
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNDERSTANDING TOOL-INTEGRATED REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

We study why Tool-Integrated Reasoning (TIR) makes Large Language Models
(LLMs) more capable. While LLMs integrated with tools like Python code inter-
preters show great promise, a principled theory explaining why this paradigm is
effective has been missing. This work provides the first formal proof that TIR
fundamentally expands an LLM’s capabilities. We demonstrate that tools enable
a strict expansion of the model’s empirical and feasible support, breaking the
capability ceiling of pure-text models by unlocking problem-solving strategies that
are otherwise impossible or intractably verbose. To guide model behavior without
compromising training stability and performance, we also introduce Advantage
Shaping Policy Optimization (ASPO), a novel algorithm that directly modifies the
advantage function to guide the policy behavior. We conduct comprehensive exper-
iments on challenging mathematical benchmarks, leveraging a Python interpreter
as the external tool. Our results show that the TIR model decisively outperforms
its pure-text counterpart on the pass@k metric. Crucially, this advantage is not
confined to computationally-intensive problems but extends to those requiring
significant abstract insight. We further identify the emergent cognitive patterns
that illustrate how models learn to think with tools. Finally, we report improved
tool usage behavior with early code invocation and much more interactive turns
with ASPO. Overall, our work provides the first principled explanation for TIR’s
success, shifting the focus from the mere fact that tools work to why and how they
enable more powerful reasoning.

1 INTRODUCTION

Large language models (LLMs) have rapidly progressed from fluent generators to general-purpose
problem solvers. Nevertheless, purely text-based reasoning often struggles with tasks that demand
precise calculation, long-horizon search, faithful verification, or access to information beyond a
model’s parametric memory. As a powerful and empirically successful paradigm, Tool-Integrated
Reasoning (TIR) (Feng et al., 2025; Li et al., 2025b) has emerged to address these limitations.
Systems equipped with external tools have consistently and significantly outperformed their pure-text
counterparts (OpenAI, 2025a;b; xAI, 2025). However, despite the widespread recognition of TIR’s
effectiveness, a principled account of the fundamental mechanisms, specifically why and when it
helps, is still missing. Existing research has largely focused on demonstrating empirical success,
leaving a crucial gap for a formal framework that can elucidate the origins of its benefits and define
its capability boundaries.

To build such a framework, we first turn to reinforcement learning (RL) (Lambert et al., 2024; Sutton
et al., 1998), the predominant paradigm for enhancing LLM reasoning. Recent theoretical work
has established a critical consensus: in a pure-text environment, RL is constrained by an “invisible
leash” (Wu et al., 2025). The learning process is largely confined to re-weighting probabilities within
the base model’s pre-existing trajectories, meaning it cannot discover fundamentally new reasoning
trajectories that lie outside this initial capability (Yue et al., 2025).

The central thesis of this work is that tool integration fundamentally breaks this barrier. By introducing
deterministic, non-linguistic state transitions via an external tool like a Python interpreter, TIR
fundamentally expands the model’s exploratory space. We provide the first formal proof that TIR
enables a strict expansion of the model’s empirical support, allowing it to generate correct trajectories
that have negligible or even zero probability in a pure-text paradigm. Beyond theoretical reachability,
we introduce the concept of token efficiency to argue that tools are a practical necessity. For any finite

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

token budget, there exist algorithmic strategies whose programmatic representations are concise,
while their natural-language simulations are intractably verbose. Consequently, TIR unlocks a vastly
larger feasible support of problem-solving strategies that are simply out of reach for pure-text models
under realistic constraints. Extensions to other tools with informal propositions can be found in
Appendix E.

We validate these theoretical claims through a series of experiments focusing on solving mathematical
competition problems with a Python code interpreter. Our pass@k analysis provides clear evidence
that TIR decisively breaks the capability ceiling of pure-text models. Further investigation, using
our proposed “algorithmic friendliness” metric, reveals that TIR’s benefits are not confined to
computationally-intensive problems but extend to those requiring significant abstract insight. Case
studies of the model’s behavior further illuminate how it leverages this expanded capability, revealing
three emergent cognitive patterns: insight-to-computation transformation, exploration & verification
via code, and offloading of complex calculations.

