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Abstract—Self-supervised learning is widely applied across
various domains due to its advantage of learning data repre-
sentations without the need for labels. However, recent research
shows that backdoor attacks on self-supervised learning are
achievable by coupling benign features with trigger features with-
out manipulating labels. Existing methods, however, suffer from
poor trigger disguise. When designing triggers, more emphasis is
placed on attack strength rather than on disguising the triggers,
which makes these triggers easily detectable through manual
inspection or preprocessing methods. Therefore, we propose a
camouflaged self-supervised backdoor attack method from the
perspective of visual disguise. Specifically, we design triggers
by embedding variable adverse weather information to achieve
visual camouflage, which can bypass certain defence methods to
some extent. Additionally, since our proposed camouflaged trig-
gers have a global nature, they achieve more efficient backdoor
attack capabilities. Experiments demonstrate that our method
achieves attack success rates of 83.4% on the CIFAR-100 dataset
and 44.8% on the ImageNet-100 dataset, surpassing existing
state-of-the-art methods by 14.6% and 24.4%, respectively. At
the same time, our method exhibits better stealthiness.

Index Terms—Self-supervised learning, backdoor attack, nat-
uralness.

I. INTRODUCTION

Self-supervised learning demonstrates significant advan-
tages by effectively learning representations from unlabelled
data, leading to outstanding performance across various down-
stream tasks. This approach not only reduces the dependency
on large-scale annotated datasets but also enhances and con-
trasts the data to learn more robust and generalised features
[1], [2]. In self-supervised learning, contrastive learning is
widely applied in fields such as image recognition and natural
language processing [3]–[7]. However, contrastive learning is
susceptible to backdoor attacks [8]. These attacks exploit the
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Fig. 1. Visual comparison of various types of methods.

nature of unlabelled data in the contrastive learning process
by embedding triggers in the training data. During training,
these triggers become coupled with benign features, making it
difficult for contrastive learning to distinguish between benign
and poisoned features. As a result, during the inference phase,
samples containing trigger features are misclassified as the
class of the benign features. This coupling of triggers with
target features significantly increases the success rate of the
attack while maintaining the model’s performance on normal
tasks.

The existing backdoor attacks can be roughly divided into
four categories: 1). Embedded-based attacks: Using specific
embedded targets as triggers [9]–[12]. For example, SSLBKD
[9] introduces triggers based on image patches directly em-
bedded into target class images to create poisoned samples.
2). Combined-based attacks: Employing the combination of
reference and target inputs as triggers [13], [14]. For instance,
POIENC [13] constructs poisoned samples by combining
reference inputs with target inputs. 3). Pixel-based attacks:
Using specified pixel point transformations as triggers [15]–
[17]. 4). Shadow-based: Using particular shadow transfor-IC
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mations as triggers [18], [19]. However, as shown in Fig.
1, these methods largely sacrifice stealthiness and rely on
specific data augmentation techniques in contrastive learning
to achieve good attack performance. Despite some backdoor
attack methods [20]–[25] with good trigger stealthiness have
been proposed recently, these methods have not been shown
to perform well in backdoor attacks with contrastive learning.

In this work, we propose a trigger that is more stealthy and
naturally aligned by utilising weather information to visually
alter the environment in which samples are captured. This
trigger is made possible by the work that we have done. That
this is the first time that information about the weather has
been used as a trigger in backdoor attacks on self-supervised
learning is a breakthrough. Unlike the local triggers used
in [9], [14], our global approach can withstand most data
augmentation methods specific to self-supervised learning and
is less likely to be detected during preprocessing.
Contributions. The following concludes our contributions.

• Our research into current backdoor attacks targeting
contrastive learning reveals that the triggers used in the
majority of attack methods are too overt. This drawback
leads to poisoned samples, once augmented with triggers,
being difficult to pass through the filtering processes of
the pre-processing stage.

• To circumvent this issue, we design a trigger that em-
bodies stealth and naturalness. Specifically, we use affine
transformations to simulate the effect of wind on rain-
drops from different directions. Additionally, we incor-
porate depth map information for each image to achieve
a realistic perception of rain distance from the camera or
human eye. We then combine the raindrops after affine
transformation with the depth information to generate
triggers that have both stealthiness and globality.

