
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONSTRAINED GRAPH CLUSTERING WITH
SIGNED LAPLACIANS

Anonymous authors
Paper under double-blind review

ABSTRACT

Given two weighted graphs G = (V,E,wG) and H = (V, F,wH) defined on the
same vertex set, the constrained clustering problem asks to find a set S ⊂ V that
minimises the cut ratio between wG(S, V \ S) and wH(S, V \ S). We develop
a Cheeger-type inequality that relates the solution of the constrained clustering
problem to the spectral properties of G and H . To reduce computational com-
plexity, we use the signed Laplacian on H , simplifying the calculations while
maintaining accurate results. By solving a generalized eigenvalue problem, our
algorithm provides improvements in performance, particularly in scenarios where
traditional spectral clustering methods face difficulties. We demonstrate its prac-
tical effectiveness through experiments on both synthetic and real-world datasets.

1 INTRODUCTION

Clustering is a fundamental technique in machine learning, with extensive applications across com-
puter science and various scientific disciplines. The primary goal of clustering is to partition data
points into clusters, such that points within each cluster are more densely connected than those in
other clusters. Traditional clustering, such spectral clustering (Von Luxburg, 2007) rely solely in
the structure of the data. However, in many real-world scenarios, additional domain knowledge is
available, introducing specific constraints that should be incorporated into the clustering process to
achieve more accurate and meaningful results (Basu et al., 2008).

Constrained clustering focuses on developing algorithms that effectively incorporate this domain
knowledge to enhance clustering performance (Wagstaff et al., 2001). The domain knowledge is
represented by two types of pairwise constraints: (1) MUST-LINK constraints, requiring that a pair
of data points be assigned to the same cluster, and (2) CANNOT-LINK constraints, requiring that a
pair of data points must be assigned to different clusters. In the context of graph clustering, the goal
is partition the vertices of a graph based on edge connectivity while satisfying the given constrains.

In this paper, we examine the constrained clustering problem by formalize these constraints using
the graphs G = (V,E,w) and H = (V,E′, w′), in which every data point corresponds to a graph
vertex, every MUST-LINK (resp, CANNOT-LINK) constraint corresponds to an edge in G (resp, H),
and the edge weights capture the strength of the user’s preference for satisfying the corresponding
constraint. For any set S ⊆ V , we define the cut ratio of S between G and H by

cutGH(S, V \ S) = wG(S, V \ S)
wH(S, V \ S)

, (1)

and the objective is to find S that achieves

ΦG
H = min

∅⊂S⊂V
cutGH(S, V \ S).

We develop an efficient approximation algorithm for the constrained graph clustering problem. The
key to our algorithm is a Cheeger-type inequality that upper bounds ΦG

H with respect to λ2(∆G
H)

and λ2(∆H), where

λ2
(
∆G

H

)
= min

x⊥1

⟨x,∆Gx⟩
⟨x,∆Hx⟩

, and λ2
(
∆H

)
= min

x⊥1

⟨x,∆Hx⟩
⟨x, x⟩

. (2)

and ∆G and ∆H are the Laplacian operators of G and H respectively. By introducing several tech-
niques to adjust G and H , we significantly reduce the time complexity for solving the generalised

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

eigenvalue problem, while maintaining the one-to-one correspondence between the solution of the
new reduced instance and the initial one. The empirical studies on both the synthetic and real-world
data sets confirm that with the two sets of constraints our algorithm presents significantly better per-
formance than the classical spectral clustering algorithm, and the running time of our algorithm is
close to traditional spectral clustering methods.

Related work. Cheer-type inequalities for constrained graph clustering are studied in litera-
ture. For example, Cucuringu et al. (2016) proved that ΦG

H · ΦG
K ≤ 4λ2(∆

G
H); this inequality is

based on a third graph K, which they call the demand graph. Koutis et al. (2023) showed that
ΦG

H ≤ 16λ2(∆
G
H)/Φ(G), where Φ(G) is the standard conductance of G. These two result cannot

be directly compared with ours, since both inequalities upper bound ΦG
H with respect to λ2(∆G

H)
and parameters of H , i.e., ΦG

K in (Cucuringu et al., 2016) and Φ(G) in (Koutis et al., 2023). In
contrast, we upper bound ΦG

H with respect to λ2(∆G
H) and λ2(∆H). Trevisan (2013) studied the

computational complexity of the problem, and proved that under the Unique Games Conjectures it’s

impossible to find a cut that achieves O
(√

ΦG
H

)
approximation in polynomial time.

Our work also relates to the studies on constrained graph clustering from practical perspectives,
e.g., (Jia et al., 2021; Wang & Davidson, 2010; Wang et al., 2014) and signed cuts using the signed
Laplacian (Knyazev, 2017). Most of these studies, however, lack a rigorous analysis on the quality
of the resulting clusters compared to the optimal solution. Our work is further linked to Cheeger-
type inequalities for different graph Laplacians (Lange et al., 2015; Li et al., 2019) (including the
signed Laplacian (Atay & Liu, 2020)), and their higher-order generalisations (Lee et al., 2014).

Contribution. We present a constrained graph clustering method and establish a novel Cheeger-
type inequality that directly relates the problem to the spectral properties of the graphs G and H ,
providing theoretical guarantees often missing in existing approaches. We also introduce an efficient
implementation leveraging the signed Laplacian, which simplifies computations and ensures stabil-
ity without requiring additional parameters. Finally, we demonstrate the robustness and efficiency
of our algorithm on both synthetic and real-world datasets.

2 BACKGROUND & PRELIMINARIES

We consider a finite, undirected graph G = (V,E), where V is the set of vertices and E is the set of
edges. Each edge uv ∈ E denotes an undirected connection between vertices u and v. A self-loop
in this context is represented by uu, indicating an edge that starts and ends at the same vertex u.
The notation u ∼ v means that u and v are connected by an edge. We define weights in the graph
G through the function w : E → R+, where wuv = wvu specifies the weight of the edge between
vertices u and v. By definition, each self-loop uu contributes twice to the degree of vertex u.

For E0 ⊆ E, we interpret w as a discrete measure on the corresponding sets, using the notation
w(E0) =

∑
uv∈E0

wuv. For V0, V1 ⊆ V , we denote the set of unoriented edges between V0 and V1
as E(V0, V1) = {uv ∈ E | u ∈ V0 and v ∈ V1}. We denote by Ev the set of all edges connected
to v, and Nv the neighbourhood of v as the set of vertices adjacent to v, i.e., Ev = E({v}, V ) and
Nv := {u ∈ V | v ∼ u}. The edge weights on a graph determine a weighted degree of a vertex,
defined by deg(v) = w(Ev) =

∑
e∈Ev

we.

The Laplacian. We define some standard spaces related to a finite and weighted graphG = (V,E)
with weight function w. We define the Hilbert spaces ℓ2(V,w) and ℓ2(E,w) as:

ℓ2(V,w) = {φ : V → R}, ℓ2(E,w) = {η : E → R}.

