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Abstract

Models of hybrid dynamical systems are widely used to answer questions about
the causes and effects of dynamic events in time. Unfortunately, existing causal
reasoning formalisms lack support for queries involving the dynamically triggered,
discontinuous interventions that characterize hybrid dynamical systems. This
mismatch can lead to ad-hoc and error-prone causal analysis workflows in prac-
tice. To bridge the gap between the needs of hybrid systems users and current
causal inference capabilities, we develop a rigorous counterfactual semantics by
formalizing interventions as transformations to the constraints of hybrid systems.
Unlike interventions in a typical structural causal model, however, interventions
in hybrid systems can easily render the model ill-posed. Thus, we identify mild
conditions under which our interventions maintain solution existence, uniqueness,
and measurability by making explicit connections to established hybrid systems
theory. To illustrate the utility of our framework, we formalize a number of canon-
ical causal estimands and explore a case study on the probabilities of causation
with applications to fishery management. Our work simultaneously expands the
modeling possibilities available to causal inference practitioners and begins to
unlock decades of causality research for users of hybrid systems.

1 Introduction

Models of continuous-time dynamical systems are powerful tools for describing real-world mecha-
nisms. From contrastive queries about system behavior under different control policies (Kirk, 2004),
to sensitivity analyses designed to aid in understanding which parameters drive system variation
(Cacucil 2003), scientists, policy makers, and engineers often use such models to answer their
“what-if” and causal questions. Unfortunately, causal reasoning with continuous-time systems can be
ad-hoc, manual, and error-prone in daily practice.

In parallel, researchers in causal inference have built rigorous tools for answering an expansive
taxonomy of causal queries. For example, causal questions about effect estimation (Pearl, 2009
Rubin, [1974; Imbens & Rubin, [2015)), counterfactual reasoning (Pearl, 2009, Ch. 7), mediation
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analysis (Pearl, 2001}, responsibility, blame (Chockler & Halpern), 2004), attribution, and explanation
(Halpern & Pearl, [2005alb; |[Beckers), [2022)) can all be succinctly expressed as estimands constructed
from parallel worlds (Balke & Pearl, (1994} |Avin et al.| 2005} |Shpitser & Pearll, [2008]) or potential
outcomes (Rubin, [1974)). The toolkit also affords a formal means of determining when those estimands
can be reduced to computationally tractable, probabilistic estimation problems (Pearl, 1995} |Shpitser
& Pearl}2006; Hernan & Robins},[2023). These insights have made it possible to build general-purpose
technology for causal reasoning, such as the causal probabilistic programming language ChiRho
(Bingham et al.| [2021; Witty, |2023; Basis-Research, 2025)

Despite significant progress over the last decade (Moojj et al., [2013; Hansen & Sokoll 2014} |Blom
et al., [2019; [Forré & Mooij, [2020; [Peters et al., [2020; [Blom et al., 2021} Bongers| [2022; Blom &
Mooij, 2023; |Boeken & Mooij, |2024; Peters & Halpern, [2025), however, gaps remain in the technical
capacity of modern causal reasoning machinery to operate on the full breadth of interventions that
can be encoded in continuous-time dynamical systems. In particular, a counterfactual semantics
for dynamically triggered, instantaneous intervention has not yet been established. With such an
intervention semantics in hand, causal reasoning can be more fully mechanized for causal questions
about dynamic temporal events, dramatically expanding the rigor and variety of queries available to
users of continuous-time dynamical systems.

Such interventions underpin many closed-loop control problems: for example, HVAC systems activate
when temperature thresholds are reached; lockdown and masking measures can be implemented
according to levels of Sars-CoV-2 in wastewater (Kappus-Kron et al., 2024); commercial fishing
pressure can be reduced once annual harvest limits are reached (Anon| |[2007b; Warlick et al., 2018));
central banks adjust interest rates depending on economic indicators like inflation and unemployment;
reservoir managers release water depending on storage thresholds and agricultural needs (Ray}, 2003));
and power grids activate “peaker plants” (or stored energy) when demand exceeds certain thresholds
(Zhuk et al.l |2016). Despite limited attention from the causality community, these systems have
garnered significant interest from control theorists in the form of continuous-time, hybrid dynamical
systems (Schaft et al., [2000; |Goebel et al., 2012} [Sanfelice, |[2021) that encode both continuous and
instantaneous dynamics in a set of differential and difference constraining equations.

To construct a counterfactual semantics for state-dependent, instantaneous intervention, we formalize
a class of transformations on hybrid system constraints that induce the desired counterfactual behavior.
An intervention creates a twin, parallel world with transformed constraints, but in a way that ensures
both the twin and original worlds share randomly sampled values for initial conditions and parameters.
This induces a familiar joint distribution over counterfactual outcomes (Rubin| |1974; Balke & Pearl,
1994; [Shpitser & Pearl, [2006, [2008) that can, in turn, be used as input to established causal estimands,
such as an expected treatment effect or the probabilities of necessary and sufficient causation.

Our contributions are:

1. A formal, counterfactual semantics for dynamically triggered, instantaneous interventions in
continuous-time dynamical systems.

2. Under minimal requirements on interventional specifications, proof that sufficient condi-
tions for solution existence, uniqueness, and finite-time measurability are preserved in the
intervened system. Our framework also explicitly connects to established well-posedness
conditions on hybrid dynamical systems.

3. A case study on the probabilities of necessary and sufficient causation applied to fishery
management, demonstrating extensibility to non-trivial causal estimands rarely applied to
dynamical systems.

2 Related Work

In Causality. Many researchers have contributed to the systematization of causality for dynamical
systems. |[Hansen & Sokol| (2014), for example, show that dynamical systems can be unrolled into
directed, structural causal models (SCMS) In the context of ordinary differential equations (ODEs),
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additionally incorporate exogenous random noise. SCMs come equipped with a widely studied interventional
semantics. We refer the reader to highly influential work of |Pearl| (2009) for further background.
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if f is the right-hand side of the continuous-time differential equation ' = f(x), we can write
structural equations x; = x;—a; + f(Ti—ar, u)At, where t > 0, x; € R is the value of the state
variable z at time ¢, u € R is a fixed realization of exogenous noise, and z is fixed. Taking At — 0,
we can recover the system’s dynamics arbitrarily well. This limit results in SCMs with infinitely
many variables — a modality that has been recently studied as “Generalized Structural Equation
Models” (GSEMs) (Peters & Halpern| 2021} Halpern & Peters| [2022; |Peters & Halpern, 2025). With
At > 0, this becomes the familiar discrete time approximation, which has been widely researched in
causal inference (Spirtesl 2013} |Pearl, 2009; Murphy, [2002; Wang et al.,[2018} Assaad et al., 2022}
Runge et al.| 2023 Zan et al.| 2024).

This forward-Euler representation, however, is not the preferred tool of hybrid systems theorists,
making it ill-suited for identifying conditions under which intervention preserves established well-
posedness conditions. Additionally, under the forward-Euler representation, interventional transfor-
mations that induce state-dependent jumps require “soft” intervention (Correa & Bareinboimy, [2020)
on all endogenous nodes that might jump. Indeed, the state-dependent jump conditions must be
“checked” at all points in time. We discuss this more precisely in appendix [J|

Somewhat sidestepping the temporal representation issue, most causal research on continuous-time
dynamical systems has employed foundational ideas in cyclic graphical models (Iwasaki & Simon)
1994; |Spirtes, |2013}; |Lacerda et al., 2008} [Hyttinen et al., 2012} to develop causal abstractions of a
system’s equilibrium behavior (Dashl 2003} Mooij et al., [2013} |Hansen & Sokol, [2014} [Blom et al.,
2019; [Forré & Mooijl 2020; Bongers| [2022; Blom & Mooijl 2023). Equilibrium-focused frameworks,
however, can fail to expose complex causal relationships in transient dynamics (Peters et al., [2020).

Extensions such as the “time-splitting” operation (Boeken & Mooij|, 2024), or the application of
GSEMs to hybrid automata by Peters & Halpern|(2025)), enhance the expressiveness of graphical
approaches by supporting static-time discontinuities. In contrast, our work targets dynamically
triggered interventions, which cannot be straightforwardly analyzed using methods like time-splitting.
Indeed, the order — and, therefore, the induced time-split graph structure — of dynamically triggered
interventions depends on state evolution, and therefore on exogenous noise. Our approach avoids
these issues by directly defining counterfactual interventions on hybrid system constraints. While
the non-graphical framing means that standard graphical identifiability criteria are not immediately
available, building our semantics on established hybrid systems theory opens pathways to leveraging
longstanding methods and conditions for system identification of dynamical systems (Walter &
Pronzato, [1997; [Ljung, |2012; Raue et al., 2009; [Stuart, 2010), such as the “persistence of excitation”,
which has been studied directly in the context of hybrid systems (Johnson} 2023} [Saoud et al., 2024)).

Our approach follows the spirit of recent developments in constraint-based causal modeling. For
example, Beckers et al.| (2023) extend SCMs in order to handle logical constraints (such as unit
conversions), while Blom et al.[(2019) interpret equilibrium equations of dynamical systems, along
with their corresponding algebraic invariants, as a collection of constraints. In both cases, a model
is characterized by a collection of constraints, and interventions are defined as transformations of
those constraints (e.g., by changing, disabling, or enabling them). At a high level, we take a similar
approach. Hybrid systems, however, are characterized by a unique class of constraints requiring
special considerations around Zeno behavior, set-valued theory, non-uniqueness even in “well-posed”
cases, set-valued stable points, etc. In short, analyzing the post-intervention properties of hybrid
systems is made easier via direct use of existing hybrid systems frameworks, rather than existing
causal frameworks. Naturally, each school of thought is best suited to different tasks, and we look
forward to future work that deftly exercises the comparative advantages of each.

In Control Theory. Control theory and causality share overlapping goals, yet historically oper-
ate separately. This paper integrates causal reasoning directly into established, hybrid dynamical
systems frameworks (Goebel et al.l [2012; Sanfelice, 2021). In particular, our formalization of dy-
namically triggered intervention as constraint transformation mirrors controller-plant compositions
from hybrid control theory, which are also shown to preserve established conditions for system
well-posedness (Sanfelicel 2021). Hybrid system theory presents challenges, however, due to po-
tential non-uniqueness of solutions under general conditions (Goebel et al., [2012), complicating
counterfactual reasoning. To address this practically, we follow common simulation practices (e.g.,
preferring flowing solutions when multiple are possible) and explicitly formalize these assumptions
(Sanfelice et al.} 2023a). Our contributions thus link causal semantics to established hybrid systems
theory and practice, enabling rigorous and computationally feasible causal analysis.
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Figure 1: Three parallel worlds constructed by starting with a dose-decay model (fig. and
then transforming that model to reflect dosage at a fixed, static time (fig. [Ib), and dosage when
the concentration hits a threshold (fig. [Ic|and example [I)). This paper develops the first explicitly
counterfactual semantics for the dynamically triggered, state-dependent case (fig. [Tc). Three sample
trajectories are shown for each world, with initial condition and dose-decay rate held fixed across
worlds for each sample trajectory. Notice that the state-dependent interventions occur at different
times for different trajectories induced by different initial conditions and/or parameters.

3 Parameterized Hybrid Systems

As a first approximation, the present work focuses on continuous, ordinary differential equations
models with random initial conditions and parameters. Many intuitive interventions, however, can
be conveniently defined as instantaneous (discontinuous) changes to the dynamically evolving state.
Thus, we focus on Aybrid systems that afford both continuous “flow” and event-based “jumps” in state.
Jumps can arise as a product of interventions and/or discontinuous dynamics in the unintervened
system. With state space S € R"™ and following the framework laid out by |Goebel et al.| (2012), many
hybrid systems can be characterized as comprising four elements: a flow set C' — S; a differential
inclusion ' : § 3 R™; a jump set D < S; and a set-valued jump map G : S =3 S. In general,
the system evolves according to its differential inclusion /' when its state is in the flow set C' and
according to the jump map G when in the jump set D. Readers who are unfamiliar with inclusions
and set-valued maps should refer to appendix[A.T] Hybrid systems often alternate between continuous
flow and discontinuous jumps, though consecutive jumps remain well-defined. Many hybrid systems,
then, can be characterized with the tuple (C, F, D, G). We ground this out in the following example.

Example 1 (Dosage Model). Consider modeling the exponential decay of drug concentration x at
rate 3, where medical providers intervene to administer additional dosage when x reaches a threshold
v. To model these dynamics, we can seek state evolutions obeying

xeC =R\D &€ F(x)={-Px}
reD={zeR:z2<vy} a7 eGx)={z+1}
where 2 denotes the time derivative of the state, and 2 the state immediately following a jump. The

solution map of a hybrid system typically takes as “input” an initial condition £ € S, but can also be
parameterized to additionally incorporate a vector & — in example(l} 8 = [3,~].

Definition 1 (Parameterized Hybrid System). Let S € R", © € R™. A parametrized hybrid system
Pisatuple P = (H,S,0) where for each 8 € ©, H(0) = (C(0), Fo, D(0),Gp) is a standard
hybrid system (Goebel et al.| 2012, Def. 2.2), i.e.

* C': © 3 Sis a set-valued mapping returning the flow set,

* Fg(x) =F (x,0) Ve € Sand VO € O, where I : § x © 3 R is a differential inclusion,
with C(6) c dom Fy < Sforall § € ©,

e D : 0O 33 Sis a set-valued mapping returning the jump set, and

* Gg(x) =G (x,0)Vx € Sand VO € O, where G : S x © =3 S is an ordered (i.e. returning
an ordered collection of sets to keep track of interventions, cf. definition[6) set-valued jump
map, with D(0) c dom Gg < S for all 8 € ©.

Without explicit parametrization, we write H = (C, F, D, G), and also often expand H in P, writing
equivalently P = (H,S,0) = (C,F,D,G, S, 0).



