
One Model, Any Conjunctive Query: Graph Neural Networks
for Answering Queries over Incomplete Knowledge Graphs

Krzysztof Olejniczak
University of Oxford

krzysztof.olejniczak@cs.ox.ac.uk

Xingyue Huang
University of Oxford

xingyue.huang@cs.ox.ac.uk

Mikhail Galkin
Intel AI

mikhail.galkin@intel.com

İsmail İlkan Ceylan
TU Wien, AITHYRA, University of Oxford

ismail.ceylan@tuwien.ac.at

Abstract
Motivated by the incompleteness of modern knowledge graphs, a new setup for
query answering has emerged, where the goal is to predict answers that do not
necessarily appear in the knowledge graph, but are present in its completion.
In this paper, we formally introduce and study two query answering problems,
namely, query answer classification and query answer retrieval. To solve these
problems, we propose ANYCQ, a model that can classify answers to any con-
junctive query on any knowledge graph. At the core of our framework lies a
graph neural network trained using a reinforcement learning objective to answer
Boolean queries. Trained only on simple, small instances, ANYCQ generalizes
to large queries of arbitrary structure, reliably classifying and retrieving answers
to queries that existing approaches fail to handle. This is empirically validated
through our newly proposed, challenging benchmarks. Finally, we empirically
show that ANYCQ can effectively transfer to completely novel knowledge graphs
when equipped with an appropriate link prediction model, highlighting its poten-
tial for querying incomplete data.

1 Introduction

Knowledge graphs (KGs) are an integral component of modern information management systems for
storing, processing, and managing data. Informally, a KG is a finite collection of facts representing
different relations between pairs of nodes. Motivated by the incompleteness of modern KGs [1],
a new setup for classical query answering has emerged [2–8], where the goal is to predict answers
that do not necessarily appear in the KG, but are potentially present in its completion. This task
is commonly referred to as complex query answering (CQA), and poses a significant challenge, going
beyond the capabilities of classical query engines, which typically assume every fact missing from
the observable KG is incorrect, following closed-world assumption [9].

In its current form, CQA is formulated as a ranking problem: given an input query Q(x) over a KG
G, the objective is to rank all possible answers based on their likelihood of being a correct answer.
Unfortunately, this setup suffers from various limitations. Firstly, this evaluation becomes infeasible
for cases where multiple free variables are allowed1. Moreover, to avoid explicitly enumerating
solutions, existing methods need to resort to various heuristics and most of them can only handle
tree-like queries [4, 5, 10] or incur an exponential overhead in more general cases [6]. Consequently,
the structural oversimplification of queries is also reflected in the existing benchmarks. We argue for
an alternative problem formulation, more aligned with classical setup, to alleviate these problems.

1As a result, almost all existing proposals focus on queries with only one free variable.

K. Olejniczak et al., One Model, Any Conjunctive Query: Graph Neural Networks for Answering Queries over
Incomplete Knowledge Graphs. Proceedings of the Fourth Learning on Graphs Conference (LoG 2025), PMLR
269, Hybrid Event, December 10–12, 2025.

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

BornIn

Won

StarredIn

Directed

Gex

NominatedFor

Oscar

Nolan Blunt Murphy

London “Oppenheimer"

Q(x) = ∃y.Directed(y, “Oppenheimer”) ∧ BornIn(y, x)
Where was the director of “Oppenheimer” born?

“Oppenheimer”

y xDirected BornIn

Query Answer RetrievalQuery Answer Classification
Q(x), (x → Nolan) =⇒ X
Q(x), (x → London) =⇒ ✓

Q(x) =⇒ (x → London)

Figure 1: An example of a query Q(x) over an incomplete knowledge graph, its query graph
representation, and relevant query answer classification and query answer retrieval instances.

Problem setup. In this work, we deviate from the existing ranking-based setup, and instead propose
and study two query answering problems based on classification. Our first task of interest, query
answer classification, involves classifying solutions to queries over knowledge graphs, as true or false.
The second objective, query answer retrieval, requires predicting a correct answer to the query
or deciding that none exists.

Example. Let us illustrate these tasks on a knowledge graphGex (Figure 1), representing relationships
between actors, movies, and locations. The dashed edges denote the missing facts from Gex and
we write G̃ex to denote the complete version of Gex which additionally includes all missing facts.
Consider the following first-order query:

Q(x) = ∃y.Directed(y,“Oppenheimer”) ∧ BornIn(y, x),

which asks about the birthplace of the director of “Oppenheimer”.

• Query answer classification. An instance of query answer classification is to classify a given
answer, such as x → London, as true or false based on the observed graph Gex. In this case,
the answer x → London should be classified as true, since this is a correct answer to Q(x)

in the complete graph G̃ex, whereas any other assignment should be classified as false.
• Query answer retrieval. An instance of query answer retrieval is to predict a correct answer to
Q(x) based on the observed graph Gex. In this case, the only correct answer is x → London,
which should be retrieved as an answer to the query Q(x). If no correct answer exists, then
None should be returned as an answer.

Approach and contributions. To solve these tasks, we introduce ANYCQ, a graph neural network
that provided with a function assessing the truth of unobserved links, can predict the satisfiability
of a Boolean query over any (incomplete) KG. ANYCQ acts as a search engine exploring the space
of assignments to the free and existentially quantified variables in the query, eventually identifying
a satisfying assignment to the query. ANYCQ can handle any existentially quantified first-order query
in conjunctive or disjunctive normal form. Our contributions can be summarized as follows:

1. We extend the classical query answering problems to the domain of incomplete knowledge graphs
and formally define the studied tasks of query answer classification and retrieval, introducing
challenging benchmarks consisting of formulas with demanding structural complexity.

2. We propose ANYCQ, a neuro-symbolic framework for answering Boolean conjunctive queries
over incomplete KGs, which is able to solve existentially quantified queries of arbitrary structure.

3. We demonstrate the strength of ANYCQ on the studied objectives through various experiments,
illustrating its strength on both benchmarks.

4. Specifically, we highlight its surprising generalization properties, including transferability
between different datasets and ability to extrapolate to very large queries, far beyond the
processing capabilities of existing query answering approaches.

2 Related work
Link prediction. Earlier models for link prediction (LP) on knowledge graphs, such as TransE [11],
RotatE [12], ComplEx [13], and BoxE [14], learn fixed embeddings for entities and relations,

2

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

confining themselves to transductive setting. Later, graph neural networks (GNNs) emerged as
powerful architectures, with prominent examples including RGCNs [15] and CompGCNs [16]. These
models adapt the message-passing paradigm to multi-relational graphs, thus enabling inductive link
prediction on unseen entities. Building on this, Zhu et al. [17] proposed NBFNets, which achieve
strong performance through conditional message passing [18]. Recently, ULTRA [19] became one
of the first foundation models on LP over both unseen entities and relations.

Complex query answering. Complex query answering (CQA) [2, 3] generalizes link prediction to
first-order formulas with one free variable, considering queries with conjunctions (∧), disjunctions (∨)
and negations (¬). Neuro-symbolic models decompose the CQA task into a series of link prediction
problems, combining results with fuzzy logic. CQD [10] pioneered this approach with beam search
over pre-trained embeddings for approximate inference. QTO [5] improved on this by exploiting the
sparsity of neural score matrices to compute exact solutions without approximation. FIT [6] extended
QTO to cyclic queries at a higher cost. GNN-QE [4] trained directly over queries without relying
on pre-trained embeddings. ULTRAQUERY [20] combined GNN-QE’s framework with ULTRA,
yielding the first foundation model for CQA with zero-shot generalization. Neural methods generally
rely on neural networks to deduce relations and execute logical connectives simultaneously. CQD-CO
[10] formulates query answering as continuous optimization, assigning embeddings to variables and
optimizing the fuzzy logic with gradient descent. LMPNN [7] and CLMPT [21] employ logical
message-passing and attention-based aggregation. Q2T [8] utilized the adjacency matrix of the
query graph as an attention mask in Transformers [22] model. While flexible, these methods lack
interpretability and variable grounding, and underperform with growing query graph size.

Combinatorial reasoning. GNNs have emerged as a powerful tool for solving combinatorial opti-
mization problems [23]. Their power to leverage the inherent structural information encoded in graph
representations of instances has been successfully utilized for solving various combinatorial tasks [24–
26]. As a method of our particular interest, ANYCSP [27], introduced a novel computational graph
representation for arbitrary constraint satisfaction problems (CSP), demonstrating state-of-the-art
performance on MAX-CUT, MAX-k-SAT and k-COL.

In this work, we cast conjunctive queries as a CSP, tailoring the ANYCSP framework to suit the task
of satisfiability of Boolean formulas over incomplete KGs. ANYCQ integrates link predictors to
infer missing relations and introduces guidance mechanisms for efficient search over large domains.
Leveraging ANYCSP’s extrapolation and generalization strengths, ANYCQ provides an effective
solution for query answer classification and retrieval.

3 Preliminaries

Knowledge graphs. A knowledge graph (KG) is a set of facts over a relational vocabulary σ, which
is typically represented as a graph G = (V (G), E(G), R(G)), where V (G) is the set of nodes (or
vertices), R(G) is the set of relation types, andE(G) ⊆ R(G)×V (G)×V (G) is the set of relational
edges (i.e., facts), denoted as r(u, v) ∈ E(G) with r ∈ R(G) and u, v ∈ V (G). We writeG |= r(a, b)
to mean r(a, b) ∈ E(G). We consider each given KG G = (V (G), E(G), R(G)) as an observable
part of a complete graph G̃ = (V (G), E(G̃), R(G)) that consists of all true facts between entities
in V (G). Under this assumption, reasoning over the known facts E(G) is insufficient, requiring
deducing the missing edgesE(G̃)\E(G). Note that this formulation follows the transductive scenario,
in which G̃ covers the same sets of entities and relation types as G.

Link predictor. We call a link predictor for a KG G a function π : R(G)× V (G)× V (G)→ [0, 1],
where π(r, a, b) represents the probability of the atom r(a, b) being a fact in E(G̃). The perfect link
predictor π̃ for G̃ is defined as π̃(r, a, b) = 1 if r(a, b) ∈ E(G̃), and 0 otherwise.

First-order logic. A term is either a constant or a variable. A (binary) atom is an expression of
the form r(t1, t2), where r is a binary relation, and t1, t2 are terms. A fact, or a ground atom, has
only constants as terms. A literal is an atom or its negation. A variable in a formula is quantified
(or bound) if it is in the scope of a quantifier; otherwise, it is free. A Boolean formula has no
free variables. A quantifier-free formula does not use quantifiers. We write x⃗ = x1, ..., xk and
y⃗ = y1, ..., yl to represent sequences of variables and Φ(x⃗, y⃗) to represent a quantifier-free formula
Φ using variables from {x⃗, y⃗}. Similarly, we write a⃗ to represent tuples of constants of the form

3

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

a⃗ = a1, ..., ak. For a first-order logic formula Φ(x⃗) with k free variables, we use Φ(⃗a/x⃗) to represent
the Boolean formula obtained by substitution of each free occurrence of xi for ai, for all i.

Query answering. A conjunctive query (CQ) is a first-order formula of the formQ(x⃗) = ∃y⃗Φ(x⃗, y⃗),
where Φ(x⃗, y⃗) is a conjunction of literals using variables from {x⃗, y⃗}. We reserve {y⃗} for existentially
quantified variables and {x⃗} for free variables. If the query is Boolean, we write Q = ∃y⃗Φ(y⃗).
Given a KG G and a query Q(x⃗) = ∃y⃗Φ(x⃗, y⃗), the assignments ν : {x⃗} → V (G), µ : {y⃗} → V (G)
respectively map the free and quantified variables to constants. For notational convenience, we denote
with x⃗ → a⃗ the assignment x1 → a1, . . . , xk → ak. We represent by Φ(⃗a/x⃗, e⃗/y⃗) the formula
obtained by substituting the variables with constants according to the assignments x⃗→ a⃗ and y⃗ → e⃗.
We write νx→a for an assignment such that νx→a(x) = a and νx→a(z) = ν(z) whenever z ̸= x.

A Boolean query Q = ∃y⃗Φ(y⃗) evaluates to true on G, denoted G |= Q, if there exists an assignment
y⃗ → e⃗ such that all positive facts that appear in Φ(e⃗/y⃗), appear in the set E(G) and none of the
negated facts that appear in Φ(e⃗/y⃗) are present in E(G). In this case, the assignment y⃗ → e⃗ is called
a match. For a query Q(x⃗) = ∃y⃗Φ(x⃗, y⃗), an assignment x⃗→ a⃗ is called an answer if G |= Q(⃗a/x⃗).
We distinguish between easy and hard answers. An answer a⃗ is easy (or trivial) if G |= Q(⃗a/x⃗); it is
hard (or non-trivial) if G̃ |= Q(⃗a/x⃗) but G ⊭ Q(⃗a/x⃗).