Furthermore, we consider the natural inner product for these spaces. For ℓ2(V,w), the inner product
between functions φ and ψ is defined as ⟨φ,ψ⟩V =

∑
v∈V φ(v)ψ(v) deg(v). For ℓ2(E,w), the

inner product between functions η and ξ is defined as ⟨η, ξ⟩E :=
∑

e∈E ηeξewe. LetG = (V,W,w)
be a weighted graph. The derivative d is defined as

d : ℓ2(V,w) −→ ℓ2(E,w), (dφ)e=(u,v) = φ(u)− φ(v).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The adjoint d∗ : ℓ2(E,w) −→ ℓ2(V,w) is given by

(d∗η)(v) = − 1

deg(v)

∑
e∈Ev

weηe.

The weighted Laplacian ∆ : ℓ2(V,w) −→ ℓ2(V,w) is defined as ∆ = d∗d, and acts as

(∆φ)(v) =
1

deg(v)

∑
u∈Nv

(
φ(v)− φ(u)

)
wuv.

Let G = (V,E,w) be a weighted graph, and for all φ ∈ ℓ2(V,w) we have that

⟨φ,∆Gφ⟩ℓ2(V ) = ⟨φ, d∗dφ⟩ℓ2(V ) = ⟨dφ, dφ⟩ℓ2(E) =
∑
u∼v

|dφuv|2wuv =
∑
u∼v

(φ(u)− φ(v))2wuv.

Graph Signature. A signature of a graph G = (V,E) is a map α : E → {+1,−1}, which
assigns a sign to each edge. Let G = (V,E,w) be a weighted graph with a signature α. The signed
Laplacian, denoted as ∆α, is a linear operator ∆α : ℓ2(V,w) → ℓ2(V,w), defined by

(∆αφ)(v) =
1

deg(v)

∑
u∈Nv

(
φ(v)− αvuφ(u)

)
wvu,

where wuv is the weight of the edge uv, and αuv indicates the sign of the edge as given by the
signature α. Observe that the Laplacian is a particular case of the signed Laplacian by taking αuv =
1 for all edges and the signless Laplacian by taking αuv = −1 for all edges. The signed Laplacian
can be viewed as a special case of the magnetic Laplacian with a discrete magnetic potential taking
values in {0, π}. ∆α (and therefore ∆) are positive semi-definite and self-adjoint operators, hence
all the eigenvalues are real and non-negative.

3 ALGORITHM & ANALYSIS

In this section, we present a constrained graph clustering algorithm called CC++. At a high level,
our algorithm consists of the following: in the preprocessing step, we adjust the edge weights of G
and add self-loops to the vertices of G, such that both of G and H have the same degree sequence.
Then, we show that a desired cut can be found by a sweep-set algorithm when the eigenvector corre-
sponding to a generalized eigenvalue problem is given as input. Taking the practical implementation
into account, we introduce a negative self-loop in H for efficient computation, and justify its perfor-
mance both in theory and in practice. Due to page limitations, proofs omitted from this section can
be found in the appendix.

3.1 PREPROCESSING G AND H

In the preprocessing step, our algorithm first scales the weights of all the edges in G by the same
factor, and adds self-loops to the resulting graphG. These two operations ensure that the constructed
graph G̃ and H have the same degree sequence, while maintaining the optimal cut of the input
instance.

Scaling the graph G. For any c ∈ R+, we scale the edge weights of G by a factor of c and define
G(c) = (V,E, c · w), where (c · w)e = c · we for each edge e. By equation 1, we have that

cutG(c)
H (S, V \ S) = wG(c)(S, V \ S)

wH(S, V \ S)
= c · w

G(S, V \ S)
wH(S, V \ S)

= c · cutGH(S, V \ S).

Thus, the minimum cut problem for the scaled graph can be expressed as

Φ
G(c)
H = c · ΦG

H .

This equivalence indicates that the choosing an appropriate scaling factor c is crucial for balancing
the edge weights between G and H . To ensure that the degrees of the vertices in the scaled graph
G(c0) do not exceed those in H , we define the scaling factor c0 by

c0 = min
v∈V

{
degH(v)

degG(v)

}
. (3)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

This choice of c0 guarantees that for the scaled graph G(c0), the degree of each vertex v ∈ V

satisfies that degG(c0)(v) ≤ degH(v) for all v ∈ V . With this scaling factor c0 established, we now
proceed to study the properties of the graph G = (V,E,w) and its corresponding minimum cut
value ΦG

H in comparison to H = (V,E′, w′), under the assumption that degG(v) ≤ degH(v) for all
v ∈ V .

Equalizing the Degrees of G. To further refine this comparison, consider the subset of vertices

V0 =
{
v ∈ V | degG(v) < degH(v)

}
.

We now construct a new graph G̃ = (V, Ẽ, w̃), where Ẽ = E ∪ {(v, v)}v∈V0
, and the weight

function w̃ is defined by

w̃ |E= w and w̃(v, v) =
degH(v)− degG(v)

2
∀v ∈ V0.

Observe that the construction ensures that degG̃(v) = degH(v) for all v ∈ V . Indeed, we have that

degG̃(v) =
∑

u : u∼v

w̃uv =
∑

u : u∼v

wuv+2
∑
(v,v)

w̃(v, v) = degG(v)+(degH(v)−degG(v)) = degH(v).

This modification of G demonstrates that, despite the additional restriction imposed by c0, the prob-
lems remain equivalent. Specifically, we observe that

ΦG
H = min

S⊆V

wG(S, V \ S)
wH(S, V \ S)

= min
S⊆V

w̃(S, V \ S)
w̃H(S, V \ S)

= ΦG̃
H .

Therefore, the generalized cut problem for G and H remains equivalent to that of G̃ and H , despite
the degree adjustments made in G̃. The following remark will be used in our analysis.

Remark 1. For the weighted graph G = (V,E,w), and the previous G̃ = (V, Ẽ, w̃) where Ẽ
includes additional self-loops at some vertices, and any function φ : V (G) = V (G̃) → R, the
following holds: Adding self-loops does not affect the quadratic form associated with the graph
Laplacian, i.e., ⟨φ,∆Gφ⟩ = ⟨φ,∆G̃φ⟩. Specifically,

⟨φ,∆Gφ⟩ =
∑
u∼Gv

|φ(u)− φ(v)|2wuv =
∑
u∼G̃v

|φ(u)− φ(v)|2w̃uv = ⟨φ,∆G̃φ⟩.

However, the addition of self-loops does affect the norm in the space of vertices:

⟨φ,φ⟩ℓ2(V,w) =
∑
v∈V

φ(v)2 degG(v) ≤
∑
v∈V

φ(v)2 degG̃(v) = ⟨φ,φ⟩ℓ2(V,w̃).

Therefore, while the first quadratic form remains unchanged, the vertex norm in the extended space
is generally increased due to the additional self-loops.

3.2 A CHEEGER-TYPE INEQUALITY FOR CONSTRAINED CLUSTERING

Next we relate the constrained clustering problem to the generalized eigenvalue problem. Our key
result is a Cheeger-type inequality proving that the value of ΦG

H can be upper bounded with respect
to λ2(∆G

H) and λ2(∆H), and the cut with the proven approximation guarantee can be found by a
sweep-set algorithm. Our result is as follows:

Theorem 1. Let G = (V,E,w) and H = (V,E′, w′) be graphs such that degG(v) = degH(v) for
all v ∈ V . Then, it holds that

ΦG
H ≤ 4

√
λ2(∆G

H)

λ2(∆H)
. (4)

where ∆H denotes the normalized Laplacian of the graph H , ∆G
H is the operator given by

∆G
H(x) :=

⟨x,∆Gx⟩
⟨x,∆Hx⟩

,

and λ2 is the smallest non-trivial eigenvalue of the corresponding operator defined in equation 2.
Moreover, the cut achieving this approximation guarantee can be found with a sweep-set algorithm.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Notice that we can assume that G is a connected graph. If H have m connected component, we will
work with λm−1(∆

H), i.e. x ⊥ 1C for each connected component, ensuring x ⊥ ker(∆H). Before
presenting the proof, notice that we can assume without loss of generality that the graphs G and H
have the same degree sequence due to the preprocessing step.