Canonically, solutions to hybrid systems are functions of both continuous time ¢ € R and discrete
event indices j € N. Following (Goebel et al.l |2012] Sects. 2.2-2.3), we define, for each possible
parameterization @ € © and initial condition € € S, a “solution” to H(0) to be a “hybrid arc”,
which is formally a set-valued map ¢(+; &, 0) : Ry x N =3 R™. We review Goebel et al.’s (2012)
rigorous characterization of hybrid arcs as solutions to hybrid systems in appendix [A.3] For ease
of exposition in the main body of this paper, however, we use the concept of a time-parameterized
solution map ¢, which we describe informally, below, in definition[2] An expanded, formal treatment
of time-parameterized solution maps can be found in appendix [A.4]

Definition 2 ((Informal) Time-Parameterized Solution Map). Let o(+;&,0) : [0,t7) — R™ be called
the time-parameterized solution map of P = (H, S, ©), where t* = ming ¢ sup, dom ¢(+; €, 8) and
where the hybrid arc ¢(-; €, 8) uniquely satisfies 7 (0) from initial state &, V€,0 € S x ©.

The reader will note that [0,¢%) < R. In this paper, we focus strictly on finite time horizons, leaving
the analysis of hybrid equilibria to future work — indeed, only the simplest hybrid systems equilibrate
to a point, so equilibrium states are most productively defined as belonging to a set. Analyzing
the causally relevant behavior of such sets requires machinery beyond our current scope, but our
direct connection to established hybrid systems theory, in conjunction with the rich history of causal
research on equilibrium models, provides a firm foundation to explore this in the future. Additionally,
because hybrid arcs can dynamically evolve in event indices, Zeno and non-flowing solutions are
possible, which can make ¢* = 0 (if it only jumps) or arbitrarily small (if allowable initial conditions
are close to Zeno accumulation points). We do not provide universal criteria in this paper under which
tT is arbitrarily large.

While we take the hybrid system P to accurately describe causally relevant mechanisms in the world,
we impose assumptions on P indirectly. In particular, we assume that some auxiliary “upstream”
system P; can be “lowered” to produce P = lower(P;), and that the upstream P4 satisfies standard
hybrid well-posedness conditions from the literature (the so-called hybrid basic conditions, detailed
in assumption ] of the appendix, and folded into assumption[T|below). While these conditions support
our theoretical results and facilitate future extensions (e.g., to stability analyses), they inherently
admit solution non-uniqueness, particularly at state-space boundaries where solutions could either
jump or flow. Non-uniqueness, however, complicates both measurability arguments and downstream
causal analysis. In this work, then, we formalize a practical approach that is standard in simulating
hybrid systems by specifying that the solutions should be “flow preferring” — if a solution could both
flow and jump, we choose the solution that flows (Sanfelice et al.,|2023aj [Sanfelice & Teel, 2010)E]
Note also that a flow-preferring specification is consistent with computational implementations that
trigger jumps when the jump-set boundary is crossedE]

A key component of the hybrid basic conditions is the outer semi-continuity of the jump set GG in the
upstream system. Maintaining this property through intervention requires some bookkeeping on the
boundaries between interventional jump sets, but must be handled such that “lowering” favors more
recently applied model transformations. We achieve this bookkeeping through the use of an ordered
set-valued map G = = — Ukl,i1 Gi(x), where last(G) = Gi. We fully formalize the ordered
set-valued map in the appendix (c.f. definition [6)).

Definition 3. Let P = (C, F,D,G,S,0) = (H,S,0). We set
preferflow(D,C,F) = 6 — D(0)\ {£ € S : there is a flowing solution to #(0) from £} ;
lower(P) = (C,F,D',G', S, 0); D' = preferflow(D,C, F), G' = last(G).

The existence of a flowing solution from £ is meant in the sense established in the hybrid systems
literature. See appendix [A.5] (definitions [T3] and [T4) for details. We can now state our collected
assumptions on a hybrid system, and prove the sufficiency of those assumptions for the existence,
uniqueness, and measurability of the system’s solution. See appendix [A.6] (assumptions [3|to 5] for
details, and appendix [F for proof of lemmal[T]

Assumption 1. The parameterized hybrid system can be written as P = lower (P;), where Py =
(C,F,D,G,S8,0) = (H,S,0), and the following hold for all £ € S,0 € O:

4Other approaches include preferring solutions that jump, or by resolving ambiguities randomly (Teel &
Hespanhal |2015).

We should say, of a thick jump set, similar to what we have described in deﬁnition Thickening jump sets
is also common in practical computational environments (Sanfelice et al.|[2023b).



1. there exists a unique, nontrivial solution to the differential inclusion F' (i.e. the continuous
part of 7 (0)) that is Borel measurable in &, 8 at any fixed ¢ € [0, oo)f]

2. C'is outer semi-continuous (osc) and C(8) closed; F is osc, locally bounded, and F'(x, 6)
is convex V& € S;

3. D(0) is closed and G(D) is Borel; G is osc, locally bounded; 1ast(G) is single-valued and
Borel measurable in &, 8 at any fixed ¢ € [0, c0).

Lemma 1. Let P satisfy assumption Then P has a unique time-parameterized solution ¢(-; €,0) :

[0,t7) — R™ that is Borel-measurable in initial conditions & and parameters 0 at any fixed
te[0,t).

4 Instantaneous Interventions as Constraint Transformations

We now formally define a general class of instantaneous interventions. We show that under certain
natural assumptions, the class of systems meeting assumption [I]is “closed” under intervention — i.e.,
intervened systems will meet assumption|[I]if the original system does.

An instantaneous intervention can be implemented via modifications to the jump map and the jump
set functions, respectively G and D in definition[I] To support parameterized interventions and/or
stateful jumps, one can simply augment the state space S and the parameter space O, essentially
preserving all properties of interest (appendix E]

Definition 4 (Instantaneous Intervention). Consider set-valued mappings D:0=38Sand G :
S x © =3 § and parameterized hybrid system P = (C, F, D, G, S, ©). Now, let

C’'(8) = C(0)\int D(8) 1)
D'(0) = preferflow (ﬁ, c’, F) (0) U D(0) 2
D G
G

, _ Jze D(6)\D(9) (x,0)
¢ (.0) = {i e D(8) (2,9)

then P' = instint (P, D,G) = (C', F.D',G,5,6).

3)

In words, D defines when (or where in the state space) the intervention will occur, while G defines the
state transition induced by the intervention. We make two important set-subtractions in this definition
to preserve some useful and simplifying properties. First, we define G’ in eq. as preferring the
new (i.e., the interventional) jump map G wherever the original and new jump sets overlap. Second,
the new flow set in eq. (I has the interior of the new jump set removed. This preserves non-overlap
between flow and jump sets, except possibly on the boundary, which we discuss below.

D’(0) is defined (eq. ) as the union over jump sets, except that a flow-preferring subtraction
(deﬁnition is made first on D(6). Because C’(6) has the interior of D(0) already removed, this
subtraction operates only on the boundary of D(8). In other words, D’ (0) will always contain the

interior of D(O), and will have the parts of its boundary removed where Fy flows tangentially to or
away from the interventional jump set.

4.1 Intervention Preserves Existence, Uniqueness, and Measurability

Interventional transformations should preserve key model properties. For causal models with explicit
forward simulations, this is largely trivial. Hybrid systems, however, only implicitly characterize
forward simulations (i.e., solutions) by specifying a set of constraints. Transformations to these
constraints can easily fail to maintain key properties in the intervened world, such as whether a

8This assumption is insufficient, on its own, to guarantee a unique, measurable solution for the full hybrid
system. Indeed, this insufficiency constitutes a key challenge addressed by hybrid systems researchers.

"This covers interventions with random parameters, in addition to those that require some “memory” of past
system events. For example, if a jump event should only occur k£ € N times, that event could increment a counter
i, and include only ¢ < k in its interventional jump set.
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Figure 2: Depiction of our “lowering” proof strategy for theorem (1| Proving theorem [1|requires
a simple inductive generalization from lemma[4] which asserts that a single interventional trans-
formation preserves key system properties, and is what we visualize here. Solid arrows indicate
constraint transformations, while dotted arrows indicate that properties of one system imply properties
of another. Assume that the parameterized hybrid system P accurately describes a domain of interest,
and that it can be constructed by applying the lower transformation (definition [3) to a system P; that
fulfills assumption[I] Applying lower to such a system preserves existence and induces uniqueness
and measurability (lemma . To simulate the effects of an intervention, we transform P into the
model P’ that describes the intervened world. P’ can also be constructed, however, by applying a
slightly modified intervention (instint;, definition to Py and then “lowering”. Intervention on
Py maintains key properties in 774, which can, as before, be lowered to a system P’ that must have a
unique, measurable solution (lemma E[)

solution is unique and measurable, or exists at all. The key theoretical contribution of this work, then,
is to identify assumptions sufficient to ensure our interventional semantics preserves these properties
through model transformation. Formal proof of theorem [I]is provided in appendix [D} but we also
include fig. P]as a visual aid and proof sketch.

Assumption 2 (Assumptions on Interventional Specifications). Consider mappings D : © =3 S and
G : 8§ x © 3 § and parameterized hybrid system P = (C, F, D, G, S, ©). For all 8 € ©, assume

1) D(G) is closed and well-behaved relative to P (assumption @) Additionally, the interior
graph G(int D) is opelﬂ and the graph G(D) is Borel,

(12) G : S =3 S is outer semi-continuous and locally bounded relative to f?(@), and f)(@) c
dom Gg. Additionally, G is single-valued and Borel-measurable.
Theorem 1 (Compositions of Instantaneous Interventions Preserve Key Properties). Consider
parameterized hybrid system P that meets assumption and any finite sequence of K set-
valued mappings (Dy,) and (Gy), where each Dy, and Gy, fulfill assumption 2| relative to P. Let
instinty = instint(, Dy, ék) (deﬁnition and
P’ = (instint; o---oinstinty o---oinstintg) (P), 4)
P’ then meets assumption and by lemma’P’ has a unique time-parameterized solution p(-; &,0) :
[0,¢7) — R"™, Borel-measurable in initial conditions € and parameters 0 at any fixed t € [0,t7).

5 Causal Estimands as Functionals of Twin Distributions

In this section, we exercise our framework to define three basic causal estimands. Importantly, many
of the more complex causal analyses build on these basic inference capabilities. Most targets of causal
inference take the form of (conditional) expectations, and so we must now use our measurability
results to define those expectations with respect to random solution mapsm First, we will generalize

8 An assumption that the interventional jump set is well-behaved reduces, essentially, to asserting that a
flowing solution cannot oscillate across the boundary of D infinitely often. This is satisfied by many systems of
interest under reasonable regularity assumptions — for instance, if the flow map is analytic and oD is Lipschitz.

This ensures its interior does not suddenly appear/disappear as 6 varies.

1In this paper, we do not address the random dynamics that characterize stochastic differential constraints
(Dksendal, 2003 |Cassandras & Lygeros} [2010; Hansen & Sokol, [2014; Boeken & Mooij, 2024), or independent,
per-jump randomness (Teel, 2013} Teel et al., 2014; Teel & Hespanha,|2015).



the parameterized hybrid system to include random initial conditions and parameters. Then, we will
establish some notation and define the expected treatment effect, data-conditional treatment effect,
and the basic counterfactual query using our machinery.

Definition 5 (Hybrid System with Random Inputs). A parameterized hybrid system with random
inputs is characterized by the tuples

R=(P,&6); P=(C,F,D,G,S,0).

We take the probability space (€2, 7, P) as implied by R, where & : Q@ — Sand 0 :  — © are
measurable with respect to F and the Borel o-algebras on S < R™ and © < R™.

When clear from context, for some w € ), we often write & and 6 in place of & (w) and © (w),
respectively. We distinguish random variables & and © from possible values £ € S and 6 € O by the
upright font. From here, we can directly consider evaluations of the solution as a measurable random
variable. A direct consequence of lemma [T which states that lower induces measurability when
applied to a system that fulfills assumption|l} is the following.

Corollary 1 (Random Time-Parameterized Solution is Measurable). Consider parameterized hybrid
system with random inputs R = (P, &, 0), where P satisfies assumption Then, by lemma P has
a unique, fime-parameterized solution map o, and the composition w — @(t; &(w), 0(w)) defines an
F-measurable random variable at any fixed t € [0,t7).

Having established conditions under which intervention preserves measurability, we can begin
constructing estimands from the parallel worlds created through intervention. In estimands, we use
symbolic subscripts to delineate parallel worlds. Consider an original system Ry = (Po, &,0). We
might then apply an intervention characterized by D; and G to yield Ps = instint(Py, Ds, Gs).
By convention, we use Rs = (Ps, &, 0) in reference to the full specification for the intervened world,
and t — @(t; &, 0) for its random, time-parameterized solution (corollary E]) We often write ¢,
in place of v,(¢; &, 0) for brevity. Lastly, supposing we wish to focus on a particular element of
the state vector at time ¢, we sometimes define a random function that appropriately indexes into
the solution vector. For example, we might have that h,(t; &,0) = ©/(t; &, 0) always, where h
represents the solution map for the ()’th state element. We similarly sometimes use h’, = h4(t; &, 0).
We can exercise this notation with the following examples.

Example 2 (Expected Treatment Effect). Consider Ry = (Py, &, 0) and interventional jump set D

and map G. Assume these components fulfill assumptionsand Let P; = instint (P, D, G‘)
and ¢g and (1 be the time-parameterized solution maps of the original and intervened worlds. Let yq
and y; be the solution maps for the (¢)’th element of the state vector. The expected treatment effect
at some time 7 € [0, min ¢ ,¢{ |) = [0, ¢T) can be written equivalently as

E[y — 5] = Ely1(7:£,0) — yo(r:£,0)] = E¢{(r:£,0) — ¢ (s £,0)| .

