
Leveraging Pre-Trained Large Language Models (LLMs) for On-Premises
Comprehensive Automated Test Case Generation: An Empirical Study

Anonymous submission

Abstract
The rapidly evolving field of Artificial Intelligence (AI)-
assisted software testing has predominantly focused on au-
tomated test code generation, with limited research explor-
ing the realm of automated test case generation from user
stories requirements. This paper presents a comprehensive
empirical study on harnessing pre-trained Large Language
Models (LLMs) for generating concrete test cases from nat-
ural language requirements given in user stories. We inves-
tigate the efficacy of various prompting and alignment tech-
niques, including prompt chaining, few-shot instructions, and
agency-based approaches, to facilitate secure on-premises de-
ployment. By integrating our learnings with an on-premises
model setup, wherein we deploy a RoPE scaled 4-bit quan-
tized LLaMA 3 70B Instruct model, optionally augmented
with LoRA adapters trained on QA datasets, we demonstrate
that this approach yields more accurate and consistent test
cases despite VRAM constraints, thereby maintaining the se-
curity benefits of an on-premises deployment.

Introduction
Software testing is a vital process in software development
that involves evaluating the quality of a software product.
The increasing complexity of modern software systems has
led to a growing need for efficient and effective testing
strategies. According to a recent survey, software testing ac-
counts for approximately 30-50% of the overall software de-
velopment cost(Kumar and Mishra 2016a)(Myers, Badgett,
and Sandler 2012a)(Ramler and Wolfmaier 2006a). More-
over, the rise of agile methodologies and DevOps practices
has further emphasized the importance of automated test-
ing in ensuring timely and high-quality software releases.
Meanwhile, pre-trained large language models (LLMs) with
coding ability have emerged as a promising solution to assist
developers in writing feature code and testing code. The ad-
vent of transformer-based architectures has enabled LLMs
to learn from vast amounts of code data, exhibiting impres-
sive performance in various programming tasks such as code
completion, bug fixing, and code generation(Vaswani et al.
2017)(et al. 2021). However, most techniques introduced in
these papers focus on helping developers, such as unit test
case generation, system input generation, code repair, etc.
The application of LLMs in Quality Assurance (QA) daily
activities remains underexplored. It is only natural to apply
LLMs in the domain of QA to automatically alleviate some

of this manual effort. However, despite the significant ca-
pabilities of cloud-hosted AI models, data privacy concerns
arise when dealing with confidential data, such as that found
in user stories and upcoming product features. In such cases,
hosting an on-premises LLM service is a necessity to meet
data security requirements. Nevertheless, on-premises de-
ployments can be more VRAM constrained, requiring ef-
ficient training and deployment of models, and the choice of
pre-trained LLMs is limited to open-source models.

Moreover, one of the most critical daily activities for QA
members is to write test cases based on feature requirements.
Since both feature requirements and test cases are primar-
ily written in natural language, leveraging LLMs to perform
this task is a promising direction. However, simple zero-shot
prompting may not generate satisfactory test cases meeting
QA standards, exposing several issues. Namely,
• Incompleteness: Generated test cases do not cover all

the requirements and miss important scenarios, leading
to inadequate testing.

• Inconsistency: Generated test cases lack consistency in
quantity, style, and coverage, making it challenging to
ensure comprehensive testing.

• Naivety: Generated test cases are naive or incorrect due
to misunderstandings of domain-knowledge-intensive re-
quirements, potentially resulting in false positives or neg-
atives.

• Security risks: Using online LLM services may put cor-
porate confidential data at risk, compromising the in-
tegrity of the testing process.

In this paper, we will conduct empirical studies to deter-
mine the most effective approach for test case generation
in the QA domain using pre-trained LLMs, evaluating var-
ious open-source models and techniques such as prompt-
ing, alignment, and architecture. Based on those learnings,
our research will culminate in an on-premises LLM solution
built on top of the LLaMA 70B family of models (LLaMA
3(Dubey et al. 2024) and LLaMA 2(Touvron et al. 2023)),
tailored for test case generation in the QA domain.

Background
A typical software testing cycle has the following tasks.
• Product managers define the feature requirement and

document them in user stories.



• QA members review the requirement and create test
cases.

• Engineers follow the requirement to develop software
features/products.

• QA members receive the developed features/products,
execute the test cases and report test results.