Query graphs. Given a conjunctive query Q(x⃗), its query graph has the terms of Q(x⃗) as vertices,
and the atoms of Q(x⃗) as relational edges. If the underlying undirected version of the resulting query
graph is a tree, we call the query tree-like, otherwise, we say it is cyclic.

Fuzzy logic. Fuzzy logic extends Boolean Logic by introducing continuous truth values. A formulaQ
is assigned a truth value in range [0, 1], evaluated recursively on the structure of Q using t-norms and
t-conorms. In particular, Gödel t-norm is defined as ⊤G(a, b) = min(a, b) with the corresponding
t-conorm ⊥G(a, b) = max(a, b). For any existential Boolean formulas Q and Q′, the respective
Boolean formula score Sπ,G, w.r.t. a link predictor π over a KG G is then evaluated recursively as:

Sπ,G(r(a, b)) = π(r, a, b)

Sπ,G(¬Q) = 1− Sπ,G(Q)

Sπ,G(Q ∧Q′) = min(Sπ,G(Q), Sπ,G(Q
′))

Sπ,G(Q ∨Q′) = max(Sπ,G(Q), Sπ,G(Q
′))

Sπ,G(∃x.Q′(x)) = max
a∈V (G)

Sπ,G(Q
′(a/x))

4 Query answering on incomplete KGs
Existing problem formulations for complex query answering (CQA) suffer from several fundamental
limitations that restrict directions for progress. First, the standard ranking-based objective is com-
putationally infeasible for queries with multiple free variables, as it requires scoring all candidate
answers. Their number is exponential in the number of free variables, which is a known bottleneck for
large knowledge graphs [28–30]. This has also led to reliance on benchmarks with limited structural
complexity, featuring either tree-like queries [3] or ones with a single cycle [6], failing to capture the
richness of real-world reasoning tasks. Finally, many ranking-based models are not probabilistically
calibrated for binary classification [31]. Their scores often result from non-probabilistic training
objectives [7, 21] or require ad-hoc transformations [5, 6], making them unsuitable for applications
that demand definitive true/false decisions. See extended discussion in Appendix A.1.

4.1 Query Answer Classification & Query Answer Retrieval

In this section, we propose two new query answering tasks designed to provide more targeted
responses to complex logical queries, while avoiding the complexity incurred by answer enumeration.

Query answer classification reflects real-world scenarios where users seek to verify the correctness
of a specific answer rather than navigating through a ranked list of possibilities. It better captures
the nature of many real-world queries, aligning the model’s output with the user’s intent:

QUERY ANSWER CLASSIFICATION (QAC)

Input: A query Q(x⃗), tuple a⃗ and an observed graph G.
Output: Does G̃ |= Q(⃗a/x⃗) hold?

4

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

Query answer retrieval assesses the correctness of the top-ranked result. By requiring models to either
deliver a correct assignment to the free variables of the input query or assert the absence of one, QAR
aligns more closely with practical decision-making, ensuring the output is relevant and reliable:

QUERY ANSWER RETRIEVAL (QAR)

Input: A query Q(x⃗) and an observed graph G.
Output: x⃗→ a⃗ where G̃ |= Q(⃗a/x⃗) or None

Reduction to conjunctive query answering. As shown in prior work [6, 7, 21], any exis-
tentially quantified first-order (EFO) query Q(x⃗) can be rewritten in disjunctive normal form
Q′(x⃗) = ∃y⃗ (D1(x⃗, y⃗) ∨ · · · ∨Dn(x⃗, y⃗)), where each Di is a conjunction of literals. Thus, we
have Q′(x⃗) ≡ Q1(x⃗)∨ · · · ∨Qn(x⃗) with Qi(x⃗) = ∃y⃗ Di(x⃗, y⃗), and Q(⃗a/x⃗) is satisfiable if and only
if some Qi(⃗a/x⃗) is satisfiable, reducing the task to conjunctive queries. Unlike ranking, which must
combine scores across disjuncts, classification aggregates only binary outcomes. Hence we focus on
conjunctive queries, as solving each Qi individually introduces no additional complexity.

5 ANYCQ: framework for query answering
To address the introduced tasks of query answer classification and retrieval, we propose a neuro-
symbolic framework for scoring arbitrary existential Boolean formulas, called ANYCQ. Let π be
a link predictor for an observable knowledge graph G. An ANYCQ model Θ equipped with π can
be viewed as a function Θ(G, π) : CQ0(G) → [0, 1] where CQ0(G) is the class of conjunctive
Boolean queries over the same vocabulary as G. For input Q = ∃y⃗.Φ(y⃗), Θ searches over the space
of assignments to y⃗ for

αmax = argmax
α:y⃗→V (G)

Sπ,G(Φ(α(y⃗)/y⃗)).

and returns an approximation Θ(Q|G, π) of Sπ,G(Q) as

Θ(Q|G, π) = max
visited α

Sπ,G(Φ(α(y⃗)/y⃗))

Note that by unfolding the Boolean formula score: Sπ,G(Q) = Sπ,G(Φ(αmax(y⃗)/y⃗)) ≈ Θ(Q|G, π).
Hence, by leveraging the potential of GNNs for solving combinatorial optimization problems, we can
recover strong candidates for αmax, allowing for an accurate estimation of Sπ,G(Q).

Overview. During the search, our method encodes the query Q and its relation to the current
assignment α into a computational graph GQ,α (Section 5.1). This graph is then processed with
a simple GNN θ (whose architecture is described in Appendix B.1), which updates its hidden
embeddings and generates distributions µ from which the next assignment α′ is sampled (Section 5.2).

5.1 Query representation

We transform the input queries into a computational graph (Figure 2), whose structure is adopted
from ANYCSP [27]. Consider a conjunctive Boolean query Q = ∃y⃗.Φ(y⃗) over a knowledge graph G,
with Φ quantifier-free, and let π be a link predictor for G. Let c1, ..., cn be constant symbols
mentioned in Φ, and ψ1, ..., ψl be the literals in Φ. We define the domain D(e) of the term e as
D(y) = V (G) for each existentially quantified variable y and D(ci) = {ci} for each constant ci.
Given an assignment α : y⃗ → a⃗, the computational graph GQ,α is constructed as follows:

Vertices. The vertices of GQ,α are divided into three groups. Firstly, the term nodes, vy1 , ..., vyk and
vc1 , ..., vcn , represent variables and constants mentioned in Φ. Secondly, value vertices correspond to
feasible term-value assignments. Formally, for each term e mentioned in Φ and any value a ∈ D(e),
there exists a value vertex ve→a. Finally, literal nodes vψ1

, . . . , vψl represent literals ψ1, ..., ψl of Φ.

Edges. We distinguish two types of edges in GQ,α. The term-value edges connect term with value
nodes: for any term vertex ve representing e and any a ∈ D(e), there exists an undirected edge
{ve, ve→a}. Additionally, value-literal edges are introduced to propagate information within literals.
If a literal ψi mentions a term e, then for all a ∈ D(e) there is an edge between vψi and ve→a.

Edge labels. Edge labels embed the predictions of the link predictor π into the computational
graph GQ,α to support guided search. Each value-literal edge connecting a literal vertex vψi with
a value node ve→a is annotated with the potential edge (PE) and the light edge (LE) labels. The PE

5

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

Link predictor

Boolean Query

Q=∃x∃y.s(c, x)∧r(x, y)

Query Graph

Assignment α

Term nodes

Value nodes

Literal nodes

Vertices

Edge labels

Computational graph GQ,α

a b

cd

c x y
rs

PE=0

PE=1

LE=0

LE=1

c)c x)a x)b x)c x)d y)a y)b y)c y)d

c x y

ψ1 ψ2

x → a, y → c

Figure 2: The ANYCQ computational graph GQ,α for the query Q = ∃x∃y.s(c, x) ∧ r(x, y) and
assignment α : x → a, y → c, over a KG with 4 entities and 2 relation types. Literals ψ1 and ψ2

correspond to s(c, x) and r(x, y), respectively. Predictions of the equipped link predictor exceeding
the probability threshold of 0.5 are displayed in a graph form in the bottom left. Value nodes
corresponding to the assignment α are highlighted.

label PE(vψi , ve→a) is meant to answer the question: “Can ψi be satisfied under the substitution
e→ a?”. For example, when ψ2 = s(x, y), as in Figure 2, PE(vψ2 , vx,a) denotes whether ∃y.s(a, y)
is satisfiable, according to π. We pre-compute the PE labels using π, binarizing the Boolean formula
scores of the form Sπ,G(∃y.s(a, y)) with the threshold 0.5.

In contrast to PE labels, which are independent of the assignment α, light edge (LE) labels reflect
how local changes to α affect satisfiability of the literals. Formally, we set LE(vψi , ve→a;α) = 1
if ψi is satisfied under the assignment αz→a, and 0 otherwise. In other words, LE labels answer
the question: “If we change α so that z is assigned to a, will ψi be satisfied?”. Satisfiability is again
determined by binarizing the prediction score returned by the link predictor π. Hence, through these
edge labels, π effectively guides the search toward promising updates in the assignment space.

Further explanations of edge labels are provided in Appendix B.8.

5.2 ANYCQ search process

The outline of the search process conducted by ANYCQ is presented in Figure 3. Before the search
commences, the hidden embeddings h(0) of all value nodes are set to a pre-trained vector h ∈ Rd
and an initial assignment α(0) is drafted, sampling the value for each variable y ∈ {y⃗} independently
and uniformly at random from D(y). The variable and literal nodes are not assigned any hidden
embeddings, serving as intermediate steps for value node embedding updates. At the beginning of
search step t, GQ,α(t−1) is processed with a GNN θ, which generates new value node embeddings

h(t), and for each variable y ∈ y⃗ returns a distribution µ(t)
y over D(y). Finally, the next assignment

α(t) is sampled by drawing the value α(t)(y) from µ
(t)
y , independently for each y ∈ {y⃗}. A precise

description of the architecture of θ is provided in Appendix B.1. The search terminates after T steps,
producing assignments α(0), α(1), ..., α(T) which are used to approximate Sπ,G(Q) as

Θ(Q|G, π) = max
0≤t≤T

Sπ,G

(
Φ
(
α(t)(y⃗)/y⃗

))
5.3 Training

During training on each dataset, we equip ANYCQ with a predictor πtrain, representing the training
graph Gtrain. Thus, the only trainable component of Θ remains the GNN θ. We utilize the training
splits from the existing CQA datasets [3], hence limiting the scope of queries viewed during training to
formulas mentioning at most three variables. Moreover, we restrict the number of search steps T to at
most 15, encouraging the network to quickly learn to apply logical principles locally. Inspired by prior
work on combinatorial optimization [27, 32, 33], we train θ in a reinforcement learning setting via
REINFORCE [34], treating θ as a search policy network with the objective of maximizing Θ(Q|G, π).
This setup enables ANYCQ to generalize across different query types, scaling to formulas of size
several times larger than observed during training. See complete methodology in Appendix B.2.

6

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

h(0)

α(0) π π π
GQ,α(0)

GNN θ

µ(1) ∼ α(1)

h(1)

GQ,α(1)

GNN θ

µ(2) ∼ α(2)

h(2)

GQ,α(2)

GNN θ

µ(T) ∼ α(T)

Figure 3: Overview of the ANYCQ framework. At search step t, GNN θ generates hidden embed-
dings h(t) and a set of distributions µ(t). The next assignment α(t) is sampled from µ(t) and used to
update the edge labels of GQ,α(t) with respect to the equipped link predictor π.

5.4 Theoretical and conceptual properties

Our ANYCQ framework is supported by strong theoretical guarantees and designed for broad
conceptual flexibility. Theoretically, the method is provably complete, ensuring it converges to
the correct answer with sufficient search steps (Theorem C.1), and it is sound when equipped with
a perfect link predictor, guaranteeing the correctness of its positive predictions (Theorem C.3).
Conceptually, ANYCQ is built for transferability and generality. Because its core model is
independent of the input graph and link predictor, it can be seamlessly applied to unseen knowledge
graphs, as we have shown in Section 6.3. Furthermore, its general design allows it to handle relations
of any arity and process complex formulas in conjunctive or disjunctive normal form (Appendix B.5),
even extending to inductive settings with the appropriate predictor (Appendix E.5).

6 Experimental evaluation
We empirically evaluate ANYCQ to assess its performance on the proposed tasks of Query Answer
Classification (QAC) and Query Answer Retrieval (QAR). To provide a comprehensive analysis, we
aim to answer the following key questions:

Q1. How does ANYCQ perform on QAC and QAR comparing with existing models? (Section 6.2)

Q2. How does ANYCQ perform outside the training domain? (Section 6.3)

Q3. How does ANYCQ perform with a perfect link predictor? (Section 6.3)

Q4. How does the choice of link predictor affect ANYCQ’s overall performance? (Appendix E)

Q5. How does ANYCQ’s performance scale with increasing query complexity? (Appendix F)

6.1 Experimental setup

Benchmarks and datasets. Existing CQA benchmarks [3, 30] contain mostly simple query structures,
which impair development of more advanced and general methods. To close this gap, we generate
new datasets on top of standard benchmarks, introducing queries of higher structural complexity.
These formulas may involve up to 20 distinct terms and feature multiple cycles, non-anchored leaves,
long-range dependencies, and multi-way conjunctions. See Appendix D for generation details.