Example 3 (Data-Conditional Treatment Effect). Building immediately off example 2| we can
specify a data-conditional treatment effect that takes factual observations into account]''| Let wq
be the solution map for some element of the state vector. For some finite set of observation times

{tk}kfil < [0,t7), the data-conditional treatment effect can then be written a

T T "k K
E[y] —vd | vo]; vo ~N('w0,02); wo = [wg"]kzl.
Example 4 (Counterfactual Outcome). Also building off example 2} consider factual outcome event
that yo(7; &, 0) = 4 € R. The counterfactual outcome, then, can be derived by conditioning on that
factual event.

ElyT | vo = 9o] = E[y1(7:&,0) | yo(7:&,0) = 7]

"While identification results for specific causal estimands are beyond the scope of this paper, system
identification has already been studied for hybrid systems under the condition of “persistence of excitation”
(Johnson| [2023; [Saoud et al., 2024). Under such conditions, a posterior density p(&, 6 | vo = D), for example,
where D is a realization of vy, is sufficiently well-behaved to estimate targets defined in this paper.

"2Without loss of generality, we write that the data are subject to Gaussian observation noise. Many practical
settings call for observation noise, but we also note that the deterministic relationship between inputs (&, 0) and
state trajectories means that inference behaves poorly without observation noise.




query outcome probability

nec. Y =1[b], <] Pr(Yy =0|X =1,Y =1)=Pr([b], <] |b], >~
suf. Y =1I[b], > 7] Pr(Y, =1|X =0,Y =0) = Pr([bl, >~]|bl, <~
nec. andsuf. Y =1I[b;, <~JI[bj, >~] Pr(Ye=1,Y, =0)=Pr(bj, >~,bj, <~

Table 1: Identities for the probabilities of causation in the fishery management example. Under TAC
quota g;, the biomass of the fished species at time 7 is given by by . The outcome Y is achieved
when that biomass meets or exceeds . We rely on the standard exogeneity conditions Y, I X and
Y. I X E}and the fact that, conditioned on X = 1 (X3), Y reduces to the outcome only in the
world with allowable catch set to ¢ (g2).

Many of the more complex causal inference tasks — such as mediation analysis, the estimation
of population-level conditional average treatment effects, or even actual cause assessments — are
constructed from the counterfactual building blocks we propose here. Indeed, once a counterfactual
semantics is established, and a twin-world or potential-outcomes syntax (e.g., differentiating yo from
y1) is enumerated, many estimands are straightforward and familiar to develop. In the next section,
we explore just such a class of estimand: the probabilities of causation.

6 Case Study: Necessary and Sufficient Causation

To illustrate a more sophisticated application of our interventional semantics, we map the standard
definitions for the probabilities of necessary and sufficient causation (originally formalized by [Pearl
(1999)) onto dynamically triggered, discontinuous interventions in hybrid systems. In particular,
we work in the fishery management domain where regulators employ Total Allowable Catch (TAC)
policies to dynamically end the commercial fishing season after caught biomass reaches certain quotas.
If interested, the reader may wish to review appendix[G.I] in which we provide motivating historical
context for this domain. Additionally, we review Pearl[s original formulation of the probabilities of
causation (PoC) in appendix [G.2] Throughout appendix [G} we provide full simulation analyses of the
case study. Code is available hereE| and relies on the dynamical systems package from the causal
probabilistic programming language ChiRho| (Basis-Research) 2025)

We focus on a hypothetical fishery involving three trophic levels — apex predators, intermediate
predators (the fished species), and forage fish — with dynamics captured by the differential equations
presented by [Zhou & Smith| (2017). Throughout a single season, fishing pressure is modeled at
a constant rate applied to the intermediate predator, plus some bycatch on the apex trophic level.
Regulators intervene by ending the fishing season (setting the catch rate to zero) when the integrated
catch reaches a predefined TAC quota. The goal of these policies is to ensure that the biomass of the
target fishery species recovers to sustainable level v by the beginning of the next season.

In this context, stakeholders may debate the necessity and/or sufficiency of certain regulatory policies
in maintaining joint ecological and economic goals for the fishery. The probabilities of causation
are formal tools supporting the assessment of causal attribution between causes and their (supposed)
effects. [Pearl| (1999) first formalized the PoC for binary treatments and outcomes — here, however,
both the TAC quota and the biomass are scalar valued. We therefore follow Kawakami et al.[s (2024)
generalization of the PoCs to support contrastive queries between scalar-valued treatments and their
thresholded outcomes (see their Def. 3.1). Consider two TAC quotas ¢; and go, and the following
natural language queries. In table[I} we provide the formalized estimands written in our notation.

* necessity: in worlds where the end-of-year biomass levels exceed the target level v (success)
under quota g1, what is the probability of failure had regulators used quota ¢ instead?

« sufficiency: in worlds where the end-of-year biomass levels remain below the target level
(failure) under ¢, what is the probability of success had regulators used ¢, instead?

* necessity and sufficiency: what is the probability that both (1) g; results in success and
(2) go results in failure?

Bhttps://basisresearch.github.io/counterfactuals-for-hybrid-systems

“https://github.com/BasisResearch/chirho

I5Tf some parameter or initial condition were influenced by a confounder that also influenced X, this would
not be the case, and conditioning on X would be required in the identities listed in tablem


https://basisresearch.github.io/counterfactuals-for-hybrid-systems/
https://github.com/BasisResearch/chirho
https://basisresearch.github.io/counterfactuals-for-hybrid-systems/
https://github.com/BasisResearch/chirho

For readers less familiar with the applications of the PoC to decision and policy making, we provide
an expanded narrative scaffolding for this example in appendix [G.4] In appendix [G.5] we provide
an additional example designed to highlight how certain natural language ambiguities in causal
attribution queries — particularly those involving multi-faceted, real world events and policies —
can be formally clarified.

The PoC queries above rely on the construction of twin, contrastive worlds — one with TAC quota
q1, and the other with g». To model these worlds, we start with a system P characterizing year-round
fishing pressure (i.e., no regulatory intervention), and then transform its constraints to add a dynamic,
season-ending intervention. Notationally, let h; represent the harvest rate, and b; the biomass, at
trophic level ¢, and let z be the total catch (integral of 2 = hybs) at the intermediate trophic level.
The system state can be conceptualized as [z, h1.5,b1.3] =x € S = R;

The regulatory, season-ending intervention can be modeled by dynamically setting harvest rates to
zero when the catch exceeds a threshold g; (with ¢ € {1,2}). By using our interventional semantics,
we can construct parallel worlds with the same random initial conditions and parameters. See
appendix [G.3|for a generalization of this model to multi-season time scales.

in(e) ={zeRx0|2z>=q} % Rgo; Gy, (z,0) = {[#,0,0,0,b1.3]}; 5)
RS = (P7 En 9)7 R(Il = (PFI17£7 9)7 R(I2 = (Pflz)v Ew 9)7 P(h = instint(P,in,éqi), (6)

7 Limitations and Future Work

Most research developing causal inference tools starts by casting a problem in the format of structural
causal models (SCMs) (Pearl, 2009). Our work differs in that we construct our counterfactual
semantics directly in the parlance of hybrid systems. These two tacks are compatible, however. For
example, with our measurability results in hand, the time-parameterized solution map  can be treated
as a structural equation with initial conditions £ and parameters 6 viewed as parent variables in a
larger SCM. Our interventional semantics, then, exposes the causal dynamics of the hybrid system
for manipulation. When ¢ is interpreted as a structural equation, our semantics could be viewed as
characterizing a family of “soft-interventions” (Correa & Bareinboim), [2020) on the solution map.
Importantly, the adjoint method (Chen et al.||2018)) can be used in tandem with auto-differentiation
machinery to learn “event function” (i.e. jump set) parametersE] thereby supporting end-to-end
differentiation of composite SCM and hybrid system models. Relatedly, equivalent forward-Euler
representations may prove useful in actual cause analysis of hybrid systems (Halpern & Peters|, [2022)).

This leaves a few limitations to review. First, we do not present non-parametric, estimand-specific
identification results — indeed, there may exist sufficient conditions for estimand identification that
are weaker than those established for full system identification. Second, as discussed following
definition[I] we focus only on finite time regimes, leaving analysis of hybrid equilibria to future work.
Furthermore, we do not provide conditions under which intervention preserves non-Zeno behavior.

8 Conclusion

This paper has strengthened the connection between the modeling capabilities offered by hybrid
systems theory and the causal reasoning capabilities developed by the causal inference research
community.

We characterize and demonstrate a counterfactual semantics for a class of dynamically triggered,
instantaneous interventions that underpin many closed-loop control problems. Bypassing an explicit
re-casting of hybrid systems as structural causal models, we use hybrid systems as the primary
modeling substrate. This allows clear connections to the extensive body of work on hybrid systems
theory, in which we can derive and characterize mild conditions under which solution existence,
uniqueness and measurability are preserved in the intervened system.

Finally, we illustrate the flexibility and power of the resulting framework by first formalizing common
causal estimands for hybrid systems, and then by developing a case study using the three probabilities
of causation in the context of fishery management.

'5See https://github.com/rtqichen/torchdiffeq/blob/master/examples/bouncing_ball.py
for an example.
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A Supplementary Definitions and Standard Assumptions

A.1 Differential Inclusions and Set-Valued Maps

We follow Goebel et al.| (2012) in generalizing to hybrid systems with inclusion constraints. A
differential inclusion F' : S 3 R", for example, specifies the constraint that the time derivative &
of the state must be included in the set F' (z) < R™. Note that the equality constraint & = f ()
for some f : S — R" is a special case of the broader notion of differential inclusion. To clarify,
the stacked double arrows in, for example, S =3 R” indicate a set-valued mapping from S to a
subset of R™. |Goebel et al. (2012)) define the domain of a set-valued mapping V' : X 33 ) as
domV = {xe X :V (x)# J}. The graph of V is then

GV)={(z,y)e X xY:xzedomV, yeV (x)}. @)

A.2 Ordered Set-Valued Maps

Ordered set-valued maps are special cases of set-valued maps, which we use in this paper to keep
track of interventions.

Definition 6 (Ordered Set-Valued Map). Let G = (G, ..., Gk) be a finite sequence of set-valued
maps. We call G an ordered set-valued map, which means it is equipped with the following operation:

K
Gl=z— U Gr(z); last(G) =Gk. (8)
k=1

Therefore, dom Gt = Ule dom Gj. Given two sequences G = (Gi,...,Gk) and H =
(Hy,...,Hy), we denote G uw H = (G4,...,Gk,Hy,...,Hr). By slight abuse of notation,
we sometimes identify a map G with the corresponding one-element sequence (G), and also use G in
place of GT when the context requires a “vanilla” set-valued map.

A.3 Solution Concept

The following definitions and propositions are given almost exactly as stated by |Goebel et al.| (2012),
except that we adapt them slightly for explicitly parameterized hybrid systems (definition|I]).

The nature of hybrid systems implies that their solutions should be functions of both continuous time
t € R and discrete time j € N. Let ¢; denote the time of the j-th discrete event, with t; < ¢;; for
all j € N and ¢y = 0. Following (Goebel et al., 2012, Sects. 2.2-2.3), we define, for each possible
parameterization 6 € © and initial condition £ € S, a “solution” to H(0) to be a “hybrid arc”, which
is formally a set-valued map ¢(+; £,0) : R5o x N =3 R™. We can formalize this time-event space (of
which dom ¢ is an example) as follows:

Definition 7 (Hybrid Time Domain from |(Goebel et al.|(2012) (Def. 2.3)). E < R>¢ x Nis a compact
hybrid time domain if it is a finite union of sequence of closed intervals £ = Uj;ol ([tj.tj41] x {4}).
where 0 = tg < t; < ---ty, and E is a hybrid time domain if for each (T, J) € E, the set
En ([0,T] x {0,1,...,J}) is a compact hybrid time domain.

Generally, dom ¢ is unknown until after a particular solution ¢ is found, as it depends on the exact
sequence of state-dependent jump times; therefore, it is natural to consider ¢ as a-priori set-valued.

Definition 8 (Solution Concept adapted from |Goebel et al.|(2012) (Def 2.6)). Consider parameterized
hybrid system P = (H, S, O), with H = (C, F, D, G). For 8 € O, any solution ¢(-; &, ) to H(0)
must satisfy ¢(0,0;&,60) = & € C(0) u D(0) and the constraints implied by H(0), i.e.:

1. for all j € N such that I7 := {t : (t,j) € dom ¢} has nonempty interior, we have

é(t,j) € C(0), Vt € int I, and ¢(t, ) € Fo(o(t, 7)), for almost all ¢t € I7; [continuous
flow regime]

2. for all (¢,7) € dom ¢ s.t. (t,5 + 1) € dom ¢, we have ¢(t,5;&,0) € D(0) and ¢(¢,5 +
1;€,0) € Go(o(t, j; €,0)) [discrete jump regime] .

It is convenient to work with solutions that cannot be extended, as formalized by the following
concept.
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Definition 9 (Maximal Solutions adapted from|Goebel et al.[(2012) (Def 2.7)). A solution ¢(-; €, 0)
to H(0) (as in definition [8) is maximal if there does not exist another solution ¢'(-; €, 0) to ()
such that dom ¢(-; &€, 0) is a proper subset of dom ¢'(+; €, 0) and ¢(t, j; &, 0) = @' (¢, j; €, 0) for all
(t7]) € dom ¢(7 €7 0)

Unless specified otherwise, we always consider maximal solutions in this paper. With the solution
concept established, we can now state conditions for the existence and uniqueness of solutions. We
again borrow from |Goebel et al.|(2012)), and adapt accordingly to support parameterized systems
(definition [T).

Proposition 1 (Basic Existence adapted from |Goebel et al.| (2012) (Proposition 2.10)). Consider

parameterized hybrid system P = (H,S,0) = (C,F,D,G,S,0), and a standard hybrid system

H(O) = (C(0), Fo,D(0),Gg) for some @ € O. Let £ € C(0) v D(0). If€ € D(O) or

(VC)  there exists € > 0 and an absolutely continuous function z : [0, €] — R™ such that z(0) = &,
2(t) € Fo(2(t)) for almost all t € [0, €] and z(t) € C(0) for all t € (0, €],

then there exists a non-trivial solution ¢(-; €, 0) to H with $(0,0; €, ) . If (VC) holds for every

& € C(0) U D(0), then there exists a nontrivial solution to H(0 )from every point of C(0) u D(0).
If the foregoing further holds for H(0) at every 0 € O, we say P fulfills the conditions for basic
existence.