Test case is the term we use in this work to refer to the
documentation of test procedures that QA members follow
to perform a test. QA members need to review and under-
stand the requirement, then carefully design test cases to
cover the requirement as much as possible. Due to the re-
cent rise of AI and LLM, it’s promising to utilize AI and
LLM to help reduce the manual effort.

Public online AI services are powerful tools that can help
with this task. However, the data will be submitted to the
service provider and subject to training and other purposes.
In such cases, hosting an on-premises LLM service is a must
due to data security requirement.

This article presents an in-house LLM solution for test
case generation. We evaluate current open source models,
conduct experiment for both prompting and finetuning and
analyze the result thoroughly.

There are not many automated ways to create test cases.
Test case creation and documentation is historically a man-
ual process. Since there are open source models available, it
is natural to try them for this task. Here we categorize the
task into two types and evaluate vanilla model (Section 3.2)
performance.

Basics Test Case Creation
Different projects may have different style of user story re-
quirement and test cases. The way to write test cases can
also vary from person to person. Here we start from the most
natural and common test case creation process. We use user
story requirement as input to the LLM and prompt the LLM
to generate desired test cases.

Example of user story requirement:
As a user who purchased license, I want to use the

premium feature without limitation.
Acceptance Criteria:
1. User should have access to premium feature after pur-
chasing license.
2. User should be blocked to access premium feature when
license is expired or deactivated.

QA member will determine all the scenarios to test
and document each scenario with steps as a test case. A
typical test case consists of title, precondition, test steps and
expected result. See example below.

Title:
Verify that a user who purchased license should have access
to premium feature.
Precondition:
App is installed.
Test Steps:
1. Launch the app.
2. Try to access premium feature.

3. Go to settings, license, input license key, activate license.
4. Try to access premium feature.
Expected Result:
At Step 1: App is launched successfully.
At Step 2: Pop up showing ”Please activate license”
At Step 3: License is activated successfully.
At Step 4: Should be allowed to user premium feature
without limitation.
We use simple one-liner prompt to instruct the vanilla
model. We found that although it can generate some
meaningful test cases, a lot of rework needs to done due to
the inconsistency, missing coverage and incorrect styling.

Advanced Test Case Creation
Above is the most basic requirement for test case creation.
However, this is still not sufficient in real life testing. To
further improve the test cases, the following enhancement
are needed.

• Project background information. The user story is incre-
mental and describes the new requirement on top of exist-
ing product. For testing, QA members usually build new
verification steps on top of existing product behaviors.
This will make the test cases more concrete and action-
able.

• Edge cases. In real life, testing the basic scenarios from
user stories is usually insufficient. We need to consider
edge cases to make the produce more robust. For exam-
ple, to test app related feature on the phone, we need to
consider how the feature behaviors when the device is
rotated, rebooted, in low-battery mode etc. Usually we
prepare a checklist of scenarios as refence when creating
additional edge test cases.

Unless specifically handled, Vanilla model will perform
poorly for advanced test case generation. Since Vanilla
model does not meet the need, in this article, we improve
both basic test case creation and advanced test case creation
utilizing a combination of techniques.

Experiments
Benchmark
Evaluation for basic test case creation.
It is crucial to know how to evaluate the result so we can iter-
atively improve it. Due to the characteristic of this use case,
not many straight-forward evaluation methods are available.
Here we use human evaluation.

For test case generation, basic test coverage is the most
important metrics. Basic test coverage means the generated
test cases should cover all the requirement described in the
input. We calculate basic test coverage by the following two
steps.

Step 1, we sequentially evaluate each generated test case
and filter out low quality ones.

• Inaccuracy: This evaluates whether the test case correctly
verifies one scenario. If inaccurate, this test case does not
count towards total coverage and should be ignored.



• Irrelevance: This evaluates whether the test case is related
to the requirement or not. If irrelevant, this test case does
not count towards total coverage and should be ignored.

• Redundancy: This evaluates whether the test case verifies
same scenarios covered by other test cases. If redundant,
this test case does not count towards total coverage and
should be ignored.

Step 2, we check the remaining good quality test cases
and compare them with manual generated test cases. Here is
one example. In this case, the coverage will be 8 / 10 = 80%.

