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Abstract

In this paper, we study personalized federated001
learning for text classification with Pretrained002
Language Models (PLMs). We identify two003
challenges in efficiently leveraging PLMs for004
personalized federated learning: 1) Communi-005
cation. PLMs are usually large in size, e.g.,006
with hundreds of millions of parameters, induc-007
ing huge communication cost in a federated008
setting. 2) Local Training. Training with PLMs009
generally requires back-propagation, during010
which memory consumption can be several011
times that of the forward-propagation. This012
may not be affordable when the PLMs are013
trained locally on the clients that are resource014
constrained, e.g., mobile devices with limited015
access to memory resources. Additionally, the016
proprietary PLMs can be provided as concealed017
APIs, for which the back-propagation opera-018
tions may not be available. In solving these, we019
propose a training framework that includes an020
approach of discrete local search for gradient-021
free local training, along with a compression022
mechanism inspired from the linear word anal-023
ogy that allows communicating with discretely024
indexed tokens, thus significantly reducing the025
communication cost. Experiments show that026
our gradient-free framework achieves superior027
performance compared with baselines.028

1 Introduction029

Personalized federated learning (Fallah et al., 2020;030

Chen et al., 2018; Shamsian et al., 2021) involves031

collaborative training with non-shareable private032

data from multiple clients. For each client, we033

aim to train a personalized model that fits to its lo-034

cal data, leveraging knowledge from other clients.035

Personalized federated learning has been increas-036

ingly attended in the federated learning community037

due to its ability to account for data heterogene-038

ity across clients (Li et al., 2021). On the other039

hand, the advent of Pretrained Language Models040

(PLMs) (Liu et al., 2019; Kenton and Toutanova,041

2019) has yielded remarkable performance for nat- 042

ural language processing, e.g., text classification. 043

However, such PLMs are usually large in size, e.g., 044

with hundreds of millions of parameters. There has 045

been limited works investigating how to efficiently 046

train with such large PLMs in federated learning 047

scenarios (Guo et al., 2022; Zhao et al., 2022). In 048

this paper, we investigate on efficient training with 049

PLMs in personalized federated learning for the 050

task of text classification. 051

One challenge of training PLMs in a federated 052

learning scenario is how to reduce communication 053

cost. Federated learning generally requires com- 054

municating updated trainable model parameters 055

between a central server and all the clients (McMa- 056

han et al., 2017; Li et al., 2020). When training 057

with PLMs, their sheer size may introduce huge 058

communication cost between the server and clients, 059

thus reducing the training efficiency. To solve this 060

problem, recent works propose to leverage prompt 061

tuning (Guo et al., 2022; Zhao et al., 2023). Specif- 062

ically, prompt tuning learns with a sequence of 063

trainable prompt embeddings inserted into the in- 064

put layer of the PLMs. By only training and com- 065

municating the prompt embeddings and freeze the 066

pretrained parameters of the PLMs, the communi- 067

cation cost is largely reduced compared with train- 068

ing all the parameters of the PLMs. However, in 069

these works prompt tuning is not realistic for fed- 070

erated learning. The main reason is that the local 071

training, i.e., when the PLMs are trained locally 072

on each client, requires back-propagating through 073

the PLMs in order to calculate the gradient of the 074

prompt embeddings. The memory consumption 075

of back-propagating is several times higher (de- 076

pending on implementation) than that of forward- 077

propagation1(Baydin et al., 2022; Belouze, 2022). 078

Such memory consumption is proportional to the 079

1This is because back-propagation requires saving the in-
termediate results of a computational graph, while the forward-
propagation does not.
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size of the PLM, e.g., with hundreds of millions080

of parameters. Therefore, back-propagating with081

the PLMs can be extremely memory consuming.082

Unfortunately, the clients in federated learning usu-083

ally have limited access to the resources (Rabbani084

et al., 2021; Deng, 2019), e.g., edge devices with085

limited memory. As a result, the memory footprint086

during the local training with back-propagation can087

exceed the memory capacity of the client devices,088

making the training infeasible. Further, the PLMs089

may be provided as concealed APIs, for which the090

back-propagation operation may not be available091

(Sun et al., 2022b).092

To address these issues, we propose a gradient-093

free training framework that saves both the mem-094

ory and communication cost in federated learning095

with PLMs. Specifically, during local training with096

client data, the PLM is trained via a gradient-free097

approach of discrete local search with natural lan-098

guage tokens, which saves the memory consump-099

tion of back-propagation via only requiring forward100

pass with PLMs during training. By keeping the101

prompts from local training to be natural language102

tokens, we further proposes a compression mech-103

anism that compresses the aggregated prompt em-104

beddings according to linear word analogies (Etha-105

yarajh et al., 2018; Nissim et al., 2020; Drozd et al.,106

2016). Such a novel compression strategy allows107

the server and clients to communicate with discrete108

token indices, thus significantly reducing the com-109

munication cost. Our contributions are as follows:110

• We propose a noval gradient-free personalized111

federated learning framework for text classifi-112

cation with PLMs. To the best of our knowl-113

edge, we are the first to consider gradient-free114

training in federated learning with PLMs.115

• Our framework includes a gradient-free train-116

ing approach with discrete local search, along117

with a communication mechanism that allows118

communicating with discrete token indices.119

• Experiments on various datasets show that our120

gradient-free framework can achieve superior121

performance, while substantially reducing the122

communication cost during training.123

2 Related Work124

Federated Learning with PLMs: Previous works125

studying PLMs under the federated learning setting126

mostly consider the training efficiency in terms127

of the communication cost, but rarely account for128

memory footprint. For instance, Lit et al. (2022) 129

propose to reduce the communication cost by only 130

communicating the lower layers of the PLMs be- 131

tween server and clients. Inspired by the supe- 132

rior performance and efficiency of prompt tuning 133

(Lester et al., 2021; Liu et al., 2022), (Guo et al., 134

2022; Zhao et al., 2023; Guo et al., 2023) pro- 135

pose to further reduce the communication cost via 136

only training and communicating the continuous 137

prompt embeddings. The drawback of these works 138

is that they all require gradient computing with 139

back-propagation, which ignores the huge memory 140

consumption caused by back-propagation through 141

the PLMs. As mentioned before, this can be prob- 142

lematic for clients with constrained computation 143

resources, e.g., edge devices with limited memory 144

capacity. Additionally, the PLMs can be served as 145

black-box APIs (Sun et al., 2022b), for which the 146

back-propagation operation may not be available 147

for model training. 148

Gradient-Free Training with PLMs: Sun et al. 149

(2022b); Cao et al. (2023) assumes the PLMs 150

are concealed in black-box APIs and propose to 151

train the input prompt embeddings of the PLMs 152

with CMA-ES (Hansen and Ostermeier, 2001), a 153

gradient-free method that only requires forward- 154

propagation. This setting is termed Language- 155

Model-as-a-Service (LMaaS), e.g., with GPT 3.5/4 156

(Koubaa, 2023; OpenAI, 2023), where the client 157

data is transferred to an external server with the API 158

of PLMs. This violates the privacy-preserving prin- 159

ciple of federated learning. Sun et al. (2022a) fur- 160

ther considers gradient-free training with prompts 161

inserted into the intermediate layer of the PLMs, 162

which contradicts our assumption about black-box 163

APIs. Deng et al. (2022); Diao et al. (2022) model 164

the prompts of the inputs layer of PLMs with a 165

prompt generator that is trained with gradients from 166

reinforcement learning. This may not be suitable 167

for federated learning, since back-propagating with 168

prompt generators (e.g., implemented with another 169

PLM) can introduce additional large memory con- 170

sumption for clients during local training. Hou et al. 171

(2022); Prasad et al. (2022) also study gradient-free 172

training of PLMs, but it is unclear how to apply 173

their approach for federated learning. To illustrate, 174

Hou et al. (2022) adopts boosting with prompts, 175

requiring ten times the computation for model in- 176

ference compared to without boosting, thus is not 177

compatible with clients equipped with constrained 178

computation resources. Importantly, none of the 179

above works are studying federated learning. 180
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3 General Setup181