Finally, in exploring how to further optimize TIR models, we identify a practical algorithmic challenge:
guiding model behavior, such as encouraging earlier tool use, via traditional reward shaping often
leads to training instability in GRPO-like algorithms (Shao et al., 2024; Feng et al., 2025). To address
this, we propose Advantage Shaping Policy Optimization (ASPO), a novel algorithm that circumvents
the reward function and instead applies a stable, controllable bias directly to the advantage function.
Our experiments show that ASPO successfully guides model behavior with early tool invocation and
increased tool usages without compromising task performance or training stability.

Our contributions are as follows:

1. We provide the first formal theory for why TIR expands an LLM’s capabilities, proving that
it enables a strict expansion of both the feasible and empirical support compared to pure-text
models.

2. We propose Advantage Shaping Policy Optimization (ASPO), a novel and stable algo-
rithm for guiding the behavior of TIR models by directly shaping the advantage function,
overcoming the instability of traditional reward-based methods.

3. We conduct a comprehensive empirical analysis that not only validates our theoretical claims
and algorithm but also provides a mechanistic explanation of TIR’s effectiveness, identifying
its universal benefits across problem types and the emergent cognitive patterns it fosters.

2 RELATED WORK

A significant body of work focuses on developing RL frameworks for strategic tool use. Feng et al.
(2025) propose ReTool, an RL-based framework that demonstrates high data efficiency for learning
tool use. Similarly, Li et al. (2025b) introduce ToRL, a method designed to address the challenges of
scaling tool-integrated RL to more complex and demanding scenarios. Bai et al. (2025) document
methods for effective code-integrated reasoning. This paradigm shares the goal of augmenting LLM
reasoning with external Python execution. Focusing on training from base models, Xue et al. (2025)
present SimpleTIR, an end-to-end framework for multi-turn TIR that enables stable training from
scratch, a process they refer to as the “Zero” setting.

While these methods show empirical success, other research investigates the theoretical limitations
of RL on LLM reasoning. Yue et al. (2025) empirically find that RL does not incentivize novel
reasoning capacity. Providing a theoretical framework to explain such findings, Wu et al. (2025)
propose the “invisible leash” theory, suggesting that models may struggle to discover reasoning paths
outside their original knowledge distribution.

Beyond programmatic tools like Python interpreters, another line of work integrates search engines
to equip LLMs with up-to-date knowledge via RL. Jin et al. (2025) propose Search-R1, where LLMs
interleave reasoning with real-time queries, trained with outcome-based rewards and stabilized by
masking retrieved tokens, achieving strong multi-turn QA performance. To tackle uncertainty in
complex web tasks, Li et al. (2025a) introduce WebSailor, a post-training method that narrows the
gap with proprietary agents. In this work, we primarily focus on utilizing Python interpreters to
enhance the LLM’s ability to solve complex reasoning problems in mathematics; similar principles
apply for enhancing knowledge-seeking ability and we have informal discussions in Appendix E.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 METHOD

In this section, we formalize the argument that integrating an external computational tool, such as a
code interpreter, fundamentally enhances a Large Language Model’s (LLM) capabilities. We structure
our argument in two parts. First, we provide a formal proof demonstrating that tool integration results
in a strict expansion of the model’s generative support, thereby breaking the “invisible leash” that
constrains purely text-based models (Wu et al., 2025). Second, we introduce the concept of token
efficiency to argue that even for problems theoretically solvable by text-based models, tool integration
is a practical necessity for expressing complex algorithms within any feasible token budget.

3.1 FORMAL PROOF: SUPPORT EXPANSION VIA TOOL INTEGRATION

We begin by establishing that augmenting an LLM with a deterministic external tool strictly expands
its support, enabling it to generate trajectories that were previously impossible.