Total
generated Inaccurate Irrelevant Redundant

Basic
Test

Coverage
Human 10 0 0 0 10
AI 12 1 2 1 8

Table 1: Calculate Basic Test Coverage

Evaluation for advanced test case creation.
Since project background information and edge case testing
are additional information that does not directly come from
original user story, we can manual examine the output and
quickly determine if the two enhancement exists.

Experiment Setup
Language Models

There are many open source LLM models available with
different size and variant. We choose the best one that fits
our needs. We use llama models(Touvron et al. 2023) with
varying scales to do the experiment.

• Llama-2-70b (7b, 13b and 70b)

This is the base model for text completion. Since our use
case requires well-designed instructions, base model may
not be best option. This also applies to fine-tuning. Training
the base model to follow test case generation instructions re-
quires large amount of data. It is more efficient to reuse of
instruction-following ability of chat model instead of train-
ing base model from scratch.

• Llama-2-chat (7b, 13b and 70b)

We evaluated models of three sizes. Smaller models require
much less computation resource but may not necessarily
meet our use case requirement.

• Meta-Llama-3-70B-Instruct

This is the latest llama model with enhanced performance.
We evaluate this model for our use case as well.

Prompts
Test case creation is not a simple task that can be described
in a simple instruction. To improve the performance of test
case creation, we explore the following prompting tech-
niques.

• Zero-Shot

In zero-shot prompting, we just use a simple prompt without
any demonstrations to guide the model to generate test cases.
We specify the test case template so the output test cases
formatting looks consistent.

• Few-Shot(Brown et al. 2020)

This is to provide one, two or more examples in the prompt
so that the model can follow. In our use case, output can be
very long if many test cases are generated. In such case, in-
serting even one example will make the prompt much longer
and more complex. Adding more than one example may ex-
ceed the conext window limit of our set up and degrade the
output quality. Therefore, we only experiment one shot.

• Prompt-Chaining(Li et al. 2023)(Wu, Terry, and Cai
2021)

Test case creation is a complex task with one prompt. It
makes sense to break it down into smaller tasks. Here we
define two subtasks(Wei et al. 2022).

• Step 1. Generate one-liner test scenarios which summur-
ize the test case.

• Step 2. Generate test cases using test scenarios as guid-
ance.

In the first step we prompt the model to generate test sce-
narios instead of complete test cases with steps. Here we
define test scenario as a one-liner statement covering one
funcitonality of the software under test. Then in the second
prompt, we use the intermediate test scenarios as guidance
to prompt the model to generate complete test cases.

• Prompt-Chaining + Few-Shot

In prompt chaining, the first prompt generates a list of one-
liners. This provides more room for improvement since the
output are shorter compared to a list of full test cases. Insert-
ing examples becomes more doable. Here we use one-shot,
two-shot and three-shot in the first prompt, keeping second
prompt the same, and evaluate prompt chaining result.

• Prompt-Chaining + Few-Shot sequentially

During experiment, we find that sometimes the output of
second prompt is not able to follow the test scenarios guid-
ance accurately. The chance is high when there are a lot of
intermediate test scenarios. In this case, we design a vari-
ant strategy for second prompt. When we have a list of in-
termediate one-liner test scenarios, we prompt the model to
generate one test case following one test scenario at a time.

Fine-tuning setup
QA teams usually maintain test cases for existing projects.
If the model can learn from existing data, output test cases
should be improved greatly.

We collect human-generated test cases for existing
projects and convert them to training samples. Each sam-
ple contains one user story as input and matching test cases
as output.

We use Llama-2-70B-chat as base model for fine-tuning.
Due to GPU VRAM limit, we use QLoRA(Dettmers et al.
2023), in which we quantize the base model in 4bit and only
train the adapter. Our goal is to maximize the training quality
while making sure training run always fits in the memory.

Experiment Result
Basic test case creation.



Figure 1: Prompt-Chaining + Few-Shot

Model Size Coverage
Llama-2-7b-chat 46.7%

Llama-2-13b-chat 49.8%
Llama-2-70b-chat 80.6%

Llama-3-70B-Instruct 79.6%

Table 2: Performance of different model sizes

In conclusion, we can see from Table II that 70B model
can generate test cases with higher coverage than 7B and
13B models. Llama3 offers same performance for this spe-
cific task.