Let M be the number of clients in federate learn-182

ing, and {Di}Mi=1 be their local datasets. In per-183

sonalized federated learning, these datasets are184

from different domains or tasks. We have Di =185

{Xn,Yn}Nn=1, for i = 1, . . . ,M with totally N186

training samples, where Xn is the nth text se-187

quence and Yn is its label for text classification. Let188

fi(·) be the model for client i, with fi(Xn) being189

the predicted probability distribution for Xn over190

all possible labels in client i. The model fi is imple-191

mented as prompt tuning. Specifically, let H be the192

pretrained encoder of the PLM and pi ∈ RT×D rep-193

resent a sequence of T prompt token embeddings.194

In experiments, we follow (Sun et al., 2022b) with195

T = 50. D is the dimension of the pretrained token196

embeddings. fi(Xn) can be written as,197

Temp=[pi; e(Xn); e(It is [MASK])] (1)198

fi(Xn) = softmax(H(Temp) · V T
l ), (2)199

where [; ] denotes row concatenation, pi is the learn-200

able prompt, e(·) is the embedding layer of the201

PLM that convert each token in Xn into a token202

embedding. H , and e are frozen during prompt203

tuning. (1) defines the template for the text clas-204

sification input, which contains a [MASK] token.205

The output from H on the position of [MASK] is206

compared via inner product with the verbalizer Vl,207

which contains embeddings of words that are repre-208

sentative of each label. For instance, we can have209

Vl = e([good, bad]) for sentiment classification.210

We see that the only trainable parameter in fi(·)211

is the prompt pi. The training loss for client i is,212

L(pi;Di) =
1

N

N∑
n=1

cross_entropy(fi(Xn),Yn),

(3)213

When training with personalized federated learning214

for text classification, the general objective is to215

find {pi}Mi=1 that minimizes,216

1

M

M∑
i=1

L(pi;Di), (4)217

while keeping {Di}Mi=1 locally for each client. This218

is achieved via corrdinating the training with a219

server that iteratively receives {pi}Mi=1 from local220

training and distribute their aggregated version, de-221

noted as p in Section 4.1. Unlike the PLMs with222

online APIs (e.g. GPT-3.5/4 (OpenAI, 2023)) that223

requires uploading user data to an external server, 224

it is reasonable that the PLMs is deployed locally 225

(i.e., without data uploading), for better data pri- 226

vacy with federated learning. Since PLMs can be 227

proprietary due to its costly pre-training (Qiu et al., 228

2020; Zhou et al., 2023), its parameters (as men- 229

tioned above) can be concealed in an API for which 230

back-propagation is not available. 231

4 Our Framework 232

4.1 General Procedures 233

Our proposed framework of federated learning is 234

composed of the following four steps (also shown 235

in Alg 1), which are executed iteratively multiple 236

rounds of federated learning: 237

• Local Training: Each client trains its own pi 238

with its local data. Section 4.2 introduces our 239

proposed gradient-free approach of discrete 240

local search for pi. 241

• Upload: The learnt {pi}Mi=1 is uploaded to 242

the server via converting each pi to its corre- 243

sponding index (Section 4.2). 244

• Aggregate: The server aggregates information 245

from different clients by generating a global 246

prompt p from {pi}Mi=1 to generate, i.e., 247

p =
1

M

M∑
i=1

pi, (5) 248

where we adopt FedAvg (McMahan et al., 249

2017) and assume uniform weighting. 250

• Download: p is downloaded to each client 251

as the initialization of local training (with pi) 252

for the next round. Section 4.3 proposes a 253

compression method that approximates p with 254

reduced communication cost (denoted as p′). 255

Note that we assume the API of the PLM has 256

been downloaded to each client before the start of 257

federated learning, so that we only need to commu- 258

nicate the prompts during federated learning. We 259

claim that downloading the API to clients is a prac- 260

tical assumption. This is because it avoids the ne- 261

cessity of uploading client data to an external server 262

(with API) for model inference, compared with the 263

recent Language-Model-as-a-Service (Sun et al., 264

2022b) where the API is only store on an online 265

server. This is especially important for federated 266

learning where the privacy is of prime concern. 267
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Algorithm 1 Overall Algorithm.

Input: Datasets {Di}Mi=1, the PLM (API and its
pretrained embedding matrix e(V)).
Output: The resulting prompt p′.

Initialize p with natural token embeddings.
p = p′ = p′

−1

Download the PLM API and p′
−1 to each client.

% General procedures for federated learning.
for r = 1, · · · , n_round do

% Iterate with the M clients.
for i = 1, · · · ,M do

% Local Training: Section 4.2, Alg. 3.
pi = Local_Training(p′, Di)
% Upload: Section 4.2.
Upload the index of pi to the server.

end for
% Aggregation: Section 4.1
Aggregate {pi}Mi=1 with (5), generating p.
% Download: Section 4.3, Alg. 2
p′ = Compress_Download(p′, p′