Proof Sketch of Theorem 1. This is a proof sketch; the complete proof is provided in the appendix.

Step 1. Let x1 ≤ x2 ≤ . . . ≤ xn be the eigenvector associated with λ2(∆G
H). It suffices to prove

the existence of a non-empty, proper subset ∅ ⊂ S ⊂ V such that:

wG(S, V \ S)
wH(S, V \ S)

= 4

√
⟨x,∆Gx⟩ · ⟨x, x⟩

⟨x,∆Hx⟩2
. (5)

This suffices because the above inequality implies:

ΦG
H ≤ 4

√
λ2(∆G

H) ·
√
⟨x, x⟩√

⟨x,∆Hx⟩
≤ 4

√
λ2(∆G

H) ·

√
1

λ2(∆H)
.

Step 2. We reduce the problem to proving equation 5 for a scaled version of x, defined as z = cx,
where z2n + z21 = 1. The scaling ensures invariance of the expression:√

⟨z,∆Gz⟩
⟨z,∆Hz⟩

·

√
⟨z, z⟩

⟨z,∆Hz⟩
=

√
c2⟨x,∆Gx⟩
c2⟨x,∆Hx⟩

·

√
c2⟨x, x⟩

c2⟨x,∆Hx⟩
=

√
⟨x,∆Gx⟩
⟨x,∆Hx⟩

·

√
⟨x, x⟩

⟨x,∆Hx⟩
,

Thus, next equation is suffices to establish equation 5.:

wG(S, V \ S)
wH(S, V \ S)

= 4

√
⟨z,∆Gz⟩ · ⟨z, z⟩

⟨z,∆Hz⟩2
, (6)

Step 3. We now consider sweep sets St, defined as: St = {v ∈ V | zv ≤ t}. To establish equation 6,
it suffices to prove that there exists a threshold t0 ∈ [z1, zn] an defining S = St0 :

wG(St0 , V \ St0)

wH(St0 , V \ St0)
≤ 4

√
⟨z,∆Gz⟩
⟨z,∆Hz⟩

·

√
⟨z, z⟩

⟨z,∆Hz⟩
. (7)

Step 4. To establish equation 7, we will find a probability density function over [z1, zn], and prove:

E (wG(St, V \ St))

E (wH(St, V \ St))
≤ 4

√
⟨z,∆Gz⟩⟨z, z⟩
⟨z,∆Hz⟩2

. (8)

Thus, equation 7 holds because the existence of a threshold t0 is guaranteed by the next equation:

wG(St0 , V \ St0)

wH(St0 , V \ St0)
≤ E (wG(St, V \ St))

E (wH(St, V \ St))
=⇒ P

{
wG(St0 , V \ St0)

wH(St0 , V \ St0)
≤ 4

√
⟨z,∆Gz⟩⟨z, z⟩
⟨z,∆Hz⟩2

}
> 0.

Step 5. To establish equation 8, it suffices to find a probability distribution over [z1, zn] such that:

E (wG(St, V \ St))

E (wH(St, V \ St))
≤

∑
u∼Gv |zu − zv|(|zu|+ |zv|)wuv∑

u∼Hv
|zu−zv|2

2 wuv

. (9)

Using the Cauchy-Schwarz inequality, the definition of ∆, and the property degG(v) = degH(v),
we derive equation 8 as follows:∑
u∼Gv

|zu − zv|(|zu|+ |zv|)wuv

∑
u∼Hv

|zu − zv|2

2
wuv

≤

√ ∑
u∼Gv

|zu − zv|2wuv

∑
u∼Gv

(|zu|+ |zv|)2wuv

1
2 ⟨z,∆Hz⟩

≤ 4

√
⟨z,∆Gz⟩⟨z, z⟩
⟨z,∆Hz⟩2

.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Thus, finding a distribution that satisfies equation 9 is sufficient to complete the proof.

Step 6. We define a distribution, and choose t according to the probability density function 2|t|.
Specifically, the probability that a value between [a, b] is chosen is

P[t ∈ [zv, zu]] =

∫ zu

zv

2|t|dt = sgn(zu) · z2u − sgn(zv) · z2v .

Since z21 + z2n = 1, we have that P[t ∈ [z1, zn]] = 1.

Step 7. For this distribution, and regardless of the sign of zu and zv , we have:

E [wG(St, V \ St)] =
∑
u∼Gv

P [zu ≤ t and t < zv]wuv ≤
∑
u∼Gv

|zu − zv|(|zu|+ |zv|)wuv,

E [wH(St, V \ St)] =
∑

u∼Hv

P [zu ≤ t and t < zv]wuv ≥
∑

u∼Hv

|zu − zv|2

2
wuv.

This establishes equation 9 and conclude the proof. The complete details are in the appendix.

Based on the proof of Theorem 1, to find the cut with the guaranteed approximation, we only need
to order the vertices based on the entries of the eigenvector for the generalised eigenvalue problem,
and construct n sweep sets. See Algorithm 1 for the formal description of our algorithm.

Algorithm 1 The Constrained Clustering Algorithm

Input: Graph G and graph H .
Output: A bi-partition of the vertex sets.
Compute the scaling factor c0 defined in equation 3
Scale all edge weights in G by multiplying them with c0.
for each vertex v ∈ V do

if degH(v) > degG(v) then
Add a self-loop at v with weight 1

2 (degH(v)− degG(v)).
end if

end for
Compute the Laplacians ∆G and ∆H for the graphs G and H .
Solve the generalized eigenvalue problem

⟨f,∆Gf⟩
⟨f,∆Hf⟩

subject to f ⊥ 1, (10)

where f is the eigenvector that minimises the ratio.
Apply a sweep-set algorithm on the eigenvector f to partition the vertices of G into two clusters.
Return: a bi-partition of the vertex set

Remark 2. Theorem 1 can be viewed as a generalization of the classical Cheeger inequality for
graphs (Chung, 1997). Specifically, if we consider the graphH as the complete graph with wuv = 1
for all edges, then it is straightforward to show that

min
∅⊂S⊂V

wG(S, V \ S)
|S| · |V \ S|

≤ 4
√
λ2(∆G),

where λ2(∆G) is the second smallest eigenvalue of the normalized graph Laplacian ofG. Similarly,
if we consider the graph H = (V,E′, wH) as the complete graph with self-loops where wH

uv =
degG(u) degG(v)

vol(G) , then

min
∅⊆S⊆V

wG(S, V \ S)
min(vol(S), vol(V \ S))

≤ min
∅⊆S⊆V

vol(G)wG(S, V \ S)
vol(S)vol(V \ S)

≤ 4
√
λ2(∆G).