For QAC, we propose FB15k-237-QAC and NELL-QAC, each divided into 9 splits, consisting
of small and large formulas. We focus exclusively on single-variable instances, as multi-variable
cases reduce trivially to the single-variable setting, i.e., ⟨Q(x1, x2), (a1, a2), G⟩ is equivalent to a
single-variable instance ⟨Q(x1, a2/x2), a1, G⟩ as they both ask if G̃ |= Q(a1/x1, a2/x2).

For QAR, we observe that many instances of the simpler query structures, inherited from existing
CQA benchmarks, admit easy answers, i.e. have at least one satisfying assignment supported entirely
by observed facts. Combined with their limited structural complexity, this makes them trivial under
the QAR objective, which only requires recovering a single correct answer. To evaluate reasoning
under incompleteness and structural difficulty, we introduce new benchmarks: FB15k-237-QAR and
NELL-QAR, consisting of large formulas with up to three free variables.

Baselines. As the baselines for the small-query split on our QAC task, we choose the state-of-the-art
solutions from CQA capable of handling the classification objective: QTO [5], FIT [6], GNN-QE [4]
and ULTRAQUERY [20]. Considering the large-query splits, we notice that no existing approaches
can be applied in this setting, as none of them can simultaneously: 1) efficiently handle cyclic queries

7

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

Table 1: Average F1-scores of considered methods on the QAC task.

Dataset Model 2p 3p pi ip inp pin 3-hub 4-hub 5-hub

FB15k-237-QAC

SQL 66.0 61.7 70.0 67.0 78.1 74.8 37.0 32.2 35.3
QTO 67.1 64.4 70.8 67.7 78.5 75.9 – – –
FIT 68.0 65.1 71.4 67.8 78.6 76.7 – – –

GNN-QE 77.1 73.5 80.1 81.2 79.0 77.0 – – –
ULTRAQUERY 75.2 68.9 79.8 76.8 75.9 78.6 – – –

ANYCQ 75.8 71.3 82.1 78.8 76.7 75.7 52.4 49.9 51.9

NELL-QAC

SQL 60.9 58.8 63.3 59.6 76.7 74.9 33.9 31.4 27.0
QTO 63.9 64.1 68.2 61.7 74.5 75.3 – – –
FIT 63.9 64.6 68.4 61.7 73.6 75.7 – – –

GNN-QE 70.4 69.7 71.2 72.1 72.2 74.9 – – –
ULTRAQUERY 66.3 65.6 73.2 71.1 73.2 73.4 – – –

ANYCQ 76.2 72.3 79.0 75.4 76.7 75.3 57.2 52.6 58.2

Table 2: F1-scores on QAR samples, where k is the number of free variables.

Dataset Model 3-hub 4-hub 5-hub

k=1 k=2 k=3 total k=1 k=2 k=3 total k=1 k=2 k=3 total

FB15k-237-QAR SQL 65.8 46.2 17.8 45.7 59.9 50.2 33.7 48.7 60.6 49.3 42.5 51.2
ANYCQ 67.8 62.3 50.2 60.5 60.4 54.0 48.2 54.5 63.0 56.9 43.1 54.8

NELL-QAR SQL 63.5 41.3 24.0 46.7 60.6 42.1 32.9 47.7 52.7 42.5 27.6 42.8
ANYCQ 66.7 55.1 39.1 55.8 65.1 57.1 46.5 57.6 58.7 51.1 39.6 51.1

and 2) produce calibrated probability estimates, without the knowledge of the trivial answers2.
Hence, we furthermore use an SQL engine, implemented by DuckDB [35], reasoning over the
observable graph. For the same reasons, extended by the need of reasoning over queries with multiple
variables, we consider only the SQL engine as the baseline for QAR experiments. In both cases,
we limit the processing time to 60 seconds, ensuring termination in a reasonable time. Additional
evaluations ablating the impact of this timeout, using 30, 60, and 120 seconds thresholds, are included
in Appendix F. Training details for the considered baselines are provided in Appendix E.

Methodology. Given a Boolean query Q over an observable KG G, an ANYCQ model Θ equipped
with a link predictor π for G can decide if G̃ |= Q, by returning whether Θ(Q|G, π) > 0.5. We use
this functionality to solve QAC instances by applying our ANYCQ models directly to Q(⃗a/x⃗).
For the QAR task, given a query Q(x⃗) over an observable KG G, we run our ANYCQ framework
on the Boolean formula ∃x⃗.Q(x⃗), returning None if the returned Θ(∃x⃗.Q(x⃗)|G, π) was less than 0.5.
Otherwise, we return α(x⃗) where α is the visited assignment maximizing the Boolean formula score.
In both scenarios, we perform 200 search steps on each input instance in the large query splits, and
just 20 steps for small QAC queries. We equip NBFNet as the default link predictor for both QAC
and QAR evaluations (details in Appendix E.5).

Metrics. Given the classification nature of both our objectives, we use the F1-score as the metric
for query answer classification and retrieval (see Appendix D.4 for details). In QAR, we mark
a positive solution as correct only if the returned assignment is an answer to the input query. In contrast
to the CQA evaluation, we also include easy answer (instances), since the task of efficiently answering
queries with advanced structural complexity, even admitting answers in the observable knowledge
graph, is not trivial. The code can be found in this GitHub repository.

6.2 Main experiments results over QAC and QAR

Query answer classification (QAC) experiments. The results of evaluation on the introduced
QAC benchmarks are presented in Table 1. As expected, GNN-QE and ULTRAQUERY outperform
ComplEx-based FIT and QTO, with GNN-QE displaying the best scores out of the considered
baselines. Equipped with the same NBFNet predictors, ANYCQ matches its performance, achieving
only marginally (within 3% relative) lower F1-scores on FB15k-237-QAC, and leading by far on
NELL-QAC evaluations. Importantly, ANYCQ successfully extrapolates to formulas beyond the
processing power of the existing CQA approaches. On all proposed large query splits ANYCQ
consistently outperforms the SQL baseline: SQL classifies only easy answers accurately, mapping all
the hard answers to false, and as a result falls behind ANYCQ.

2See Appendix A.2 for a detailed explanation.

8

https://anonymous.4open.science/r/ANYCQ/README.md

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

Table 3: F1-scores of ANYCQ models applied outside the training knowledge graph domain.

ANYCQ specification FB15k-237-QAR NELL-QAR

Predictor type Training dataset 3-hub 4-hub 5-hub 3-hub 4-hub 5-hub

NBFNet-based, FB15k-237 60.5 54.5 54.8 55.9 58.7 49.4
pre-trained on G NELL 58.8 53.5 52.6 55.8 57.6 51.1

perfect π̃ for G̃
FB15k-237 94.4 93.4 93.0 95.5 96.4 96.2

NELL 92.2 90.4 90.2 94.5 95.7 94.9

Table 4: F1-scores of ANYCQ model equipped with a perfect link predictor on the QAC task.

Dataset 2p 3p pi ip inp pin 3-hub 4-hub 5-hub

FB15k-237-QAC 100 99.9 100 100 100 100 92.4 91.4 93.8
NELL-QAC 100 100 100 100 100 100 93.0 89.4 91.3

Query answer retrieval (QAR) experiments. We present the QAR evaluation results across all
splits of the two proposed datasets consisting of large formulas with multiple free variables in Table 2.
The performance of the SQL engine degrades as the number of free variables in the input query
increases. While a similar behavior can be witnessed for ANYCQ models, it progresses at a much
slower rate. Furthermore, ANYCQ is capable of finding non-trivial answers, even to complicated
queries. As a consequence, ANYCQ consistently outperforms SQL on all splits, with the biggest
differences being witnessed for queries involving more than one free variable.

A further analysis (detailed in Appendix F) shows that ANYCQ does not fall behind SQL on instances
admitting observable answers, remaining within 10% relative to the classical engine on unary queries,
while outperforming it on multivariate splits. Moreover, ANYCQ correctly solves a fair share of
hard instances, demonstrating its ability to retrieve unobserved yet correct answers, even for large,
structurally complex queries with multiple free variables.

6.3 Ablation studies

How does ANYCQ perform outside the training domain? As mentioned in Section 5.4, we ex-
pect the search engine to exhibit similar behavior on processed instances, regardless of the underlying
knowledge graph. We validate this claim by applying ANYCQ models trained on FB15k-237 or
on NELL to both datasets, equipping a relevant link predictor. The results on our QAR and QAC
benchmarks are presented in Tables 3 and 4. respectively. Notably, the differences between models’
accuracies in QAR are marginal, confirming that the resulting search engine is versatile and not
dataset-dependent. In fact, the model trained on FB15k-237 exhibits better performance on both
datasets, further aligning with our assumption on the transferability and generalizability of ANYCQ.

How does ANYCQ perform with a prefect link predictor? The ANYCQ framework’s perfor-
mance heavily depends on the underlying link prediction model, responsible for guiding the search
and determining the satisfiability of generated assignments. Hence, to assess purely the quality of
our search engines, we equipped them with perfect link predictors for the test KGs, eliminating the
impact of predictors’ imperfections. The results of experiments on our QAR and QAC benchmarks
are available in Table 3 and Table 4, respectively. The performance of ANYCQ on all QAR splits
exceeds 90%, displaying great accuracy of the GNN-guided search engine. We witness similar
results on the large formula splits in QAC datasets, further confirming the relevance of our model
and highlighting the impact of the equipped link predictor. Remarkably, the simple query types in
QAC pose no challenge for ANYCQ, which achieves 100% F1-score on all of them, with a single
exception.

7 Summary, limitations, and outlook
In this work, we devise and study two new tasks from the query answering domain: query answer
classification and query answer retrieval. Our formulations target the challenge of classifying and
generating answers to structurally complex formulas with an arbitrary number of free variables.
Moreover, we introduce datasets consisting of instances beyond the processing capabilities of existing

9

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

approaches, creating strong benchmarks for years to come. To address this demanding setting, we in-
troduce ANYCQ, a framework applicable for scoring and generating answers for large conjunctive
formulas with arbitrary arity over incomplete knowledge graphs. We demonstrate the effectiveness
over our QAC and QAR benchmarks, showing that on simple samples, ANYCQ matches the per-
formance of state-of-the-art CQA models, while setting challenging baselines for the large instance
splits. One potential limitation is considering by default the input query in disjunctive normal form,
converting to which may require exponentially many operations. We hope our work will motivate
the field of query answering to expand the scope of CQA to previously intractable cases and recognize
the classification nature of the induced tasks.

Acknowledgements
The authors would like to acknowledge the use of the University of Oxford Advanced Research
Computing (ARC) facility in carrying out this work. https://doi.org/10.5281/zenodo.22558

References
[1] Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and

text inference. In Proceedings of the 3rd workshop on continuous vector space models and their
compositionality, 2015. 1

[2] Hongyu Ren, Weihua Hu, and Jure Leskovec. Query2box: Reasoning over knowledge graphs
in vector space using box embeddings. In ICLR, 2020. 1, 3

[3] Hongyu Ren and Jure Leskovec. Beta embeddings for multi-hop logical reasoning in knowledge
graphs. In NeurIPS, 2020. 3, 4, 6, 7, 12, 13, 15

[4] Zhaocheng Zhu, Mikhail Galkin, Zuobai Zhang, and Jian Tang. Neural-symbolic models for
logical queries on knowledge graphs. In ICML, 2022. 1, 3, 7, 13, 16, 27

[5] Yushi Bai, Xin Lv, Juanzi Li, and Lei Hou. Answering complex logical queries on knowledge
graphs via query computation tree optimization. In ICML, 2023. 1, 3, 4, 7, 13, 16, 26

[6] Hang Yin, Zihao Wang, and Yangqiu Song. Rethinking complex queries on knowledge graphs
with neural link predictors. In ICLR, 2024. 1, 3, 4, 5, 7, 12, 13, 26

[7] Zihao Wang, Yangqiu Song, Ginny Wong, and Simon See. Logical message passing networks
with one-hop inference on atomic formulas. In ICLR, 2022. 3, 4, 5, 13

[8] Yao Xu, Shizhu He, Cunguang Wang, Li Cai, Kang Liu, and Jun Zhao. Query2triple: Unified
query encoding for answering diverse complex queries over knowledge graphs. In Findings of
the Association for Computational Linguistics: EMNLP, 2023. 1, 3, 13

[9] Leonid Libkin and Cristina Sirangelo. Open and closed world assumptions in data exchange.
Description Logics, 2009. 1, 18

[10] Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez. Complex query
answering with neural link predictors. In ICLR, 2020. 1, 3, 13, 16

[11] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In NIPS, 2013. 2

[12] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embed-
ding by relational rotation in complex space. In ICLR, 2019. 2

[13] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard.
Complex embeddings for simple link prediction. In ICML, 2016. 2, 25

[14] Rami Abboud, Alexandru Tifrea, and Maximilian Nickel. Boxe: A box embedding model for
knowledge base completion. In NeurIPS, 2020. 2

[15] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In ESWC, 2018. 3

[16] Shikhar Vashishth, Soumya Sanyal, Varun Nitin, and Partha Talukdar. Composition-based
multi-relational graph convolutional networks. In ICLR, 2020. 3

10

https://doi.org/10.5281/zenodo.22558

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

[17] Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford
networks: A general graph neural network framework for link prediction. In NeurIPS, 2021. 3,
25, 27

[18] Xingyue Huang, Miguel Romero Orth, İsmail İlkan Ceylan, and Pablo Barceló. A theory of
link prediction via relational weisfeiler-leman on knowledge graphs. In NeurIPS, 2023. 3

[19] Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards
foundation models for knowledge graph reasoning. In ICLR, 2024. 3, 25, 27

[20] Mikhail Galkin, Jincheng Zhou, Bruno Ribeiro, Jian Tang, and Zhaocheng Zhu. A foundation
model for zero-shot logical query reasoning. In NeurIPS, 2024. 3, 7, 27

[21] Chongzhi Zhang, Zhiping Peng, Junhao Zheng, and Qianli Ma. Conditional logical message
passing transformer for complex query answering. In KDD, 2024. 3, 4, 5, 13

[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017. 3

[23] Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks. In IJCAI,
2021. 3

[24] Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional
network technique for the travelling salesman problem. CoRR, 2019. 3

[25] Henrique Lemos, Marcelo Prates, Pedro Avelar, and Luis Lamb. Graph colouring meets deep
learning: Effective graph neural network models for combinatorial problems. In ICTAI, 2019.