−1, e(V))
p′
−1 = p′

end for

4.2 Gradient-Free Local Training268

In updating each client i, its prompt pi is firstly ini-269

tialized with the global prompt p (or p′ in Section270

4.3) from the previous round of federated learn-271

ing, then fine tuned on the local dataset Di. As272

mentioned before, gradient-based fine tuning of p273

with back-propagation can be extremely memory274

consuming with PLMs. Additionally, the back-275

propagation operation may not be available for276

PLMs concealed behind APIs. So motivated, we277

study gradient-free client update of the prompt p,278

which does not need gradient computation with279

back-propagation and is compatible with the APIs.280

Specifically, we propose an update mechanism281

based on discrete local search with natural language282

tokens. Let V be the vocabulary of the PLM and283

superscript t denote the tth row of a matrix. For284

each iteration update, given a randomly sampled285

position of the prompts t, t ∈ [1, T ], and a set of286

candidate tokens C(pt
i) ⊂ V , we update pt

i via,287

pt
i = argmin

w{e(c)|c∈C(pt
i)}

L(rep(pi,w, t),Di), (6)288

Note that pt
i on the left side is the updated prompt289

of the next iteration, while the one on the right is290

that of the previous iteration. Further, rep(pi,w, t)291

denotes replacing the tth row of pi with w. We292

randomly choose one position t for each update 293

iteration. The candidate set C(pt
i) is selected with, 294

C(pt
i) = argmin

C⊂V,|C|=K

∑
c∈C

cos(e(c),pt
i), (7) 295

where cos(·) is the cosine distance. We only select 296

K candidate tokens in C with the most similar 297

semantics as pt
i (low cosine distance), which avoids 298

large change of pt
i in a single iteration. K is the 299

number of local search for each step that controls 300

the training efficiency and is discussed in Section 5. 301

The general procedures are shown in Algorithm 3. 302

Such a simple update mechanism has two ben- 303

efits. Firstly, since w on the right side of (6) can 304

take the value of pt
i, the value of L(pi,Di) should 305

be non-increasing during client update. Secondly, 306

by constraining the candidate embeddings to be 307

from the natural language tokens, i.e., C(pt
i) ⊂ V , 308

the updated positions of pi can be saved by only 309

keeping its token index. This significantly reduces 310

the communication cost when uploading prompts 311

to the server, compared with previous works of con- 312

tinuous prompt tuning Guo et al. (2022); Zhao et al. 313

(2022) that upload all the prompt parameters. For 314

instance, the vocabulary size of the Roberta-Large 315

(Liu et al., 2019) model is 50,264 with D = 1024, 316

which implies that each token index can be encoded 317

with 16 bits. For positions of pi that are not mod- 318

ified during client update, we can indicate it with 319

a special index using a 16-bit integer, e.g., 50,265 320

(not natural token indices). Thus, we only need to 321

upload 16 Bits for each position of pi. Compara- 322

tively, uploading the whole prompt vector to the 323

server requires communicating 16 ∗ 1024 ≈ 16KB 324

for each position, provided that the continuous pa- 325

rameters are encoded into float16 during communi- 326

cation. As the result, we reduce the communication 327

cost by 1000 times (16 Bits vs 16 KB). 328

Note that previous works (Li and Liang, 2021; 329

Liu et al., 2021) claim that discrete tokens are 330

less expressive than continuous tokens, thus the 331

model capacity may be limited when trained with 332

discrete tokens. However, as described in Sec- 333

tion 5.1, datasets of different clients in personal- 334

ized federated learning may represent different do- 335

mains/tasks. For such cases, training with contin- 336

uous prompts via joint training may result in the 337

updated pi to overfit to the domain/task of client i, 338

causing negative knowledge transfer to other clients 339

when pi is aggregated with (5). In experiments, we 340

will show that our approach can produce better 341
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accuracy compared with joint training with contin-342

uous prompt embeddings, while also reducing the343

communication cost.344

4.3 Embedding Compression345

After the client update, the uploaded pi, for i =346

1 . . . ,M , are aggregated with (5). We can observe347

that the results p after aggregation can no longer be348

represented with a single token index, thus cannot349

be compressed as in Section 4.2 when being down-350

loaded to clients. Below we propose to compress p351

after aggregation with the pretrained token embed-352

dings of the PLM, i.e., estimating p with the matrix353

of pretrained token embeddings e(V) ∈ R|V|×D.354

This draws from the intuition in previous works355

on linear word analogies (Ethayarajh et al., 2018;356

Nissim et al., 2020; Drozd et al., 2016), which357

show interesting examples with linear operations358

among the pretrained word/token embeddings, e.g.,359

e(king)− e(man) + e(woman) ≈ e(queen) or360

e(doctor) − e(man) + e(woman) ≈ e(nurse).361

These indicate that a pretrained token embedding362

can be estimated by a few embeddings of tokens363

with similar or relevant semantics. As for our p,364

its prompt embeddings is assumed to be within365

the convex hull of the natural token embeddings.366

This can be observed from (5), i.e., even pi that is367

not updated in client i should also be aggregated368

from natural token embeddings that appeared as369

updates in previous rounds. Therefore, it should370

be viable to estimate p with a few or fixed number371

of natural token embeddings. For each round of372

federated learning with aggregated prompt p, let373

p′ be the prompts received by the clients from the374

server after compression in the current round. We375

denote p′
−1 as the prompts received by the clients376

after compression in the previous round. Below,377

we elaborate on how to compress p into p′ for the378

current update round, given p′
−1 and e(V).379

We should note that different from p, the com-380

pressed p′
−1 is accessible by both the server and381

clients, since it was generated by the server and382

received by the clients. Thus, instead of directly383

compressing p, we only compress the increment384

(residual) of p between the previous and current385

rounds. Specifically, for each position t, we define386

the residual as Rt = pt − pt′
−1. For each posi-387

tion t, we want to find a sparse projection from388

e(V) to Rt so it can be represented/estimated with389

a limited number of pretrained embeddings. Let390

I be a sequence of token indices, initialized as391

I = [1 · · · , |V|]. We define e(V)I be the rows392

in e(V) indexed by I . Formally, we optimize the 393

following, 394

x∗ = argminx ||e(V)TI · x−Rt||22 + α||x||1, (8) 395

Ix = argmax|Ix|=L

∑
j∈Ix

|x∗[j]|, I = I[Ix], (9) 396

where I[Ix] is the value of I indexed by Ix. x ∈ 397

R|I|×1 is the learnt projection, || · ||1 and || · ||2 are 398

the one and two norms, respectively, and |·| denotes 399

the absolute value. We solve a sparse x∗ with 400

LASSO regularization as in (8), with α being the 401

regularization weight. We empirically set α = 0.2 402

for all datasets and clients. x∗[j] is the jth element 403

of x∗. Note that (9) takes the top L token indices 404

with the largest absolute projection values in the 405

resulting x∗. To minimize the error in estimating 406

Rt, the final projection x∗
f ∈ RI×1 is, 407

x∗
f = argminxf

||e(V)TI · xf −Rt||22. (10) 408

We denote the cardinal of resulting I in (10) as 409

Φ, the number of token embeddings used to ap- 410

proximate Rt. Instead of downloading with the 411

aggregated p, we download {I,x∗
f} to each client. 412

As the result, we only need to download 16× 2Φ 413

Bits for each prompt token, consider that both the 414

token index in I and continuous variable in x∗
f are 415

encoded with 16 Bits, as in Section 4.2. 416

The client will reconstruct the residual R via 417

R̂ = e(V)TI · xf Finally, the compressed prompt 418

received by the clients for the current round is, 419

pt′ = pt′
−1 + R̂t, (11) 420

p′ = [p1′, · · · ,pT ′
] will be further saved as p′

−1 421

for the next round of federated learning. In the 422

experiments, I is selected with two iterations of (8) 423

and (9), as in Algorithm 2. 424

After the last round of federated learning, we 425

follow (Fallah et al., 2020; Chen et al., 2018) that 426

further fine-tunes p′ with a post tuning process for 427

the final pi (no communication cost). The post tun- 428

ing is to adapt the resulting pi to the task/domain 429

of test client i for more personalization. To avoid 430

forgetting of the global knowledge encoded by p′, 431

we adopt the gradient-free method of BBT (Sun 432

et al., 2022b) that allows p′ being trained in a con- 433

strained continuous subspace with a small learning 434

rate. Please refer to Appendix B for more details. 435

5 Experiments 436

5.1 Experiment Setting 437

Training: Following pLF-Bench (Chen et al., 438

2022), we adopt the datasets of Sentiment140 439

5



Method Upload Download BP?

A. Prompt Tuning 0 0 Yes

B. Prompt Tuning (Fed) 819 KB 819 KB Yes

C. Meta Prompt Tuning (Fed) 819 KB 819 KB Yes

D. pFedMe 819 KB 819 KB Yes

E. FedKD 1.3 GB 1.3 GB Yes

F. Fine Tuning (Fed) 5.3 GB 5.3 GB Yes

G. BBT 0 0 No

H. BBT (Fed) 8 KB 8 KB No

I. Ours (Φ = 3) 0.8 KB 4.8 KB No

G. Ours (Φ = 5) 0.8 KB 8 KB No

K. Ours (FullDownload) 0.8 KB 819 KB No

Table 1: Illustration of our approaches and base-
lines (cited/explained in Appendix C). Upload and
Download shows the Bits that is uploaded and down-
loaded per round of federated learning. BP? indi-
cates whether the method requires back-propagation.
Our approaches can save the memory consumption
of back-propagation, while significantly reduce the
communication cost. We index the mapproaches with
A-K for the convenience of Figure 2.