3.3 PRACTICAL CONSIDERATIONS

The proof of Theorem 1 not only establishes the general cut bound but also provides a constructive
method to find a subset S ⊆ V that is close to minimizing the generalized cut problem. How-
ever, this approach can be computationally expensive, particularly because the Laplacian H is not

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

invertible. To address this issue, we modify the graphH by adding a “negative” self-loop at any ver-
tex, effectively making the Laplacian invertible. This modification leverages the signed Laplacian,
which adjusts the operator to ensure invertibility, and the introduction of a negative self-loop has
little impact on the overall results, which will be demonstrated in Section 4 through experiments.

Formally, we prove that adding a negative self-loop toH makes the signed Laplacian ∆H′

α invertible,
ensuring λ1(∆H′

α ) > 0. Since λ1(∆H′

α ) ≤ λ2(∆
H), we can replace λ2(∆H) with λ1(∆H′

α ) in
Theorem 1, maintaining the theorem’s validity.
Lemma 2. Let H = (V,E,w) be a weighted graph, and let H ′ = (V,E′, w′) be another weighted
graph such that E′ = E ∪ {(v0, v0)}, where v0 is a vertex with a self-loop. Assume that w′|E = w
and consider the signature s = 1 for all E and s(v0,v0) = −1. Then,

0 < λ1(∆
H′

α ) ≤ λ2(∆
H),

where ∆H is the Laplacian of graph H .

The proof of Lemma 2 shows that ⟨g,∆H′

α g⟩ ≈ ⟨g,∆Hg⟩ for a small weight in the self-loop, then
we will solve equation 10 for the self-loop, because

⟨f,∆Gf⟩
⟨f,∆H

α f⟩
≈ ⟨f,∆Gf⟩

⟨f,∆H′
α f⟩

.

The problem involves identifying the eigenfunction and eigenvalue of a linear operator using a
Lagrangian-based framework. The Lagrangian L(φ, λ) is defined as

L(φ, λ) = ⟨∆Gφ,φ⟩ − λ(⟨∆H′

α φ,φ⟩ − 1),

where φ is the function to be optimized, and λ is the Lagrange multiplier. To find the minimizer φ,
we set the gradient of L with respect to φ to zero, i.e., ∇φL(φ, λ) = 0. Expanding this condition
yields that 2∆Gφ − 2λ∆H′

α φ = 0, which simplifies to ∆Gφ = λ∆H′

α φ. This formulation leads to
a generalized eigenvalue problem where φ is the eigenfunction, and λ is the eigenvalue. If ∆H′

α is
invertible, the equation can be reformulated as

(∆H′

α )−1∆Gφ = λφ,

illustrating the relationship between the linear operators and providing a solution to the eigenvalue
problem via the Lagrange multiplier method. This eigenvalue equation is crucial for extracting
the optimal partitions of the graph based on the constraints encoded within ∆H′

α . We prove that
solving the generalized eigenvalue problem for ∆G and ∆H′

α produces all feasible solutions, as all
eigenvalues are real and non-negative. This contrasts with the approach by Wang et al. (2014).

Lemma 3. Let ∆H′

α be the signed Laplacian of the weighted graph H ′, and ∆G the normalized
Laplacian of the weighted graph G. The operator (∆H′

α )−1∆G is a positive, self-adjoint operator,
with all its eigenvalues are real and non-negative.

We remark that solving equation 10 becomes significantly more efficient for ∆H′

α because it is
symmetric positive definite and invertible. For dense matrices, this property allows for the use of
the Cholesky decomposition with computational cost O(n3/3), reducing the problem to a standard
eigenvalue problem (Saad, 2011). This is an improvement over the general case for the QZ algorithm
(generalized Schur decomposition) where it is used with a complexity of O(n3). Moreover, the
Cholesky decomposition enhances numerical stability, leading to fewer round-off errors. For large,
sparse graphs and positive definite operators, iterative methods such as the Lanczos algorithm could
be used. The complexity of these solvers are O(nkm), where k is the number of eigenvalues to
find (smaller that n) and m related with the iterations required for convergence and the condition
number.

4 EXPERIMENTS

We conducted experiments to compare the spectral clustering method with the constrained clustering
approach, using both synthetic and real-world datasets. The clustering accuracy was evaluated using
the Adjusted Rand Index (ARI). All simulations were run on a PC equipped with an Intel® Core™
i7-10610U CPU running at 1.80 GHz and 32 GB of RAM, using MATLAB R2024a for computation.
The three clustering algorithms compared in our experiments were:

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

• SPECTRAL CLUSTERING (SC): We computed the normalized Laplacian ∆G and we used its
second smallest eigenvector (Fiedler vector) for clustering the vertices.

• CONSTRAINED CLUSTERING (CC): We solved equation 10 and used the eigenvector correspond-
ing to the smallest positive eigenvalue (excluding the trivial zero eigenvalue) for clustering.

• CONSTRAINED CLUSTERING WITH NEGATIVE SELF-LOOPS (CC++): Our algorithm consists
in adding a negative self-loop and solve equation 10 for the signed Laplacian.

4.1 STOCHASTIC BLOCK MODEL

We considered a binary Stochastic Block Model (SBM) with n = 1, 000 vertices divided into two
equal-sized communities. Edges between vertices were generated based on intra-cluster probability
p and inter-cluster probability q. Specifically, we fixed p = 0.2 and varied q from 0.12 to 0.2 in 30
equidistant steps. For each value of q, we generated two graphs generated from the SBM:

• G: a graph with intra-cluster edge probability p and inter-cluster edge probability q.
• H: a graph generated with intra-cluster edge probability q and inter-cluster edge probability p,

effectively the complement of G in terms of edge probabilities.

The vertex labels were kept consistent betweenG andH . This variation allows us to observe how the
clustering performance changes as the distinction between communities becomes less pronounced
(since higher q implies more inter-cluster edges). The experimental results, visualized in Figure 1a,
illustrate the superior performance of CC++ compared to traditional SC, particularly as the inter-
cluster edge probability q increases.

At low values of q (i.e., when the distinction between communities is clear), both methods perform
well, achieving near-perfect ARI values. As seen in Figure 1a, both methods maintain ARI values
close to 1.0 when q ≤ 0.14. This is expected, as the strong intra-cluster edge probability p = 0.2
dominates the inter-cluster connections, making the community structure relatively easy to detect.

However, as q increases, the performance of SC deteriorates rapidly. For instance, between q = 0.16
and q = 0.18, the ARI for SC drops sharply from approximately 0.7 to near 0.1. This decline
occurs because higher values of q increase the number of inter-cluster edges, blurring the distinction
between communities. SC relies solely on the structure of G, struggles to correctly partition the
vertices under these conditions.

In contrast, both of CC and CC++ are significantly more robust to increasing q. Even as q ap-
proaches 0.17, the ARI remains above 0.5, significantly outperforming SC in this regime. This
robustness stems from the ability of the Generalized Eigenvalue method to leverage the structural
information of both G and H , balancing the cuts between them, the method mitigates the negative
impact of increased inter-cluster edges, thus maintaining better clustering accuracy even when the
community structure is less pronounced.

This set of experimental results clearly demonstrates that the CC++ algorithm outperforms the tra-
ditional SC, particularly in challenging scenarios where the inter-cluster edge probability q is high.