Technique Coverage
Zero-Shot 67.7%
One-Shot 73.9%

Prompt-Chaining + zero-shot 76.9%
Prompt-Chaining + one-shot 85.2%
Prompt-Chaining + two-shot 89.7%

Prompt-Chaining + three-shot 80.6%
Prompt-Chaining + two-shot sequentially 90.3%

Table 3: Performance of different prompting techniques

According to Table III, comparing zero-shot with one-
shot, we can see that one-shot will degrade the performance.
This is probably because the example is too complex for the
model to learn.

Prompt chaining with zero-shot achieves same level of
performance as zero-shot, but makes injecting example fea-
sible. We evaluate prompt chaining with one-shot, two-shot
and three-shot. Among them, two-shot performs the best.
With three-shot or more, the prompt may become long and
complex again, which is hard for the model to recognize a
pattern. Therefore, adding more examples does not increase,
or even decrease, the output quality.

Comparing prompt chaining with two-shot sequentially
and non-sequentially, they achieve similar performance
when not many intermidiate test scenarios are generated.
However, when a lot of intermidiate test scenarios are gener-
ated, the model is not able to follow the guidance effectively
in a single prompt. In this case, sequentially prompting the
model has higher chance to align the generated test cases
with the test scenarios.

Advanced test case creation.

Adding project background information Background
information is stored in different format and at differ-
ent places. It will be hard to automatically inject rele-
vant project-specific background information to the prompt.
Implementing retrieval-augmented generation with back-
ground information as references is one option. But consol-
idating background information from varous formating is a
challenge. We observe that if the project is not in very early
stage, there should be existing test cases created. These test
cases can act as intial source of background infromation and
be used training dataset. Fine-tuning the model with existing
test cases is a more practical and effective way improve the



test cases generation. We observe that after finetuning, gen-
erate test cases learns project background information and
includes them in the test cases. The preconditions and test
steps contain steps specific to the project.

Adding edge test cases There are multiple ways to add ad-
ditional edge test cases. Usually, it’s more efficient to specify
the edge cases to add in the prompt. Here we alter the first
prompt in prompt chaining to add desired edge scenarios.

Limitation and mitigation
Output test cases quality has dependencies on input user sto-
ries.

Input Accuracy The user story has to be written in a pro-
fessional and accurate manner. If some part of the user story
is not written clearly, LLM may get confused and generate
vague test cases.

Input Detailedness Since user story is the sole informa-
tion that LLM can rely on to create test cases, the more self-
contained the user story, the more detailed and accurate the
generated test cases. Any missing information could lead to
test cases with decreased coverage.

To mitigate these issues, it is best to enforce accuracy and
detailedness standard when creating user stories.

Conclusion and Discussion
In this paper, we defined the scope for automated test case
creation and introduced novel techniques and experiments to
address this use case effectively. For basic test case creation,
we employed a combination of prompt chaining and two-
shot prompting to achieve optimal coverage, ensuring that
the generated test cases were comprehensive and aligned
with the software requirements. For advanced test case cre-
ation, we utilized supervised fine-tuning (SFT) to incorpo-
rate specific project information, thereby enhancing the rel-
evance and accuracy of the generated test cases. We further
applied prompt chaining to inject additional checklist-based
test cases, ensuring that edge cases and project-specific nu-
ances were adequately covered.

Additionally, we discussed the practical challenges en-
countered during the implementation, including the limita-
tions inherent in using large language models (LLMs) and
the strategies to mitigate these challenges. These included
managing the complexity of user stories, ensuring the ac-
curacy and consistency of the generated test cases, and ad-
dressing the computational constraints of on-premises de-
ployment.

The results of our experiments demonstrate that the inte-
gration of LLMs into the test case generation process not
only reduces manual effort but also enhances the efficiency
and scalability of the QA process. Our approach signifi-
cantly decreases the time required for test case creation, par-
ticularly for complex user stories, thereby contributing to
faster software delivery cycles and improved software qual-
ity.

Future work could explore further optimization of the
models used, potentially integrating more sophisticated fine-
tuning techniques and expanding the scope to include ad-

ditional types of test cases. Moreover, as LLM technology
continues to evolve, there is potential for even greater effi-
ciency and coverage in automated test case generation, fur-
ther reducing the reliance on manual processes and enhanc-
ing overall software reliability.