[26] Filip Bosnić and Mile Šikić. Finding hamiltonian cycles with graph neural networks. In ISPA,
2023. 3

[27] Jan Tönshoff, Berke Kisin, Jakob Lindner, and Martin Grohe. One model, any csp: graph neural
networks as fast global search heuristics for constraint satisfaction. In IJCAI, 2023. 3, 5, 6, 13,
17

[28] Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury, and Michael
Gamon. Representing text for joint embedding of text and knowledge bases. In EMNLP, 2015.
4, 12, 23, 27

[29] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam Hruschka, and Tom
Mitchell. Toward an architecture for never-ending language learning. In AAAI, 2010. 12, 23

[30] Hang Yin, Zihao Wang, Weizhi Fei, and Yangqiu Song. Efok-cqa: Towards knowledge graph
complex query answering beyond set operation. arXiv preprint arXiv:2307.13701, 2023. 4, 7,
12

[31] Ruud van Bakel, Teodor Aleksiev, Daniel Daza, Dimitrios Alivanistos, and Michael Cochez.
Approximate knowledge graph query answering: from ranking to binary classification. In
Graph Structures for Knowledge Representation and Reasoning, 2021. 4, 12

[32] Yong Shi and Yuanying Zhang. The neural network methods for solving traveling salesman
problem. Procedia Computer Science, 2022. 6

[33] Kenshi Abe, Zijian Xu, Issei Sato, and Masashi Sugiyama. Solving np-hard problems on graphs
with extended alphago zero. arXiv preprint arXiv:1905.11623, 2019. 6

[34] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 2004. 6, 15

[35] Mark Raasveldt and Hannes Mühleisen. Duckdb: an embeddable analytical database. In ICMD,
2019. 8, 23

[36] Zhanqiu Zhang, Jie Wang, Jiajun Chen, Shuiwang Ji, and Feng Wu. Cone: Cone embeddings
for multi-hop reasoning over knowledge graphs. In NeurIPS, 2021. 13

[37] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. CoRR, 2014. 13

[38] Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375, 2018. 15

[39] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR,
2015. 15, 27

11

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

[40] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019. 16

[41] AA Leman and Boris Weisfeiler. A reduction of a graph to a canonical form and an algebra
arising during this reduction. Nauchno-Technicheskaya Informatsiya, 1968. 16

[42] Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising
power of graph neural networks with random node initialization. In IJCAI, 2021. 16

[43] Emile Van Krieken, Erman Acar, and Frank Van Harmelen. Analyzing differentiable fuzzy
logic operators. Artificial Intelligence, 2022. 17

[44] Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan Zhang, Zhiyuan Liu, Juanzi Li, and
Jian Tang. Kepler: A unified model for knowledge embedding and pre-trained language
representation. Transactions of the Association for Computational Linguistics, 2021. 19

[45] Yihong Chen, Pasquale Minervini, Sebastian Riedel, and Pontus Stenetorp. Relation prediction
as an auxiliary training objective for improving multi-relational graph representations. In AKBC,
2021. 26

[46] Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical tensor decomposition
for knowledge base completion. In ICML, 2018. 26

[47] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. JMLR, 2011. 26

[48] Tim Dettmers, Minervini Pasquale, Stenetorp Pontus, and Sebastian Riedel. Convolutional 2D
knowledge graph embeddings. In AAAI, 2018. 27

[49] Tara Safavi and Danai Koutra. CoDEx: A Comprehensive Knowledge Graph Completion
Benchmark. In EMNLP, 2020. 27

[50] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019. 27

A Extended discussion of task formulations and baselines
A.1 Limitations of existing problem formulations

Intractability of high-arity query evaluation. The objective of complex query answering is to rank
all possible answers to a given logical formula. Already for queries Q(x1, x2) with two free variables,
this entails scoring |V (G)|2 pairs of entities (a1, a2) ∈ V (G)2, which is computationally infeasible
for modern knowledge graphs [28, 29] containing thousands of nodes. As a result, most of the existing
approaches are not designed to handle higher arity queries, either resolving to inefficient enumeration
strategies [6] or approximating answers by marginal predictions. This scalability bottleneck has
already been observed by [30], who suggested more tractable evaluation methodologies, yet again
being only marginal approximations of the true performance. Therefore, we argue that the ranking-
based formulation has significantly limited the progress in query answering over formulas with
multiple free variables.

Limited structural complexity in existing benchmarks. A related limitation lies in the structural
simplicity of existing benchmarks [3]. Standard CQA literature predominantly focuses on tree-like
queries, which aligns with the capabilities of most current models. More recently, Yin et al. [30]
introduced a dataset containing cyclic queries and queries with up to two free variables; however, the
overall structures remained constrained – featuring at most four variables and a single cycle. We argue
that addressing structurally richer queries is essential for advancing automated reasoning systems.
In real-world applications to autonomous systems, such as an AI trip planner that simultaneously
books flights, accommodations, and activities while satisfying budget and availability constraints,
the underlying reasoning involves large, complex queries with multiple variables. As AI agents
become more capable, the complexity of the queries they must resolve is only expected to increase,
requiring more expressive answering engines, e.g. applicable to large, cyclic, multi-variate formulas.

Lack of probabilistic calibration in ranking-based methods. Practical applications often demand
binary decisions - answering questions like “Is X true?” or “What is the correct answer to Y?”,
requiring models to classify candidate solutions as either true or false [31]. However, many ranking-
based CQA methods do not natively support this decision-making paradigm, as they focus on ordering
candidates without enforcing a meaningful threshold to distinguish valid answers from incorrect ones.

12

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

While many of these models are trained using classification losses, such training does not guarantee
the output scores correspond to calibrated satisfiability probabilities. In fact, several approaches rely
on Noisy Contrastive Estimation [7, 21] or apply ad hoc score-to-probability transformations [5, 6],
further weakening the reliability of predicted scores in downstream tasks.

A.2 Limitations of existing baselines

As mentioned in Section 6.1, for the large-query splits of both QAC and QAR, none of the existing
approaches are directly applicable. In particular, no method can simultaneously (1) efficiently handle
cyclic queries and (2) provide calibrated probability estimates without relying on knowledge of
trivial answers.

Standard methods like BetaE [3], CQD [10], ConE [36], GNN-QE [4] or QTO [5] are limited to
tree-like queries. Neural approaches, such as LMPNN [7] or CLMPT [21], are trained using Noisy
Contrastive Estimation; hence, their predictions do not meaningfully translate to desired probabilities.
Finally, FIT [6] and Q2T [8] require transforming scores predicted by their ComplEx-based link
predictors, while all known schemes (see Appendix E.1) assume the set of easy answers is known, or
otherwise, trivial to recover.

B ANYCQ details
B.1 Architecture

ANYCQ’s architecture is based on the original ANYCSP [27] framework. The trainable components
of the ANYCQ GNN model θ are:

• a GRU [37] cell G : Rd × Rd → Rd with a trainable initial state h ∈ Rd

• a Multi Layer Perceptron (MLP) value encoder E : Rd+1 → Rd

• two MLPs MV ,MR : Rd → R4d sending information between value and literal vertices
• three MLPs UV ,UR,UX : Rd → Rd aggregating value, literal and variable messages
• an MLP O : Rd → R that generates logit scores for all variable nodes.

We denote the set of neighbors of term and literal nodes by N (·). In the case of value nodes,
we distinguish between the corresponding term node and the set of connected literal vertices, which
we represent by NR(·).

The model starts by sampling an initial assignment α(0), where the value of each variable is chosen
uniformly at random from V (G), and proceeds for T search steps. In step t:

• If t = 1, initialize the hidden state of each value node to be h(0)(vz→a) = h.

• Generate light edge labels under the assignment α(t−1) for all value-literal edges. Precisely, let
vψi be a literal node corresponding to an atomic formula ψ and vz→a be a connected value node.
The light edge label L(t−1)

E (vψi , vz→a;α) is a binary answer to the question: “Is ψ satisfied
under

[
α(t−1)

]
z→a

?” with respect to the equipped predictor.
• For each value node vz→a, generate its new latent state

x(t)(vz→a) = E
([

h(t−1)(vz→a), δα(x)=v

])
where [·, ·] denotes concatenation and δC = 1 if the condition C holds, and 0 otherwise.

• Derive the messages to be sent to the constraint nodes:

m(t)(vz→a, 0), ...,m
(t)(vz→a, 3) = MV

(
x(t)(vz→a)

)
• For each literal node vψ , gather the messages from its value neighbors, considering the light and

potential labels:

y(t)(vψ) =
⊕

vz→a∈N (vψ)

m(t)
(
vz→a, 2 · PE(vψ, vz→a) + L

(t−1)
E (vψ, vz→a;α)

)
where

⊕
denotes element-wise max.

13

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

• The messages to be sent to the value nodes are then evaluated as:

m(t)(vψ, 0), ...,m
(t)(vψ, 3) = MR

(
y(t)(vψ)

)
• Aggregate the messages in each value node vz→a:

y(t)(vz→a) =
⊕

vψ∈NR(vz→a)

m(t)
(
vz→a, 2 · PE(vψ, vz→a) + L

(t−1)
E (vψ, vz→a;α)

)
and integrate them with current hidden state:

z(t)(vz→a) = UV

(
x(t)(vz→a) + y(t)(vz→a)

)
+ x(t)(vz→a)

• For each term node vz , aggregate the states of the corresponding value nodes:

z(t)(vz) = UX

 ⊕
vz→a∈N (vz)

z(t)(vz→a)


• For each value node vz→a, update its hidden state as:

h(t)(vz→a) = G
(
h(t−1)(vz→a), z

(t)(vz→a) + zt(vz)
)

• Generate logits and apply softmax within each domain:

o(t)
z→a = clip

(
O
(
h(t)(vz→a)

)
− max
a∈D(z)

O
(
h(t)(vz→a)

)
, [−100, 0]

)
µ(t)(vz→a) =

expo
(t)
z→a∑

a′∈D(z) expo
(t)
z→a′

• Sample the next assignment α(t), selecting the next value independently for each variable x,
with probabilities P

(
α(t)(x) = a

)
= µ(t)(vx→a) for all a ∈ D(x).

Note that the suggested methodology for evaluating probabilities P
(
α(t)(x) = a

)
is approximately

equivalent to applying softmax directly on O
(
h(t)(vx→a)

)
. However, applying this augmentation,

we are guaranteed that for any variable x and a relevant value a ∈ D(x):

P
(
α(t)(x) = a

)
=

expo
(t)
x→a∑

a′∈D(x) expo
(t)
x→a′

≥ e−100

|D(x)|
≥ 1

e100|V (G)|
.