4.2 VARYING CLUSTER DISTANCE

Based on the Geometric Random Graph (RGG) (Avrachenkov et al., 2021; Dall & Christensen,
2002), we generated two clusters of vertices, each containing 500 points, randomly distributed
within two-dimensional circular regions (disks) of radius 0.2. The separation between the clusters’
centroids varied between -0.35 and 0.35, in 25 equidistant steps. This range allows us to simu-
late different levels of overlap between the clusters. Each configuration of cluster separation was
repeated 10 times and we generated two graphs, G and H , on the same set of vertices, but with
different connectivity structures:

• G : Vertices within the same cluster were connected with a large radius rintra = 0.1, and vertices
between clusters were connected with a smaller radius rinter = 0.05.

• H : The intra-cluster connection radius is reduced to rintra = 0.05, while the inter-cluster radius is
increased to rinter = 0.1. Edges more likely connect vertices across the two clusters

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19

Inter-cluster Edge Probability (q)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
d

ju
s

te
d

 R
a

n
d

 I
n

d
e

x
 (

A
R

I)

Mean ARI vs q with Error Bars

CC++

CC

SC

(a)

500 1000 1500 2000

Number of Vertices

0

10

20

30

40

50

60

M
e
a
n

 E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
o

n
d

s
)

Mean Execution Time vs Number of Vertices

CC

CC++

SC

(b)

Figure 1: (a) Mean ARI vs Inter-cluster Edge Probability q with error bars. CC (red) and CC++
(blue) consistently outperforms SC (yellow), especially as q increases. (b) Mean execution time
versus the number of vertices. The plot shows that CC++ (blue) performs similarly to SC (yellow)
for smaller graphs but scales more efficiently than CC (red) as the number of vertices increases.

(a)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Cluster Distance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
d

ju
s
te

d
 R

a
n

d
 I

n
d

e
x
 (

A
R

I)

Mean ARI vs Cluster Distance with Standard Error Bars

CC++

CC

SC

(b)

Figure 2: (a) Two clusters generated by a RGG with varying separation. (b) Comparison of ARI vs
Cluster Distance for SC, CC, and CC++.

Figure 2a shows the RGG used in the experiments. The cluster distance is varied to simulate dif-
ferent levels of overlap between clusters. Figure 2b shows the ARI scores for both methods across
different cluster distances. Each point represents the mean ARI, with error bars indicating standard
error across 10 repetitions. When the cluster distance is large (above 0.3), both methods achieve
near-perfect ARI values. The separation between clusters is clear, and both algorithms can detect
the underlying structure accurately. As the clusters get closer, SC shows a significant drop in perfor-
mance. For distances near zero, where clusters overlap, the ARI scores for SC drop to nearly zero,
indicating its struggle to differentiate overlapping clusters. In contrast, the Generalized Eigenvalue
method is more resilient to cluster overlap, maintaining significantly higher ARI values even when
the clusters become indistinguishable by conventional means. This robustness is due to the method’s
ability to leverage information from both graphs G and H , capturing both intra- and inter-cluster re-
lationships.

4.3 EXPERIMENTS WITH TEMPERATURE DATA

We evaluated SC and CC++ on real-world temperature data from ground stations in Brittany, Jan-
uary 2014 (Girault, 2015). The experiments considered three data types: temperature, maximal
temperature, and minimal temperature. Temperature values con be seen as graph signals (Ortega
et al., 2018), with vertices representing readings. The aim is to cluster stations by proximity and
similar temperature patterns, combining spatial and temperature data. This approach can be applied

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 3: (a) Clustering based on SC, grouping stations by geographical proximity. (b) Clustering
using CC++, which considers both location and temperature similarity. (c) Mean and SE of temper-
ature, illustrating no overlap for CC++ compared to SC.

Table 1: Percentage of successful separation of regions using temperature and location data.

Data Type SC (%) CC (%) CC++ (%)
Temperature 63.30% 79.16% 79.16%
Maximal Temperature 62.90% 80.91% 81.04%
Minimal Temperature 62.63% 79.16% 77.95%

to identify micro climates (Cao et al., 2021) or to segment regions for agricultural (Yao et al., 2022),
where both location and temperature are important factors.

We construct a graph from the input data as follows: every station is represented as a vertex, and
the edge weight is defined by spatial similarity via a Gaussian kernel: Wij = exp

(
−d(i,j)2

2σ2
1

)
if

d(i, j) ≤ σ2, and 0 otherwise, where d(i, j) is the Euclidean distance. Parameters were set to
σ2
1 = 5×108 and σ2 = 105 (Girault, 2015). SC primarily grouped stations by proximity (Figure 3a).

To construct the constraint graph H , we use the temperature values and an inverse Gaussian kernel,
assigning edge weights close to 1 for large temperature differences and 0 for similar temperatures,
analogous to how G is built using spatial proximity. This allows the clustering algorithm to in-
corporate both geographical and temperature constraints for a more nuanced partition. The output
of CC++ is shown in Figure 3b, where only two cities differ from the clustering based on spatial
proximity alone (SC). Finally, we compute the mean and standard error (SE) for each cluster and
method. For this specific hour, SC shows overlap between clusters’ temperature values, whereas
CC++ achieves no overlap, indicating better clustering of stations with similar temperatures Fig-
ure 3c.

We repeated this process for all available measurements, one per hour, across 24 hours over 31
days, totaling 744 observations. To evaluate clustering accuracy, we calculated the mean and SE
for clustering using both methods. A separation was considered correct if the clusters’ values did
not overlap, as determined by their SE. Table 1 summarizes the results, showing the percentage of
correct separations for each temperature data type when comparing SC and CC++.

As shown in Table 1, CC++ consistently outperformed CC across all temperature data types. This
can be attributed to the method’s ability to leverage both the spatial structure of the stations and the
actual temperature data. In contrast, SC, which relies solely on the graph structure, struggled to
accurately separate stations into distinct clusters when the temperature differences were subtle.

REFERENCES

Fatihcan M Atay and Shiping Liu. Cheeger constants, structural balance, and spectral clustering
analysis for signed graphs. Discrete Mathematics, 343(1):111616, 2020.

Konstantin Avrachenkov, Andrei Bobu, and Maximilien Dreveton. Higher-order spectral clustering
for geometric graphs. Journal of Fourier Analysis and Applications, 27(2):22, 2021.

Sugato Basu, Ian Davidson, and Kiri Wagstaff. Constrained clustering: Advances in algorithms,
theory, and applications. Chapman and Hall/CRC, 2008.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Jie Cao, Weiqi Zhou, Zhong Zheng, Tian Ren, and Weimin Wang. Within-city spatial and temporal
heterogeneity of air temperature and its relationship with land surface temperature. Landscape
and Urban Planning, 206:103979, 2021.

F. R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.

Mihai Cucuringu, Ioannis Koutis, Sanjay Chawla, Gary Miller, and Richard Peng. Simple and scal-
able constrained clustering: a generalized spectral method. In Artificial Intelligence and Statistics,
pp. 445–454, 2016.

Jesper Dall and Michael Christensen. Random geometric graphs. Physical review E, 66(1):016121,
2002.