Practical Implications and Economic Impact
of Automated Test Case Generation

The creation and documentation of high-coverage test cases
are crucial steps in the QA process. Leveraging large lan-
guage models (LLMs) can significantly reduce the manual
effort required for this task. According to a survey conducted
by interal QA team, generating around 15 test cases for a
user story typically takes 1-3 hours for a QA member to
complete, depending on the complexity of the user story
and the member’s familiarity with the project. In contrast,
our on-premises LLM, fine-tuned specifically for the project,
can produce corresponding test cases in under 5 minutes.

For more complex user stories requiring 30 or more test
cases, the manual process may extend over a day, whereas
our LLM accomplishes the task in under 40 minutes. This
stark reduction in time not only enhances productivity but
also significantly lowers the costs associated with manual
test case generation. Furthermore, with additional computa-
tional resources, such as batching across a multi-GPU setup
or reducing quantization, the generation time can be further
decreased, making LLMs even more efficient and effective
in automating test case creation.

The economic implications of these advancements are
substantial. Defect leakage into production, often due to in-
adequate test coverage, can be costly. According to the Na-
tional Institute of Standards and Technology (NIST), the
cost to fix defects post-release can be up to 30 times higher
than during the early development stages (National Insti-
tute of Standards and Technology (NIST) 2002). Poorly de-
signed test cases lead to higher maintenance costs, as fre-
quent updates are required to ensure adequate coverage, di-
verting resources from critical tasks such as feature develop-
ment. This is especially problematic in agile environments
where rapid iteration is key (Kumar and Mishra 2016b).

Moreover, suboptimal test cases can reduce software qual-
ity, leading to customer dissatisfaction and brand damage,
particularly in industries where reliability is paramount,
such as finance or healthcare (Myers, Badgett, and Sandler
2012b). Delayed time-to-market is another consequence, as
extended testing phases caused by inefficient test case cre-
ation can push back release schedules, resulting in lost mar-
ket opportunities (Ramler and Wolfmaier 2006b). Lastly, the
opportunity cost of redirecting resources to address issues
stemming from poor test cases can stifle innovation and re-
duce competitiveness (Gaffney and Durek 1989).

In summary, automating test case generation using LLMs
not only mitigates these risks but also enhances efficiency,
allowing QA teams to focus on higher-level, value-adding
tasks. This results in faster time-to-market, lower costs, and
ultimately, higher software quality.



User Story Input (Plain Text)
Title: User Registration
As a new user
I want to register for an account
So that I can access members-only content on the website.

Acceptance Criteria:
1. The registration form should include fields for the user’s

name, email, and password.
2. The email field should validate for proper email format.
3. The password field should require at least 8 characters,

including one uppercase letter, one number, and one spe-
cial character.

4. The system should send a confirmation email with a link
to verify the user’s email address.

5. The user should be redirected to the login page after suc-
cessful registration.

Notes:
• The confirmation email should be sent using the existing

email service.
• The registration form should be accessible on both desk-

top and mobile devices.

Prompt Chaining + Two-shot Output
Test Case 1: Valid Registration Information

Preconditions:
1. The user has not registered previously.
2. The user has a valid email address.
3. The user knows their desired password.

Test Steps:
1. Open the registration form on the website.
2. Enter the user’s name, email, and password in the appro-

priate fields.
3. Click the “Submit” button.

Expected Results:
1. The system should send a confirmation email to the

user’s registered email address.
2. The user should receive a message indicating that they

have successfully registered.
3. The user should be able to log in with their registered

email and password.

Test Case 2: Invalid Email Address
Preconditions:

1. The user has not registered previously.
2. The user has an invalid email address (e.g.,

username@example.com).
3. The user knows their desired password.

Test Steps:
1. Open the registration form on the website.
2. Enter the user’s name, invalid email address, and pass-

word in the appropriate fields.

3. Click the “Submit” button.
Expected Results:

1. The system should display an error message indicating
that the email address is invalid.

2. The user should not receive a confirmation email.
3. The user should not be able to log in with their registered

email and password.
Test Case 3: Insufficient Password Length
Preconditions:

1. The user has not registered previously.
2. The user has a valid email address.
3. The user knows their desired password, but it is less than

8 characters long.
Test Steps:

1. Open the registration form on the website.
2. Enter the user’s name, email, and short password in the

appropriate fields.
3. Click the “Submit” button.