B.2 Training methodology

Suppose we are given a training query Q(x) = ∃y⃗.Φ(x, y⃗). We run Θ on ∃x.Q(x) for Ttrain search
steps, recovering the assignments α(0), ..., α(Ttrain) and the intermediate value probability distributions:

µ(1) =
{
µ(1)
z |z ∈ {x⃗, y⃗}

}
, . . . , µ(Ttrain) =

{
µ(Ttrain)
z |z ∈ {x⃗, y⃗}

}
The reward R(t) for step 1 ≤ t ≤ T is calculated as the difference between the score for assignment
α(t) and the best assignment visited so far:

R(t) = max

(
0, S(t) −max

t′<t
S(t′)

)
where S(t) = Sπtrain

(
Φ(α(t)(x)/x, α(t)(y⃗)/y⃗)

)
. Additionally, the transition probability

P (t) = P
(
α(t)|µ(t)

)
=

∏
z∈{x⃗,y⃗}

µ(t)
z

(
α(t)(z)

)

14

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

Table 5: Simple query types

Split Formula
1p Q(x1) = r1(x, c1)

2p Q(x1) = ∃y1.r1(x1, y1) ∧ r2(y1, c1)

3p Q(x1) = ∃y1, y2.r1(x1, y1) ∧ r2(y1, y2) ∧ r3(y2, c1)

2i Q(x1) = r1(x, c1) ∧ r2(x, c2)

3i Q(x1) = r1(x, c1) ∧ r2(x, c2) ∧ r3(x, c3)

pi Q(x1) = ∃y1.r1(x1, y1) ∧ r2(y1, c1) ∧ r3(x1, c2)

ip Q(x1) = ∃y1.r1(x1, y1) ∧ r2(y1, a1) ∧ r3(y1, a2)

2i Q(x1) = r1(x, c1) ∧ ¬r2(x, c2)
3i Q(x1) = r1(x, c1) ∧ r2(x, c2) ∧ ¬r3(x, c3)

inp Q(x1) = ∃y1.r1(x1, y1) ∧ r2(y1, c1) ∧ ¬r3(y1, c2)
pin Q(x1) = ∃y1.r1(x1, y1) ∧ r2(y1, c1) ∧ ¬r3(x1, c2)

represents the chance of drawing assignment α(t) at step t, given distributions
{
µ
(t)
z |z ∈ {x⃗, y⃗}

}
.

The corresponding REINFORCE’s training loss is evaluated as a weighted sum of rewards generated
during Ttrain search steps and the model weights are then updated using the gradient descend equation:

θ ← θ − α · ∇θ

(
−
Ttrain−1∑
i=0

γi

((
logP (t)

)
·
Ttrain∑
t=i+1

(
γt−i−1R(t)

)))
where γ ∈ (0, 1] is a discount factor and α ∈ R is the learning rate.

For the training data, we use the training splits of the existing FB15k-237 and NELL CQA datasets
[3], consisting of queries of types: ‘1p’, ‘2p’, ‘3p’, ‘2i’, ‘3i’, ‘2in’, ‘3in’, ‘pin’, ‘inp’ (see Table 5
for the corresponding first-order logic formulas). Hence, during training, ANYCQ witnesses queries
with projections, intersections and negations, learning principles of this logical structures. However,
all of these queries mention at most 3 free variables, remaining limited in size.

B.3 Hyperparameters and implementation

Architecture. We choose the hidden embedding size d = 128 in the ANYCQ architecture for all
experiments. All MLPs used in our model consist of two fully connected layers with ReLU [38]
activation function. The intermediate dimension of the hidden layer is chosen to be 128.

Training. The REINFORCE [34] discount factor λ is set to 0.75 for both datasets, following the
best configurations in ANYCSP experiments. During training, we run our models for Ttrain = 15
steps. The batch size is set to 4 for FB15k-237 and 1 for NELL, due to the GPU memory constraints.
All models are trained with an Adam [39] optimizer with learning rate 5 · 10−6 on a single NVIDIA
Tesla V100 SXM2 with 32GB VRAM. We let the training run for 4 days, which translates to 500,000
batches on FB15k-237 and 200,000 batches for NELL, and choose the final model for testing.

Inference. To run all experiments, we use an Intel Xenon Gold 6326 processor with 128GB RAM,
and an NVIDIA A10 graphics card with 24GB VRAM.

B.4 Trained ANYCQ versus random search

To clarify the contribution of the training procedure in ANYCQ, we conducted an additional ablation
comparing the fully trained model against an untrained random-search baseline. In this case, each
variable assignment is chosen independently and uniformly at random during the search process.
The resulting F1 scores, evaluated on QAC benchmarks, are presented in Table 6. Unsurprisingly,
the performance drops drastically when training is removed. In particular, the random search fails
completely on large-query splits, where the model must correctly assign values to over eight variables.

15

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

Table 6: F1-scores of trained and randomly initialzed models on QAC datasets.

Dataset Model 2p 3p pi ip inp pin 3-hub 4-hub 5-hub

FB15k-237-QAC random 3.3 0.0 4.9 2.9 4.4 3.5 0.0 0.0 0.0
ANYCQ 75.8 71.3 82.1 78.8 76.7 75.7 52.4 49.9 51.9

NELL-QAC random 2.8 0.0 3.3 2.4 3.1 3.1 0.0 0.0 0.0
ANYCQ 76.2 72.3 79.0 75.4 76.7 75.3 57.2 52.6 58.2

That said, we would like to acknowledge the potential of “simpler” strategies, such as greedy search
or hill-climbing, as promising future directions. While such algorithms were not applicable in the
ranking-based formulation of prior work (which required full entity rankings), our classification-based
setup now makes them feasible. Exploring these strategies could yield competitive baselines for
complex query answering; however, we consider this beyond the scope of the current study.

B.5 Scope of formulas

Importantly, our method is not limited to conjunctive formulas. Suppose we are given a Boolean
formula φ = ∃y⃗.Ψ(y⃗) where Ψ(y⃗) is quantifier-free and in disjunctive normal form (DNF), so that
Ψ(y⃗) = C1 ∨ ... ∨ Cn where each Ci is a conjunction of literals. Then:

φ ≡ (∃y⃗.C1) ∨ ... ∨ (∃y⃗.Cn)
which can be processed by ANYCQ by independently solving each (∃y⃗.Ci) and aggregating the re-
sults. Moreover, the ability of our model to handle higher arity relations enables efficient satisfiability
evaluation for existential formulas in the conjunctive normal form. Let ψ = ∃y⃗. (D1 ∧ ... ∧Dn)
where each Di is a disjunction of literals. Consider Di = li,1 ∨ ... ∨ li,m and let z⃗i = Var(Di).
We can view the disjunctive clause Di as a single relation Di(z⃗i) evaluating to

Sπ,G(Di(α(z⃗i)/z⃗i)) = max
j
Sπ,G(li,j(α(Var(li,j))/Var(li,j)))

Under this transformation, ψ = ∃y⃗. (D1(z⃗1) ∧ ... ∧Dn(z⃗n)) becomes a conjunctive query, hence
processable by ANYCQ. Up to our knowledge, we present the first query answering approach
efficiently scoring arbitrary CNF Boolean queries over incomplete knowledge graphs.

B.6 Expressivity

Standard graph neural networks are known to have limited expressive power [40], e.g. MPNNs
cannot produce different outputs for graphs not distinguishable by the Weisfeiler-Lehman algorithm
[41]. We argue that ANYCQ does not suffer from this limitation. It has been noticed that including
randomness in GNN models increases their expressiveness [42]. In our case, for any Boolean
conjunctive query Q = ∃y⃗Φ(y⃗) over a knowledge graph G and a relevant link predictor π, for any
assignment α : {y⃗} → V (G), there is a non-zero probability of α being selected at some point of the
search (see Appendix B.1). Hence, any ANYCQ model has a chance of correctly predicting Sπ,G(Q),
making it fully expressive for the tasks of QAC and QAR.

B.7 Fuzzy logic

Fuzzy logic has been widely adopted in the CQA literature as a way to evaluate the satisfiability
of logical formulas in a continuous, differentiable manner. It underpins several prominent methods,
including CQD [10], GNN-QE [4], and QTO [5], due to its modularity and interpretability. However,
especially when applied to large and structurally complex queries, fuzzy logic introduces several
limitations that should be taken into account.

Score vanishing. Consider a conjunction of 10 literals, each scored at 0.9 by the link predictor.
When using the product t-norm, the formula score becomes 0.910 ≈ 0.35, despite all individual facts
being highly probable. This effect becomes more pronounced in long formulas, leading to overly
conservative judgments. To mitigate this, we adopt the Gödel t-norm (min operator), which in the
same scenario would return a more stable score of 0.9. Additionally, using the Gödel t-norm with
a 0.5 threshold is equivalent to applying propositional logic over binarized literal scores, making it
well-suited for our classification-based objectives.

16

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

Gradient instability in supervised learning. As discussed by Van Krieken et al. [43], another issue
with fuzzy logic arises in differentiable learning settings, where gradients must propagate through the
query structure and the fuzzy connectives. This can lead to vanishing or unstable gradients, especially
for large or cyclic queries. In our case, however, this problem is largely avoided: ANYCQ is trained
using reinforcement learning, where the fuzzy logic score is used as a scalar reward signal and not
differentiated through. During training, we apply REINFORCE, which treats the Boolean score as
an external reward, and during inference, fuzzy logic is only used to rank complete assignments.
As such, our framework sidesteps the gradient-related challenges described in Van Krieken et al. [43],
while retaining the benefits of fuzzy logic for scoring.

B.8 Edge labels

To effectively navigate the space of variable assignments, our framework augments the computational
graph GQ,α with edge labels that encode information from the link predictor π. These edge labels
play a critical role in guiding the search process by helping the model answer two fundamental
questions:

• Which assignments to variables are worth considering? (exploration)
• How should the current assignment be changed to satisfy more literals? (exploitation).

To this end, we define two types of edge labels on the graph edges connecting literal vertices vψi
with value vertices ve→a: potential edge (PE) labels and light edge (LE) labels. PE labels are used to
identify whether a particular substitution could lead to a satisfying assignment and are independent of
the current state. They support exploration by indicating globally promising directions in the search
space and can be seen as a way to constrain the search to regions of high potential. In contrast, LE
labels are assignment-dependent and indicate whether a local change - modifying a single variable’s
value, would make a particular literal true. They enable exploitation by directing the model toward
refinements of the current assignment that increase the satisfiability of the formula. We describe each
type of label in detail in the following subsections.

B.8.1 LE Labels: Guiding Local Improvements

Light edge (LE) labels were originally introduced in the ANYCSP [27] framework as the primary
mechanism for guiding discrete search. In the context of query answering, their purpose is to identify
marginal changes to the current variable assignment that are likely to increase the number of satisfied
literals in the query. That is, given an assignment α, LE labels help determine which single-variable
substitutions are most promising for improving the current solution. This makes them particularly
useful during local exploitation, where the goal is to refine an existing candidate assignment rather
than explore the full space.

Formal definition. Let Q = ∃y⃗.Φ(y⃗) be an existential Boolean conjunctive query, and let ψi be
a literal in Q, mentioning terms z⃗. Let α be the current assignment to the variables of Q, and let
e ∈ z⃗ be a term in ψi. For a candidate entity a ∈ D(e) (recall that D(e) = V (G) for variables and
D(e) = {e} for constants), the LE label on the edge between the literal vertex vψi and the value
vertex ve→a is defined as follows:

LE(vψi , vz,a;α) =

{
1 if Sπ,G(ψi(αz→a(z⃗)/z⃗)) ≥ 0.5

0 otherwise

This definition reflects whether updating the current assignment α by changing only the value of e to a
(keeping all other variable assignments fixed) is sufficient to make the literal ψi true.

Example. Suppose the query is:

Q = ∃y1, y2.r(a, y1) ∧ s(y1, y2)

with the current assignment α = {y1 → a1, y2 → a2}, and we focus on the literal ψ2 = s(y1, y2).
Let’s consider a marginal update to the variable y2, and let a′2 ∈ D(y2). To determine the LE label
LE(vψ2 , vy2→a′2

;α), we check whether s(a1, a′2) holds in the (predicted) KG G̃. If it does, then
this local update would satisfy ψ2, and the label is set to 1. Otherwise, the label is 0. This allows
the model to reason about whether changing y2 to a′2 would improve the current assignment in terms
of satisfying more of the query structure.

17

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

Table 7: F1-scores of ANYCQ models with and without PE labels.

FB15k-237-QAR NELL-QAR
PE labels 3-hub 4-hub 5-hub 3-hub 4-hub 5-hub

✓ 56.3 52.7 54.1 51.4 53.0 48.4
× 0.0 0.0 0.0 0.0 0.0 0.0

B.8.2 PE Labels: Prioritizing Promising Assignments

Potential edge (PE) labels are introduced in this work as an extension to the ANYCSP framework,
specifically to address the challenges posed by the large domain sizes in modern knowledge graphs.
While LE labels guide the refinement of a given assignment, PE labels serve a complementary
purpose: they help identify which candidate variable assignments are worth considering in the
first place. In other words, PE labels support exploration by informing the model which edges
in the computational graph represent substitutions that are likely to participate in some satisfying
assignment, independent of the current state.