Benjamin Girault. Stationary graph signals using an isometric graph translation. In 2015 23rd
European Signal Processing Conference (EUSIPCO), pp. 1516–1520, 2015.

Yuheng Jia, Junhui Hou, and Sam Kwong. Constrained clustering with dissimilarity propagation-
guided graph-laplacian pca. IEEE Transactions on Neural Networks and Learning Systems, 32
(9):3985–3997, 2021.

Andrew V Knyazev. Signed laplacian for spectral clustering revisited. arXiv preprint
arXiv:1701.01394, 1, 2017.

Ioannis Koutis, Gary Miller, and Richard Peng. A generalized Cheeger inequality. Linear Algebra
and its Applications, pp. 139–152, 2023.

Carsten Lange, Shiping Liu, Norbert Peyerimhoff, and Olaf Post. Frustration index and Cheeger
inequalities for discrete and continuous magnetic Laplacians. Calculus of variations and partial
differential equations, 54:4165–4196, 2015.

James R Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral partitioning and higher-
order cheeger inequalities. Journal of the ACM (JACM), 61(6):1–30, 2014.

Huan Li, He Sun, and Luca Zanetti. Hermitian laplacians and a cheeger inequality for the max-2-lin
problem. In 27th Annual European Symposium on Algorithms, pp. 71:1–71:14, 2019.

Antonio Ortega, Pascal Frossard, Jelena Kovačević, José MF Moura, and Pierre Vandergheynst.
Graph signal processing: Overview, challenges, and applications. Proceedings of the IEEE, 106
(5):808–828, 2018.

Yousef Saad. Numerical methods for large eigenvalue problems: revised edition. SIAM, 2011.

Luca Trevisan. Is cheeger-type approximation possible for nonuniform sparsest cut? CoRR,
abs/1303.2730, 2013.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17:395–416, 2007.

Kiri Wagstaff, Claire Cardie, Seth Rogers, Stefan Schrödl, et al. Constrained k-means clustering
with background knowledge. In Icml, volume 1, pp. 577–584, 2001.

Xiang Wang and Ian Davidson. Flexible constrained spectral clustering. In Proceedings of the
16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
563–572, 2010.

Xiang Wang, Buyue Qian, and Ian Davidson. On constrained spectral clustering and its applications.
Data Mining and Knowledge Discovery, 28:1–30, 2014.

Yin-Di Yao, Xiong Li, Yan-Peng Cui, Jia-Jun Wang, and Chen Wang. Energy-efficient routing proto-
col based on multi-threshold segmentation in wireless sensors networks for precision agriculture.
IEEE Sensors Journal, 22(7):6216–6231, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A OMITTED DETAILS FROM SECTION 3

This section presents the details omitted from Section 3.

Proof of Theorem 1. We aim to prove the inequality:

ΦG
H ≤ 4

√
λ2(∆G

H)

λ2(∆H)
. (11)

Step 1. Let x : V → R be the eigenfunction associated with λ2(∆G
H). Without loss of generality,

we renumber the vertices such that the coordinates of x satisfy x1 ≤ x2 ≤ . . . ≤ xn. It suffices to
prove the existence of a non-empty, proper subset ∅ ⊂ S ⊂ V such that:

wG(S, V \ S)
wH(S, V \ S)

= 4

√
⟨x,∆Gx⟩ · ⟨x, x⟩

⟨x,∆Hx⟩2
. (12)

This is sufficient because:

ΦG
H ≤ wG(S, V \ S)

wH(S, V \ S)
(Definition of ΦG

H as the minimum ratio cut)

= 4

√
⟨x,∆Gx⟩
⟨x,∆Hx⟩

·

√
⟨x, x⟩

⟨x,∆Hx⟩
(By equation 12)

= 4
√
λ2(∆G

H) ·
√

⟨x, x⟩√
⟨x,∆Hx⟩

(Using x is the eigenvector of λ2(∆
G
H))

≤ 4
√
λ2(∆G

H) ·

√
1

λ2(∆H)
(Since

⟨x,∆Hx⟩
⟨x, x⟩ ≥ λ2(∆

H)).

This inequality proves that establishing equation 12 suffices to derive equation 11.

Step 2. We now show that proving equation 12 for x is equivalent to proving the existence of S such
that :

wG(S, V \ S)
wH(S, V \ S)

= 4

√
⟨z,∆Gz⟩⟨z, z⟩
⟨z,∆Hz⟩2

, (13)

where z = cx is a scaled version of x, defined such that z2n + z21 = 1.

Because x ⊥ 1, we have x1 < 0 < xn, and thus scaling x does not affect the ratio. Specifically:√
⟨z,∆Gz⟩
⟨z,∆Hz⟩

· ⟨z, z⟩
⟨z,∆Hz⟩

=

√
c2⟨x,∆Gx⟩
c2⟨x,∆Hx⟩

· c2⟨x, x⟩
c2⟨x,∆Hx⟩

=

√
⟨x,∆Gx⟩
⟨x,∆Hx⟩

· ⟨x, x⟩
⟨x,∆Hx⟩

.

Thus, proving equation 13 suffices to establish equation 12.

Step 3. Let t ∈ R, and define the set:

St = {v ∈ V | zv ≤ t},

commonly referred to as a sweep set. To establish equation 13, it suffices to prove that there exists
a threshold to such that:

wG(Sto , V \ Sto)

wH(Sto , V \ Sto)
≤ 4

√
⟨z,∆Gz⟩
⟨z,∆Hz⟩

·

√
⟨z, z⟩

⟨z,∆Hz⟩
. (14)

Establishing S = St0 , equation 14 directly implies equation 13.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Step 4. To establish equation 14, it suffices to show that there exists a distribution f(t) over [z1, zn]
such that the expectation satisfies:

E (wG(St, V \ St))

E (wH(St, V \ St))
≤ 4

√
⟨z,∆Gz⟩⟨z, z⟩
⟨z,∆Hz⟩2

. (15)

Here, St is treated as a random variable parameterized by t ∈ [z1, zn], where t is drawn from a
probability density function f(t). St depends on the distribution of t, which influences the likelihood
of including a vertex v in St based on its value zv .

This suffices because, if we define

φ =
E (wG(St, V \ St))

E (wH(St, V \ St))
∈ R,

then, by linearity of expectation:

E [wG(St, V \ St)− φwH(St, V \ St)] = E [wG(St, V \ St)]− φE [wH(St, V \ St)] = 0.

This implies that for some t0:

P [wG(Sto , V \ Sto)− φwH(Sto , V \ Sto) ≤ 0] > 0, (16)

because if for all t:

P [wG(St, V \ St)− φwH(St, V \ St) ≤ 0] = 0,

it would follow that wG(St, V \ St)− φwH(St, V \ St) > 0 for all t, contradicting the fact that:

E [wG(St, V \ St)− φwH(St, V \ St)] = 0.

Thus, equation 16 holds, which implies that for some t0:

wG(St0 , V \ St0)− φwH(St0 , V \ St0) ≤ 0,

and equivalently:

wG(St0 , V \ St0)

wH(St0 , V \ St0)
≤ E (wG(St, V \ St))

E (wH(St, V \ St))
.

Combining this with equation 16, we obtain:

P
{
wG(St0 , V \ St0)

wH(St0 , V \ St0)
≤ E (wG(St, V \ St))

E (wH(St, V \ St))

}
> 0.