Expected Results:
1. The system should display an error message indicating

that the password is too short.
2. The user should not receive a confirmation email.
3. The user should not be able to log in with their registered

email and password.
Test Case 4: Confirmation Email Not Sent
Preconditions:

1. The user has registered successfully.
2. The user has not received a confirmation email.

Test Steps:
1. Check the user’s email inbox for the confirmation email.
2. If the email is not found, contact the system administrator

to investigate.
Expected Results:

1. The system should send a confirmation email to the
user’s registered email address.

2. The user should receive a message indicating that they
have successfully registered.

3. The user should be able to log in with their registered
email and password.

Test Case 5: Registration Form Accessibility
Preconditions:

1. The user has a desktop or mobile device with internet
access.

2. The user has not registered previously.
Test Steps:

1. Open the registration form on the website using a desktop
or mobile device.

2. Attempt to enter the user’s name, email, and password in
the appropriate fields.

3. Click the “Submit” button.



Expected Results:
1. The registration form should be accessible and usable on

both desktop and mobile devices.
2. The user should be able to register successfully using ei-

ther device.
Test Case 6: Existing Email Service Integration
Preconditions:

1. The user has registered successfully.
2. The system uses an existing email service (e.g., Send-

Grid) to send confirmation emails.
Test Steps:

1. Check the system’s configuration to ensure that it is using
the existing email service.

2. Send a test email using the existing email service to ver-
ify its functionality.

Expected Results:
1. The system should use the existing email service to send

confirmation emails to newly registered users.
2. The test email should be delivered successfully using the

existing email service.

Prompt Chaining + One-shot Output
Test Case 1: Valid Registration

Preconditions:
1. The user has not registered previously.
2. The user has a valid email address.
3. The user knows their desired password.

Test Steps:
1. Open the registration form on the website.
2. Enter the user’s name, email, and password in the appro-

priate fields.
3. Click the “Submit” button.
4. Verify that the system sends a confirmation email to the

user’s email address.
5. Follow the link in the confirmation email to verify the

user’s email address.
6. Log in with the newly created account.

Expected Result:
1. The user receives a confirmation email with a link to ver-

ify their email address.
2. The user’s email address is verified successfully.
3. The user is able to log in with their newly created ac-

count.
Test Case 2: Invalid Email Address
Preconditions:

1. The user has not registered previously.
2. The user has an invalid email address (e.g.,

username@example.com).
3. The user knows their desired password.

Test Steps:

1. Open the registration form on the website.
2. Enter the user’s name, invalid email address, and pass-

word in the appropriate fields.
3. Click the “Submit” button.
4. Verify that the system does not send a confirmation

email.
5. Verify that the user is not able to log in with their newly

created account.
Expected Result:

1. The system does not send a confirmation email.
2. The user is not able to log in with their newly created

account.
Test Case 3: Password Length
Preconditions:

1. The user has not registered previously.
2. The user has a valid email address.
3. The user knows their desired password, which is less than

8 characters long.
Test Steps:

1. Open the registration form on the website.
2. Enter the user’s name, email, and short password in the

appropriate fields.
3. Click the “Submit” button.
4. Verify that the system does not allow the user to register.
5. Verify that the user is not able to log in with their newly

created account.
Expected Result:

1. The system does not allow the user to register.
2. The user is not able to log in with their newly created

account.
Test Case 4: Confirmation Email Link
Preconditions:

1. The user has registered successfully.
2. The user has not yet verified their email address.

Test Steps:
1. Open the confirmation email sent by the system.
2. Click the link to verify the user’s email address.
3. Verify that the system marks the user’s email address as

verified.
4. Log in with the newly created account.

Expected Result:
1. The system marks the user’s email address as verified.
2. The user is able to log in with their newly created ac-

count.
Test Case 5: Mobile Device
Preconditions:

1. The user has not registered previously.
2. The user has a valid email address.
3. The user knows their desired password.



Test Steps:
1. Access the registration form on a mobile device.
2. Enter the user’s name, email, and password in the appro-

priate fields.
3. Click the “Submit” button.
4. Verify that the system sends a confirmation email to the

user’s email address.
5. Follow the link in the confirmation email to verify the

user’s email address.
6. Log in with the newly created account.