Proposition 2 (Basic Uniqueness adapted from Goebel et al.| (2012) (Proposition 2.11)). Consider
parameterized hybrid system P = (H,S,0) = (C,F,D,G,S, ), and a standard hybrid system
H(O) = (C(0), Fo, D(0),Gg) for some 8 € ©. For every € € C(0) U D(0) there exists a unique
maximal solution ¢(-; €,0) with ¢(0,0; &, 0) = & provided that the following conditions hold.

(a) For every & € C(0)\D(8), T > 0, if two absolutely continuous z,,z : [0,T] — S are
such that ;(t) € Fg(z;(t)) for almost all t € [0,T], z;(t) € C(0) forallt € (0,T], and
2;(0) = & 1 = 1,2, then z1(t) = 2(t) forall t € [0,T];

(b) forevery & € C(0)nD(0), there does not exist € > 0 and an absolutely continuous function
z: [0, €] —> S such that z(0) = &, 2(t) € Fo(2(t)) for almost all t € [0, €] and z(t) € C(0)
forallte (0,¢];

(c) forevery & € D(0), Gg (&) consists of one point.

If the foregoing further holds at every 8 € ©, we say that P fulfills the conditions for basic uniqueness.

A.4 Finite-Time Measurability of Solution in Initial Conditions and Parameters

Measurability is key to coherently defining causal estimands as (conditional) expectations. In
particular, we use the measurability of a time-parameterized “solution map” jointly in the initial
state and parameters. By “solution map”, we refer either to functions ¢ or ¢ that, when provided
some £ € S and 0 € O, yield hybrid arc (¢,j) — ¢(t,5;&,0) and time-parameterized function
t — o(t; €, @) respectively.

As stated following definition [T} in this paper, we focus strictly on finite time horizons. Definition[T0]
below, makes this finite-time limitation precise, and then employs that definition to formalize the
time-parameterized solution map and its measurability.

Definition 10 (¢t* Uniquely Evaluable). Consider parameterized hybrid system P =
(C,F,D,G,S,0) that fulfills conditions for basic existence and uniqueness (propositionsand .
Define t* = ming g sup, dom ¢(-; &, 0), meaning that for every £ € S,0 € O yielding unique
solution t,j — ¢ (t,5;&,0), Vt € [O tt there exists j € N such that (¢, ]) edom ¢ (-, €,0). W
then say that P is ¢+ uniquely evaluable

17 A non-trivial solution is one with more than a single point in its domain (Goebel et al., 2012, Def 2.5)

8Unless the space of initial conditions and parameters are limited to exclude reachable states arbitrarily
close to Zeno points, Zeno systems will always have arbitrarily small ¢ . Additionally, this definition implicitly
excludes evaluation times at the end (in continuous time) of eventually discrete solutions. If such solutions are
not complete, one might wish to include the final time in the evaluable interval.
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Definition 11 (Time Parameterized Solution Map). Consider ¢ uniquely evaluable parameterized
hybrid system P = (C, F,D,G,S,0) and its solution map ¢. Define for all ¢ € [0,t1), € € S,
0 € O its time-parameterized solution

¢ (:€,0) =0t (£6):€0) ©)
where j;" (&, 6) is the index of the last discrete jump at time ¢
Jit (€,0) =max{j: (t,j) € dom ¢ (-1€,6)} (10)

Definition 12 (t™ Measurable). Consider ¢ uniquely evaluable parameterized hybrid system P
and its time-parameterized solution map (. If, for every fixed t € [0,t7), £,0 — ¢ (£;£,0) is a
Borel-measurable function, we say that P has a t™ measurable time-parameterized solution map ¢.

A.5 Flow Preferring Subtraction and Lowering

Definition 13 (Flow-Preferring Subtraction). Consider parameterized hybrid system P =
(C,F,D,G,S,0) that meets the hybrid basic conditions (assumption . We borrow the following
viability condition from proposition[IJon a point £ € S, for some 6 € ©.

(VC) there exists € > 0 and an absolutely continuous function z : [0, €] — R™ such that z(0) = &,
2(t) € F(z(t), 0) for almost all ¢ € [0, €] and z(t) € C(0) for all t € (0, €],

We can then transform D to be flow preferring by writing
preferflow(D,C,F) =6 — D(0)\{€ €S : (VC) holds for 0 from &} (11)

Recall the definition of ordered set-values maps (deﬁnition@ affording the last(G) operation on G,
the jump map.

Definition 14 (Lowering). Consider parameterized hybrid system P = (C, F, D, G, S, ©) that meets
the hybrid basic conditions (assumption ). We write that

D' = preferflow(D,C, F) (12)
G' = last(G), (13)
lower(P) = (C,F,D',G’,S,0) (14)

A.6 Collected Assumptions on the Hybrid System

Assumption 3 (Unique, Complete, and Borel Solution Exists for Differential Inclusion for all S).
Consider parameterized hybrid system P = (C, F, D, G, S, ©). Assume that

(F1) forevery £ € S,0 € ©,T > 0, if two absolutely continuous z1, z5 : [0,7] — S are such
that 2;(t) € Fg(z;(t)) for almost all ¢ € [0, T, z;(t) € S forall ¢ € (0,77, and 2;(0) = &,
i = 1,2, then z1(t) = 22(t) forall ¢t € [0, T];

(F2) forall £ € S and 0 € O, such a z; exists for every T € (0, o0);

(F3) with z(¢;£,0) = 2z1(t) forall £ € S, 0 € O, and t € [0,0), £,0 — z(t;£,0) is a
Borel-measurable function for every ¢ € [0, 00).

Importantly, note that assumption [3only relates to the differential inclusion, and does not preclude P
from jumping, or from pathologies associated with jumps. Additionally, observe that z(¢; £, 0) =
¢(t,0; &, 8)— that is, statements on z trivially apply to the solution mapping up to and including the
time of the first jump.

Assumption 4 (Hybrid Basic Conditions adapted from|Goebel et al.[(2012)) (Assump. 6.5)). Consider
parameterized hybrid system P = (C, F, D, G, S, ©), and assume for all 8 € © that the following
hold.

(Al) (C(0) and D(0) are closed subsets of S;

(A2) Fp : S 3 R™ is outer semi-continuous and locally bounded relative to C'(0), C(0) c
dom Fy, and F(z, ) is convex for every « € C'(0);

(A3) Gp : S 3 S is outer semi-continuous and locally bounded relative to D(8), and D(0) <
dom Gy.
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In particular, (A1) implies that D(0) and C(6) must overlap on any shared boundary — solutions
that start at or graze this boundary can, non-uniquely, either jump or flow. Additionally, the outer
semi-continuity of Gg (A3) requires that, at the boundaries of the pieces in a piecewise Gg, Gg must
return values from multiple pieces. Solutions hitting those boundaries can jump to multiple states.

Assumption 5 (Collected Assumptions on the Original System). The parameterized hybrid system
P can be constructed as P = lower (Py), where Py = (C, F, D, G, S, ©), such that:

(P1)  P; satisfies assumption[zl_ft

(P2)  'P; fulfills the conditions for basic existence (proposition ;

(P3) P; has a unique solution to its differential inclusion F’ from everywhere in S and © (assump-
tion[3);

(P4)  C(8) is outer semi-continuous at every 6 € ©;

(P5) the graph G(D) of the jump set mapping D is Borel;

(P6) 1last(G) is single-valued on its domain, with last(G)(x,0) = {g(x,0)}, and g Borel-
measurable for all , 0 € dom last(G).

A.7 Well-Behaved Jump Set

Definition 15 (Well-Behaved Set). Consider © < R™, S © R”, arbitrary set-valued mapping
A : © 3 S, and differential inclusion F' : S x © =3 R™. Suppose that forevery @ € © and £ € S
where

(VCs) there exists € > 0 and an absolutely continuous function z : [0, €] — R™ such that z(0) = &,
2(t) € F(2(t),0) for almost all t € [0, €] and z(t) € S for all ¢ € (0, €],
there also exists some €’ € (0, €] such that
2((0,€']) < int A(@) or z((0,€']) < S\int A() (15)

In such a case, we say that A is well-behaved relative to S for © and F'. For a parameterized hybrid
system P = (C, F, D, G, S, ©), we sometimes say that A is well-behaved relative to P.
Assumption 6 (Well-Behaved Interventional Subset). Consider set-valued mapping D : © =2 S and
parameterized hybrid system P. Assume D is well-behaved relative to P (definition .
Observation 1 (Flow into Subdivisions of C' by D). Consider set-valued mapping D : © =3 S that

meets assumption@ relative to some parameterized hybrid system P = (C, F, D, G, S, ©). It is then
the case that, for every @ € © and € € S where

(VC)  there exists € > 0 and an absolutely continuous function z : [0, €] — R™ such that z(0) = §,
2(t) € F(z(t), 0) for almost all t € [0, €] and z(t) € C(0) forall t € (0,¢€],

there also exists some €' € (0, €] such that

2((0,€']) < int D(6) or z((0,€']) < C(8)\int D(8). (16)

Proof. Suppose the proposed antecedent and note that a trajectory z((0,¢]) < C(0) < S fulfills
the antecedent of the assumed well-behaved property of D relative to S (assumption @) This
implies that there exists €’ € (0, €] such that either z((0, ¢']) < int D(8) or z((0, €']) < S\int D(8).
2((0,€']) < int D(8) is precisely the first case of our desired consequent. Thus, we need only show
that z((0,€']) < S\int [)(9) and z((0,¢]) < C(0) imply z((0,€']) < C(0)\int f)(@). We have
z((0,€']) < 2((0,¢€]) < C(0), and can thus take the intersection to see this implies the second case
of the desired consequent:

2((0,¢']) < C(0) n (S\int D(e)) — C(0)\int D(6). O

Remark 1 (Universality of Assumption [6). If and only if assumption [6] holds relative to some
parameterized hybrid system P, then it also holds relative to instint(P), instint,(P), and
lower(P).

Proof. Assumption@holding relative to P = (C, F, D, G, S, ©) pertains only to F, S, ©, which are
unaffected by instint, instint;, and lower. O
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B Space Augmentation

It is often useful to parameterize interventions, and a fully expressive interventional semantics benefits
from stateful jump maps/sets. Thus, it will be useful to establish a primitive transformation that
simply augments the parameter and state spaces, without changing the component functions of the
system. Subsequent transformations can then operate on this augmented system. Note that, in eq. (22),
we write the transformed jump map in its expanded form as an ordered set-valued map (definition [6).

Definition 16. (Space Augmentation) Consider S < R", and © < R™. For any parameterized
hybrid system P = (C, F, D,G,S,0) with G = (G1,...,Gy), let, forallz € S,z € S, 0 € O,
0¢c (:),

« =[xz, 0= [9 9] (17)
c' (o) =c(e (18)
F' («' 0’)=Fw0 ><{O} (19)
D' (0") =D(6 (20)
Gy (z,0) = (w 9) x {x} (21)
G (z.,0) = (G} (z.0),....G (z,0)) (22)
S=8x8, ©=0x06, (23)
then
spavg (P,5,0) = ((C'.F.D',¢),5,6). 24)

Observation 2 (Compositions of Space Augmentation Preserves Key Properties). Consider parame-
terized hybrid system P that meets assumption and any ﬁnlte sequence (Sk, @k) of length K such
that S, € R™ and ©), € R™*. Let spaug, = spaug(-, Sk, Oy) (deﬁmtwn@) and

P’ = (spaug, o --- o spaug, o --- o spaugy) (P). (25)

P’ then meets assumptionand has a unique solution ( propositionsand with a t* measurable
(definition time-parameterized solution map o (definition|l I)).

Proof. The proposition follows from induction, K < o0, and the fact that the space augmentation
operation fulfills the same pattern described in fig. P|for instint. That is, spaug commutes with
lower, and it preserves (P1-6) (assumption b on an upstream system P{ = spaug(Py,...). For
commutativity, recall that lowering makes a flow-preferring subtraction from the jump set (defini-
tion[13)), and chooses the last map in the ordered jump map. A flow-preferring subtraction on D’(0) =
D(0) x S is dictated entirely by the behavior of F'(8) on C'(60) —i.e. preferflow(D’,C’' F') =
preferflow(D,C, F) x S, which implies commutativity on D’. Commutativity of the jump map is
more straightforward, as, by construction, last(G') = Gr(x,0) x {Z} = last(G)(x, 0) x {z}.
Assumptions (P1-6) (collected in assumption [5) straightforwardly follow after noting, as we have
used in the proof of observation [3] that since every topological space is both open and closed in itself
(i.e., clopen), any product with such a space as a factor inherits the open (or closed) property from
the other factor relative to the product topology. From here, along similar lines argued in the proof
of observation 3] properties like graph closure, outer semi-continuity, Borelness, etc. are preserved
obviously by construction. O

C Static-Time and Do Interventions as Special Cases

As a l%ecial case of instint, we can also define an intervention that occurs at a fixed, predefined
time

Note that, while this definition lets us analyze static-time interventions in this theoretical framework, we
do find computational implementations in line with the time-splitting operation (Boeken & Mooij}, 2024)) more
practical.
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Definition 17 (Static-Time Intervention). Consider a parameterized hybrid system P defined as
the tuple (C’, F,D, G, RZZO x S, G)). Let time be tracked in the first dimension of the state space,
and, in the second dimension, a variable recording whether the intervention has occurred, such that
(t,k,x) € RZ, x S. Assume k = 0 at ¢ = 0 by convention and that F is such that dk/dt = 0

always. Let D() = [\ A+ €] x [0,.1] x Sforall @ € ©, afixed A > 0, and any € > O For some
G:S8xO33Sandall (t,k,x,0) e R, x S x ©. We then define

G((t,k,z),0) = {t.k+1} x G (x,0) (26)
statint (P,A,é) = instint (’P,D,é) 27

The definition above, it should be noted, is a special case of a more general “repeated” static-time
intervention rstatint (definition[T9), which is shown to satisfy the same existence, uniqueness, and
measurability theory that we establish below for instint.