From Eq. equation 15, it follows that:

P

{
wG(St0 , V \ St0)

wH(St0 , V \ St0)
≤ 4

√
⟨z,∆Gz⟩⟨z, z⟩
⟨z,∆Hz⟩2

}
> 0.

Establishing equation 15 thus guarantees the existence of t satisfying equation 14.

Step 5. To establish equation 15, it suffices to find a probability distribution over [z1, zn] such that
the following inequality holds:

E (wG(St, V \ St))

E (wH(St, V \ St))
≤

∑
u∼Gv |zu − zv|(|zu|+ |zv|)wuv∑

u∼Hv
|zu−zv|2

2 wuv

. (17)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

We now show that equation 17 implies equation 15 as follows:

E (wG(St, V \ St))

E (wH(St, V \ St))
≤

∑
u∼Gv |zu − zv|(|zu|+ |zv|)wuv∑

u∼Hv
|zu−zv|2

2 wuv

(By equation 17)

≤

√∑
u∼Gv |zu − zv|2wuv ·

√∑
u∼Gv(|zu|+ |zv|)2wuv∑

u∼Hv
|zu−zv|2

2 wuv

(Cauchy-Schwarz inequality)

=

√
⟨z,∆Gz⟩ ·

√∑
u∼Gv(|zu|+ |zv|)2wuv∑

u∼Hv
|zu−zv|2

2 wuv

(Definition of ∆G)

≤

√
⟨z,∆Gz⟩ ·

√
2
∑

u∼Gv(z
2
u + z2v)wuv∑

u∼Hv
|zu−zv|2

2 wuv

(Since (a+ b)2 ≤ 2(a2 + b2))

=

√
⟨z,∆Gz⟩ ·

√
4⟨z, z⟩ℓ2(G)∑

u∼Hv
|zu−zv|2

2 wuv

(Definition of the inner product in G)

=

√
⟨z,∆Gz⟩ · 2

√
⟨z, z⟩ℓ2(G)

1
2 ⟨z,∆Hz⟩

(Definition of ∆H )

≤ 4

√
⟨z,∆Gz⟩⟨z, z⟩ℓ2(H)

⟨z,∆Hz⟩2
(Since degG(v) = degH(v)).

Thus, equation 17 implies equation 15.

Step 6. Consider the non-negative function 2|t| defined on the interval [z1, zn]. This function serves
as a probability density function (PDF) over [z1, zn] because z21 + z2n = 1, z1 is negative, and zn is
positive. Specifically: ∫ zn

z1

2|t| dt = sgn(zn) · z2n − sgn(z1) · z21 = 1.

The normalization in step 2 ensures that the integral of 2|t| over [z1, zn] equals 1, validating it as a
PDF. Hence, the probability that a value between [zu, zv] is given by

P[t ∈ [zv, zu]] =

∫ zu

zv

2|t|dt = sgn(zu) · z2u − sgn(zv) · z2v .

The expectation E [wG(St, V \ St)] represents the expected weight of the cut wG(St, V \St), which
depends on the random threshold t sampled from the previously defined probability density function.
By the linearity of expectation:

E [wG(St, V \ St)] =
∑
u∼Gv

E [1u∈St and v/∈St
]wuv,

where 1u∈St and v/∈St
is the indicator function that equals 1 when u ∈ St and v /∈ St, and 0 otherwise.

Using the definition of probability, the expectation simplifies to:

E [wG(St, V \ St)] =
∑
u∼Gv

P [zu ≤ t and t < zv]wuv.

If we can establish the following bounds:

|zu − zv|2

2
≤ P [zu ≤ t and t < zv] ≤ (|zu|+ |zv|)|zu − zv|, (18)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

then we can bound the expectation of the weight of the cut as follows:

E [wG(St, V \ St)] ≤
∑
u∼Gv

(|zu|+ |zv|)|zu − zv|wuv.

Similarly, for H , we have:

E [wH(St, V \ St)] =
∑

u∼Hv

P [zu ≤ t and t < zv]wuv ≥ 1

2

∑
u∼Hv

|zu − zv|2wuv.

These last two inequalities establish equation 17. Therefore, to conclude the proof, it remains to
prove equation 18.

Step 7. To prove equation 18, recall that:

P [zu ≤ t and t < zv] =

∫ zu

zv

2|t| dt =
{
|z2u − z2v | if sgn(zu) = sgn(zv),
z2u + z2v if sgn(zu) ̸= sgn(zv).

We first establish the upper bound in equation 18:

P [zu ≤ t and t < zv] ≤ (|zu|+ |zv|)|zu − zv|. (19)

Case 1: sgn(zu) = sgn(zv). In this case:

|z2u − z2v | = |(zu + zv)(zu − zv)| = |zu + zv||zu − zv|.

Since |zu + zv| ≤ |zu|+ |zv|, we have:

|z2u − z2v | ≤ (|zu|+ |zv|)|zu − zv|.

Case 2: sgn(zu) ̸= sgn(zv). In this case:

z2u + z2v ≤ (zu − zv)
2 = |zu − zv|2,

and thus:
z2u + z2v ≤ (|zu|+ |zv|)|zu − zv|.

Combining both cases establishes the upper bound in equation 19.

Now, we establish the lower bound in equation 18:

|zu − zv|2

2
≤ P [zu ≤ t and t < zv] . (20)

Case 1: sgn(zu) = sgn(zv). In this case:∣∣z2u − z2v
∣∣ = |zu − zv| |zu + zv| .

Since |zu + zv| ≥ |zu − zv|, we have:∣∣z2u − z2v
∣∣ ≥ |zu − zv|2 ≥ (zu − zv)

2

2
.

Case 2: sgn(zu) ̸= sgn(zv). Using:

0 ≤ (zu + zv)
2 = 2(z2u + z2v)− (zu − zv)

2,

it follows that:
(zu − zv)

2

2
≤ z2u + z2v .

Combining both cases establishes the lower bound in equation 20.

Finally, combining equation 19 and equation 20 proves equation 18, completing the proof.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof of Lemma 2. Let f be the eigenfunction corresponding to λ2(∆H). Consider the function
g : V → R, defined as: gv = fv − fv0 , for all v ∈ V , hence gv0 = 0. By computing the Rayleigh
quotient for g with respect to the Laplacian of H:

⟨g,∆Hg⟩H =
∑

u∼Hv

|gu − gv|2wuv =
∑

u∼Hv

|fu − fv|2wuv = λ2(∆
H)⟨f, f⟩H .

The Rayleigh quotient for g with respect to ∆H′
is given by

⟨g,∆H′
g⟩H′ =

∑
u∼H′v

|gu − gv|2w′
uv + 2|gv0 |2w′

v0v0 =
∑

u∼Hv

|fu − fv|2wuv = ⟨g,∆Hg⟩H .

The norm of g with respect to H ′ satisfies that

⟨g, g⟩H′ =
∑
v∈V

|gv|2 degH
′
(v) =

∑
v∈V

|gv|2 degH(v) + g2(v0)(degH(v0) + 2) = ⟨g, g⟩H .