Expected Result:
1. The user receives a confirmation email with a link to ver-

ify their email address.
2. The user’s email address is verified successfully.
3. The user is able to log in with their newly created ac-

count.
Test Case 6: Desktop Device
Preconditions:

1. The user has not registered previously.
2. The user has a valid email address.
3. The user knows their desired password.

Test Steps:
1. Access the registration form on a desktop device.
2. Enter the user’s name, email, and password in the appro-

priate fields.
3. Click the “Submit” button.
4. Verify that the system sends a confirmation email to the

user’s email address.
5. Follow the link in the confirmation email to verify the

user’s email address.
6. Log in with the newly created account.

Expected Result:
1. The user receives a confirmation email with a link to ver-

ify their email address.
2. The user’s email address is verified successfully.
3. The user is able to log in with their newly created ac-

count.
Test Case 7: Registration Form Accessibility
Preconditions:

1. The user has not registered previously.
2. The user has a valid email address.
3. The user knows their desired password.

Test Steps:
1. Access the registration form on a desktop device with a

screen reader enabled.
2. Enter the user’s name, email, and password in the appro-

priate fields.
3. Click the “Submit” button.
4. Verify that the system sends a confirmation email to the

user’s email address.

5. Follow the link in the confirmation email to verify the
user’s email address.

6. Log in with the newly created account.
Expected Result:

1. The user is able to complete the registration form using a
screen reader.

2. The system sends a confirmation email to the user’s email
address.

3. The user’s email address is verified successfully.
4. The user is able to log in with their newly created ac-

count.

Prompt Chaining + Zero-shot Output
Test Case 1: Valid Registration

Preconditions:
• The user has not registered before.
• The user has a valid email address.
• The user knows their password.

Test Steps:
1. Access the registration form on the website.
2. Enter a valid name, email address, and password in the

appropriate fields.
3. Click the “Submit” button.

Expected Results:
1. The system should send a confirmation email to the

user’s email address.
2. The user should receive a message indicating that they

have been registered successfully.
3. The user should be able to log in to their account using

their registered email and password.
Test Case 2: Incorrect Email Format
Preconditions:

• The user has not registered before.
• The user has an invalid email address (e.g.,
username@localhost).

• The user knows their password.
Test Steps:

1. Access the registration form on the website.
2. Enter a valid name and password in the appropriate

fields.
3. Enter an invalid email address in the email field.
4. Click the “Submit” button.

Expected Results:
1. The system should display an error message indicating

that the email address is in an invalid format.
2. The user should not be registered.

Test Case 3: Short Password
Preconditions:

• The user has not registered before.
• The user has a valid email address.



• The user knows their password but it is less than 8 char-
acters long.

Test Steps:
1. Access the registration form on the website.
2. Enter a valid name and email address in the appropriate

fields.
3. Enter a short password (less than 8 characters) in the

password field.
4. Click the “Submit” button.

Expected Results:
1. The system should display an error message indicating

that the password is too short.
2. The user should not be registered.

Test Case 4: Confirmation Email Not Sent
Preconditions:

• The user has registered successfully.
• The user has not received a confirmation email.

Test Steps:
1. Check the user’s email inbox for a confirmation email

from the system.
2. If no confirmation email is found, contact the system ad-

ministrator to verify that the email was not sent.
Expected Results:

1. The system should send a confirmation email to the
user’s email address.

2. The user should receive a confirmation email within a
reasonable timeframe (e.g., 5 minutes).

Test Case 5: Registration Form Accessibility
Preconditions:

• The user has a valid email address.
• The user knows their password.

Test Steps:
1. Access the registration form on a desktop device.
2. Enter a valid name, email address, and password in the

appropriate fields.
3. Click the “Submit” button.
4. Repeat steps 1-3 on a mobile device.

Expected Results:
1. The registration form should be accessible and functional

on both desktop and mobile devices.
2. The user should be able to register successfully on both

desktop and mobile devices.
Test Case 6: Database Account Creation
Preconditions:

• The user has registered successfully.
Test Steps:

1. Verify that the user’s account has been created success-
fully in the database.

2. Check the user’s account details (e.g., email, password,
username) in the database.

Expected Results:
1. The user’s account should be created successfully in the

database.
2. The user’s account details should match the information

entered during registration.
Test Case 7: Logging In With Registered Email and

Password
Preconditions:

• The user has registered successfully.
• The user knows their registered email and password.