• We validate our approach on a multitude of bench-
mark datasets. Experiments demonstrate that our method
achieves attack success rates of 83.4% on the CIFAR-
100 dataset and 44.8% on the ImageNet-100 dataset,
surpassing existing state-of-the-art methods by 14.6% and
24.4%, respectively. Furthermore, Fig. 1 illustrates the
superior stealth performance of our method.

II. METHOD

A. Threat Model

Attacker’s goal: Attackers aim to inject poisoned samples
into datasets. Unwittingly, trainers download datasets contain-
ing these poisoned samples to train victim models. During the
inference phase of downstream tasks, victim models classify
samples with embedded triggers as the attacker’s target class
while correctly classifying clean samples.

Attacker’s Capabilities: Attackers are capable of ma-
nipulating a small portion of the training data, which is
feasible in the context of self-supervised learning training.
Self-supervised training typically requires a large amount
of unlabelled data, often sourced from downloads over the
network. Attackers can therefore contaminate some of this data
and upload it to the network.

Noise image Rain layer 1 Combined rain

Depth Generator Depth map

Depth rain

Poisoned image

Clean image Clean image

Affine Transformation

Rain 
Generation

Rain layer 2

Fig. 2. Framework of our method. The symbol
⊕

indicates to superimpose
two rain layers or to overlay the rain layer onto the original image, while

⊗
signifies to blend the rain layer with the depth map.

Attacker’s Knowledge: Attackers can only manipulate a
part of the dataset and do not have access to information
about the training process, including 1) the architecture and
parameters of the encoder and classifier models, and 2) the
training and fine-tuning mechanisms.

B. Overview

To carry out a backdoor attack in self-supervised learning,
such as contrastive learning, it is necessary for the characteris-
tics of the trigger to be coupled to those of the target category
to a certain extent. This coupling makes it impossible for
the victim model to differentiate between the trigger and the
target category. According to our analysis, which can be found
in Sec. I, the methods currently in use demonstrate certain
shortcomings in terms of their stealthiness and effectiveness.
To compensate for these deficiencies, we have developed a
trigger that is added to the images on a global scale. We decide
to set our trigger as adverse weather conditions, such as heavy
rain, in order to conceal this globally disruptive trigger. This
focus is maintained in our subsequent method, which will be
discussed further below. We implement two different strategies
to strengthen the naturalness of our trigger, which allows
us to improve the stealth performance of our trigger. These
strategies will be discussed in greater depth in the subsequent
subsection.

C. Trigger Design

As illustrated in Fig. 2, our trigger employs two strategies
to enhance its stealthiness. Specifically, we initially generate
a noise image using a uniform distribution, creating noise of
the same size as the given image. We then filter this noise
to intensify its effect. We apply a blurring process to the
filtered noise image to create a layer of rain. After analysing a
multitude of natural rainy day samples, we observe that heavy
rain is typically accompanied by strong winds. Raindrops
falling in a single direction do not accurately represent the
reality of a natural rainy day. Therefore, we utilise affine
transformations to simulate the deflection of raindrops due to
wind direction, overlaying the transformed rain layer on the
initial one to achieve a more natural rain effect.

Furthermore, to ensure that the trigger appears more realistic
across a variety of images, we control the rain layer by utilising
a depth map. This allows us to depict the depth effect that takes
place when it rains. We use the depth model [27] to generate
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TABLE I
EFFECTIVENESS OF OURS AND BASELINE ATTACKS.

Method CA(%) PIOENC (USENIX’22, [13]) SSLBKD (CVPR’22, [9]) CTRL (ICCV’23, [26]) Ours
SSL-Model Dataset BA(%) ASR(%) BA(%) ASR(%) BA(%) ASR(%) BA(%) ASR(%)

SimCLR
CIFAR-10 87.40 84.60 31.10 84.20 33.20 84.80 90.30 85.40 94.10

CIFAR-100 52.40 50.20 11.30 48.80 14.20 51.20 68.80 50.40 83.40
ImageNet-100 55.30 53.30 10.00 52.30 10.20 53.90 20.40 54.30 44.80

SimSiam
CIFAR-10 87.50 85.30 33.40 85.50 53.10 85.70 84.90 86.50 93.50

CIFAR-100 58.70 53.60 14.50 54.10 14.90 53.20 83.90 55.70 85.60
ImageNet-100 59.40 56.70 12.30 56.40 15.50 56.30 39.20 57.40 45.40