Formal definition. Formally, let Q = ∃y⃗.Φ(y⃗) be a conjunctive Boolean query, let ψi ∈ Φ be a
literal mentioning terms z⃗, and let e ∈ z⃗. Then, for every a ∈ D(e), the PE label on the edge between
vψi and ve→a is defined as follows:

PE(vψi , vz,a) =

{
1 if ∃α. (α(e) = a ∧ Sπ,G(ψi(α(z⃗)/z⃗)) ≥ 0.5)

0 otherwise

Intuitively, the label is set to 1 if there exists any full assignment to the variables of ψi such that ψi
becomes true when e is set to a. Importantly, this is evaluated without reference to the current partial
assignment α, making PE labels suitable for filtering the search space early in the computation.

Example. Consider the same example query as before:

Q = ∃y1, y2.r(a, y1) ∧ s(y1, y2)

and the literal ψ2 = s(y1, y2). Let a2 ∈ D(y2) be a viable assignment to y2. To evaluate the PE label
PE(vψ2 , vy2→a2), we check whether ∃y1.s(y1, a2) is satisfied, i.e. whether there exists some a1 such
that the literal s(a1, a2) is true, according to the link predictor π. If such a1 exists, we set the label
to 1, and otherwise – to 0. This allows the GNN to prioritize reasoning about value assignments that
could plausibly contribute to satisfying the query, rather than wasting capacity on highly unlikely
candidates.

Importance of PE labels. We empirically validate the significance of this modification on the
proposed QAR benchmark. To this end, we train an ANYCQ model from scratch, disabling the signal
from PE labels by setting all of them to 0 throughout the training and inference. The results, shown
in Table 7, demonstrate that without access to PE labels, ANYCQ fails to generalize to queries of
large size and is unable to produce a correct answer, even for a single sample.

PE label generation. Given the critical role of this modification in our framework, it is essential to
address the efficient generation of PE labels. In this work, we pre-compute PE labels for both datasets,
aligning them precisely with the definitions, with respect to the selected test link predictors. However,
this process can become computationally expensive, potentially requiring hours, and becoming highly
inefficient, particularly in scenarios where the link predictor frequently changes, e.g. during validation.
To mitigate this inefficiency, we propose alternative methodologies to approximate true PE labels,
enabling faster cold-start inference.

Our main alternative bases on the closed world assumption (CWA) [9], which restricts the set of
entities that should be considered for prediction of unobserved facts. Formally, let G be an observable
knowledge graph and let G̃ be its completion. Then, for any r ∈ R(G) and any a, b ∈ V (G):

G̃ |= r(a, b) =⇒ ∃b′ ∈ V (G) . G |= r(a, b′)

G̃ |= r(a, b) =⇒ ∃a′ ∈ V (G) . G |= r(a′, b)

18

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

With this assumption, the set of pairs for which G̃ |= r(a, b) holds becomes limited. Indeed, a needs
to be a head of an observable relation r(a, b′) and analogously, b needs to be a tail of an observable
r(a′, b). Therefore, the induced approximation of PE labels:

P̂E(vr(x,y), vx,a) =

{
1 if ∃b′ ∈ D(y).G |= r(a, b′)

0 otherwise

P̂E(vr(x,y), vy,b) =

{
1 if ∃a′ ∈ D(x).G |= r(a′, b)

0 otherwise

can be efficiently derived in time O(|E(G)|). We use this modification during the validation process
to avoid the necessity of computing the precise PE labels.

An alternative approach, not explored in this work, involves incorporating domain-specific information
about the underlying knowledge graph. For instance, if the relation in a given query is fatherOf, both
entities are likely to be humans. By labeling all entities in V (G) with relevant tags, such information
could be extracted, and objects classified as ‘people’ could be assigned a corresponding PE label
of 1. While we prioritize generalizability and do not pursue this direction, we recognize its potential,
particularly for sparse knowledge graphs where CWA-derived PE labels may be too restrictive.

PE labels versus domain restriction. An alternative to relying on an additional set of labels
to prevent the search from accessing unreasonable assignments could be restricting the domains
D(y) of the considered variables. In the current formulation, each variable y mentioned in the
input Boolean query Q is assigned a domain D(y) = V (G). Reducing the considered domains can
significantly shrink the computational graph, leading to faster computation. Such a solution would be
specifically beneficial when operating on large knowledge graphs, and even essential for applications
to milion-scale KGs, such as Wikidata-5M [44]. While this approach improves inference efficiency,
improper application can render correct answers unreachable due to excessively restrictive domain
reductions. Consequently, we leave further exploration of this direction for future work.

19

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

C Theorems and proofs
Theorem C.1. Let Q = ∃y⃗.Φ(y⃗) be a conjunctive Boolean query and let Θ be any ANYCQ model
equipped with a predictor π. For any execution of Θ on Q, running for T steps:

P (Θ(Q|G, π) = Sπ,G(Q))→ 1 as T →∞

Proof. Let Θ be an ANYCQ model equipped with a predictor π for a knowledge graph G. Let
Q = ∃y⃗.Φ(y⃗) be a conjunctive Boolean query with y⃗ = y1, ..., yk. Let

αmax = argmax
α:y⃗→V (G)

Sπ,G(Φ(α(y⃗)/y⃗))

so that
Sπ,G(Q) = Sπ,G(Φ(αmax(y⃗)/y⃗))

Consider an execution of Θ, running for T steps, and let α(0), ..., α(T) be the generated assignments.
Then,

P (Θ(Q|G, π) ̸= Sπ,G(Q)) = P
(
Sπ,G(Q) ̸= Sπ,G

(
Φ
(
α(t)(y⃗)/y⃗

))
for all 0 ≤ t ≤ T

)
≤ P

(
Sπ,G(Q) ̸= Sπ,G

(
Φ
(
α(t)(y⃗)/y⃗

))
for all 1 ≤ t ≤ T

)
≤ P

(
α(t) ̸= αmax for all 1 ≤ t ≤ T

)
By the remark at the end on Appendix B.1:

P
(
α(t)(y) = a

)
≥ 1

e100|V (G)|
∀1 ≤ t ≤ T ∀a ∈ V (G) ∀y ∈ y⃗

In particular:

P
(
α(t)(y) = αmax(y)

)
≥ 1

e100|V (G)|
∀1 ≤ t ≤ T ∀y ∈ y⃗

so as the value for each variable in α(t) is sampled independently:

P
(
α(t) = αmax

)
≥
(

1

e100|V (G)|

)k
Therefore:

P (Θ(Q|G, π) ̸= Sπ,G(Q)) ≤ P
(
α(t) ̸= αmax for all 1 ≤ t ≤ T

)
≤

(
1−

(
1

e100|V (G)|

)k)T
which tends to 0 as T →∞.

20

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

Proposition C.2 (Scores of a Perfect Link Predictor). Let Q be a quantifier-free Boolean formula
over an observable knowledge graph G. Then, the score of Q w.r.t. the perfect link predictor π̃ for
the completion G̃ of G satisfies:

Sπ̃,G(Q) =

{
0 if G̃ ̸|= Q

1 if G̃ |= Q

Proof. The claim follows from the structural induction on the formula Q. For the base case, suppose
that Q is an atomic formula r(a, b). The result follows trivially from the definition of a perfect link
predictor π̃. Assume the claim holds for boolean formulas Q,Q′. Then:

Sπ̃,G(¬Q) = 1− Sπ̃,G(Q) =

{
1 if G̃ ̸|= Q

0 if G̃ |= Q
=

{
1 if G̃ |= ¬Q
0 if G̃ ̸|= ¬Q

For (Q ∧Q′), note that G̃ |= (Q ∧Q′) ⇐⇒
(
(G̃ |= Q) ∧ (G̃ |= Q′)

)
and hence

Sπ̃,G(Q ∧Q′) = min (Sπ̃,G(Q), Sπ̃,G(Q
′)) =

{
1 if Sπ̃,G(Q) = Sπ̃,G(Q

′) = 1

0 otherwise

=

{
1 if G̃ |= Q ∧ G̃ |= Q′

0 otherwise

=

{
1 if G̃ |= (Q ∧Q′)

0 if G̃ ̸|= (Q ∧Q′)

Similarly, for (Q ∨Q′), since G̃ |= (Q ∨Q′) ⇐⇒
(
(G̃ |= Q) ∨ (G̃ |= Q′)

)
, we can deduce:

Sπ̃,G(Q ∨Q′) = max (Sπ̃,G(Q), Sπ̃,G(Q
′)) =

{
0 if Sπ̃,G(Q) = Sπ̃,G(Q

′) = 0

1 otherwise

=

{
0 if G̃ ̸|= Q ∧ G̃ ̸|= Q′

1 otherwise

=

{
0 if G̃ ̸|= (Q ∨Q′)

1 if G̃ |= (Q ∨Q′)

which completes the inductive step.

Theorem C.3. Let Q = ∃y⃗.Q(y⃗) be a conjunctive Boolean query over an unobservable knowledge
graph G̃ and let Θ be any ANYCQ model equipped with a perfect link predictor π̃ for G̃. If
Θ(Q|G, π̃) > 0.5, then G̃ |= Q .

Proof. Consider the setup as in the theorem statement and suppose Θ(Q|G, π̃) > 0.5. Then, there
exists an assignment α : y⃗ → V (G) (found at some search step) such that

Sπ̃,G(Φ(α(y⃗)/y⃗)) = Θ(Q|G, π̃) > 0.5

By Proposition C.2, this implies:

Sπ̃,G(Φ(α(y⃗)/y⃗)) = 1 and G̃ |= Φ(α(y⃗)/y⃗)

Hence, G̃ |= ∃y⃗.Φ(y⃗) = Q.

21

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

1. 2.

v

3.

4. 5. 6.

Query graph:

y1

y2

r1

c1

y4

y3

r2

x1
r3

r4

r5

r2

Figure 4: Visualisation of the process of generating large queries for our benchmark
datasets, with nhub = 2, pout = 0.5 and nmin = 5. The resulting sampled query is:
Q(x1) = ∃y1, y2, y3, y4(r2(x1, y2) ∧ r1(y2, y1) ∧ r2(x1, y3) ∧ r5(y3, y4) ∧ r3(y4, x1) ∧ r4(c1, y4))

Figure 5: Examples of undirected query graphs of formulas from the FB15k-237-QAR ‘3-hub’ split.
Blue nodes represent constant terms, while grey - to the existentially quantified variables. The orange
node corresponds to the free variable.

22

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

Table 8: Hyperparameters for the generated dataset splits.

Split nhub pconst pout

3-hub 2 0.6 0.95
4-hub 3 0.8 0.97
5-hub 4 1.0 0.99

D Dataset constructions

Benchmark datasets in the existing query answering literature, FB15k-237 [28] and NELL [29],
comprise formulas with simple structures, thereby impeding the comprehensive evaluation and
advancement of methodologies and algorithms. We address this gap by creating new validation and
test datasets on top of well-established benchmarks, consisting of queries with complexity exceeding
the processing power of known approaches. In particular, we increase the number of variables
mentioned in the considered formulas from 3 to between 12 and 20, while imposing structural
difficulty by sampling query graphs with multiple cycles, long-distance reasoning steps and multi-
way conjunctions.

D.1 Base large query generation

Each of the considered datasets: FB15k-237 and NELL, provides three knowledge graphs Gtrain, Gval,
Gtest, for training, validation and testing, respectively, satisfying E(Gtrain) ⊂ E(Gval) ⊂ E(Gtest).
During validation, Gtrain is treated as the observable graph G, while Gval as its completion G̃.
Similarly, for testing, G = Gval and G̃ = Gtest.

We begin the dataset generation by sampling base formulas, to be later converted into in-
stances for the QAC and QAR benchmarks. During sampling, we use four hyperparameters:
nhub, nmin, pconst and pout, whose different values contribute to creating different benchmark splits.
The process is visualized in Figure 4. A single base query is sampled as follows:

1. A vertex v ∈ V (G) is sampled uniformly at random from V (G).

2. Let Ni(v) be the set of nodes whose distance from v in G̃ is at most i. Without repetitions,
sample nhub ‘hub’ vertices from N2(v) and call their set P . If |N2(v)| < nhub, return to step 1.

3. Consider the union of 1-hop neighborhoods of the ‘hub’ vertices: D =
⋃
w∈P∪{v}N1(w).

4. If w ∈ D is a leaf in the restriction G̃D of G̃ to D, remove it from D with probability pout.

5. Sample a set D′ of nmin vertices from D, such that the restriction of G̃ to D′ ∪ P ∪ {v}
is a connected subgraph. Let P ′ = D′ ∪P ∪{v}. If the restriction G̃P ′ of G̃ to P ′ is a subgraph
of the observable graph G, return to step 1.

6. For each node w in D′ independently, choose it to be portrayed by a constant term with proba-
bility pconst

d2
P ′ (w)

, where dP ′(w) is the degree of w in restriction of G̃ to P ′.

7. The restriction G̃P ′ of G̃ to P ′ is then converted into the corresponding conjunctive formula,
by transforming each edge r(w1, w2) ∈ E(G̃P ′) into a literal r(w1, w2). The vertex v is then
replaced by the single free variable x1 and all nodes that were not chosen to be constant, are
realized by distinct existentially quantified variables.