(Twitter) (Go et al., 2009), CoLA (Warstadt et al.,440

2018) and SST2 (Socher et al., 2013) for experi-441

ments of text classification with federated learning.442

We additionally adopt FDU-MTL (Liu et al., 2017)443

that contains 16 text domain. We train and evaluate444

on all the 16 domains of FDU-MTL (each client445

with a unique text domain). Please refer to Ap-446

pendix A for more training details and data splits.447

Table 1 lists our approaches and considered base-448

lines, which are also detailed in Appendix C. We449

follow (Sun et al., 2022b) that uses Roberta-Large450

in our experiments. We do not adopt larger mod-451

els, e.g. LLaMA (Touvron et al., 2023) , due to452

our practical assumption that the federated learn-453

ing clients are given limited access to computation454

resources (Section 1).455

Evaluation: The performance of the PLM from456

federated learning is evaluated via the average clas-457

sification accuracy over clients that it is tested on.458

We conduct two kinds of testing: i) P: Testing on459

the Participant clients of federated learning. This460

evaluated how much a PLM can capture the knowl-461

edge from clients during training. i) NP: Testing on462

the Non-Participant clients of federated learning.463

This evaluated the PLM can generalize to unseen464

clients. For Sentiment140, CoLA and SST2, our465

partition of participant and non-participant clients466

follows (Chen et al., 2022). For FDUMTL, we first467

set all its 16 domain/clients as participant for the468

evaluation of P. In evaluating NP, we conduct a469

4-split cross-validation that split the 16 clients into470
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Figure 1: Averaged training loss during joint training of
Ours (Φ = 5) with different values of K.

4 groups. We iteratively treat the clients of each 471

group as non-participant while those from others 472

groups as participant (Table 3). In this way, each 473

client is treated as non-participant once and we 474

average the results for NP. 475

In Table 1, we also report on: 1) Whether the 476

method requires back-propagation, i.e., does the 477

model consume a large memory footprint for lo- 478

cal training? 2) The communication cost, i.e., the 479

number of communicated Bits between server and 480

clients for each round of federated learning. In 481

calculating the Bits, we assume the token indices 482

are encoded with 16-bit and continuous parameters 483

are converted into float16 during communication, 484

as in Sections 4.2 and 4.3. Importantly, we calcu- 485

late the upload and download cost separately, due 486

to the fact that the upload bandwidth is usually 487

smaller than the download bandwidth (Hegedűs 488

et al., 2021), i.e., upload is more expensive than 489

download with the same number of Bits. For in- 490

stance, with prompt length T = 50 (Appendix A), 491

the upload communication cost for Ours (Φ = 5) 492

is 50× 16 = 0.8K (Section 4.2) and its download 493

cost is 50× 2× 5× 16 = 8K (Section 4.3) 494

5.2 Local Search with Different K Values. 495

As discussed in Section 4.2, discrete prompt tokens 496

might be less expressive than continuous prompt 497

embeddings trained with gradients (Li and Liang, 498

2021; Liu et al., 2021). Thus, one may be con- 499

cerned about the capability of discrete local search 500

in minimizing the loss functions of different tasks 501

of different clients. From (6), we can observe 502

that such capability is large and determined by the 503

search number K for each step of local search. Ide- 504

ally, in maximizing the optimization ability of our 505

local search, we can set K = |V|, i.e., and try 506

with the whole vocabulary instead of searching lo- 507
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Sentiment140 FDUMTL CoLA SST2 Avg
P NP P NP P NP P NP P NP

Prompt Tuning 73.22 N/A 83.41 N/A 71.89 N/A 79.87 N/A 77.10 N/A

Prompt Tuning (Fed) 73.44 74.67 84.28 83.76 74.22 73.03 81.22 81.49 78.29 78.24

Meta Prompt Tuning (Fed) 73.95 74.89 84.20 83.89 73.17 73.46 81.96 82.44 78.32 78.67

pFedKD 72.75 73.11 84.03 83.86 72.56 71.34 78.65 79.57 77.00 76.97

pFedMe 75.66 74.95 84.60 84.79 74.95 72.27 81.78 81.65 79.25 77.66

Fine Tuning (Fed) 74.17 75.52 85.98 85.09 74.01 74.35 80.96 79.42 78.78 78.60

BBT 73.17 N/A 84.34 N/A 74.26 N/A 80.34 N/A 78.03 N/A

BBT (Fed) 73.87 73.58 86.12 86.44 75.88 73.07 81.46 80.67 79.33 78.69

Ours (Φ = 3) 74.08 74.94 86.64 86.66 75.22 72.97 81.78 82.14 79.43 79.18

Ours (Φ = 5) 76.17 75.34 87.14 87.00 74.86 73.31 82.36 82.88 80.13 79.63

Ours (FullDownload) 75.16 76.00 87.71 87.31 75.75 73.78 82.95 82.73 80.39 80.00

Table 2: Results with our considered datasets for federated learning. "P" and "NP" denotes the mean accuracy
on Participant and Non Participant clients of federated learning, respectively. Prompt Tuning and BBT are
not federated learning methods, thus all clients are treated as Participants Please note that, in addition to
performance, our approaches are also superior in terms of memory consumption and computation cost. Please
refer to Table 1 for more details.

cally. However, such a combinatorial optimization508

is computationally expensive, thus not compatible509

with resource constrained clients. There should be510

a trade-off between the optimization ability and511

training efficiency for discrete local search.512

In this section, we investigate how the optimiza-513

tion ability of our proposed local search is affected514

by the search number K. In Figure 1, we plot515

the averaged training loss (4) over all the clients516

in FDU-MTL when training Ours (Φ = 5) with517

different K values. We can observe that our local518

search can effectively minimize the loss function519

during training. Additionally, we find that the per-520

formance gain, i.e., the difference in the optimized521

loss value, is diminishing when switching from522

K = 2 to K = 5 and from K = 5 to K = 8.523

However, the introduced computation cost from524

K = 2 to K = 5 is the same as that from K = 5525

to K = 8. With such observation, we take K = 5526

as a trade-off between the computation efficiency527

and optimization ability, since 1) local search with528

K = 5 is not very expensive, e.g., comparing the529

implementation of BBT (Sun et al., 2022b) that530

requires 20 searches each step. 2) The performance531

gain from K = 5 to K = 8 is much smaller than532

that K = 2 to K = 5, thus increasing the value533

of K from 5 may not be cost-effective. Therefore,534

we keep K = 5 for all our experiments. Note that535

such a parameter selection of K only leverages the536

A B C D E F G H I J K
80

82

84

86

88

90

Ac
cu

ra
cy

Group 0
Group 1

Group 2
Group 3

Figure 2: Results on each group of non-participant
clients in FDUMTL. For convenience, we denote each
method with the index defined in Table 1. Our ap-
proaches are the right of the vertical line.

training data of clients, with no development or 537

testing data involved. 538

5.3 Result Analysis 539

Table 2 shows our results with considered datasets. 540

Our approaches can achieve the highest accuracy, 541

with comparable or much lower communication 542

cost than the baselines (Table 1). This is espe- 543

cially obvious with the upload communication, 544

i.e., the upload cost of our approaches is 10 times 545

smaller than the closest baselines (BBT (Fed)), 546

which thanks to our proposed discrete local search 547

mechanism (Section 4.2) that only requires upload- 548
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ing the pretrained token indices to the server. As549