BYOL
CIFAR-10 89.10 86.70 36.50 86.70 46.20 86.70 81.90 87.30 94.40

CIFAR-100 59.40 58.20 15.20 57.00 16.30 56.90 76.30 57.20 87.70
ImageNet-100 60.10 58.80 13.40 58.30 14.60 58.00 37.90 59.10 47.60

(a) Original images

(b) Triggered images by our method

Fig. 3. Stealthiness visualisation of our method.

a depth map in greyscale mode. Additionally, as shown in 1,
we regulate the size and density of the raindrops based on the
depth information.

Iout(x, y) = R(x, y) · α+ (1− α) ·D(x, y) (1)

where Iout represents the final result, R is the initial merged
rain layer, D is the depth map, and α is the value obtained
by normalising the depth map to a specified range (in our
experiments, the range used is [0.4, 1]). By superimposing the
adjusted rain layer with the adjusted depth map, each pixel in
the image not only contains the information of the rain layer,
but it also keeps the details of the original depth map. This
is accomplished by superimposing the two layers. The depth
relations of the rain layer are brought out more clearly as a
result of this approach, which provides a higher level of detail
and contrast.

Rimg(x, y, c) =
Iimg(x, y, c) · (255− rain(x, y))

255
+β · rain(x, y)

(2)

where Rimg is the poisoned sample we aim to create, Iimg

is the clean sample, rain is the rain layer, and β is a
hyperparameter that controls the intensity of the rain layer. By
employing this formula, we blend the image pixel by pixel,
ensuring a more realistic and natural visual effect.

As depicted in Fig. 3.(b), the trigger we designed renders
the poisoned samples containing the trigger closely resembling
real-world rainy scenes, demonstrating excellent stealthiness.

III. EVALUATION

A. Experimental Setting

Model Architecture and Datasets: Our evaluation primar-
ily utilises three benchmark datasets: CIFAR-10 [28], which

consists of 32x32 colour images classified into 10 classes;
CIFAR-100 [29], which consists of a subset of CIFAR-10
but with 100 classes; and ImageNet-100, which is a sampled
subset of the ImageNet-1K dataset [30] (224x224 colour
images) containing 100 randomly chosen classes. We use three
contrastive learning models: SimCLR [4], BYOL [3], and
SimSiam [5]. The default backbone network for contrastive
learning is ResNet18 [31], featuring two-layer MLP projection
layers that map features into a 128-dimensional latent space.
The downstream classifier is a two-layer MLP with 128 hidden
features.

Metrics: We primarily utilize two metrics: the Attack
Success Rate (ASR), which measures the probability of the
model classifying poisoned samples as target samples, and the
Backdoor model’s clean Accuracy (BA), which assesses the
classification accuracy of the backdoor model when processing
clean samples.

Attack Methods: We compare our method with three base-
lines because their scenarios are similar to ours, all targeting
backdoor attacks on self-supervised learning. PIOENC [13]
combines target inputs with reference inputs as poisoned sam-
ples; SSLBKD [9] uses randomly positioned image patches
as triggers; CTRL [26] adds modifications in the frequency
domain as triggers. Our method uses rainy weather as a trigger,
with the parameter β controlling the intensity of the rain layer
set to 0.9 by default, and the depth map normalization ranges
from 0.4 to 1.

B. Effectiveness of Method

We provide a comparison of the effectiveness of our method
against the baseline approaches on three separate benchmark
datasets, focussing on three different self-supervised con-
trastive learning methods, as shown in Table I. In this study, we
provide the quantitative measures of classification accuracy for
clean samples on benign models (CA), classification accuracy
for backdoor models (BA), and success rate for targeted
backdoor attacks (ASR). In order to guarantee an equitable
comparison, a poisoning rate of 0.01 is consistently imple-
mented in all methodologies. Among the three self-supervised
learning approaches, our method consistently produces the
most optimal results on all three datasets.

The POIENC and SSLBKD methods, due to the local
properties of their poisoned samples, experience a significant
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Fig. 4. Impact of Poisoning Rate: (a) was conducted on the CIFAR-10 dataset,
(b) was performed on the CIFAR-100 dataset.