Driving one level more granular, we arrive at a transformation representing something akin to the
canonical “do” intervention — again as a special case of instint. This notion has been defined for
dynamical systems both via a time-splitting mechanism (Boeken & Mooij, |2024) and by casting a
continuous time system as its infinitely precise Euler approximation interpreted as an SCM (Hansen
& Sokol, [2014).

Definition 18 (Do-Intervention). Building directly off definition 17 if G (,8) = {v} for some
fixedv e Sandall ,0 € S x O, then for some fixed A > 0 we write

do (P,z()\) = v) = statint (P,A,é) (28)

Alternatively, one might wish to fix an index 7 € {1,...,n} and a value v € R!. With G(x, 0) =
[z(17D) v, 2(+11)] g € S and VO € ©, we write instead do (7P, xil) =).

These interventional classes form a sort of hierarchy. The jump map of a static-time intervention can
be considered the “pre-treatment” model for a do intervention, and the trigger mechanism encoded in
the jump set can be considered a pre-treatment model for when a static intervention occurs. At the
highest level, a state-dependent intervention — especially those that can be triggered many times —
can be thought of as a soft intervention on system dynamics. By couching these interventions directly
in the language of established hybrid systems theory, we can more easily borrow theoretical results
from that vast body of literature.

C.1 Repeated Static-Time Intervention

Definition 19 (Repeated Static-Time Intervention). Consider a parameterized hybrid system P
defined as the tuple (C, F,D,G, RQ;O xS, @). Without loss of generality with respect to positioning
in the state vector, let time be tracked in the first dimension of the state space, and, in the second
dimension, a variable recording whether a specified static intervention has recently occurred, such that
(t,k,x) e R x S. Assume k = 0 at ¢ = 0 by convention and that F is such that dk/dt = 0 always.
Also, assume that, for some countable set of unique intervention times A ¢ ]Rlzo, there exists an ¢

such that 0 < € < inf {|A\; — Xo| : A1, A2 € A%, Ay # Ao} U {.1}. Forall (t,k,x,0) e R, xS x O

2The e construction ensures the jump set is “thick”. With a measure-zero jump set, there can exist a solution
that reaches the jump set and immediately flows through it, never jumping. A flowing solution is viable from
any closed boundary of a jump set where a vector field implied by Fp points into the flow set. Incidentally,
(uniformly) “thick” static-time jump sets also ensure that jumps cannot occur infinitely often. We do not include
€ as an argument here, as intervention’s behavior is identical regardless of the choice of € > 0. The counter, &, is
required to avoid repeated jumps from the thick jump following A in time.
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andsomeé’:Sx@:’,S,let

D(6) = (U A+ 6/2]> x [0,.1] x S (29)
AEA
D1(6) = (U[)\+6/27)\+6]> x [1,1.1] x S (30)
AEA
Gl((t,k,m),e) — {(t,k+ 1)) x G (,0) 31)
ég((t,k,w)ﬁ) — {(t,k— 1)} x G (,0) (32)

With instint;(-) = instint(-, D;, G;) for i € {1,2}, we can define
P’ = rstatint (7?, A, (?) = (instint, o instint,) (P) (33)

Observation 3 (rstatint Preserves Collected Assumptions). Continuing from deﬁnition if G

meets assumption E] then P', D;, and G; meet assumption |2} and theorem would thus apply to
rstatint.

Proof. Assumptioncomprises sub-conditions (I1) and (I2). (I1) first needs that l~),-(0) is closed
V6 € O, which follows here from D;(8) being a product of closed sets with the topological space S.
Since every topological space is both open and closed in itself (i.e., clopen), any product with such a
space as a factor inherits the open (or closed) property from the other factor relative to the product
topology. Note that the intervals in the unions over intervals constructed from A\ € A are guaranteed
to be disjoint and uniformly separated by selecting € to be positive and smaller than the closest two
intervention times, which means the corresponding countable union must be closed. Similarly, by
uniform separation, we have the (I1)-required well-behavedness (definition of D;(0) relative to
P. (1) also requires that the graph G(int D) is open. Note that these jump sets are constant in O, and
therefore their interior graph is the product © x A, where A < R" is open. O is a topological space,
so the product with A inherits the openness of A — thus G(int D) is open. By a similar argument,
D; is closed, which implies that G(D;) is closed, thereby ensuring G(D;) is Borel as required by
(I1). (I2) asserts straightforward requirements on G;, none of which are affected by taking a cartesian
product with the single-valued, continuous (and therefore both inner and outer semi-continuous)
set valued mappings ¢,k — {(¢t,k = 1)}. Theorem [I} then, applies here because rstatint is a
composition of instint operations with specifications that meet assumption 2} O

D Proof of Theorem /1]

The following proof refers to assumption [5| which is an expanded version of assumption [I] that is
referenced by theorem|I]in the main text.

Proof. By induction and K < oo, we have via lemmathat P’ will meet assumption Note that, by
remark [I] if assumption [2holds relative to P, it will hold relative to any intermediate system in the
chain of transformations from P to P’. Then, by lemma existence, uniqueness, and measurability
follow from P’ fulfilling assumption 3 O

E Proof that Instantaneous Intervention Preserves Key Properties

Lemma 2 (Instantaneous Intervention Preserves Key Properties). Consider a parameterized hybrid

system P that meets assumption@ Now, consider set-valued mappings D:038andG:85x0 =3
S that fulfill assumption@] relative to P. The intervened system P’ = instint(P) ( deﬁnition@]) will
then also meet assumption@ and therefore will have a unique and t* measurable solution for each

0c0,£eC(0) v D(0) according to lemma
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Proof. The proof closely follows fig. 2] In assumption [5] we have that P can be constructed by
“lowering” (definition [I4) from a system P; that fulfills certain conditions. In lemmaE], we prove
that assumptions [2| and[5[imply that the system P’ is equivalent to a system reached by performing
a slightly modified intervention on P; (definition [2;(5]) and then applying lower. The intervention
on Py is proven in lemma to preserve properties on the higher system sufficient to say that the
lowered system P’ meets assumption [5| Intermediate statements and proofs for lemmas [3| and
and definition [20]can be found in appendix [E.T]

E.1 Intermediate Results for Lemma

Lemma 2] argues that an intervened system P’ = instint(P) can also be constructed by applying
a slightly different interventional transformation to a different system P;, and then “lowering”
(definition [14). Additionally, if P meets assumption [5| by way of P;, then P’ must also meet
assumption |5} This can be established by showing that the intervention on Py preserves properties
that allow it to be properly lowered. First, we will define this alternative intervention, then prove
commutativity between intervention and lowering, and finally prove that the alternative intervention
preserves the properties listed in assumption[5] In the following definition, we use the fact that G is
an ordered set-valued map (definition @), which supports appending G to the sequence of maps that
compose G.

Definition 20 (Instantaneous Intervention for Higher System). Consider set-valued mappings D:
© 3 Sand G : § x © 3 S and parameterized hybrid system Py = (C, F, D, G, S, ©). Now, let

D'(6) = D(8) L D(8)

) _ [xeDO)\D®) 1last(G)(x,0)
C%Cmm_{m€DW) G (x,0)

x € D(0) G (z,0)
GD(%B)_{meiXQ\Dw) G (x,0)
G/ = GD LJ Gf)
then

P; = instint; (P, D,G) = (C',F, D', ¢/, S,0). (34)

Since G’ is an ordered set-valued map (definition @), we can derive the following identity, which
helps establish some useful intuitions.

G'(x,0) = Gp(x,0) U Gp(x,0)
T e D(O)\D(ﬂ) G(x,0) (35)
=qxzeDO)n D) G(z,0) v G (x,0)
x e D(6)\D(8) G (x,8)

Below, we additionally use the fact that last(G’) = G p.

Lemma 3 (Commutativity of instint and lower). Consider parameterized hybrid system Py =
(C,F,D,G,S,0O) that meets assumptionE] and set-valued mappings D : © 3 Sand G : S x 0 3
S that meet assumption relative to ‘Py. The following equality then holds, with instint acting as
in definition[d|and instint, as in definition 20}

instint (lower (Pr), D, G) = lower (instintT (PTa D, G’)) .

Proof. First, we adopt the subscript convention, where we use ¢ as a symbol (not a variable) mapping
to the intervention operation, and [ as a symbol mapping to the lowering operation. The subscript [,
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for example, indicates a system that has been intervened upon and then lowered. With this convention,
we have

lower (Py) =P, = (C1, Fi, Dy, Gy, 81, 0;)
instint, (PT,D,G =P, = (Ci,Fi,Di,GhSia@i)

lower (instintT (PT,D, G ) =Py = (Cu, Fi, Dit, Git, Sit, ©ur)

We now want to show that every element of the tuple P;; equals to the corresponding element in
the tuple P;;. We begin with tuple elements that are unaffected by both lower and instint. These
include the parameter space, the state space, and the flow map, meaning we trivially have that

(Fiis Sis, ©13) = (Fit, S, ©a) = (1,81, 01) = (Fi, S3,0;) = (F,S,0). (36)
For the flow set, note that lower leaves it unmodified and that both the higher and lower overloads
of instint list the exact same transformation on the flow set. Thus Cj; = Cy; = C; = 0 —
C(0)\int D(6).

We now show equivalence in the jump map — a largely straightforward effort despite its verbosity.
Consider the system instint,(Py) = (C;, F, D;, G;, S, ©). We have that G; is an ordered set-
valued map that, when lowered, yields its last component:

x e D(6)\D(8) last(G) (x, 0)

x € D(0) G (x,0) &7

G,jl (.’13,0) = last(G’i)(m,O) = {

)

Now we consider the path wherein lowering occurs first. We have that G; (x, 0) = last(G) («, 0).
By plugging G into the definition of instint for a lowered system (eq. (3)), equivalence between
Gy; and G, becomes clear.

Finally, we show equivalence in the jump set. In what follows, let C'(8) = C(0)\int D(8) for all
0 € © and let D U D refer to @ — D(6) u D(0) — we drop explicit dependence generally on 6 for
brevity. Also, let the set V4 = {€ € S : (VC) holds for £ relative to flow set A(6) and Fp}. We can
write the “intervention first” path as

D, = DuD
D;; = preferflow (D;, C;, F;)

= preferflow (D uD,C’, F)
- [[) U D] \Vor = [f?\Va] v [D\Ver]
= preferflow (D, c’, F) U preferflow (D,C', F).

Following the “lower first” path and looking to instint as applied to lowered systems (definition ),
we have

D, = preferflow(D,C, F)
D;; = preferflow (D, c’, F) u D;

= preferflow (D, ', F) v preferflow (D,C, F).
Now, note that because C’(0) < C(8), we have Vv < Vo, and therefore:
D;; = preferflow (ﬁ, ', F) v preferflow (D, ', F)
— [DWer | v IDVVe]

=) [f)\Vc/] U [D\Ve] = Dy
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Additionally, by assumption@and observation we have that Vo €V, 5 U Vir € D U Vi, where

the second subset relation follows from the closure of D — nothing can “flow into” the interior of D
without being in the closure of that interior. This leads to

Dy; = preferflow (ﬁ, ', F> u preferflow (D, C, F)

= [DWVer| v D\

SLESPICCS)
- [E\VC/] U [(D\Vc/) A [:D]

- [(per) o] o [ () o)

- :(D\VC,) o (D\VC/): A [(D U CD) A (CVC/ U CD)]
= [(D\Ver) v (DWen) |\ [Ver ~ D

= [(D\Ver) u (D\Ver) | \Ver

= D\VC/] ) [D\VC/] = Dql
With both D;; 2 D;; and Dy 2 Dy, it must be that Dy; = Dy;.

This concludes the proof of equivalence between every element of P;; and Pj;, meaning Pj; =
Pll'

Lemma 4 (Intervention on Higher System Preserves Key Properties). Consider parameterized
hybrid system P = lower(P4) that meets assumptionE] and set-valued mappings D : © 3 S and
G : S x © 3 S that meet assumptionrelative to P. Now, consider the following systems:

P} = instint,(P;, D, G) (38)
P’ = lower (P}) (39)
Then P’ satisfies assumption

Proof. We break the proof into six parts, one for each of the preserved assumptions listed in assump-
tion Recall the explicit form of P/ given by eq. .

Basic Hybrid Conditions (P1). To show that instint; (definition[20) preserves assumption 4]
we proceed through the three sub-conditions (A1), (A2), and (A3).

For (A1), we must demonstrate closure of the intervened jump and flow sets. For the flow set, note
that by definition 20, C’(6) = C(6)\int D(6), and that by (A1) holding for P;, C(8) is closed.
C’(0) is thus the result of subtracting an open set from a closed set, and is therefore closed. We have
similarly required that D(8) is closed. Deﬁnition specifies that D'(0) = D(0) u D(8), which is
the union of closed sets and therefore closed.

For (A2), note that since the flow map Fp is unchanged, it trivially remains outer semi-continuous.
We then have that C'(0) < C(8), from which we can conclude that local boundedness relative
to C'(0) and convexity of F(x, 8) for every « € C(0) implies those properties relative to C’(8).
Additionally, we have that C’(0) < C'(0) < dom Fp.

Finally, for (A3), we require the outer semi-continuinity of G, its local boundedness relative to
D'(6), and that D’(6) c dom Gj. The following arguments closely mimick the developments in
Definition 2.11 and Lemma 2.21 from Sanfelice|(2021) — they show that the composition of a hybrid
“plant” and hybrid “controller” into a closed loop hybrid system will meet the basic conditions if the
plant and controller meet those conditions. In what follows, we work with the identity of G’ derived
in eq. (35).