mentioned in Appendix B, BBT (Sun et al., 2022b)550

works by randomly projecting the prompt param-551

eters (with a fixed random matrix A) into a small552

subspace, within which a low-dimensional vector553

z is trained. However, there is no guarantee that554

such a random projected subspace can cover di-555

rections that capture knowledge that is generaliz-556

able across clients. On the contrary, though our557

local search algorithm is constrained with discrete558

natural language tokens, such tokens should cap-559

ture rich semantics of natural language that are560

expressive enough to describe a pattern that is gen-561

eralizable across clients. This might explain why562

our approach of discrete local search with natural563

language tokens yeilds higher accuracy in train-564

ing with data of different clients. Moreover, we565

can observe that compressing using Φ = 3 and566

Φ = 5 can maintain comparable performance for567

text classification as with Ours (FullDownload),568

while substantially decreasing download communi-569

cation cost.570

Among the gradient-based approaches (i.e.,571

BP?=Yes), Fine Tuning (Fed) achieves competi-572

tive accuracy than other gradient-based approaches573

(i.e., BP?=Yes), but at the expense of huge compu-574

tation cost. FedKD (Wu et al., 2022) generally has575

lower classification accuracy, which might because576

its student model (DistilRoberta-base) is less capa-577

ble than Roberta-Large as used in other approaches.578

We follow (Wu et al., 2022) that uses a small stu-579

dent model for FedKD to save the communication580

cost. We can observe that these gradient-based581

baselines may produce results that are inferior to582

gradient-free approaches. This may be counter-583

intuitive since these gradient-based prompt tuning584

approaches allow training in the whole (more ex-585

pressive) parameter space of prompt parameters,586

compared to gradient-free approaches with which587

the search space for the prompt parameters is usu-588

ally constrained (Sun et al., 2022b). However, pre-589

vious works of gradient-free training with PLMs590

(Sun et al., 2022b,a) also show results that are better591

than gradient-based approaches, especially with the592

scenario of few-shot training. Such a phenomenon593

may be explained by the over-expressiveness of594

prompts trained with gradients, i.e., subject to over-595

fitting with limited training data. Also, as discussed596

in Section 4.2, the prompts trained with gradients597

may overfit to the task/domain of the clients during598

local client update, inducing negative knowledge599

transfer from other clients.600

X, ros, Target, himself, turn, Europe, WORK,
Energy, scored, *, shortly, balls, TV, yearly, 2012,
Race, International, ', Marketplace, conference, io,
os, modifications, IG, troopers, inside, Forms,
publishes, cellphone, CO, legal, executive, fight,
ings, hope, Summer, Officers, football, Property, #,
book, parents, expenses, ac, manager, create, age,
email, market, mainline

Figure 3: The learnt prompt from the apparel domain
of FDU-MTL, using our proposed discrete local search.

In Figure 2, we detailed results of NP for 601

FDUMTL with each of its groups. We can find 602

that our approach consistently outperform the base- 603

lines with in terms of group-wise NP accuracy. We 604

also provide detailed participant accuracy for each 605

client in Table 4 and 5. 606

Privacy with the learnt prompts. Figure 3 shows 607

the prompts learnt with data from the apparel do- 608

main of FDU-MTL, using the proposed discrete 609

local search in client update (Section 4.2). We 610

can find it is hard to interpret, and we cannot in- 611

fer that the client data is about "apparel" given the 612

prompt tokens. Such a lack of interpretability re- 613

duces the chance of client privacy leakage, when 614

uploading the learnt prompts to the server after 615

client update. Inspired by recent approaches of 616

evaluating with Large Language Models (LLMs) 617

(Peng et al., 2023), we further conduct a privacy 618

leakage analysis in Appendix H. Specifically, given 619

a prompt trained from a certain client/domain of 620

FDU-MTL, we investigate how GPT-4 (OpenAI, 621

2023) can link the prompt to its training domain. 622

We find that none of the 16 clients/domains can be 623

inferred from their prompts using GPT-4 predic- 624

tions, indicating less chance of privacy leakage. 625

6 Conclusions 626

In this paper, we propose a gradient-free framework 627

that trains with discrete local search on natural lan- 628

guage token during personalized federated learning. 629

Compared with gradient-based approaches, the dis- 630

crete local search circurvents gradient computation 631

and saves the huge memory consumption caused 632

by back-propagation. We additionally propose a 633

compression mechanism inspired by linear word 634

analogy that allows the server-client communica- 635

tion with discretely indexed tokens. Experiments 636

on multiple benchmarks show that our proposed 637

gradient-free framework can achieve superior per- 638

formance, while significantly reducing the upload 639

communication cost. 640
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7 Limitations641

Our proposed approach considers communicating642

and compressing the pretrained embeddings of the643

natural language tokens, which is only applicable644

to the domain of natural langauge processing. It645

would be more comprehensive for our study to646

further explore applying our approach for visual647

tokens (Wu et al., 2020; Yin et al., 2022) during648

federated learning.649

8 Ethics Statement650

Ours study of personalized federated learning is651

intended to protect client privacy during training,652

avoiding malicious use of client private informa-653

tion. Additionally, the datasets in our experiments654

are all publicly available.655
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Atılım Güneş Baydin, Barak A Pearlmutter, Don657
Syme, Frank Wood, and Philip Torr. 2022. Gra-658
dients without backpropagation. arXiv preprint659
arXiv:2202.08587.660

Gabriel Belouze. 2022. Optimization without backprop-661
agation. arXiv preprint arXiv:2209.06302.662

Xingyu Cai, Jiaji Huang, Yuchen Bian, and Kenneth663
Church. 2021. Isotropy in the contextual embedding664
space: Clusters and manifolds. In International Con-665
ference on Learning Representations.666

Tingfeng Cao, Liang Chen, Dixiang Zhang, Tianxiang667
Sun, Zhengfu He, Xipeng Qiu, Xing Xu, and Hai668
Zhang. 2023. Competition for gradient-free tuning of669
large language models: approaches, results, current670
challenges and future directions. National Science671
Review, 10(6):nwad124.672

Daoyuan Chen, Dawei Gao, Weirui Kuang, Yaliang Li,673
and Bolin Ding. 2022. pfl-bench: A comprehensive674
benchmark for personalized federated learning. Ad-675
vances in Neural Information Processing Systems,676
35:9344–9360.677

Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and678
Xiuqiang He. 2018. Federated meta-learning with679
fast convergence and efficient communication. arXiv680
preprint arXiv:1802.07876.681

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre682
David. 2015. Binaryconnect: Training deep neural683
networks with binary weights during propagations.684
Advances in neural information processing systems,685
28.686

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan687
Wang, Han Guo, Tianmin Shu, Meng Song, Eric P688
Xing, and Zhiting Hu. 2022. Rlprompt: Optimizing689
discrete text prompts with reinforcement learning.690
arXiv preprint arXiv:2205.12548.691

Yunbin Deng. 2019. Deep learning on mobile devices: a 692
review. In Mobile Multimedia/Image Processing, Se- 693
curity, and Applications 2019, volume 10993, pages 694
52–66. SPIE. 695

Shizhe Diao, Xuechun Li, Yong Lin, Zhichao Huang, 696
and Tong Zhang. 2022. Black-box prompt learn- 697
ing for pre-trained language models. arXiv preprint 698
arXiv:2201.08531. 699

Aleksandr Drozd, Anna Gladkova, and Satoshi Mat- 700
suoka. 2016. Word embeddings, analogies, and ma- 701
chine learning: Beyond king-man+ woman= queen. 702
In Proceedings of coling 2016, the 26th international 703
conference on computational linguistics: Technical 704
papers, pages 3519–3530. 705

Kawin Ethayarajh, David Duvenaud, and Graeme Hirst. 706
2018. Towards understanding linear word analogies. 707
arXiv preprint arXiv:1810.04882. 708

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. 709
2020. Personalized federated learning: A meta- 710
learning approach. arXiv preprint arXiv:2002.07948. 711

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. 712
Model-agnostic meta-learning for fast adaptation of 713
deep networks. In International conference on ma- 714
chine learning, pages 1126–1135. PMLR. 715

Karl Pearson F.R.S. 1901. Liii. on lines and planes of 716
closest fit to systems of points in space. The London, 717
Edinburgh, and Dublin Philosophical Magazine and 718
Journal of Science, 2(11):559–572. 719

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and 720
Tieyan Liu. Representation degeneration problem in 721
training natural language generation models. In In- 722
ternational Conference on Learning Representations. 723

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit- 724
ter sentiment classification using distant supervision. 725
CS224N project report, Stanford, 1(12):2009. 726