Thus, we have, since f is an eigenfunction f ⊥ 1, hence 0 = ⟨f,1⟩H :

⟨g, g⟩H =
∑
v∈V

|fv − fv0 |2 deg
H(v) = ⟨f, f⟩H − 2fv0⟨f,1⟩H + f2v0⟨1,1⟩H ≥ ⟨f, f⟩H .

Using this, we apply the Rayleigh quotient to bound λ1(∆H′

α ) as

λ1(∆
H′

α ) ≤ ⟨g,∆H′
g⟩H′

⟨g, g⟩H′
≤ ⟨g,∆Hg⟩H

⟨g, g⟩H
≤ λ2(∆

H)⟨f, f⟩H
⟨f, f⟩H

= λ2(∆
H).

Finally, let f be a non-zero function. Consider the following expression:

⟨f,∆H′

α f⟩ =
∑
u∼v

|fu − fv|2wuv + 2f2v0wv0v0 .

We have 0 ≤ ⟨f,∆H′

α f⟩, and equality holds if and only if: ⟨f,∆H′

α f⟩ = 0 ⇐⇒ fu − fv =
0 ∀u, v and fv0 = 0. This implies that f = 0 for all v ∈ V , which contradicts the assumption
that f is a non-zero function. Therefore, λ1(∆H′

α ) > 0.

Proof of Lemma 3. Since ∆H′

α is positive-definite and self-adjoint, its inverse (∆H′

α )−1 and its
square root (∆H′

α )1/2 exist and are self-adjoint operators. Define the operator C as:

C = (∆H′

α )−1/2∆G(∆H′

α )−1/2.

Self-adjointness of C: The adjoint of C is:

C∗ =
(
(∆H′

α )−1/2∆G(∆H′

α )−1/2
)∗

= (∆H′

α )−1/2(∆G)∗(∆H′

α )−1/2

= (∆H′

α )−1/2∆G(∆H′

α )−1/2 = C,

since ∆H′

α and ∆G are self-adjoint operators.

Positive Semi-definiteness of C: For any function φ ∈ ℓ2(V,w), consider:

⟨Cφ,φ⟩ =
〈
(∆H′

α )−1/2∆G(∆H′

α )−1/2φ,φ
〉
.

Let ψ = (∆H′

α )−1/2φ. Then, ⟨Cφ,φ⟩ =
〈
∆Gψ,ψ

〉
. Since ∆G is positive semi-definite, we have

⟨∆Gψ,ψ⟩ ≥ 0. Therefore, ⟨Cφ,φ⟩ ≥ 0, which means C is positive semi-definite.

Because C is self-adjoint and positive semi-definite, it is diagonalizable with real, non-negative
eigenvalues. Thus, there exists an orthogonal matrix W and a diagonal matrix Λ with non-negative
entries such that:

C =WΛW ∗.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

We can express (∆H′

α )−1∆G as:

(∆H′

α )−1∆G = (∆H′

α )−1/2
(
(∆H′

α )−1/2∆G(∆H′

α )−1/2
)
(∆H′

α )1/2

= (∆H′

α )−1/2C(∆H′

α )1/2 = (∆H′

α )−1/2WΛW⊤(∆H′

α )1/2.

Let V = (∆H′

α )−1/2W . Then,
(∆H′

α )−1∆G = V ΛV ∗.

Since V is invertible (as the product of invertible matrices), (∆H′

α )−1∆G is diagonalizable with real,
non-negative eigenvalues.

This completes the proof.

B ADDITIONAL EXPERIMENTS FROM SECTION 4

In this section, we present additional experiments to evaluate the performance of our algorithm. To
provide a comprehensive analysis, we include comparisons with additional methods. This section
will be further updated with more comparative methods as we expand our experiments. The method
included in this version is:

• FLEXIBLE CONSTRAINED SPECTRAL CLUSTERING (FC): This method is presented in Wang &
Davidson (2010).

As in Subsection 4.1, we evaluate the performance of clustering methods using synthetic graphs
generated by the stochastic block model (SBM). We analyze the algorithms for graphs of vary-
ing sizes, focusing particularly on smaller graphs, where subtle variations are more prominent.
For larger graphs, the performance trends tend to stabilize and exhibit fewer differences. In
these experiments, graphs were generated with the number of nodes n varying across four sizes:
n = 250, 500, 750, 1000.

The results are summarized in Figure 4, which illustrates the performance of the four clustering
methods—Spectral Clustering (SC), Constrained Clustering (CC), Constrained Clustering with Self-
loops (CC++), and Flexible Clustering (FC)—for varying inter-cluster edge probabilities q and dif-
ferent graph sizes.

Based on the results presented in Figure 4, we highlight the following key observations and advan-
tages of our method compared to the baseline approaches:

Improved Performance on Smaller Graphs: Our method demonstrates superior performance on
smaller graphs (n = 250, 500) in terms of the mean Adjusted Rand Index (ARI), as shown in
panels (a) and (b). As the graph size increases (n = 750, 1000), the performance of our approach
becomes comparable to that of the other methods, indicating that our algorithm is robust across
different graph sizes.

Parameter-Free Advantage: The Flexible Clustering (FC) method presented in Wang & Davidson
(2010) requires the user to define an additional parameter (β) that directly influences the solution
of the generalized eigenvalue problem. This parameter must be carefully chosen to ensure at least
one feasible solution exists, as incorrect parameter selection can result in negative eigenvalues and
infeasible outcomes. In contrast, our method avoids this issue entirely. As shown in Lemma 3, the
introduction of self-loops ensures that the operator (∆H′

α )−1∆G is positive and self-adjoint, with all
eigenvalues guaranteed to be real and non-negative.

Cheeger-type inequality: Unlike the FC method, which does not provide a theoretical guarantee
linking the eigenfunctions used for clustering to the optimization objective, our approach establishes
a Cheeger-type inequality.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

Inter-cluster Edge Probability (q)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
d

ju
s
te

d
 R

a
n

d
 I
n

d
e
x
 (

A
R

I)

Mean ARI vs q (n = 250)

CC++

CC

SC

FC

(a) n = 250

0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

Inter-cluster Edge Probability (q)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
d

ju
s
te

d
 R

a
n

d
 I
n

d
e
x
 (

A
R

I)

Mean ARI vs q (n = 500)

CC++

CC

SC

FC

(b) n = 500

0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

Inter-cluster Edge Probability (q)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
d

ju
s
te

d
 R

a
n

d
 I
n

d
e
x
 (

A
R

I)

Mean ARI vs q (n = 750)

CC++

CC

SC

FC

(c) n = 750

0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

Inter-cluster Edge Probability (q)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
d

ju
s
te

d
 R

a
n

d
 I
n

d
e
x
 (

A
R

I)

Mean ARI vs q (n = 1000)

CC++

CC

SC

FC

(d) n = 1000

Figure 4: Mean Adjusted Rand Index (ARI) as a function of inter-cluster edge probability q for four
clustering methods. Each panel represents a different graph size: (a) n = 250, (b) n = 500, (c)
n = 750, and (d) n = 1000.

18


	Introduction
	Background & Preliminaries
	Algorithm & Analysis 
	Preprocessing  G  and  H 
	A Cheeger-type Inequality for Constrained Clustering
	Practical Considerations

	Experiments
	Stochastic Block Model
	Varying Cluster Distance
	Experiments with Temperature Data

	Omitted Details from Section 3
	Additional Experiments from Section 4