TABLE II
EFFECTIVENESS IMPACT OF DIFFERENT ARCHITECTURES.

Encoder Architecture Datasets CA BA ASR

ResNet18 CIFAR-10 89.1 87.3 94.4
IMAGENET-100 60.4 59.1 47.6

MobileNet-V2 CIFAR-10 82.7 80.5 85.4
IMAGENET-100 53.3 51.4 40.3

ShuffleNet-V2 CIFAR-10 83.0 81.9 64.7
IMAGENET-100 52.1 50.1 35.7

decrease in attack success rates when data augmentation fails
to crop precisely. CTRL is more sensitive to the magnitude
of the trigger; when this value is large, it leads to more pro-
nounced changes in the image. Therefore, under conditions of
a smaller magnitude (e.g., a magnitude of 50), its performance
is inferior to that of our method. In summary, our method
outperforms the other three, particularly on the BYOL model,
where we attain an attack success rate of 94.4% on CIFAR-10,
87.7% on CIFAR-100, and 47.6% on ImageNet-100.

C. Impact of Poisoning Rates

It is anticipated that employing a higher poisoning rate
increases the effectiveness of a backdoor attack; however, it
may also result in lower accuracy on clean samples for the
backdoor model. Furthermore, a higher poisoning rate implies
the need to poison a larger portion of the dataset, which
significantly reduces practicality. Ideally, a backdoor attack
should achieve a high success rate with as low a poisoning rate
as possible. We use our method, which performs well on the
BYOL model, to conduct experiments with different poisoning
rates on the CIFAR-10 and CIFAR-100 datasets. The results,
as depicted in Fig. 4, demonstrate that our approach maintains
a high attack success rate even at a low poisoning rate of 0.4%.

D. Sensitivity of Encoder Architecture

In Table II, we analyse different encoder architectures on
CIFAR-10 and ImageNet-100. Except for the replacement of
ResNet18 with MobileNet-V2 [32] and ShuffleNet-V2 [33]
in Table II, all other experimental settings are aligned with
Table I. These results indicate that our method effectively
launches attacks across various structures, implying that it can
construct poisoned samples without dependence on specific
encoder architectures.

Epoch Epoch

(a) (b)

B
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/A
S

R
 (

%
)

B
A
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R
 (

%
)

Fig. 5. Defense of Our Method: (a) is defense for early stop, (b) is defense
for fine-tuning.

E. Defense of Our Method

Due to the label-free nature of contrastive learning during
the training of encoders, many defence methods that require
labels [34], [35] cannot provide protection against backdoor
attacks on contrastive learning. We refer to [13] and employ
early stopping and fine-tuning as defence strategies to verify
the resilience of our method.

Early Stopping: As mentioned in Section II-B, the effec-
tiveness of our method is predicated on a significant cou-
pling between benign and poisoned features. Intuitively, our
approach requires a sufficient number of epochs to achieve
this goal. Therefore, early stopping can mitigate the impact of
backdoor attack methods like ours. Fig. 5.(a) illustrates the
performance of our method at different epochs, showing that at
lower epochs the ASR of our method is indeed lower, but this
also reduces the classifier’s performance. In other words, early
stopping can provide a moderate defence against our method
at the cost of sacrificing some utility.

Fine-tuning: Some studies [36], [37] propose post-
processing of potentially poisoned classifiers to eliminate the
effects of attacks. These methods typically require a clean
training dataset. We employ a method [36] to fine-tune poten-
tially compromised models with a clean dataset as a defence
against our approach. As shown in Fig. 5.(b), after fine-tuning,
our method maintains good performance over a certain number
of epochs. However, because this fine-tuning method requires
a clean dataset, and an even larger amount of clean data is
needed during contrastive learning, this poses a challenge for
defence strategies.

IV. CONCLUSION

In this work, we present a straightforward and effective
backdoor attack trigger, specifically tailored for self-supervised
learning. Particularly, to enhance the covert nature of our
trigger, we set it up to mimic the rainy conditions frequently
observed in natural weather. We employ two strategies to
achieve this remarkable level of stealth: the implementation
of affine transformations and the integration of depth maps.
Moreover, our trigger has a global reach, ensuring its signifi-
cant effectiveness and robustness. Moreover, we demonstrate
that our method can effectively achieve favourable results even
in cases where the poisoning rate is minimal.
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