Tao Guo, Song Guo, and Junxiao Wang. 2023. pfed- 727
prompt: Learning personalized prompt for vision- 728
language models in federated learning. In Proceed- 729
ings of the ACM Web Conference 2023, pages 1364– 730
1374. 731

Tao Guo, Song Guo, Junxiao Wang, and Wenchao Xu. 732
2022. Promptfl: Let federated participants cooper- 733
atively learn prompts instead of models–federated 734
learning in age of foundation model. arXiv preprint 735
arXiv:2208.11625. 736

Nikolaus Hansen and Andreas Ostermeier. 2001. Com- 737
pletely derandomized self-adaptation in evolution 738
strategies. Evolutionary computation, 9(2):159–195. 739
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A Additional Explanation 910

Our model architecture for prompt tuning is the 911

same as in (Sun et al., 2022b). Specifically, the 912

backbone of the PLM is the Roberta-Large model 913

(embedding dimension D = 1024), with T = 50 914

prompt tokens inserted into the input layer. The 915

model is trained with 50 rounds of federated learn- 916

ing for FDU-MTL, SST2 and CoLA, with each 917

client updated 40 steps for each round. For Senti- 918

ment140, we train for 100 rounds and we only sam- 919

ple 50 clients for training during each round (due 920

to the large number of clients in Sentiment140). 921

Following (Chen et al., 2022), clients for SST2 and 922

CoLA are partitioned with Dirichlet distribution, 923

denoted as Dir(γ), where γ controls the client het- 924

erogenity. We follow (Chen et al., 2022) that set 925

γ = 0.4 in the main results. We also experiment 926

with different values of γ in table 7. The implemen- 927

tation of BBT in the both our approaches and the 928

baselines follows (Sun et al., 2022b). 929

Following previous works of gradient-free learn- 930

ing (Sun et al., 2022b; Hou et al., 2022), we con- 931

sider the few-shot scenario for each testing client. 932

Specifically, we assume there are 16 samples for 933

each class in each testing client during post-tuning. 934

For FDU-MTL, these datasets are sampled from 935

the development split in each domain. For senti- 936

ment140, these are sampled from the datasets of 937

each testing client, with the rest data of each client 938

used for testing after post tuning. We additionally 939

sample a development dataset (not overlapped with 940

data for training) from the development split for 941

each client for FDUMLT with the same size as the 942

training set, since development datasets are also 943

used in previous works of gradient-free training 944

(Sun et al., 2022b; Hou et al., 2022). We evaluate 945

the classification accuracy of the resulting models 946

on the test set of each client, averaged over four 947

random seeds. We do not sample development 948

datasets for Sentiment140 since no development 949

datasets are provided. Note that our experiments 950

are based only on English datasets and it would 951

also be interesting for future works studying multi- 952

lingual federated learning (Weller et al., 2022). 953

We provide the algorithm for Local_Training and 954

Compress_Download in Algorithm2 and 3, respec- 955

tively. 956

B Black Box Tuning (BBT) 957

We briefly introduce a prior radient-free method of 958

BBT (Sun et al., 2022b). For prompt pi, suppose 959
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Domains

Group 1 apparel, mr, baby, books

Group 2 camera, dvd, electronics, health

Group 3 imdb, kitchen, magazines, music

Group 4 software, sports, toys, video

Table 3: Group of domains in FDUMTL. In testing
the performance on non-participant clients, we do
4-split cross-validation with FDUMTL. Specifically,
we iteratively treat the domains from a group as non-
paticipant clients that are held-out from federated
learning, i.e., we train with domains/clients of the
other three groups during federated learning and test
on domains of the held-out group.

we want to train its tth prompt token of pt
i, the BBT960

approach first reparameterizes pt
i as,961

pt
i = Az + pt, (12)962

where z ∈ Rd, d << D, and A ∈ RD×d is a963

randomly valued fixed matrix that project z into964

the space of pt. z is the only learnable parameter965

and is trained with CMA-ES (Hansen and Oster-966

meier, 2001), a gradient-free method without back-967

propagation. In post tuning, we set a small training968

step size (denoted as σ in (Sun et al., 2022b)) of969

CMA-ES, i.e., σ = 0.1, while keeping σ = 1 in970

the other cases. Please refer to (Sun et al., 2022b)971

for more details.972

C Baselines973

All of our baselines are trained with the same model974

as used in (Sun et al., 2022b). We list the consid-975

ered baselines are listed as follows:976

• Prompt Tuning (Li and Liang, 2021): Train977

separated prompt parameters locally on each978

testing client with back-propagation. We have979

learning rate as 1e-2 and batch size 16.980

• Prompt Tuning (Fed). The prompts are ini-981

tially trained with FedAvg (McMahan et al.,982

2017) on all the clients, then fine tuned on983

each testing client, as with our framework.984

• Meta Prompt Tuning (Fed): Same as Prompt985

Tuning (Fed), except that we follow (Fallah986

et al., 2020) that the prompts are trained using987

federated meta learning with MAML (Finn988

et al., 2017).989

• pFedMe (T Dinh et al., 2020): We train 990

ans communicate the prompt parameters with 991

pFedMe, where there is an L2 regularization 992

between the global prompt and personalized 993

prompts for for each client. 994

• FedKD (Wu et al., 2022): Compressing the 995

Roberta-Large into a smaller student model 996

(DistilRoberta-base) via knowledge distilla- 997

tion, and only communicate the student model 998

to save communication cost. For joint training 999

with FedKD, we follow its original paper (Wu 1000

et al., 2022) that fine-tunes all the parameters 1001

of both the Roberta-Large and DistilRoberta- 1002

base. We did not implement the SVD com- 1003

pression in communicating the parameters, in 1004

order to show an upper bound of its classifica- 1005

tion performance. The learning rate for joint 1006

training is 1e-3. The resulting model is post 1007

tuned using gradient descent with a learning 1008

rate of 1e-5. 1009

• Fine-Tuning (Fed): We fine-tune and commu- 1010

nicate all the parameters of Roberta-Large in 1011

joint training, while post tuning with all the 1012

model parameters. The learning rates are the 1013

same as in FedKD. 1014

• BBT (Sun et al., 2022b): Train separated 1015

prompts locally on each testing client with 1016

the gradient-free method of CMA-ES (Hansen 1017

and Ostermeier, 2001), as in Section B. This 1018

is like the post tuning stage of our approach. 1019

• BBT (Fed): Federated training of z in (12) 1020

with BBT on training clients and FedAvg on 1021

the server. The resulting z is further fine tuned 1022

with BBT on the local dataset of each client, 1023

i.e., the same as Section B. 1024

In addition, we also implement different varia- 1025

tions of our approach: 1) Ours (Φ=3 or 5). We 1026

experiment with different values of Φ, controlling 1027

the degree of the embedding compression in Sec- 1028

tion 4.3. 2) Ours (FullDownload). We directly 1029

download the aggregated p from (5), without em- 1030

bedding compression. 1031

D Ablation study with α 1032

In this section, we conduct an ablation study for 1033

the regularization parameter α (default to α = 0.2) 1034

for the lasso loss in (8). In Table 6, we take Ours 1035

(Φ = 5) as an example and report results with α = 1036
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0.2 (same as in the main paper) and α = 0. We can1037