Test Steps:
1. Access the login page on the website.
2. Enter the registered email and password in the appropri-

ate fields.
3. Click the “Login” button.

Expected Results:
1. The system should authenticate the user successfully.
2. The user should be able to access members-only content

on the website.
Test Case 8: Verification Email Link
Preconditions:

• The user has registered successfully.
• The user has not verified their email address.

Test Steps:
1. Locate the verification email sent to the user’s email ad-

dress.
2. Click the verification link in the email.

Expected Results:
1. The system should verify the user’s email address suc-

cessfully.
2. The user should receive a message indicating that their

email address has been verified.
Test Case 9: Email Address Verification
Preconditions:

• The user has registered successfully.
• The user has not verified their email address.

Test Steps:
1. Access the user profile page on the website.
2. Click the “Verify Email” button.

Expected Results:
1. The system should send a verification email to the user’s

email address.
2. The user should receive a message indicating that a veri-

fication email has been sent.
3. The user should be able to click the verification link in

the email to verify their email address.
Test Case 10: Login After Email Verification
Preconditions:

• The user has registered successfully.



• The user has verified their email address.

Test Steps:
1. Access the login page on the website.
2. Enter the registered email and password in the appropri-

ate fields.
3. Click the “Login” button.

Expected Results:
1. The system should authenticate the user successfully.
2. The user should be able to access members-only content

on the website.

References
Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.;
Dhariwal, P.; et al. 2020. Language Models are Few-Shot
Learners.
Dettmers, T.; Pagnoni, A.; Holtzman, A.; and Zettlemoyer,
L. 2023. QLoRA: Efficient Finetuning of Quantized LLMs.
arXiv:2305.14314.
Dubey, A.; Jauhri, A.; Pandey, A.; Kadian, A.; Al-Dahle,
A.; Letman, A.; et al. 2024. The Llama 3 Herd of Models.
arXiv:2407.21783.
et al., C. 2021. A Survey on Neural Code Generation.
Gaffney, J. E.; and Durek, T. A. 1989. Software Cost Esti-
mation Techniques. Academic Press.
Kumar, D.; and Mishra, K. 2016a. The Impacts of Test Au-
tomation on Software’s Cost, Quality and Time to Market.
Procedia Computer Science, 79: 8–15. Proceedings of In-
ternational Conference on Communication, Computing and
Virtualization (ICCCV) 2016.
Kumar, D.; and Mishra, K. 2016b. The Impacts of Test Au-
tomation on Software’s Cost, Quality and Time to Market.
Procedia Computer Science, 79: 8–15.
Li, Z.; Peng, B.; He, P.; Galley, M.; Gao, J.; and Yan, X.
2023. Guiding Large Language Models via Directional
Stimulus Prompting. arXiv:2302.11520.
Myers, G. J.; Badgett, T.; and Sandler, C. 2012a. The Art of
Software Testing.
Myers, G. J.; Badgett, T.; and Sandler, C. 2012b. The Art of
Software Testing. Wiley, 3rd edition.
National Institute of Standards and Technology (NIST).
2002. The Economic Impacts of Inadequate Infrastructure
for Software Testing. Accessed: 2024-08-26.
Ramler, R.; and Wolfmaier, K. 2006a. Economic perspec-
tives in test automation: balancing automated and manual
testing with opportunity cost.
Ramler, R.; and Wolfmaier, K. 2006b. Economic Perspec-
tives in Test Automation: Balancing Automated and Man-
ual Testing with Opportunity Cost. In Proceedings of the
2006 ACM International Workshop on Automation of Soft-
ware Test, 85–91. ACM.
Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi,
A.; Babaei, Y.; et al. 2023. Llama 2: Open Foundation and
Fine-Tuned Chat Models. arXiv:2307.09288.

Vaswani, A.; Shazeer, N.; Parmar, N.; Jones, L.; Gomez, A.;
Łukasz Kaiser; and Polosukhin, I. 2017. Attention Is All
You Need.
Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Chi, E. H.;
Le, Q.; and Zhou, D. 2022. Chain of Thought Prompting
Elicits Reasoning in Large Language Models.
Wu, T.; Terry, M.; and Cai, C. J. 2021. AI Chains: Trans-
parent and Controllable Human-AI Interaction by Chaining
Large Language Model Prompts.