Outer semi-continunity of Gy means that for every convergent sequence (x;) € D’(0) to « and every
convergent sequence (x; ) € S to x*, where =7 € G'(x;, 0) for each i, we have that z* € G/ (x, 6).
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Note that this is equivalent to graph closure. Now, by closure of D(8), D’(8), G(Gg), and G(Gl), the
only potentially problematic limiting points of sequences lying in D(8)\D(8), or D(8)\D(6), must
lie on the intersection D (@) n D(@). The intersecting piece, however, returns G(x, 8) U G(z, 6),
which will necessarily contain those limiting points.

Local boundedness of Gy, relative to D’ (), then, follows from the local boundedness of G relative
to D(8) and of Gig relative to D(8), and the fact that G and G are queried by G only from the
sets on which they are locally bounded.

Finally, we need that D’(6) c dom Gy. Recall the piecewise construction of G in definition
and that D(@) — dom G, D(8)  dom Gg. We can then write the following, where we again drop
dependence on @ for brevity and write G U G in place of  — G(x,0) u G(x, 0).

dom G’ = [(D\D) mdomG] v [(DGD) mdomG’ué] v [(D\D) mdomé]
DDu[(Dmf))mdomGué]uD:DuD:D'.

Thus, we have that (A1), (A2) and (A3) are all preserved in P% = instint;(P;), meaning it meets
assumption 4]

Basic Existence (P2). To show that conditions for proposition [I| are preserved, we recall from
the proof of lemma |§I that it is sufficient to show that (VC) is met (with respect to 774) for all

&€ C'(0)\D'(0) for any 6 € ©.

Ignoring whether the flow appropriately remains in the transformed flow set C’(0), we know by
assumption [3| that there must be some ¢ > 0 amount of time from which some continuous function
can flow from every £ € S while respecting the differential inclusion. To confirm that (VC) holds at
€ for 7, we can check whether some €’ € (0, €] exists where z(t) € C’(0) for all t € (0, ¢']. First,
we can decompose the region where (VC) must hold into a union over two cases.

C'(0)\D'(9) = [int C'(0)\D'(6)] L [0C"(0)\D'(6)] (40)

If £ € int C'(0)\D'(0) < int C’'(0), there must be some such ¢’ by the openness of int C’(0) in
C'(0).

We can then decompose the boundary region 0C’(0)\D’(8) as follows, where we’ve dropped the
dependence on 8 for brevity.

oC"\D' =0 [c A Cint D] AC [D U D]
= 7((70 ~ Cint D) U (C ~ dCint D)] ACD ~CD
= _(GC’ A Cint D) U (C' (9[))] ACD ~CD

=ié’CmCintl~)mCl~)mCD]u[Cm&Dm[}ﬁmCD]

= :(')C\ (D v, D)] v [C N (ﬁﬁ\D) N CD]
=30\ (D U D) < 20\D.

The first equality in the final line follows from the assumed closure of D(G) implying that
oD(6)\D(6) = &.

By analogous decomposition to eq. (40), we have that £ € dC(0)\D(8) must meet (VC) with
respect to Pj. ]~3y assumption @ an~d observation (1| we then know that the solution must “flow
into” either int D or into C'(8)\int D(8). Because D is closed, flow into its interior requires that

€ € D(#) < D'(8), which we need not consider. This leaves only flows into C(8)\int D (@), which
by construction (definition is equivalent to C(8), and therefore satisfies (VC) with respect to P%

with € as described in observation |1} Thus, inst int, (deﬁnition preserves the conditions for
existence as outlined in proposition
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Unique Flowing Solution Everywhere (P3). Assumption [3|is preserved trivially, since instint
(definition 20) does not alter F', ©, or S, which are the only system elements involved in assumption 3]

In the remaining results, we use the following observation, leaving its verification from definitions to
the reader.

Observation 4. Let A, B : © 3 S be two set-valued maps. Then the graph and set operations
commute:

G(A\B) = G(ANG(B), G(An B)=G(A)nG(B), G(AuvB)=G(A)vg(B).

Outer Semi-Continuity of the Flow Set (P4). We need to show the outer semi-continuity of
O’ at every € ©. Recall from definition [20| that C’(8) = C(8)\int D(8). By observation
G(C") = G(C(0))\G(int D(H)). By assumption [5| we have the outer semi-continuity of C, which
directly implies the closure of its graph. By assumption we have that G(int D(8)) is open. Thus,
G(C") is closed, and therefore by (Goebel et al.L[2012, Lemma 5.10) C” is outer semi-continuous.

Borel Jump Set Graph (P5). Recall from definition [20|that D’(8) = D(8) u D(8). The Borel
o-algebra is closed under unions, and thus by observation 4| the graph G(D’) must also be Borel.

Borel Measurable, Single-Valued Jump Map (P6). We want to show both that 1last(G’)(x, 0) =
{¢'(x,0)} for some ¢’ and all z, 0 € dom last(G’') — i.e. that last(G’) is single valued — and
that ¢’ is a Borel-measurable function of initial conditions and parameters on the domain of the
intervened jump map. By definition[20] we have that

x € D(6)\D(0) last(G) (z,0) A1)

last(G') (¢, 0) = {a; e D(6) ¢ (@6)

Now, we have by (I2) (assumption that G is single-valued, and by (P6) (assumption that G is
single-valued. Thus, there must be some ¢’ such that last(G’)(z, ) = {¢'(x, 0)} on the domain of
last(G).

We now want to show that ¢’ is Borel-measurable for every &, @ € dom last(G’). Note that we can

equivalently write the following, where we use the lower-case g and g in reference to the functions
that yield the singletons arising from evaluations of G last(G).

' (z.0) = g(,0) ]I[w e D(@)\D(e)] + §(x, 0) ]I[a: e D(a)]. 42)

Note now that the indicator functions involving the jump sets can be written as piecewise functions
over a partition defined by the graph of the jump sets. We have assumed that the graphs of D and D
are Borel. Further, by observationd both indicator functions can be written as piecewise over Borel
partitions, meaning they must be Borel measurable. Again, by (I12) (assumption [2) we have that g and
g are Borel-measurable. Therefore, ¢’ must also be Borel-measurable.

Having shown the preservation of each sub-condition listed in assumption [3] this concludes the proof.
Indeed, if Py meets those sub-conditions, then P% will as well. In other proofs, this result can be

trivially applied to conclude that lower (’P%) fulfills assumption O

F Proof that Lowering Induces Existence, Uniqueness, and Measurability

Lemma [T]follows immediately from the following, more precise statement.

Lemma 5 (Existence, Uniqueness, and Measurability of P). Consider a parameterized hybrid system
P that meets assumptiond| P, then, fulfills the conditions for basic existence (proposition|[I)), basic
uniqueness (proposition|2), and t* measurability (definition .

Proof. This result follows directly from combining lemma [6] and corollary 2} both stated in the
following sections. O
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F.1 Lowering Preserves Existence and Induces Uniqueness

Lemma 6 (Lowering Preserves Existence and Induces Uniqueness). Consider parameterized hybrid
system Py that can be lowered (definition|l4) to construct a system P meeting assumpnon@ P then
fulfills conditions for basic existence and uniqueness (propositions[I|and 2).

We split this proof into two components, one for the preservation of existence, and another for the
induction of uniqueness.
Lowering Preserves Existence
Proof. Recall from definition[I4](lowering) that P’ = (C, F, D', G', S, ©), with
D' =60+~ D(@)\{€e€S: (VC)holds for £} . 43)

Now, pick some € € O and note that C'(@) = C(0), which follows from the basic condi-
tions on P asserting that C(0) is closed. By P fulfilling proposition [I| we have that every

£e[C(6) uD(8)|\D(6) = C(6)\D(8) must meet (VC). It will be sufficient, analogously, to
show that every & € C(0)\D'(0) also meets (VC), which is precisely the same condition because
lower affects neither C nor F'. Note that

C(0)\D'(0)

C(0)\[D(0)\{& € S : (VC) holds for £}]

C(0) nC[D(B) nC{& €S : (VC)holds for £}]

C(0) n[CD(B) u {€ €S : (VC) holds for £}]

=[C(0) nCD(B)] U [C(B) N {€ €S : (VC)holds for £}]
[C(O)\D(0)] U {€€S:(VC)holds for &} .

This yields two cases under which we must check that (VC) holds. For the first case, we know already
that (VC) holds for all £ € [C(0)\D(0)]. For the second, we have by construction that (VC) holds.
By the subset relation, these cases subsume the desired set.

M
M

)
)

N

We thus have our sufficient condition, that (VC) is met for any & € C(6)\D’(6). As we have placed
no constraints on 6, this holds for the entirety of ©. O

Lowering Induces Uniqueness

Proof. Uniqueness for P’ involves three conditions on the hybrid system as stated in proposition

which we will review in reverse order of complexity. Before proceeding, recall from definition [14]
(lowering) that P’ = (C, F, D', G',S,0), where forall 0 e © andx € S

D'(0) = D(0)\{€ € S : (VC) holds for £} (44)

G'(z,0) = last(G)(x,0) (45)

Recall, also, the convention that Gy () = G'(x,0) forall x,0 € S x ©. Now, pick some 6 € ©.

Condition (a) requires the uniqueness of solutions to the differential inclusion on the flow set. This
condition is precisely what we have presupposed in assumption [3 except that we make the stronger

claim that uniqueness holds for any flow in S 2 C(6).

Condition (¢) requires that G is single-valued on the jump set. We have assumed in (P6) that
last(G) is no more than single-valued on dom G, which implies that it is single valued on dom Gg
for every fixed 8 € ©. Additionally, by construction of D’ and the basic conditions on P, we have
that

D'(0) = D(0) = dom Gg = dom Gy (46)

Thus, G is exactly single valued on D’.
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Condition (b) requires that the solution cannot flow from the overlap of the jump and flow sets.
Precisely, for every & € C'(0) n D’(0), (VC) as used in deﬁnitionndoes not hold. By assumption

on P, we have that C(0) = C(6), and recalling deﬁnition it is sufficient to show that (VC) does
not hold for any & in the following set:

C(0) n D'(8) =C(8) n [D(0)\{€ € S : (VC) holds for £}]
=C(0) " D(0) nC{£ e S :(VC)holds for £}
=C(0 ) D(0) n {€ € S: —(VC) holds for &}
c{€eS: —(VC)holds for £} .
This concludes the proof. O

F.2 Lowering Induces Measurability

We first state sufficient conditions for measurability, and then prove that sufficiency. Ultimately, this
yields a corollary stating that lowering induces measurability. We make use of the intermediate results
and definitions established in appendix

Assumption 7 (Collected Conditions for Measurability). Consider parameterized hybrid system
P=(C,F,D,G,S,0). Assume that P

(M1) st uniquely evaluable (definition ;
(M2) has a unique solution to its differential inclusion everywhere (assumption [3);
(M3) has an outer semi-continuous and closed flow set C'(@) at every 6 € ©;

(M4) G is single-valued on dom G, with G(x,0) = {g(x, 0)}, and g Borel-measurable for all
x,0 € dom G.

Theorem 2 (Measurability of Solution). Consider parameterized hybrid system P =
(C,F,D,G,S,0) and its time-parameterized solution map ¢ (definition . If P meets assump-
tion[7] then @ is t1 measurable (definition .

Proof. Under assumption[7} finite jump times and values are Borel measurable in &, @ (lemma 7).
Additionally, under assumption |3} the solution is Borel-measurable in &, 8 up to the first jump (F2-3).
We are thus able to write the time-parameterized solution as follows, where ¢y (&, @) = 0 always. For
allt € [0,¢1), £ € S,and 0 € O:

0

P(t;€,0) = Z ti-1(€,0) t<tj(g,e)]qs(t—tj_l(5]._1(5,9),e),o;gj(g,e),a) @7)

which comprises a countable sum over Borel-measurable functions of &, 8, and is therefore it-
self Borel measurable. Note that, while we have only shown Borel-measurability for £;(§, 0) =
(tj—1(&€,0),7;€,0) whent;_1(&,0) < tT, the joint requirement that t;_1(£,0) < t < t* avoids
those unmeasurable cases. O

Corollary 2 (Lowering Induces Measurability). Consider parameterized hybrid system P; that can
be lowered (definition[I4)) to construct a system P meeting assumption5] P then fulfills conditions
for the tT measurability of its time-parameterized solution map  (definition .

Proof. Assumption[5] when combined with the fact that “lowering” (definition[T4)) induces unique-
ness and preserves existence (lemma [6), subsumes or implies conditions sufficient for the result
(assumption [7]and theorem [2). In particular, (M2) maps to (P3), (M3) maps to (A1) and (P4), and
(M4) maps to (P6). For (M1), note that ¢+ measurability requires only ¢+ > 0 in addition to existence
and uniqueness, which come from lemma@

Proof of lemmal5] This result follows directly from combining lemma6]in appendix [FT]and corol-
lary 2] above. O
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F.3 Measurability of Jump Times and Values

Definition 21 (Flowable Region). Consider parameterized hybrid system P = (C, F, D, G, S, ©).
For all 8 € O, let C'r () denote the set of states from which there exist a flowing solution (respecting
Fp) that remains in C' (0) after its start. Precisely, this means that there exist € > 0 and an absolutely
continuous function z : [0,e] — S such that z (0) € C (0) and 2 (¢t) € F (2 (t)) for almost all
te[0,¢e]land z (¢t) € C (0) forall t € (0, €].

Observation 5. Consider parameterized hybrid system P = (C, F, D, G, S, ©) that has a unique
solution to its differential inclusion everywhere (assumption , and where C(0) is closed for every

0 € ©. In this case, the closure of the flowable region is Cr(0) = C(8).