find that the results with α = 0 is generally lower1038

than that with α = 0.2, indicating the importance1039

of encouraging sparsity with the lassso loss in (8).1040

E Comparing with PCA compression and1041

quantization1042

In Section 4.3, we present our proposed embed-1043

ding compression method to reduce the download1044

communication cost. To further validate the effec-1045

tiveness of the proposed embedding compression,1046

we compare it with the two additionaly baselines:1047

PCA compression and quantization.1048

PCA Compression: Principled Component1049

Analysis (PCA) (F.R.S., 1901) is a common way1050

of dimensional reduction, i.e., compress the em-1051

beddings via representing then with fewer dimen-1052

sions. Previous works (Cai et al., 2021; Rabbani1053

et al., 2021; Gao et al.) have shown that the learnt1054

token embeddings (contextualized or not) of pre-1055

trained models are distributed in a narrow cone of1056

the embedding space. In other words, the embed-1057

dings vectors are generally biased toward the top1058

principled components of learnt embedding matrix.1059

Specially, following the notation of Section 4.3,1060

let e(V) ∈ R|V|×D be the matrix of pretrained to-1061

ken embeddings. We can compute the principled1062

components of e(V), denoted as,1063

Ec = PCA(e(V)) (13)1064

where each column of Ec ∈ RD×D is a princi-1065

pled component of e(V). We have ET
c ·Ec = I ,1066

with I ∈ RD×D is the identity matrix. The infor-1067

mativeness of different principled component can1068

be measured by the variance after projecting e(V)1069

onto each of the components,1070

v = Var(e(V) ·Ec) (14)1071

where Var computes the variance for each row. As-1072

sume the index of each component, i.e., the row1073

index of Ec, has been ranked by v = [vi]
D
i=11074

(from high to low). We plot the ratio of vari-1075

ance (v/
∑

vi) verse the index of each compo-1076

nent for Roberta-Large in Figure 4a. We can find1077

that the distribution of e(V) id highly an-isotropic,1078

with much larger variation being captured by the1079

top principled components. Thus, we can repre-1080

sent/compress the aggregated prompt p ∈ RT×D1081

from (5) with the top principled components2 be-1082

2From Section 4.1, each token of p is a convex combination
of e(V), thus should also be biased toward (more represented
by) the top principled components.

Algorithm 2 Compress_Download.

Input: The prompt p without compression, the
pretrained embedding matrix e(V).
Output: The reconstructed p′.
I = [1, · · · , |V|]
for t = 1 · · · , T do

% Embedding compression.
for L = [100, 5] do

Compute I with (8) and (9).
end for
Solve x∗

f with (10).
% Download.
Download {I,x∗

f} to the clients.
Compute pt′ on both server and clients

end for
return p′ = [p1′, · · · ,pT ′

]

fore downloading it to clients. Specifically, we 1083

compress p via, 1084

p̂ = p ·Ec[: n, :]
T (15) 1085

where p̂RT×n is the compressed prompt and Ec[: 1086

n, :] denotes the top-n principled components. Af- 1087

ter downloading, each client reconstructs p via, 1088

p = p̂ ·Ec[: n, :] (16) 1089

In this way, we only need to download n integers 1090

(16 bits each) for each prompt token in p. The total 1091

download bits per communication round is T ×n× 1092

16 = 800n bits. In comparison with our approach, 1093

we experiment with n = 10 (denoted as PCA10), 1094

so that it has the same download communication 1095

cost for each round (8KB) as Ours Φ = 5. We 1096

additionally experiment with n = 300 (denoted as 1097

PCA300), where the prompts are represented by 1098

more principled components but also with much 1099

larger download communication cost each round 1100

(0.24MB). 1101

Quantization: We also compare our approach 1102

with quantizing each dimension of p from (5) 1103

before downloading. Following previous works 1104

(Courbariaux et al., 2015; Tao et al., 2022) of com- 1105

pressing pretrained language models, we quantize 1106

each element w of p via, 1107

wq = β ·Q(clip(w,−β, β)/β) (17) 1108

where Q is a quantization function that 1109

maps clip(w,−β, β) to its closest value in 1110

{−1,−k−1
k , · · · , 0, · · · , k−1

k , 1}, k = 2b−1 − 1. 1111
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Figure 4: (a) The ratio of variance (v/
∑

vi) captured by each principled component of the pretrained Roberta-Large
Token embeddings. (b) The training loss on Sentiment140 averaged over different clients in each communication
round of federated learning for different compression methods. We have the same random seeds and order of
training batches for all the methods.

Method Upload Download BP? FM(apparel) FM(mr) FM(baby) FM(books) FM(camera) FM(dvd) FM(electronics)

A. Prompt Tuning 0 0 Yes 83.42 81.75 79.95 86.38 80.05 86.52 84.18

B. Prompt Tuning (Fed) 819 KB 819 KB Yes 83.56 81.06 81.05 87.83 81.80 87.96 84.93

C. Meta Prompt Tuning (Fed) 819 KB 819 KB Yes 82.78 83.35 80.23 88.12 80.34 87.31 84.45

D. pFedMe 819 KB 819 KB Yes 84.67 81.26 81.47 86.92 80.56 87.92 81.26

E. FedKD 1.3 GB 1.3 GB Yes 83.67 79.89 80.46 86.92 81.07 87.08 79.89

F. Fine Tuning (Fed) 5.3 GB 5.3 GB Yes 86.93 79.82 80.46 86.92 81.07 88.48 87.50

G. BBT 0 0 No 85.93 83.75 81.22 86.10 80.56 85.96 87.76

H. BBT (Fed) 8 KB 8 KB No 87.44 81.02 82.99 90.19 81.84 87.92 87.74

I. Ours (Φ = 3) 0.8 KB 4.8 KB No 87.44 80.07 85.53 90.74 82.33 88.48 88.03

G. Ours (Φ = 5) 0.8 KB 8 KB No 88.54 80.05 86.55 90.21 82.61 88.08 87.78

K. Ours (FullDownload) 0.8 KB 819 KB No 89.04 81.03 86.78 90.97 83.73 87.18 88.88

Table 4: Detailed results with FDUMLT on paticipant clients. Please refer to Figure 2 for non-paticipant
clients. We report the accuracies for each of the 16 domains/clients (denoted as FM(domain name)) and their
average (denoted as FM(Avg)).

Method FM(health) FM(imdb) FM(kitchen) FM(magazines) FM(music) FM(software) FM(sports) FM(toys) FM(video) FM(Avg)

Prompt Tuning 81.98 92.42 82.14 80.68 82.52 83.77 82.41 84.01 82.32 83.41

Prompt Tuning (Fed) 82.74 92.71 83.61 82.97 83.75 84.29 82.89 84.76 82.60 84.28

Meta Prompt Tuning (Fed) 82.34 92.41 84.53 83.25 83.56 83.48 83.58 85.26 82.21 84.20

pFedMe 84.51 93.00 84.44 82.25 83.60 84.29 83.42 85.53 84.53 84.60

FedKD 84.26 92.71 82.91 80.94 81.48 84.82 82.40 85.28 85.36 84.03

Fine Tuning (Fed) 85.79 93.00 86.99 85.12 84.39 84.82 85.46 86.80 85.08 85.98

BBT 84.01 92.13 81.38 81.46 82.28 85.08 82.40 85.53 83.86 84.34

BBT (Fed) 87.06 93.00 85.13 85.90 84.92 84.03 85.46 87.92 85.36 86.12

Ours (Φ = 3) 87.06 92.42 86.73 86.95 85.98 84.55 86.73 87.31 85.91 86.64

Ours (Φ = 5) 87.82 92.71 88.78 87.73 85.19 85.60 86.48 87.31 87.29 87.14

Ours (FullDownload) 89.57 94.27 88.75 87.44 86.34 85.44 87.86 89.31 86.86 87.71

Table 5: Results with FDUMLT on participant clients (continue).

