V' \ Sty) (2, AG2)(z,2)
{wH(Stovv\Sto) §4 <Z»AHZ>2 } =

Establishing equation[I3]thus guarantees the existence of ¢ satisfying equation[T4]
Step 5. To establish equation it suffices to find a probability distribution over [z1, z,,] such that
the following inequality holds:

E (we(Se, V \ St)) < Zuwcv |2 = 20| (|2u] + |20 ) Wao

E(wa (S, V' \ St)) > e %wuv

a7

13
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We now show that equation [I7)implies equation [I5]as follows:

E (wg(S,, V' \ Si)) < Zuwgv |20 — 20| (|2] + |20 ) Wuo

E (’lUH(St, Vv \ St)) - ZHNH’[) |Zu—22v|2 Wan

(By equation

B Vo S o
B S 25 w0,

VAT [T gzl + 2000
) S 27 w0

\/zT \/2 Zuwcv (22 + 22)wyy

_\/zAG Az, 2)0,0)

|Zu*zv|
ZuNHU 2 wU'U

V{2, A%2) - 20/(2,2),(0)

(Cauchy-Schwarz inequality)

(Definition of A%)

(Since (a + b)? < 2(a® + %))

(Definition of the inner product in G)

%< 2, AHZ) (Definition of A™)
AG
< 4\/<Z7 <Zz>A<IZ{,Zi>262(H) (Since deg® (v) = deg” (v)).

Thus, equation [I7]implies equation

Step 6. Consider the non-negative function 2|¢| defined on the interval |21, 2,,]. This function serves
as a probability density function (PDF) over [21, 2,,] because 2?2 + 22 = 1, 21 is negative, and z,, is
positive. Specifically:

Zn
/ 2/t| dt = sgn(z,) - 22 —sgn(z1) - 27 = 1.
zZ1

The normalization in step 2 ensures that the integral of 2|¢| over [21, 2,,] equals 1, validating it as a
PDF. Hence, the probability that a value between [z,, 2, ] is given by

Pit € [zu,zal) = [ 2ltldt = sgnz,) 2~ sgn(z) - 2

v

The expectation E [wg (St, V' \ St)] represents the expected weight of the cut wg (St, V'\ S;), which
depends on the random threshold ¢ sampled from the previously defined probability density function.
By the linearity of expectation:

E [wG(Sta 14 \ St)] = Z E [1uESt and v&St] Wy,
u~GU
where 1,¢g, and vgs, is the indicator function that equals 1 when u € S; and v ¢ Sy, and 0 otherwise.
Using the definition of probability, the expectation simplifies to:
Elwg(S:, V' \ St)] = Z Plz, < tandt < zy] Wyy.
u~qgv
If we can establish the following bounds:

‘Zu - Zv|2

5 <Plzy, <tandt < zy] < (Jzu| + |20]) |20 — 20l (18)

14
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then we can bound the expectation of the weight of the cut as follows:

E[we (S, V\ Si)] < Z (Izul + 120 )20 = 20| wyo-

u~GU
Similarly, for H, we have:

1
E[wg (S, V\ S)] = Z Plz, <tandt < z,| wyy > 3 Z |20 — zv|2wuv.

U~NHU U~HU

These last two inequalities establish equation [I7] Therefore, to conclude the proof, it remains to

prove equation [I§]
Step 7. To prove equation [I8] recall that:

Zu 2 _ .2 : —
i 2422 ifsgn(z,) # sen(z,).

v

We first establish the upper bound in equation[T8}
Plzy <tandt < z,] < (Jzu| + |20]) |20 — 20]-

Case 1: sgn(z,) = sgn(z,). In this case:
|22 = 22| = |(2u + 20) (2 — 20)| = |20 + 20| |2 — 2]
Since |zy, + 2y| < |2u| + |20|, we have:

‘Zi - 212;‘ < (|zul + 120]) 20 = 20

Case 2: sgn(z,) # sgn(z,). In this case:
22422 < (24 — 20)% = |20 — 2%,
and thus:
Zﬁ + 212; < (J2ul + |20]) 2w — 20|
Combining both cases establishes the upper bound in equation[I9]
Now, we establish the lower bound in equation @

|Zu — ZUP

5 <Plzy <tandt < z,].

Case 1: sgn(z,) = sgn(z,). In this case:
|z3 — z?,! = |2y — 2o| |20 + 20| -
Since |zy + 2y| > |20 — 2v|, We have:

(2 — Zv)2

|22 z§|2\zu—zv|22 5

w

Case 2: sgn(z,) # sgn(z,). Using:
0 < (24 +20)2 =222 +22) — (24 — 20)%,

it follows that:
(2u — 20)?

3 gzz—i—zg.

Combining both cases establishes the lower bound in equation [20]

Finally, combining equation [T9]and equation 20| proves equation [I8] completing the proof.