Proof. From assumption [3] for every 6 € ©, we have that an absolutely continuous function z exists
from every z(0) = £ € S 2 Cp(0) that satisfies Fp. Every interior point € € int C'(@), then, must
be in Cp(0), as some flow must be possible while remaining in C'(@). With the closure of the flow
set, we thus have C'(0) = int C'(0) < Cr(8). Now, for points £ € S\int C(8), note that flow into
C'(0) is only possible from 0C(0) < C(0). This ensures that Cr(0) cannot contain points outside
of C(8), further implying that C-(8) < C (@) = C(8). Thus, by a two-sided inclusion, we have
Cr(0) = C(0) for every 0 € O. O

Lemma 7 (Measurability of Jump Times and Values). Consider parameterized hybrid system
P = (C,F,D,G,S,0) and its solution map ¢. If P meets assumption [7] then the time of the
7 > 0’th jump,

tﬂ (570) = sup{t | (tv.] - 1) € dom ¢(7 5550)} € RZO v {OO} (48)
is a Borel measurable function of €, 6.

Additionally, the solution values at these jump times
€]+1(€70) = (b(tj (5,0),],5,0) (49)

are also Borel measurable functions of €,0 if t;(£,0) < tT.

Proof. Letty (€,0) = sup{t | (t,0) € dom ¢ (-; &, 0)} be the first jump time. Note that if the set
{(&,0) : t1(&,0) = a} is Borel for all « € R, then ¢; must be Borel measurable. Indeed, we can
write that set as a countable intersection of Borel sets, which implies Borelness. Below, we use the
closure of the “flowable region” C'r(8) (deﬁnition to rewrite the pre-image on S x O of the first
jump occurring at or after time «. In particular, we use its closure in order to include the time at
which the jump occurs (by including states that flow can reach but not flow from). Note also that, by
observation we have that Cr(6) = C(0) under conditions already provided in assumption We
have

{(£,0):t1(£,0) = o}

{(€.6):6(7.0:¢,6) € Cr (6) = C(6) ¥7 € [0,a]}
() {(€.0):(8.0(r.0:£0)eG(C)}

T€QN[0,c]

Assumptionrequires that C'(0) is outer semi-continuous at all @ € ©. This holds if and only if its
graph G (C) is closed (Sanfelice, 2021, pg. 49). Closed sets are Borel, so G (C') must be Borel.

The Borelness of {(£,0) : (0,¢(7,0;€&,0)) € G (C)} follows from the Borelness of G (C) and ¢
being continuous in &, @ on [0, ¢], and therefore Borel measurable.

The ability to write the set as a countable intersection over rationals is justified by the standard
argument. For any fixed 7 € [0, ], choose a sequence (7,,) € Q n [0, a] such that 7, — 7. This is
always possible due to the density of Q n [0, «] in [0, «]. If for each n € N we have

(07¢(7—n70§£7a)) € Q(C), (50)
then, because ¢ is continuous in time and G(C') is closed, the limit is also included
(6, lim ¢(7,,,0:£.0)) = (8,6(7,0:€,0)) € G(C). (51)
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Countable intersections of Borel sets are Borel, and thus ¢; must be Borel measurable.

We must now expand from the measurability of the first jump to the measurability of all jumps. We
can write the second jump time as follows, with g being a function that, when evaluated, returns the
single value of G (M4).

£:(£,0) = g(¢(t1(£,0),0:£,0),0) (52)
t2(§,0) = t1(§,0) + 11 (£,(£,6),0) (53)

We have that g is Borel-measurable on the domain of G (M4) and that, by definition of a parameterized
hybrid system (definition , D(0) c dom Gg, and therefore know that g will only be evaluated
where it is assumed to be measurable (M4). Additionally, we have that ¢ is Borel-measurable for
j = O up to and including t; (€, @) (F2-3). Thus, £, is the composition of Borel-measurable functions
and is therefore itself Borel-measurable. ¢2, subsequently, is the sum of a Borel-measurable function
and the composition of Borel-measurable functions. The measurability of ¢; 1 for j > 0 then follows
from its recursive form. We use h(")(z) to represent the n-fold composition of % with itself. By
standard inductive arguments we have

he(x) = g (6 (1 (x,6) ,0;2,0),0) (54)

€,,1(6,0) =1 (€); £,(6,0)=¢ (55)
j+1

tir1(£,0) = > t1(£(£,0),0) (56)
1=1

As t;1 comprises only sums of compositions of Borel-measurable functions, it must also be Borel-
measurable. Additionally, note that £, ,,(&,0) = ¢(t; (§,8),;&,0) can also be written as the
composition of Borel-measurable functions, thereby proving the measurability of jump values. [

G Probabilities of Causation and Fishery Management

G.1 Historical Context for the Fishery Management Problem

Notions of causal necessity and sufficiency are often productively employed in policy discourse,
especially where competing interests require human-understandable justifications as to whether
a particular policy is sufficient and/or necessary to achieve desired outcomes. Recall the control
theoretic settings involving state-dependent, instantaneous interventions that we have enumerated in
the introduction: health-related lockdown measures, interest rate adjustments, and many engineering
problems involve cost benefit tradeoffs, where policies are designed to be sufficient for the benefits,
but only as costly as necessary. In modern resource management, for example, tragedies of the
commons frequently demand a challenging balance between ecological objectives and short and
long-term economic outcomes. Additionally, such cases often involve models that our interventional
semantics is designed to operate on.

Fishery management offers a particularly rich set of problems where the probabilities of causation
can help streamline policy discourse. Over the last few decades, numerous fishery management
crises have followed a similar arc: first, growing markets and new technologies result in overfishing
to unsustainable biomass levels; then, regulators impose strict catch quotas, gear restrictions, data
collection requirements, area closures, and other measures designed to allow stocks to rebuild; after
rebuilding stocks, fishing resumes, ideally at more sustainable levels. In 2000, for example, the
NMFS and NOAA@ announced emergency regulatory measures in response to the failure of the
Pacific coast groundfish fishery (Anon, 2000). This was followed by an economically tumultuous
rebuilding period of around 10 years (Warlick et al.} 2018), after which fishing restrictions changed
and loosened (Anon, 2010a). Similarly, the 1990s saw significant declines in the Atlantic swordfish
fishery (Neilson et al.,2013). In 2000, the ICCAT@ established an ultimately successful 10-year plan
to rebuild the stock (Neilson et al.l 2013 |Anonl [2010b).

Naturally, these measures were not without significant economic consequences and backlash, both
short and long term (Anon, [2000; (Cramer et al., 2018} |Anon} 2007b). Indeed, in the United States,

2IThat is, National Marine Fisheries Service and National Oceanic and Atmospheric Administration.
22That is, International Commission for the Conservation of Atlantic Tunas.
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the Magnuson-Stevens Act (MSA) mandates the multi-objective of avoiding unnecessary economic
sacrifice while pursuing long-term economic and ecological outcomes (Anon, |1976,|1996, 20074}
2018)). Myriad ecological and bio-economic dynamical systems approaches were developed during
and after these crises to better balance competing objectives (Lee et al., |2000; Ortiz et al., 2010;
Restrepol et al., 2011 Taylor et al.l 2022). On some occasions, post-mortems were employed to, for
example, determine the degree to which rebuilding success was due to management actions or to
natural factors such as species biology [Neilson et al.|(2013)). In essence, the goal of such efforts, as
stated in the MSA, is to identify and implement sufficient rebuilding measures that would induce no
more economic hardship than necessary.

G.2 Formal Probabilities of Causation

The formal definitions of the probabilities of causation were originally provided by [Pearl| (1999).
These queries are traditionally defined for binary treatment X and outcome Y variables — we
enumerate those binary definitions here, and then develop some intuition. In our fishery management
example (section[6)), we expand to the non-binary setting in keeping with definitions provided by
Kawakami et al.| (2024) for scalar treatment and outcome variables.

Definition 22 (Probabilities of Causation). Let X, Y be binary variables within a structural causal
model M, and let =, x’, y, ¥/, denote the propositions X =1, X = 0,Y = 1, Y = 0 respectively.
Denote by Y, and Y, the counterfactual outcomes obtained by performing the do-interventions
do(X = 1) and do(X = O)FE] The probabilities of causation [Pearl (1999), then, are defined as
follows:

PS($7Z/) = P(Yw =1 | x/ay/)a (58)
PNS(z,y) = P(Y, =1,Y, =0). (39)

PN (z,y) quantifies the probability that « was necessary to produce outcome y; P.S(x,y) quantifies
the probability that = alone would suffice to produce y; and PN S(z,y) jointly quantifies the event
that x is both necessary and sufficient for outcome y.

To compute the probability of necessity, we consider only (condition on) worlds where the events
x and y occurred, and then evaluate the probability of Y being false if we intervene to make X
false. Similarly, the capacity to produce an outcome — the probability of sufficiency — is computed
by conditioning on X and Y being false, and evaluating the probability of Y being true if we
now intervene to make X true. A notion balancing the dimensions of necessity and sufficiency is
the probability of necessity and sufficiency, which is not a function of the separate probabilities.
To evaluate PN.S, we do not condition either WayPE] but rather evaluate the probability that both
intervening to make X true results in Y,, = 1 and intervening to make X false results in Y, = 1.

G.3 Multi-Year Horizon

In our analysis of the fishery management problem, we analyze only the year-long time scale, but we
can define a multi-season model with an arbitrarily long time horizon. Note that, here, we will need
to prepend time to the state vector, which becomes [t, z, h1.3,b1.3] =x € S = Ri. See tablefor a
full labeling of model parameters and states.

First, model the season’s starting condition via a jump set that triggers at the beginning of each year.
Jumps at the season’s start obey a map that (1) resets the integrated catch z to zero and (2) sets
fishing harvest rates to their noisy, non-null values. Let 6, ~ N(.7,.07) and 8, ~ N (.07,.007)
be elements of O, season-start times be Zx( (i.e. the beginning of each year), and rstatint
(definition be a generalization of statint (definition[I7) that applies the jump map at countably
many timesﬂ% Let Py = ((C,F, &, "), S, O) describe the fishery in its unfished, natural state, where

2The canonical do intervention do(X i = :1:1) fixes the structural equation for X; to a constant, i.e. s; = ;.

2 Any conditioning here would bias the outcome. Suppose X and Y are causally disconnected. If you
condition on z, iy, you make Y, true by default, and if you condition on z’, 3, you make Y, false, effectively
making one of the components satisfied for free, which is undesirable.

BDefinition |19 also requires a binary auxiliary variable to be part of the state-space — without loss of
generality, however, we omit that here for smoother exposition. Additionally, this construction assumes the same

33



Trajectories of biomass under three harvesting policies
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Figure 3: Examples of the biomass trajectories of apex and intermediate predators, as simulated from
the model proposed by Zhou & Smith|(2017)). The panels comprise simulations with, (left) no fishing
pressure, (center) fishing pressure kept up throughout the year, (right) fishing regulators ending the
season when reported catch meets the total allowable catch (TAC) quota of 50 biomass units.

name notation in season after season
time t

total catch zZ

fishing pressure forage hy 0 0
fishing pressure intermediate ha ha ~ Normal(.7,.07) 0
fishing pressure apex hs hs ~ Normal(.07,.007) 0
biomass forage b1

biomass intermediate by

biomass apex bs

desired outcome lower threshold  ~ 130 130
TAC quota q;

Table 2: Parameters and notation for the fishery example.

S§=0C= R;O, and - simply indicates the irrelevance of the jump map in the natural state of the
fishery.

Gs (2270) {[t707079h276h37b113]} (60)
P, = rstatint (”PO,ZZ(),GS> (61)

The season’s end can be described by setting the harvest rates to zero when the catch exceeds a
threshold ¢; (with 7 € {1, 2}). From these, we can construct parallel worlds with the same random
initial conditions and parameters.

fishing pressure year over year. This can be generalized to independently sampled pressures at each year, though
some additional theoretical machinery would be required for an infinite time horizon. See[Teel & Hespanha
(2015) for one possibility.
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Dy, (0) =Rso x {zeRxo | 2 > qi} x RY, (62)

qu' (CB,B) = {[t727070707b1:3]} (63)
P,, = instint (PS, in,éqi) (64)
Rs = (PS’ g, 9); R!n = (qu, g, 9); Rq2 = (Pq27 &, 9) (65)

G.4 Narrative Fishery Management Example

In the main body of the paper, we emphasized the construction of the probabilities of causation, rather
than their application. Still, some readers may appreciate a more narrative structure around these
concepts. We provide that here.

Example 5 (Probabilities of Causation for Total Allowable Catch (TAC) Quotas). Now, suppose
a new commercial fishery is being opened up and that, in the first year, fishery managers allow
commercial fishing year-round. R s models this world (or equivalently, R, when the TAC quota g is
sufficiently large so as to have zero probability of being reached). This results in a failure to preserve
the intermediate level biomass above the desired level . Suppose v = 130 units. Facing ecological
scrutiny, fishery managers ask: given that we allowed year-round fishing and failed to achieve our
outcome, what TAC quota would have a high probability of being sufficient for success? This is
a probability of sufficiency query. They introduce a strict TAC quota of 30 units with a relatively
high probability of sufficiency (fig.[d). In the next season, they succeed in meeting biomass targets.
Subsequently, however, economic interests and local representatives insist that such a low, strict TAC
was not necessary to achieve this outcome. They point out that, in comparison to a more lenient
TAC of 50 units, there is a low probability that the strict TAC of 30 was necessary (fig. [5). Fishery
managers, in turn, worry that the probability of success with a TAC of 50 might be too low. Before
the start of the next season, stakeholders resolve the disagreement by identifying a TAC that yields a
high probability of sufficiency and necessity when contrasted with year-round fishing (R ), all while
avoiding stricter catch limitations that are not justified by gains in the probability of necessity and
sufficiency (fig. [6).

The simulated results presented here ran on a consumer grade laptop in the order of one hour.

G.5 Event-Time Attribution

In the main body of the paper (and in example[3]), we analyzed the probabilities of causation as they
relate to contrastive policies. In other words, we asked causal attribution questions at the policy
level. Queries about the probabilities of causation, however, such as “was x necessary to achieve
y”, are ambiguous when a real world event x is multi-faceted and potential alternative actions are
plentiful. In example |5, we mapped the events x and x’ onto particular TAC quotas. In this next
example, however, we will define our event of interest as involving the fime at which an intervention
occurs. We can make this precise by constructing twin worlds using the tools provided in this paper
— particularly by additionally employing the static intervention statint (definition [T7).