In this way, Q(clip(w,−β, β)/β) can be encoded1112

with b bits. Following (Tao et al., 2022), the1113

scaling factor for each element is shared within the1114

same prompt token embedding. Let p[i, :] be the1115

embedding of the ith prompt token, the scaling1116

factor for each of its element is the maximum1117

absolute value in p[i, :],1118

β = max(|p[i, :]|) (18)1119

For each prompt token with dimension D, we have 1120

to download the scaling factor β (16 bits) and b bits 1121

for each dimension, so that the clients can recon- 1122

struct wq. We experiment with b = 3, denoted as 1123

Quat (b = 3). The total download communication 1124

cost for each round is (D×b+16)×T ≈ 0.15MB. 1125

Compared with Quat (b = 3) that quantizes each di- 1126

mension of each prompt, our proposed approaches 1127
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Method Upload Download Sentiment140 FDUMTL CoLA SST2 Avg

PCA10 0.8KB 8KB 72.37/73.26 83.25/83.89 72.45/72.11 79.65/78.34 76.93/76.90

PCA300 0.8KB 0.24MB 75.22/75.05 86.71/85.79 74.09/73.66 81.23/81.67 79.31/79.04

Quant (b = 3) 0.8KB 0.15MB 73.45/74.44 85.46/84.33 73.89/73.17 80.98/80.56 78.45/78.13

Ours (Φ = 5, α = 0) 0.8KB 8KB 74,77/74.35 85.80/86.41 74.94/73.11 81.45/82.12 79.24/79.00

Ours (Φ = 5, α = 0.2) 0.8KB 8KB 76.17/75.34 87.14/87.00 74.86/73.31 82.36/82.88 80.13/79.63

Ours (FullDownload) 0.8KB 819KB 75.16/76.00 87.71/87.31 75.75/73.78 82.95/82.73 80.39/80.00

Table 6: Results with different compression methods and α. We report the accuracy in the format of "P/NP",
where P and NP follow Table 2.

of embedding compression can be regarded as1128

quantizing on the token level, i.e., representing1129

each prompt with pretrained embeddings of dis-1130

crete tokens.1131

Results: We report the results with different1132

compress methods in Table 6. We can find that1133

PCA10 has much lower accuracies than Ours (Φ =1134

5), though sharing the same communication cost.1135

This is because the top 10 principled components1136

cannot capture enough information about the to-1137

ken embeddings, although the distribution of token1138

embeddings are biased toward the top principled1139

components (Figure 4a). We need to increase the1140

value of n to hundreds in order to get compara-1141

ble results with our approaches ((i.e., PCA300)),1142

which is at the expense of much higher communi-1143

cation cost. Additionally, we can notice that Quant1144

(b = 3) also induces higher download communica-1145

tion cost than our approaches, but yeilding lower1146

accuracies. These results validate the effectiveness1147

of our proposed embedding compression. Addition-1148

ally, Figure 4b shows the loss values averaged over1149

training clients during federated learning. We can1150

find that our approaches are effective in minimizing1151

the loss function during training (also discussed in1152

Section 5.2). We can also find that the final loss1153

values are generally positively correlated with the1154

accuracies in Table 6.1155

F The number of floating-point1156

operations during federated learning1157

From the previous work (Sun et al., 2022b) of1158

gradient-free training for PLMs, the number of1159

floating-point operations with gradient-free train-1160

ing can be evaluated via the number of model1161

queries (i.e., how many times a model is for-1162

warded). For all the methods in the paper, we have1163

the same number of communication rounds and1164

same number of update steps for each client per1165

Algorithm 3 Local_Training.

Input: Dataset Di for client i, p′ from the previ-
ous round of communication.
Output: pi after the client update.
pi = p′

% Training with discrete local search.
for s = 1 · · · , S do

Randomly sample position t.
Update pt

i using (6) and (7) with Di.
end for
return pi

Method γ = 0.1 γ = 0.4 γ = 5

Ours (FullDownload) 77.79/78.41 82.95/82.73 83.68/83.27

Ours (Φ = 5) 76.85/77.10 82.36/82.88 83.12/82.64

pFedMe 76.05/75.37 81.78/81.65 82.31/81.43

BBT (Fed) 76.33/76.79 81.46/80.67 81.88/80.47

Table 7: SST2 with varied client heterogeneity. We
follow (Chen et al., 2022) that varies the dirichlet fac-
tor γ with values of [0.1, 0.4, 5]. We choose each of
a competitive gradient-based baseline (pFedMe) that
has moderate communication cost. We also choose a
gradient-free baseline (BBT (Fed)). The results show
taht our approaches are consistently better than base-
lines in various heterigenity. We report thr accuracy
in the format of "P/NP".

round. Thus, the number of floating-point opera- 1166

tions is proportional to the number of model queries 1167

per step when training on each client. We keep all 1168

the discussed approaches with the proposed dis- 1169

crete local search method having 5 model queries 1170

per step (i.e., K = 5 as in Section 5.2), including 1171

the approaches denotes with "Ours" and those in 1172

Appendix E. Thus, all these approaches have the 1173

same number of model queries during federated 1174

learning. Comparably, our gradient-free federated 1175

learning baseline (i.e., BBT(Fed), there was no 1176

previous works on gradient-free federated learn- 1177
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ing with pretrained models) have 20 model queries1178

per step, following the original implementation of1179

(Sun et al., 2022b). This implies that our methods1180

(5 queries per step) only use 1/4 (5/20) times of1181

floating-point operations during federated learning,1182

while having better performance than BBT(Fed).1183

Since we target the scenario that clients has lim-1184

ited memory access, where back-propagation might1185

not be viable (Section 1), we mostly compare the1186

number of floating-point operations of our meth-1187

ods with gradient-free federated learning baselines.1188

Provided the number of floating-point operations1189

during federated learning, the training efficiency1190

can be further enhanced by system designs, e.g.,1191

the parallelism strategy (Narayanan et al., 2019)1192

or communication scheduler (Peng et al., 2019),1193

which are out of the scope of this paper.1194

G Overhead1195

Our way of converting the prompt token index of1196

each position to 16 bits (Section 5.1) induces no1197

computational overhead, if we save the 16 bits in-1198

dex for each position during training (50 prompt1199

positions in total, i.e., T = 50). The uploading of1200

such bits is the same as uploading any model pa-1201

rameters in federated learning. There is not need of1202

additionaly designed software implementation. Ac-1203

tually, by only uploading 16 bits for each position,1204

we save the upload time compared with uploading1205

the prompy embedding (the gradient-based meth-1206

ods in Table 4 and 5).1207

H Inferring the text domain with GPT-41208

As mentioned in Section 5.3, we leverage GPT-1209

4 (OpenAI, 2023) to infer the text domain (client)1210

from the prompt trained on it, in order to investigate1211

on the risk of privacy leakage by uploading prompt1212

from clients to the server. This is inspired by re-1213

cent approaches of evaluating with Large Language1214

Models (LLMs) (Peng et al., 2023). Specifically,1215

try to ask GPT4 with the following template,1216

Given the following prompt sequence1217

learnt from Roberta-Large:1218

{prompt}1219

Can you infer that this is trained from a1220

{domain} dataset?1221

where {prompt} and {domain} refer to a prompt1222

and the text domain (client) from which the prompt1223

is trained on, respectively. For example, with1224

{prompt} as in Figure 3 and the {domain} being 1225

apparel in FDU-MTL, the GPT-4 answers as, 1226

The given list of words and phrases 1227

doesn’t provide sufficient evidence to 1228

conclude that it is trained from an ap- 1229

parel dataset. ....... 1230

We tried with 16 domains from FDUML and none 1231

of them result in a positive answer i.e., GPT-4 an- 1232

swers with positive semantics that it can infer the 1233

{domain} from {prompt}. In another word, the fre- 1234

quency that GPT-4 can infer the {domain} from the 1235

{prompt} is zero, indicating less chance of client 1236

privacy leakage. 1237
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