3.1.1 THEORETICAL CONTEXT: THE LIMITS OF STANDARD RL

To ground our proof, we first adopt the theoretical framework proposed by Wu et al. (2025), which
formalizes the limitations of standard on-policy reinforcement learning (DeepSeek, 2025; Lambert
et al., 2024; Schulman et al., 2017) on training LLMs. We briefly introduce the key concepts (a
detailed review is provided in Appendix B).

The support of a model with distribution p, supp(p), is the set of all trajectories it can generate
with non-zero probability. The central limitation of RLVR, as established by Wu et al. (2025), is the
Support Preservation Theorem. It states that the support of the RL-trained policy is a subset of
the support of the base model. The Support Preservation Theorem formalizes the “invisible leash”:
RLVR can only re-weight probabilities within the model’s pre-existing support, but cannot expand it.

A more practical variant of support supp(p) is the empirical support, suppε(p), which only includes
trajectories with a probability greater than a small threshold ε; in what follows, all statements will be
made under this empirical-support view, within which we establish a strictly stronger and practical
result on TIR models.

3.1.2 PROOF OF SUPPORT EXPANSION

We consider two types of LLMs in this work. A pure-text model is a standard language model with
distribution qtext. We compare this to a TIR model with distribution pTIR, which pairs a language
model with a deterministic external oracle (e.g., a Python interpreter). We assume the underlying
language model for both pTIR and qtext is identical. Now we present the main theorem and its proof
sketch (a complete proof is provided in Appendix C):

Theorem 3.1 (Strict Expansion of Empirical Support via Tool Integration). There exists an ε > 0
and a family of problem instances such that the empirical support of a pure-text model is a strict
subset of the empirical support of a tool-integrated model:

suppε
(
qtext

)
⊂ suppε

(
pTIR

)
.

Proof Sketch. (Inclusion ⊆) is straightforward, as the tool-integrated model can simply choose not
to use its tool, thereby subsuming the capabilities of the pure-text model. (Strictness ⊂) relies on
a constructive proof using a standard cryptographic primitive: random oracle. The tool-integrated
model can deterministically solve the oracle problem in a single step. In contrast, the pure-text
model must guess the high-entropy m-bit output, succeeding with a probability (2−m) that becomes
negligible for any practical threshold ε. Thus, a correct trajectory exists that is within the empirical
support of pTIR but not of qtext.

We have shown that supp(qtext) is a strict subset of supp(pTIR). Unlike pure-text models, which
are constrained by Support Preservation Theorem, tool integration breaks the “invisible leash” by
introducing new, deterministic state transitions, thereby creating a strict expansion of the model’s
support.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 TOKEN EFFICIENCY AND FEASIBLE SUPPORT UNDER A BUDGET

The proof in the previous section establishes that a tool-integrated model can generate trajectories that
are impossible for a pure-text model. This, however, raises a deeper question: can a pure-text model
achieve the same outcomes by simulating the computational process through natural language? While
the resulting trajectories y may differ syntactically (ytext ̸= yTIR), they might represent the same
underlying problem-solving strategy. To properly evaluate this, we must move beyond comparing
trajectories based on string identity and instead assess them on their semantic content and efficiency.
This motivates our analysis of token efficiency.

3.2.1 THE CONCEPT OF TOKEN EFFICIENCY

A key distinction between programmatic and natural language solutions is their token efficiency: the
compactness with which a solution is represented. For any task involving iteration or recursion, a
programmatic representation offers a scalable, abstract description with a near-constant token cost,
e.g., O(1). In contrast, a natural language trace that simulates the same process must enumerate
each computational step, leading to a token cost that scales with the size of the computation. The
tables in Appendix F illustrate this stark disparity for common algorithmic patterns: simple iteration
(Table 1), large linear systems (Table 2), dynamic programming (Table 3), and graph search (Table
4). In each case, the programmatic solution remains a concise, scalable representation, while the
natural language simulation becomes a verbose, concrete enumeration that is untenable for non-trivial
problem sizes.