Example 6 (Probability of Necessity of State-Dependent Intervention Timing). Consider worlds
where the season ends before some time A, and biomass goal +y is achieved at a later time 7 (for
instance, at the end of the year). Fishery managers wonder whether they might fail to meet their
biomass goals if, contrary to fact in those cases, the season had ended at or after time A. The relevant
question is: was ending the season before time A\ necessary for achieving the biomass goal? We can
answer this question by asking a probability of necessity query. Unlike in example 5] however, the
causal attribution question relates to the time at which the intervention occurs. Consider the following
binary predicates, where T'(¢,, ) extracts the time at which the season ends due to the TAC quota

(hﬁ]
X =1[T(pq) <A; Y =I[b], >1] (66)

%See appendix E] for information and general notation for extracting event times from solutions to hybrid
systems. And note that, in lemma we prove that jump times are Borel-measurable in & and 6.
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Figure 4: Step 1 in the example narrative (example . Within the first year of commercial fishing,
the fishery has no quota (here it is enough to set it to ¢ = 120, which is never met), and falls below
sustainable biomass. Conditioning on this failure, the regulators seek an intervention with a high
probability of changing this outcome next time along the counterfactual dimension. They implement
a strict TAC of 30, evaluating the probability of sufficiency (the probability of achieving sustainable
biomass above the desired threshold of 130) to be 0.87.
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Figure 5: Step 2 in the example narrative (example . The season ran with a TAC of 30 units, and
the intermediate biomass target reference limit (y = 130) was met. Conditioning on this, parties
interested in increasing the fishing quota ask whether such a low TAC was necessary. They seek an
alternative quota along the counterfactual dimension that, when contrasted with the factual TAC of
30, reveals the factual TAC as probably unnecessary. As a counterexample, they choose a TAC of 50,
which yields a relatively low probability of necessity (.18).
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Figure 6: Step 3 in the example narrative (example . This time, before the season starts and prior
to seeing what the outcome will be, both sides aim to find a quota with a large probability of both
necessity and sufficiency. They contrast proposed TAC quotas with a baseline, status quo TAC of 120
units (never met). They notice that the probability surface flattens out above .60, meaning further
improvement in the probability of necessity and sufficiency would require excessive limitations in
quota. Ultimately, they agree on a quota that results in a value above 0.6, i.e., a TAC quota of 0.35.
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Conditioned counterfactual biomass trajectories for three time thresholds
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season end date: Jun-29
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Figure 7: Samples from the Bayesian dynamics based on the fishery model presented by Zhou &
Smith| (2017), but with the season ending at different times. We show three end dates and their effect
on the biomass at the intermediate trophic level.

Recall that the probability of necessity is P(Yzo(x—0) = 0 | X = 1,Y = 1) (with shorthand
P(y., | z,y), see table . To coherently characterize this in our example, we must define what
it means to perform the intervention do(X = 0). Given our definition of the predicate X above,
do(X = 0) suggests an intervention that results in a world where the season ends at or after A, with
all else (such as the noise or the resulting fishing pressure of 0) remaining equal. Importantly, there are
many such worlds, which means the probability of necessity must adopt an existential flavor: “under
exogenous noise where X = 1 and Y = 1, what is the probability that all worlds consistent with
intervention do(X = 0) fail to meet the outcome?’ To precisely define this set of interventional
worlds, we build off notation from example El, and consider a twin world under a static intervention
occurring at some time A’ > A, but with the same interventional jump map utilized in the world Py, .

{Py i X = A} where Py = statint (PS, N, éql) 67)

As described following definition [I8] the trigger dynamics of the state-dependent intervention can
also be considered a sort of “treatment mechanism” determining the time at which a static intervention
occurs. By constructing a world where direct control over the intervention timing is possible, we
are able to disentangle these mechanisms. Importantly, note that while P,/ is constructed via a
transformation on Pq, it is equivalent to a single-season world constructed from an intervention on
P,, that directly controls the season-ending time independently of causally upstream events in the
system’s simulation.

Yao(x=0) = 0 <= I[b}, <7] YN = A (68)

Note that if b}, monotonically decreases as A’ — 00, then we can equivalently write the event ¥/, as
I[b}, < ~]. Indeed, under our model and distributions on & and ©, this is the case, and so we can
finally precisely express the probability that ending the season before time A is causally necessary to
achieve the biomass outcome:

Py | z,y) = P(I[bY, <~] [I[T(gq,) < Al,L[b], =7]) (69)

Unlike in example 5] conditioning on the factual interventional event is required, because knowing
that the season ended before \ carries information about the model parameters: the earlier the TAC
quota is met (at times prior to \), the faster the catch rate. Faster catch rates stem from some
combination of higher fishing pressure (h.3), higher initial biomass (b1.3 at t = 0), higher growth

*'This can equivalently be stated: “...probability that there does not exist a world under do(X = 1) where the
outcome is met.” See recent work by [Li & Pearll (2024) and [Kawakami et al.|(2024) for more information on
how non-binary variables lead to these kinds of existential statements. This also relates to abstract interventions,
which has been studied by |Beckers & Halpern| (2019); [Beckers et al.| (2019).
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Impact of intervention times on probability of necessity and on biomass
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Figure 8: For each \; from a grid of intervention times we (1) condition on the season ending before
\; and on the successful outcome, and (2) we intervene so that the end of the season occurs at \;. The
top panel shows the probability that ending the season before \; was necessary to achieve biomass
targets, while the bottom panel shows the counterfactual biomass distribution under interventions
ending the season at various ;. In the violin plot, we differentiate between counterfactual uncertainty
for all worlds (orange and gray), and counterfactual uncertainty after selecting only worlds where
the TAC quota was reached before \; and biomass goals were met at 7. In other words, the gray
violins show biomass probabilities if regulators had ended the season at \; in cases where they ended
before \; and met biomass goals. The probability of necessity, then, is the proportion of the gray
distribution falling below the target level of +.

rates, etc., all of which influence whether the biomass target will be achieved under alternative
season-ending times, even after conditioning on success in the factual world@

Returning to the example, consider a range over fixed threshold A, approximated by a finite sequence
(A\i). For each \;, we (1) condition on the season ending before \; and on the intermediate biomass
at 7 being above -y, and (2) intervene so that the end of the season occurs at \; (and not earlier). The
relevant probability of necessity query is whether intervening before )\; was necessary for the success.
That is, for each \; we inspect the posterior predictive distribution of the intermediate biomass at 7
under the intervention, and inspect the probability that this outcome is below . The results of an
estimation are available in fig.[§]

The simulated results presented here ran on a consumer grade laptop in the order of one hour.

H Holling-Tanner Fishery Model

The fishery management model presented by Zhou & Smith|(2017) describes the population dynamics
for a given trophic level according to the Holling-Tanner model:

dB B
— =B (1—K)—MB—FB, (70)

where B is the biomass of the species, r is the intrinsic growth rate, K is the carrying capacity, M
is the mortality rate due to predation, and F' is the fishing mortality rate. Elsewhere in the paper,
we have avoided using Zhou & Smith's notation, so-as to avoid overloads with the hybrid system
literature. In our paper, we use h instead of F', and the lowercase b for biomass, with subscript ¢
indicating trophic level. In this appendix section, however, we will use|[Zhou & Smith's notation.

2In other words, we do not necessarily have exogeneity here: Y, °X; Y, 4 X. This further aligns with
understanding the state-dependent trigger dynamics as a sort of “treatment mechanism.” Exogeneity, here, is
violated because & and © can be considered “parents” of both X and Y. In violating exogeneity, non-parametric
identification results for this example may be out of reach (Li & Pearl,|2024; |Kawakami et al.,[2024). As this
paper does not address non-parametrics, however, a parametric identification of initial conditions and parameters
would be sufficient for the identifiability of PNS/PN/PS. Parametric identification in hybrid systems has been
studied by Johnson| (2023).
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The mortality rate due to predation is modeled as:

~ PBpra
D+ B’
where p is the maximum predation rate, Byeq is the biomass of the predator, and D is the biomass at
which predation reaches half its maximum.

(71)

The carrying capacity for a predator species is given by:

K = eBprey, (72)
where e is the efficiency of converting prey biomass into predator biomass.
The bottom trophic level dynamics follows:

dBforage
dt

Bforage
K

=T Bforage (1 - ) - MlQBforage - Fforageroragea (73)

where M- is the mortality rate due to predation from intermediate predators.

Species in the intermediate level act as both predator and prey:

dBinlermediate

Binlermediate
dt = TQBintermediate <1 - - M23Bintermediate - EntermediateBintermediate- (74)

€12 Bforage

The top trophic level follows:

dBapex
dt

Bapex

€23 Bintermediate

= 7/'Z’}Bapex <]- - ) - MBBapex - FapexBapex- (75)

The catch rate for the intermediate trophic level is given by the following — note that, in the main
body of our paper, we use z for the integrated catch, meaning Catch below corresponds to z.

CatChintermediate = Entermediate B intermediate - (76)

Fishing efforts for each trophic level are assumed to remain constant over time unless intervened on.

dF;
dt

=0, 1 e forage, intermediate, apex. 77

I Practical Utilities for Tracking Intervention Times and Values

In many counterfactual estimands, we must translate an event’s characteristics from one world to
another. To do so, we require the ability to extract certain event properties from a hybrid system’s
solution. By recording event specifications in auxiliary state variables, these can be straightforwardly
read off of solution evaluations at any particular time. First, consider an original system P with
time recorded faithfully in the first dimension, and compatible interventional jump set D and jump
map G. Assume the intervention preserves the faithful recording of time and that G is single valued
everywhere.

To start, we augment the state space with an intervention jump counter j, an intervention time ¢, and
an intervention value vy. Our goal is to record the time and jump value corresponding to the k’th
occurrence of the intervention. Let S = S x R;O x Rand © = &, and augment the state space
accordingly.

P’ = spaug (73, S, é) (78)

Now, augment the original interventional specification to appropriately track event details in these
auxiliary state variables. For all admissible inputs, and fixed integer k, let
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D'(6) =D(0) x S (79)

[7+1,¢ 0] k=j+1
[+ 1, tg,vg] E#j+1

G (x,t, ], t, v, 0) = G (x,1,8) x { (80)

The intervention time and value can then be read directly off of a solution satisfying the constraints of
instint(P’, D', G’). To track whether an event occurred k times, we can initially set, for example,
tr = —1. A positive t;, would indicate that the event had occurred. This can be switched to oo instead
for more natural time inequalities if boundedness of the states is not a concern.

I.1 Notation for Extracting Times and Values

We now describe some general notation for extracting values of ¢; and vy from a solution. Consider a
hybrid arc ¢; satisfying a system arising from the 7’th instint transformation of that system, where
the interventional jump set and map had been augmented to record its £’th jump. Given the solution’s

time parameterization t — ¢ (¢; &, 0), we use P (om=>i(+; &, 0)) for the time at which the k’th

K3

jump occurred, and Vi(k) (pm=i(; &, 0)) to extract the state’s value immediately following the jump.
When clear from context, the function V' extracts only one element of the state. The caveat that m > ¢
simply specifies that properties of the £’th jump due to transformation 7 can be read off of a solution
to any further transformed system. As shorthand, we sometimes write ¢,,>; = @m>:(+; &, 0), taking
the random inputs as implicit. Additionally, in settings involving interventions that occur only once
in the relevant time window, or where the order of interventional transformation is clear and denoted
using a symbolic subscript like s, we use, for example, Ts () to extract the event’s time.

J State-Dependent Intervention in the Forward Euler Representation

Consider a forward-Euler approximation of a system of ODEs, where, for simplicity, we will assume
that A¢ > 0. If f is the right-hand side of the continuous-time differential equation =’ = f(z), we
can write structural equations x; = x;—a; + f(2i—ar, u)At, where t = 0, z; € R is the value of
the state variable x at time ¢, u € R is a fixed realization of exogenous noise (representing unknown
parameters, for example), and z is fixed to some constant initial condition. Suppose now that we
wish to intervene such that the system jumps according to a function g = = — =« + 1 when z falls
to some threshold 7. To implement this, we must modify the structural equation for z; for all ¢
under question. That is, we replace the original structural equation with the following piecewise
construction.

Let Z; = 24— At + f(2t—at, u) At denote the value that would be obtained under the original (non-
intervened) Euler update, and let D = {z € R | < 7} denote the domain in which the jump is
triggered. Then the intervened structural equation can be approximated as follows:

[z eD g(xy)
= {mt ¢D 7. 1)
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NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our claims are described in the abstract and clearly enumerated at the end
of the introduction. The first manifests in the definition of an instantaneous intervention
(definition[d), the second in theorem|[T]and its proof (appendix D)), and the third in section [6]

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: A limitations section is provided and includes references to other locations in
the paper where we discuss limitations reviewed therein.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Proof sketches are provided in the main body and references are provided to
detailed formal proofs in the appendix.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: We do not include experiments in the main body, but do provide some simulated
estimation results in the appendix. We provide ample model details therein for reproducibility
and provide links to our simulation code.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: We provide links to our simulation code, which runs in self-contained Jupyter
notebooks.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The main paper does not include experiments, but the simulation analyses
offered in the supplementary material do have all model parameters and variable distributions
clearly enumerated.
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10.

11.

12.

13.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: We do not include experiments in the main paper, but our simulation analyses in
the appendix do include credible intervals representing Bayesian prior predictive marginals.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The main body does not include experiments, but for our supplementary
simulated analyses, we do state our very small computational requirements.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research does not raise any ethical concerns and is unrelated to areas
covered by the Code of Ethics.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no direct path for societal impact from our work, beyond, of course,
pipelines that blindly use potentially incorrect models for high-stakes decision making.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: See above.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: We do not use such assets.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
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14.

15.

16.

Justification: This paper does not release any new assets.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper involves neither crowdsourcing nor research with human subjects.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
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