15
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Proof of Lemmal[2} Let f be the eigenfunction corresponding to A2(Af). Consider the function
g:V — R, defined as: g, = f, — f,,, forallv eV, hence g,, = 0. By computing the Rayleigh
quotient for g with respect to the Laplacian of H:

<97AH9>H: Z |gu_gv|2wuv: Z |fu_fv|2wuv:)\2(AH)<faf>H

U~ HU U~ g

The Rayleigh quotient for g with respect to A? "is given by

<97AH g>H’ = Z ‘gu _g’l)|2w;q) + 2‘gvo|2w;0yo = Z ‘fu - fv|2wuv = <95AH9>H

UN 1 v U~ HU

The norm of g with respect to H' satisfies that

(9.9)m =Y lgo? deg™ (v) = > |gu|* deg™ (v) + g2, (deg s (v0) + 2) = (9.9
veV veV

Thus, we have, since f is an eigenfunction f L 1, hence 0 = (f,1)y

<gag>H = Z |fv - fvo‘QdegH(v) = <f’f>H - 2fvo<f>1>H + 30<1’1>H > <f»f>H

veV

Using this, we apply the Rayleigh quotient to bound A\; (A% /) as

(9.8 g\ _ (9. A" g i _ MM, )
(.90~ A{990u —  ([,N)m
Finally, let f be a non-zero function. Consider the following expression:

<f’AH f) = Z‘fu fv|2wuv+2f30wvov0'

u~v

M(Al) < = Ao (AM).

We have 0 < (f, Ag/ﬁ, and equality holds if and only if: (f, Aglﬁ =0 << fu—fo=
0 VYu,v and f,, = 0. Thisimplies that f = 0 for all v € V, which contradicts the assumption
that f is a non-zero function. Therefore, A\; (AZ") > 0. O

1

Proof of Lemma[3] Since AX "is positive-definite and self-adjoint, its inverse (Af/)_ and its

square root (AX ,)1/ 2 exist and are self-adjoint operators. Define the operator C' as:
C = (AL Al
Self-adjointness of C': The adjoint of C' is:
O = ((AH)T2AG(A)712) = (Al 2 (AG) (A1
= (AITEASA T =

since A "and AC are self-adjoint operators.

Positive Semi-definiteness of C': For any function ¢ € £4(V, w), consider:

(Co, ) = ((AH)V2AC(AT) 7120, ).
Let ¢ = (AH")=1/2. Then, (Cip, ) = (A%, ). Since AY is positive semi-definite, we have
(A%, 4h) > 0. Therefore, (Cp, ) > 0, which means C is positive semi-definite.

Because C' is self-adjoint and positive semi-definite, it is diagonalizable with real, non-negative
eigenvalues. Thus, there exists an orthogonal matrix W and a diagonal matrix A with non-negative
entries such that:

C=WAW™.

16
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We can express (AH)~1AC as:
(AH)TIAS = (AF) T2 ((AF) T2 (AT 72) (a2
= (Aol = @) Pwaw Tl .

Let V = (AZ')=1/2/. Then,
(AHYTIAG = yAV*,

Since V is invertible (as the product of invertible matrices), (A /)*1AG is diagonalizable with real,
non-negative eigenvalues.

This completes the proof. O

B ADDITIONAL EXPERIMENTS FROM SECTION [4]

In this section, we present additional experiments to evaluate the performance of our algorithm. To
provide a comprehensive analysis, we include comparisons with additional methods. This section
will be further updated with more comparative methods as we expand our experiments. The method
included in this version is:

* FLEXIBLE CONSTRAINED SPECTRAL CLUSTERING (FC): This method is presented in/Wang &
Davidson| (2010).

As in Subsection we evaluate the performance of clustering methods using synthetic graphs
generated by the stochastic block model (SBM). We analyze the algorithms for graphs of vary-
ing sizes, focusing particularly on smaller graphs, where subtle variations are more prominent.
For larger graphs, the performance trends tend to stabilize and exhibit fewer differences. In
these experiments, graphs were generated with the number of nodes n varying across four sizes:
n = 250, 500, 750, 1000.

The results are summarized in Figure |4, which illustrates the performance of the four clustering
methods—Spectral Clustering (SC), Constrained Clustering (CC), Constrained Clustering with Self-
loops (CC++), and Flexible Clustering (FC)—for varying inter-cluster edge probabilities ¢ and dif-
ferent graph sizes.

Based on the results presented in Figure ] we highlight the following key observations and advan-
tages of our method compared to the baseline approaches:

Improved Performance on Smaller Graphs: Our method demonstrates superior performance on
smaller graphs (n = 250,500) in terms of the mean Adjusted Rand Index (ARI), as shown in
panels (a) and (b). As the graph size increases (n = 750, 1000), the performance of our approach
becomes comparable to that of the other methods, indicating that our algorithm is robust across
different graph sizes.

Parameter-Free Advantage: The Flexible Clustering (FC) method presented in [Wang & Davidson
(2010) requires the user to define an additional parameter (3) that directly influences the solution
of the generalized eigenvalue problem. This parameter must be carefully chosen to ensure at least
one feasible solution exists, as incorrect parameter selection can result in negative eigenvalues and
infeasible outcomes. In contrast, our method avoids this issue entirely. As shown in Lemma@ the
introduction of self-loops ensures that the operator (A ' )~LAC is positive and self-adjoint, with all
eigenvalues guaranteed to be real and non-negative.

Cheeger-type inequality: Unlike the FC method, which does not provide a theoretical guarantee
linking the eigenfunctions used for clustering to the optimization objective, our approach establishes
a Cheeger-type inequality.
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Figure 4: Mean Adjusted Rand Index (ARI) as a function of inter-cluster edge probability g for four
clustering methods. Each panel represents a different graph size: (a) n = 250, (b) n = 500, (c)

n = 750, and (d) n = 1000.
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