3.2.2 FEASIBLE SUPPORT UNDER A TOKEN BUDGET

The fundamental disparity in token efficiency motivates a more practical, budget-aware analysis of a
model’s capabilities, moving beyond theoretical possibilities to what is achievable within operational
constraints. To formalize this, we first define the total token cost of a trajectory, cost(y), as the sum
of all tokens consumed (i.e., prompt, model generation, and tools I/O), which must not exceed the
model’s context budget B. This allows us to define the set of strategies a model can feasibly execute:

Definition 3.2 (Computational Equivalence Class). Two trajectories, y1 and y2, are computationally
equivalent, denoted y1 ∼ y2, if they solve the same problem x by implementing the same core
algorithm. This relation partitions the space of all trajectories Y into equivalence classes, where each
class [y] represents a distinct algorithmic “idea” or “strategy”.

Definition 3.3 (Feasible Support under Budget B). An algorithmic strategy, represented by equiv-
alence class [y], is within the feasible support of a model M under token budget B, denoted
[y] ∈ suppB(M), if and only if there exists at least one trajectory y′ ∈ [y] such that M(y′|x) > 0
and its token cost(y′) does not exceed the budget:

∃y′ ∈ [y] s.t. M(y′|x) > 0 and cost(y′) ≤ B.

This definition captures a model’s practical ability to realize a problem-solving strategy within
operational constraints. With this formal framework in place, we can now state our central claim
regarding the practical supremacy of tool-integrated models and its proof sketch (a detailed proof is
provided in Appendix D):

Theorem 3.4 (Strict Supremacy of Tool-Integrated Feasible Support). For any non-trivial algorith-
mic problem class, there exists a problem size nB such that for any token budget B, the feasible
support of a pure-text model is a strict subset of the feasible support of a tool-integrated model:

suppB(qtext) ⊂ suppB(pTIR).

Proof Sketch. (Inclusion ⊆) holds because a tool-integrated model can always operate within the
pure-text paradigm. (Strictness ⊂) follows directly from the divergent scaling properties of the
natural language. For any finite budget B, we can choose a problem size nB large enough that the
token cost of a natural language simulation exceeds B, while the O(1) programmatic representation
remains well within budget. Thus, the algorithmic strategy is feasible for pTIR but not for qtext.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The theorem crystallizes the practical implications of token efficiency. It establishes that for any
finite computational budget, there is a vast class of algorithmic strategies that pure-text models are
fundamentally incapable of executing. Not because the solution is unknowable, but because its
expression in natural language is too verbose. Tool integration is therefore not merely a convenience;
it is a necessity for expanding the set of algorithmic approaches that LLMs can feasibly deploy.
This provides a strong argument for a paradigm where LLMs act as reasoning engines that delegate
complex computational tasks to specialized, efficient tools.

3.3 ALGORITHMIC IMPROVEMENT: ADVANTAGE SHAPING FOR EARLY CODE INVOCATION

The TIR models often default to a conservative strategy: completing the majority of their abstract
reasoning via text before invoking the code interpreter for the final-step calculation or verification.
This overlooks a potentially more powerful paradigm where the interpreter is used as an exploratory
tool throughout the reasoning process. We hypothesize that encouraging the model to invoke code
earlier could foster a more dynamic, flexible, and hypothesis-driven reasoning style, potentially
unlocking novel problem-solving strategies.

To encourage earlier tool use, we first tried adding an early-code bonus to the reward function, but
this approach proved highly unstable. In GRPO-like algorithms, group normalization cancels the
primary correctness signal when all samples in a group are correct, catastrophically amplifying the
auxiliary bonus and distorts the learning objective (see Appendix G for a detailed analysis).

To circumvent the distorting effects of reward normalization, we developed a more robust method
that we term Advantage Shaping Policy Optimization (ASPO). Instead of manipulating the reward,
we directly modify the final advantage value after the standard correctness-based advantage Acorrect
has been calculated. For any response i that is both correct and contains code, we compute the new
advantage Ai as follows:

Ai = Acorrect,i + clip
(
δ · pi − mean(p)

mean(L)
, −k ·Acorrect,i, k ·Acorrect,i

)
,

where p and L are the sets of first code invocation positions and total response lengths for all correct,
code-containing responses within the group. Furthermore, δ is a negative coefficient to encourage
early code invocation, and k is a clipping hyperparameter that bounds the magnitude of auxiliary
advantage within a proportion of the basic advantage of correctness.