For formulas sampled from FB15k-237, we choose nmin = 15, while for NELL instances, nmin = 12,
due to the sparsity of the knowledge graph. We consider three different choices of the parameters
nhub, pconst and pout, resulting in three distinct splits, namely “3-hub”, “4-hub” and “5-hub”, and
sample 1000 formulas of each type. Using an SQL engine [35], we then solve these queries with
respect to both observable and unobservable knowledge graphs, discarding those with no hard answers.
The parameter values for each split are presented in Table 8.

23

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

Table 9: Statistics of introduced QAC datasets.

2p 3p pi ip inp pin 3-hub 4-hub 5-hub
FB15k-237-QAC

#queries 500 500 500 500 500 500 300 300 300
#answers 9818 9828 9632 9358 9808 9898 2036 1988 2028
%easy 26.5% 24.0% 27.5% 28.7% 35.8% 32.9% 18.7% 16.6% 17.0%
%hard 23.5% 26.0% 22.5% 21.3% 14.2% 17.1% 31.3% 33.4% 33.0%
%neg 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0%

NELL-QAC
#queries 500 500 500 500 500 500 300 300 300
#answers 9708 9702 9478 9694 9698 9888 2174 2186 1922
%easy 23.6% 22.6% 25.2% 23.6% 35.8% 32.8% 15.9% 14.4% 13.7%
%hard 26.4% 27.4% 24.8% 26.4% 14.2% 17.2% 34.1% 35.6% 36.3%
%neg 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0%

D.2 Query answer classification datasets

We propose two benchmarks for query answer classification: FB15k-237-QAC and NELL-QAC.
Instances in each dataset are stored in a unified form:

(Q(x), CQ,WQ)

where Q(x) is the input formula and CQ,WQ are subsets of V (G) with |CQ| = |WQ| such that:

G̃ |= Q(a/x) ∀a ∈ CQ and G̃ ̸|= Q(b/x) ∀b ∈WQ

Each of our QAC benchmarks includes 9 splits, which can be broadly divided into two parts. Their
statistics are more broadly described in Table 9. %easy, %hard, and %neg represent the proportions
of easy answers, hard answers, and incorrect proposals in each split, respectively.

In the first part of our benchmarking, we utilize samples from existing CQA datasets, focusing
exclusively on formulas that include projections. This choice is crucial, as grounding the free
variables in non-projection queries (e.g., ‘2i’, ‘3i’, ‘2u’, ‘2in’, ‘3in’) reduces the task to a set of
independent link prediction problems, which do not meaningfully test reasoning capabilities beyond
atomic fact retrieval. Similarly, disjunctive queries (e.g., ‘up’) can be decomposed into independent
subqueries under the QAC setting, introducing little additional complexity and offering limited insight
into a model’s reasoning abilities.

We instead select a representative subset of six query types: ‘2p’, ‘3p’, ‘ip’, ‘pi’, ‘inp’, and ‘pin’,
spanning key logical constructs such as projection, conjunction, and negation. This selection allows
for both robust evaluation and continuity with prior work, enabling meaningful comparison with
classical and neural CQA baselines under the classification-based objective. For each query type, we
sample 500 queries to ensure a balanced and reliable evaluation.

For the main components of FB15k-237-QAC and NELL-QAC, we convert large base queries into
QAC instances, reducing the size of each split to 300 queries. These samples are characterized by
significant structural complexity, presenting a substantial challenge for both existing and future query
answering methods.

In both cases, the size |CQ| = |WQ| is chosen as clip(|{a ∈ V (G) : G̃ |= Q(a/x)}|, 5, 10). WQ is
then sampled uniformly from the set of incorrect groundings for Q(x), while CQ is drawn from the
set of answers to Q(x), assigning non-trivial answers twice higher probability than the easy ones.

D.3 Query answer retrieval datasets

Most samples in CQA benchmarks yield answers within the observable knowledge graph G. Due
to their simplicity, these instances are trivial for query answer retrieval, as classical solvers can
efficiently derive the correct answers. Consequently, we do not include such small queries in our

24

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

Table 10: Statistics of introduced QAR datasets.

FB15k-237-QAR NELL-QAR
3-hub 4-hub 5-hub 3-hub 4-hub 5-hub

#queries 1200 1200 1200 1000 1000 1000
#trivial 565 537 586 387 416 417
#free=1 400 400 400 400 400 400
#free=2 400 400 400 300 300 300
#free=3 400 400 400 300 300 300

FB15k-237-QAR and NELL-QAR datasets. Instead, we focus on addressing the limitations of current
benchmarks by including more complex queries involving multiple free variables.

For the single free variable case, we select 400 base queries from each split. To generate formulas
of arity 2, we randomly remove the quantification over one of the existentially quantified variables.
The resulting query is then solved using an SQL engine, leveraging information from the initial
answer set to optimize computation. An analogous methodology is applied to extend the arity 2
formulas to instances with 3 free variables. Statistics of the generated test splits are available in
Table 10. #trivial is the number of samples admitting a trivial answer, and #free=k - arity k formulas.

D.4 Evaluation protocol

Query answer classification. We use the F1-score as the metric to measure the performance on the
task of query answer classification. The reported F1-scores (Table 1) are an average of F1-scores for
single instances (Q(x), CQ,WQ) taken over the whole dataset. Formally, letting D be the considered
dataset and denoting by A(θ,Q) the set of entities from CQ ∪WQ marked by the model θ as correct
answers to Q(x), we report:

F1QAC(θ) =
1

|D|
∑

(Q(x),CQ,WQ)∈D

2|A(θ,Q) ∩ CQ|
2|A(θ,Q) ∩ CQ|+ |A(θ,Q)\CQ|+ |WQ ∩A(θ,Q)|

Query answer retrieval. We adapt the F1-score metric to the task of QAR. In particular, we count
a positive outcome (i.e. solution prediction) as correct if and only if it is a true answer to the query.
Given a model θ, let Rec(θ) be the proportion of correctly answered positive instances in the dataset,
while Prec(θ) be the ratio of correctly answered positive instances among the queries for which θ
predicted a solution. We then report:

F1QAR(θ) =
2

1
Prec(θ) +

1
Rec(θ)

E Link predictors
As mentioned in Section 5.1, we incorporate a link predictor into our architecture, to address the
problem of deducing facts not presented in the observable knowledge graph. We consider three
different model types from the existing CQA literature: transductive knowledge graph embedding
method ComplEx [13] used in QTO and FIT, inductive (on nodes) method NBFNet [17] employed
by GNN-QE, and inductive (on nodes and relations) knowledge graph foundation model ULTRA [19],
lying at the heart of ULTRAQUERY.

E.1 ComplEx

Recall that a ComplEx model χ assigns each entity e ∈ V (G) and each relation r ∈ R(G), a dχ-
dimensional complex-valued vector ve, wr ∈ Cdχ . We choose the hidden dimension of dχ = 1000
for all experiments. For each triple (r, a, b) ∈ R(G)× V (G)× V (G), the score of the entities a, b
being in relation r is derived as:

χ(r, a, b) = ℜe (⟨va, wr, vb⟩) = ℜe

 dχ∑
i=1

(va)i(wr)i(vb)i


25

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

Training. For training, we follow the relation prediction methodology, presented in [45], evaluating
the loss as a sum over all known facts r(a, b) ∈ E(G) of three cross-entropy losses, marginalizing
the head, the relation and the tail:

Lr(χ) = −
∑

r(a,b)∈E(G)

(
log(pχ,τ (a|r, b)) + log(pχ,τ (b|a, r)) + λrel log(pχ,τ (r|a, b))

)
+ Lreg

where Lreg is a nuclear 3-norm [46] regularization term and the marginal probabilities are evaluated
as:

Lreg =
dχ∑
i=1

2 ·
∑

a∈V (G)

|(va)i|3 +
∑

r∈R(G)

|(wr)i|3


pχ,τ (a|r, b) =
exp(τ · χ(r, a, b))∑

a′∈V (G) exp(τ · χ(r, a′, b))

pχ,τ (b|a, r) =
exp(τ · χ(r, a, b))∑

b′∈V (G) exp(τ · χ(r, a, b′))

pχ,τ (r|a, b) =
exp(τ · χ(r, a, b))∑

r′∈R(G) exp(τ · χ(r′, a, b)))

where τ is a factor controlling the temperature of the applied softmax function. During training, we
set τ = 1. For each dataset, the model is trained using the AdaGrad [47] optimizer with a learning
rate 0.1 for 500 epochs, and the checkpoint maximizing validation accuracy is chosen for testing.

Conversion to the probability domain. To match the definition of a link predictor from Section 3,
the uncalibrated scores χ(r, a, b) assigned by the ComplEx model χ need to be converted into
probabilities ρC(r, a, b) = P(r(a, b) ∈ E(G̃)|χ). We follow the ideas used in QTO [5] and FIT [6],
and set them as proportional to the marginal probabilities pχ,τ (b|a, r). By definition, pχ,τ (·|a, r)
defines a distribution over V (G): ∑

b∈V (G)

pχ,τ (b|a, r) = 1

Therefore, to match the objective:∑
b∈V (G)

P(r(a, b) ∈ E(G̃)|χ) =
∣∣∣{b ∈ V (G) : r(a, b) ∈ E(G̃)

}∣∣∣
we multiply the marginal probabilities by a scaling factor Qa,r, specific to the pair (a, r):

ρC(r, a, b) = P(r(a, b) ∈ E(G̃)|χ) = Qa,r · pχ,τ (b|a, r)

We consider two scaling schemes: QQTO
a,r introduced in QTO, and QFIT

a,r described by FIT. Both
methods base on the cardinality of the set Ea,r = {b ∈ V (G) : r(a, b) ∈ E(G)} of trivial answers to
the query Q(x) = r(a, x):

QQTO
a,r = |Ea,r|

QFIT
a,r =

|Ea,r|∑
b∈Ea,r pχ,τ (b|a, r)

During validation, we search for the best values for τ among [0.5, 1, 2, 5, 10, 20] on each validation
query type. We notice that τ = 20 performs best in all experiments. The resulting link predictors ρFIT

C
and ρQTO

C , after augmenting them with links from the observable graphs as described below, are then
plugged into the respective neuro-symbolic frameworks for QTO and FIT evaluations on small-query
QAC splits. For experiments with ANYCQ equipped with ComplEx-based predictors, we use the
FIT, as it proved more accurate during validation.

26

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

Table 11: Average F1-scores of ANYCQ on the query answer classification task.

Dataset Predictor 2p 3p pi ip inp pin 3-hub 4-hub 5-hub

FB15k-237-QAC
ComplEx 66.9 63.1 70.7 67.6 78.4 75.2 39.5 32.3 36.1
NBFNet 75.8 71.3 82.1 78.8 76.7 75.7 52.4 49.9 51.9
ULTRA 70.4 56.2 77.3 70.6 72.4 73.0 32.6 26.9 29.1

NELL-QAC
ComplEx 63.8 64.0 68.2 61.7 74.8 75.0 39.1 40.0 34.9
NBFNet 76.2 72.3 79.0 75.4 76.7 75.3 57.2 52.6 58.2
ULTRA 76.0 23.0 81.2 76.3 70.8 74.0 33.2 30.8 25.5

E.2 NBFNet

As the second studied predictor, we consider Neural Bellman-Ford Network [17], constituting the
main processing unit in GNN-QE [4]. For the ANYCQ experiments, we reuse the NBFNet check-
points obtained from training GNN-QE over the considered datasets. We follow the configurations
from the original repository – models are trained for 10 epochs, processing 48,000 instances per epoch
for the FB15k-237 training, and 24,000 samples per epoch for NELL, with Adam [39] optimizer with
learning rate 0.005. We validate 0.25 to be the optimal threshold for binarizing GNN-QE predictions,
and apply it for the small-query QAC experiments. When testing ANYCQ with the underlying
NBFNet models, we first binarize the output of the NBFNet ν:

ρν(r, a, b) =

{
1 if ν

(
r(a, b)

)
≥ t

0 if ν
(
r(a, b)

)
< t

After validation, we set t = 0.5 for the small-query FB15k-237-QAC splits, t = 0.4 for the small-
query NELL-QAC splits and t = 0.6 for all large-query evaluations.

E.3 ULTRA

Finally, to test ANYCQ’s ability of inductive link prediction over unseen relation, we consider
ULTRA [19], a prominent knowledge graph foundation models, as the third studied predictor for
zero-shot inference. For the ANYCQ experiments, we directly apply the 3g checkpoints from the
original ULTRA repository, which are pre-trained on FB15k-237 [28], WN18RR [48], and CoDEx
Medium [49] for 10 epochs with 80,000 steps per epoch, with AdamW [50] using learning rate of
0.0005. Similarly to the methodology applied to NBFNet, we binarize the output of the ULTRA
model υ when equipping it to ANYCQ. In this case, following validation, we choose t = 0.4 as the
best threshold for small query QAC experiments, and a higher t = 0.9 for formulas in large QAC and
QAR splits.