This formulation has several key merits, primarily by circumventing the uncontrollable effects of
advantage normalization inherent to reward-based modifications. First, it addresses a critical flaw in
the reward-based approach: the inability to guarantee a positive advantage for all correct answers.
After adding the auxiliary reward, a correct response’s total reward could fall below the group average,
leading to a negative GRPO normalized advantage, which effectively punishes a correct solution.
Second, the GRPO normalization process introduces uncontrollable volatility: the std(R) in the
denominator unpredictably scales the auxiliary signal, making its influence inconsistent across groups.

Our ASPO algorithm resolves both issues. By applying a clipped bias directly to Acorrect, we ensure
the final advantage remains positive and that the early-code incentive is always a subordinate nudge,
never overwhelming the primary objective of correctness. Furthermore, this approach bypasses
the volatile scaling effect of std(R) entirely. Finally, the choice to normalize the code invocation
position by the mean response length mean(L) rather than the standard deviation of positions std(p)
is deliberate. The latter is unstable: when invocation positions in a group are tightly clustered, a small
std(p) would excessively amplify the signal, whereas a more stable denominator like mean(L) is
consistent and meaningful. This method allows us to stably and effectively encourage early code
invocation, the empirical results of which are detailed in Section 4.4.

In essence, ASPO provides a general and robust framework for guiding a model’s behavior towards
desired styles or properties without compromising the primary learning objective (e.g., accuracy). By
directly manipulating the advantage values, ASPO avoids the instabilities that can arise from altering
the reward function, particularly in GRPO-like algorithms that rely on reward normalization. This
method ensures that the incentive for the desired behavior (in this case, earlier code invocation) acts
as a stable adjustment. The core principles of ASPO could be readily adapted to encourage other
desirable behaviors in a variety of scenarios, offering a reliable approach to shape model conduct
while preserving training stability and overall task performance.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

All experiments are based on the Qwen3-8B model (Qwen, 2025). We compare our proposed Tool-
Integrated Reasoning (TIR) model against a pure-text RL baseline (see Figure 5 in Appendix H). For
training, we used a 10,000-problem subset of the DAPO dataset (Yu et al., 2025), which is sufficient
for our goal of understanding TIR mechanisms rather than achieving state-of-the-art benchmark scores.
Both models were trained using the DAPO algorithm (Yu et al., 2025), a variant of GRPO (DeepSeek,
2025). Our primary evaluation benchmarks are AIME24, AIME25, and Omni-MATH-512, a curated
set of 512 challenging problems from the Omni-MATH dataset (Gao et al., 2024). A detailed
experimental setup is provided in Appendix H.

4.1 PASS@K EXPERIMENTS: TIR BREAKS THE CAPABILITY CEILING

1 2 4 8 16 32 64 128 256
Number of samples k

0.6

0.7

0.8

0.9

1.0

pa
ss

@
k

(a) AIME24

TIR
Pure-text

1 2 4 8 16 32 64 128 256
Number of samples k

0.5

0.6

0.7

0.8

0.9

1.0 (b) AIME25

1 2 4 8 16 32 64 128 256
Number of samples k

0.4

0.5

0.6

0.7

0.8
(c) Omni-MATH (512)

Figure 1: Pass@k curves for the TIR (RL trained) and pure-text models (Qwen3-8B) across three
benchmarks: (a) AIME24, (b) AIME25, and (c) Omni-MATH-512. The detailed numerical data
corresponding to this figure are provided in the Appendix I.

To empirically test our theoretical claims, this section investigates whether TIR can overcome the
capability ceiling observed in pure-text models (Yue et al., 2025; Wu et al., 2025). Similar to Yue
et al. (2025) and others, we use the pass@k metric, with low-variance estimation from Chen et al.
(2021), as it provides a robust measure of a model’s underlying problem-solving potential.

Flow of Problem Solvability
Pure-text TIR

Unsolved
31.6%

Solved
68.4%

Unsolved
18.0%

Solved
82.0%

Jointly Unsolved 16.2%

Expansion 15.4%

Shrinkage 1.8%

Preservation 66.6%

Figure 2: The flow of problem solvability on
Omni-MATH-512 when transitioning from the
pure-text model to the TIR model, evaluated at
k = 256. A detailed version is provided in Ap-
pendix J.

Figure 1 presents the macroscopic evidence from
our experiments. It plots the pass@k curves for
both the TIR model (RL trained) and the pure-
text baseline (Qwen3-8B) across our three evalu-
ation benchmarks, with the max k of 256. The re-
sults are unequivocal: on AIME24, AIME25, and
Omni-MATH-512, the TIR model’s performance
curve is consistently and significantly higher than
that of the pure-text model. Crucially, we observe
no intersection between the curves, even as k in-
creases to 256. This stands in stark contrast to
previous findings where RL-trained text models,
while improving pass@1, often do so at the cost
of the broader capability envelope, eventually be-
ing surpassed by the base model at high values of
k (Yue et al., 2025). Our results show TIR does
not suffer from this trade-off; it elevates the entire
pass@k curve.

To further understand this performance gain at a
per-problem level, we visualize the “flow of solv-
ability” on the Omni-MATH-512 dataset in Fig-
ure 2. This Sankey diagram illustrates how the solvability status of individual problems changes
when moving from the pure-text model to the TIR model (samples k = 256 responses per problem).
We categorize the problems into four distinct groups as Wu et al. (2025): Capability Expansion:
Problems the pure-text model fails to solve but the TIR model succeeds on; Capability Preservation:
Problems solved by both models; Capability Shrinkage: Problems solved by the pure-text model

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

but not by the TIR model; Jointly Unsolved: Problems that neither model can solve. The diagram
reveals a massive net gain in problem-solving capability. The Capability Expansion set contains
15.4% problems, whereas the Capability Shrinkage set contains only 1.8%. This provides direct
empirical validation for our theoretical argument in Section 3, demonstrating that TIR facilitates a
practically significant expansion of the model’s effective support.

In summary, both macroscopic pass@k analysis and microscopic problem-level tracking confirm that
tool-integrated reasoning decisively breaks the capability ceiling of its pure-text counterpart, enabling
the model to solve a wide range of problems that were previously out of its reach.

4.2 BENEFITS OF TIR EXTEND BEYOND COMPUTATIONALLY-INTENSIVE PROBLEMS

A crucial question arises from our initial findings: is the observed capability expansion of TIR
merely an artifact of solving problems that are inherently algorithmic? The most direct yet naive
interpretation of TIR’s success is that it simply offloads complex arithmetic, acting as a superior
calculator. However, a more nuanced counterargument posits that TIR’s effectiveness, while beyond
simple calculation, is still confined to problems whose structure can be directly mapped to a known
algorithm such as exhaustive search in combinatorics. This perspective suggests that TIR improves
the model’s capability on problems that are computationally-intensive or inherently algorithmic, but
offers little advantage when the problem is highly abstract.

To rigorously test our hypothesis, we first introduce the concept of “algorithmic friendliness”, which
is defined as a measure of how reliant a problem’s solution is on standard computation versus deep
mathematical insight. To operationalize this concept, we developed a detailed five-point rubric for
classifying problems, as presented in Appendix K. This scale ranges from a score of 1 for problems
that are fundamentally abstract and non-computational, to 5 for those solvable by a direct application
of a textbook algorithm. We then applied this rubric to classify each problem in the Omni-MATH-512
dataset. This classification was performed by providing both the problem statement and its solution
idea to the Gemini 2.5 Pro API (Gemini, 2025), which then assigned a score based on the rubric.
The resulting distribution of problem types, shown in Figure 7(f) (Appendix L), reveals a crucial
characteristic of the dataset. Contrary to being biased towards highly algorithmic problems, the
distribution’s peak is concentrated in the medium friendliness categories (scores 2, 3 and 4). This
confirms that Omni-MATH-512 serves as a fair and challenging testbed for our analysis, not one
skewed towards problems with simple computational solutions.