As an additional baseline, we compare another state-of-the-art CQA method over unseen relation
ULTRAQUERY [20], which also utilizes ULTRA as its link predictor. We validate that 0.2 is the best
answer classification threshold for ULTRAQUERY checkpoints provided ni the original repository,
trained only on the CQA benchmark based on FB15k-237. We highlight that the results of ULTRA-
QUERY on NELL are hence zero-shot inference, since NELL is not in the pretraining dataset of the
evaluated checkpoints.

E.4 Incorporating the observable knowledge graph

To account for the knowledge available in the observable graph G, we augment all considered link
predictors ρ, setting ρ(r, a, b) = 1 if r(a, b) ∈ E(G). To distinguish between known and predicted
connections, we clip the predictor’s estimations to the range [0, 0.9999]. Combining all these steps
together, given a predictor ρ, in our experiments we use:

π(r, a, b) =

{
1 if r(a, b) ∈ E(G)

min
(
ρ(r, a, b), 0.9999

)
otherwise

This methodology is applied for all ANYCQ experiments, to each of ρC, ρν and ρυ, obtaining the
final πC, πν and πυ , directly used for ComplEx-based, NBFNet-based and ULTRA-based evaluations,
respectively.

27

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

Table 12: F1-scores of ANYCQ equipped with different predictors on the QAR datasets.

Dataset Predictor 3-hub 4-hub 5-hub

k=1 k=2 k=3 total k=1 k=2 k=3 total k=1 k=2 k=3 total

FB15k-237-QAR

SQL 65.8 46.2 17.8 45.7 59.9 50.2 33.7 48.7 60.6 49.3 42.5 51.2
ComplEx 67.3 56.3 43.4 56.3 57.7 54.4 45.6 52.7 62.8 54.3 44.1 54.1
NBFNet 67.8 62.3 50.2 60.5 60.4 54.0 48.2 54.5 63.0 56.9 43.1 54.8
ULTRA 65.3 57.1 44.1 56.0 57.1 52.4 42.2 50.8 59.4 54.3 41.3 52.0

NELL-QAR

SQL 63.5 41.3 24.0 46.7 60.6 42.1 32.9 47.7 52.7 42.5 27.6 42.8
ComplEx 62.8 50.0 34.6 51.4 61.7 52.1 40.7 53.0 55.1 50.0 36.5 48.4
NBFNet 66.7 55.1 39.1 55.8 65.1 57.1 46.5 57.6 58.7 51.1 39.6 51.1
ULTRA 57.4 44.6 31.5 46.5 56.4 43.8 35.2 46.7 49.1 40.4 31.5 41.5

E.5 Combination with ANYCQ

As mentioned in Section 5.4, the ANYCQ framework can be equipped with any link predictor
capable of predicting relations over the studied knowledge graph. For this reason, to ensure that our
choice matches the most accurate setup, we validate the performance of the predictors described in
previous subsections, and test ANYCQ combined with ComplEx-based predictor with FIT scaling
(Appendix E.1), NBFNet (Appendix E.2) and ULTRA (Appendix E.3). Following validation, we
choose NBFNet to be equipped for ANYCQ evaluations in all main experiments (Table 1 and Table 2).

As an additional ablation study, we generate the test results of the remaining combinations. The
results on the QAC task are presented in Table 11, while the scores on QAR benchmarks are shown
in Table 12.

For the small-query QAC splits, we observe that NBFNet and ULTRA strongly outperform ComplEx
on positive formulas (“2p”, “3p”, “ip”, “pi”), while struggling more with queries involving negations
(“inp”, “pin”). The observed drop in ULTRA’s results on the “3p” split is due to the model predicting
too many links to be true, assigning high confidence scores to a large fraction of candidate triples.
This behavior effectively expands the plausible search space, making it exponentially harder for the
RL policy to converge to correct assignments. When too many entities are deemed likely, both local
(LE) and global (PE) supervision signals become less informative, degrading the quality of guidance.

Overall, the performance of ANYCQ depends strongly on the characteristics of the underlying link
predictor. As shown in Table 12, predictors trained with classification objectives (e.g., NBFNet,
ULTRA) generally outperform embedding-based models such as ComplEx. However, in practice,
predictors with higher precision and more selective scoring distributions provide stronger search
guidance for ANYCQ. These results suggest that, for complex query answering, prioritizing precision
over recall in link predictor training yields more stable and effective search behavior.

For large-query classification, NBFNet demonstrates the most robust performance, achieving F1
scores exceeding 50% on nearly all splits, while the remaining predictors consistently stay below
40%. The evaluations on the QAR benchmarks confirm this trend: NBFNet consistently outperforms
both ComplEx and ULTRA, achieving the best results on most FB15k-237 and all NELL splits.

Transferability. Interestingly, we again point out that the used ULTRA model has not been trained on
the NELL dataset. Regardless, it manages to match the performance of the ComplEx-based predictor
on NELL-QAC and NELL-QAR benchmarks. Combining this observation with our ablation of
transferability of ANYCQ models between datasets (Section 6.3, Table 3), we can assume that similar
results would be achieved when running the evaluation with ANYCQ model trained on FB15k-237.
Such framework would then answer queries over NELL in a true zero-shot, fully inductive setting.
In future work, we look forward to exploring combinations of ANYCQ search engines trained over
broad, multi-dataset data, with fully inductive link predictors (like ULTRA), to achieve foundation
models capable of answering arbitrary queries over arbitrary, even unseen, knowledge graphs.

F Extended evaluation over QAR
Easy and hard F1-scores. To better understand the performance differences between ANYCQ and
SQL, we conduct a split evaluation over two categories of queries: (i) those with answers present in
the observable graph (easy instances) and (ii) those requiring inference beyond the observable graph
(hard instances). Results are reported in Table 13.

28

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

Table 13: Average F1-scores on easy and hard QAR samples, where k is the number of free variables.

Dataset Model 3-hub 4-hub 5-hub

k=1 k=2 k=3 total k=1 k=2 k=3 total k=1 k=2 k=3 total

Easy instances

FB15k-237-QAR SQL 94.0 75.9 41.8 77.1 93.2 83.5 68.9 83.7 92.1 77.7 76.1 82.7
ANYCQ 90.8 91.4 83.4 89.2 88.3 83.1 83.8 85.2 85.0 80.2 68.7 78.8

NELL-QAR SQL 97.2 81.7 71.3 88.6 94.8 81.7 77.6 87.6 94.1 88.0 78.0 89.0
ANYCQ 96.3 94.4 92.7 95.1 94.5 94.0 88.6 93.1 94.4 91.6 89.5 92.5

Hard instances

FB15k-237-QAR SQL 0 0 0 0 0 0 0 0 0 0 0 0
ANYCQ 20.9 14.5 20.0 18.5 16.2 13.1 12.2 13.8 28.8 19.5 14.8 20.9

NELL-QAR SQL 0 0 0 0 0 0 0 0 0 0 0 0
ANYCQ 13.1 13.1 7.7 11.1 17.7 16.8 15.2 16.5 16.8 15.0 11.0 14.3

Figure 6: ANYCQ search step time analysis for queries of different complexities: a) average step
time (AST) per the number of variables |y⃗|, b) AST divided by the number of variables |y⃗|, c) AST
divided by the number of literals |Q|, d) AST divided by |y⃗|+ 2|Q|, the complexity factor indicated
by the theoretical analysis.

On easy queries with a single free variable, SQL outperforms ANYCQ, though the margin is modest
(≤ 8% relative). As the number of free variables increases, ANYCQ consistently surpasses SQL.
While a classical solver could in principle answer these queries given unlimited time, our evaluation
threshold of 60 seconds leads SQL to time out on a non-trivial subset. This indicates that ANYCQ
can efficiently handle queries that impose substantial computational costs on symbolic engines.

On hard queries with no observable answers, SQL fails entirely, yielding 0% F1 across all splits.
In contrast, ANYCQ uses its integrated link predictor to infer missing edges while reasoning over
complex query structures, successfully recovering answers across all settings. These findings validate
our claims about the efficiency and effectiveness of ANYCQ: it not only enables prediction in
incomplete knowledge graphs but also serves as a practical query answering engine in scenarios
where classical solvers struggle.

Computational complexity of ANYCQ. Let Q = ∃y⃗.Φ(y⃗) be a conjunctive Boolean query over a
knowledge graph G. Denote by |Q| the number of literals in Q, let h be the maximum arity of a literal
in Q, and let c⃗ = (c0, ..., cs) be the mentioned constants. Then, the corresponding computational
graph contains (|V (G)|+ 1) · |y⃗|+ 2 · |⃗c|+ |Q| vertices and at most |V (G)|·(|y⃗|+h·|Q|)+h·|⃗c|·|Q|
edges. Since ANYCQ processes this graph in linear time, the complexity of a single search step is:

O (|V (G)| · (|y⃗|+ h · |Q|) + h · |⃗c| · |Q|)

Importantly, this complexity does not depend on the structure of the query graph of Q and scales only
linearly with the sizes of the input formula and the KG G.

We validate this linearity, evaluating the average ANYCQ search step time for queries of different sizes
from the ‘3-hub’ splits. The results, presented in Figure 6, indicate that the empirical performance
matches the theoretical analysis. In particular, Figure 6 b) and c) show that the processing time,
divided by the number of variables |y⃗| or the number of literals |Q| in the input query, respectively,
does not grow as the size of the query increases. We even notice a slight decreasing trend, which we
attribute to efficient GPU accelerations. The difference between step times on FB15k-237-QAR and
NELL-QAR remains consistent with the relative sizes of the underlying knowledge graphs.

29

AnyCQ: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs

Table 14: Recall on the easy samples from the QAR datasets with different SQL timeouts.

Model Timeout [s] 3-hub 4-hub 5-hub

k=1 k=2 k=3 total k=1 k=2 k=3 total k=1 k=2 k=3 total

FB15k-237-QAR

ANYCQ 60 83.3 84.2 71.6 80.5 79.1 71.1 72.1 74.3 74.0 67.0 52.3 65.0

SQL
30 82.8 51.5 20.3 55.6 71.9 49.7 34.4 53.6 74.0 51.0 43.8 56.8
60 88.7 61.2 26.4 62.8 87.2 71.7 52.6 71.9 85.3 63.6 61.4 70.5

120 93.2 69.4 35.8 69.9 90.8 76.5 55.2 75.8 88.7 67.0 67.6 74.7

NELL-QAR

ANYCQ 60 93.0 89.4 86.5 90.7 89.6 88.8 79.6 87.1 89.4 84.5 81.3 86.1

SQL
30 88.5 57.5 33.8 69.0 82.4 57.8 55.9 69.2 80.1 63.1 46.7 67.5
60 94.5 69.0 55.4 79.6 90.1 69.0 63.4 77.9 88.8 78.6 64.0 80.2

120 95.5 73.5 58.1 81.9 93.8 71.5 68.8 81.6 91.3 82.5 65.4 82.9

Experiments over impact of the timeout threshold. To further understand the impact of the
timeout threshold on SQL performance, we evaluate it on all QAR splits using three different time
limits: 30, 60, and 120 seconds. Results are reported in Table 14. We observe that the SQL engine’s
recall on easy queries improves marginally as the timeout increases, particularly for queries with
multiple free variables. However, its performance consistently deteriorates with increasing arity, even
under extended time limits. In contrast, ANYCQ maintains strong performance across all splits and
consistently outperforms SQL on retrieving easy answers to high-arity queries.

30

	1 Introduction
	2 Related work
	3 Preliminaries
	4 Query answering on incomplete KGs
	4.1 Query Answer Classification & Query Answer Retrieval

	5 AnyCQ: framework for query answering
	5.1 Query representation
	5.2 AnyCQ search process
	5.3 Training
	5.4 Theoretical and conceptual properties

	6 Experimental evaluation
	6.1 Experimental setup
	6.2 Main experiments results over QAC and QAR
	6.3 Ablation studies

	7 Summary, limitations, and outlook
	A Extended discussion of task formulations and baselines
	A.1 Limitations of existing problem formulations
	A.2 Limitations of existing baselines

	B AnyCQ details
	B.1 Architecture
	B.2 Training methodology
	B.3 Hyperparameters and implementation
	B.4 Trained AnyCQ versus random search
	B.5 Scope of formulas
	B.6 Expressivity
	B.7 Fuzzy logic
	B.8 Edge labels
	B.8.1 LE Labels: Guiding Local Improvements
	B.8.2 PE Labels: Prioritizing Promising Assignments

	C Theorems and proofs
	D Dataset constructions
	D.1 Base large query generation
	D.2 Query answer classification datasets
	D.3 Query answer retrieval datasets
	D.4 Evaluation protocol

	E Link predictors
	E.1 ComplEx
	E.2 NBFNet
	E.3 Ultra
	E.4 Incorporating the observable knowledge graph
	E.5 Combination with AnyCQ

	F Extended evaluation over QAR