Figure 7(a)-(e) (Appendix L) presents our core findings. It displays the pass@k curves for the TIR
and pure-text models, grouped by the algo friendliness of the problems. As expected, the performance
gap between the two models is most pronounced for problems with high friendliness (scores 4.0-5.0),
where TIR’s ability to execute algorithms directly provides a massive advantage (Figure 7(d),(e)). The
most critical finding, however, comes from the lowest friendliness group (scores 1.0-2.5). Even for
these problems, which depend heavily on abstract reasoning and are ill-suited to direct computation,
the TIR model maintains a significant and consistent performance advantage over the pure-text
baseline, outperforming it by approximately 9% in pass@256 accuracy (Figure 7(a),(b)).

This result demonstrates that the benefits of TIR are not confined to easily programmable problems.
The tool serves a more profound purpose than acting as a simple calculator or a direct algorithm-
implementer. It suggests that the model is leveraging the code interpreter in more complex and
sophisticated ways, which we will investigate in the next subsection.

4.3 EMERGENT COGNITIVE PATTERNS OF TOOL INTEGRATION

To understand how TIR is effective beyond purely algorithmic problems, our qualitative analysis
identified three recurring patterns of code utilization. These patterns reveal a sophisticated interplay
where the model is not just using a tool, but fundamentally thinking with it. Pattern 1: Insight-
to-computation transformation. The model first engages in text-based reasoning to transform an
abstract problem into a computationally tractable form. It then invokes the interpreter to execute a
genuine algorithm (e.g., search, enumeration, DP) on this newly formulated sub-problem. Pattern
2: Exploration and verification via code. For problems with unclear solution paths, the model
uses the interpreter as an interactive sandbox. It formulates conjectures, writes short code snippets to
test them, and iteratively refines its strategy based on the feedback, allowing it to discover insights

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

through empirical experimentation. Pattern 3: Offloading complex calculation. In the most direct
usage, the model delegates complex or tedious calculations to the interpreter. This minimizes the
risk of unforced computational errors that could derail a correct line of reasoning. The first two
patterns represent a fundamental departure from pure-text reasoning, constituting new Computational
Equivalence Classes that are infeasible for pure-text models due to prohibitive token costs (i.e., they
lie outside the Feasible Support under Budget B). Such dynamic and flexible code invocation enables
the TIR model to break the capability ceiling of its pure-text counterpart. Detailed analysis and
examples of these patterns are provided in Appendix M.

4.4 EMPIRICAL ANALYSIS OF ASPO FOR EARLY CODE INVOCATION

0 20 40 60 80
Training steps

0.70

0.75

0.80

0.85

0.90
(a) Training accuracy

Reward-based Approach

0 20 40 60 80
Training steps

0.550

0.575

0.600

0.625

0.650

0.675
(b) Test accuracy (AIME25 avg@16)

Baseline ASPO (= 1.5, k = 0.7) ASPO (= 2, k = 0.9)

Figure 3: The (a) training and (b) testing accuracy of the baseline and ASPO algorithm.

In this section, we empirically validate our ASPO algorithm, designed to encourage earlier code
invocation. We aim to answer two primary questions: (1) Does this method maintain training stability
and final task performance, unlike the naive reward-based approach? (2) Does it effectively and
controllably alter the model’s tool-use behavior as intended? We test our baseline model against the
unstable reward-based approach and two variants of our ASPO algorithm: a conservative setting
(δ = −2.0, k = 0.7) and an aggressive setting (δ = −2.5, k = 0.9).

Stability and performance remain uncompromised. Figure 3 provides a clear validation of our
method’s stability. As mentioned in our analysis in Section 3, the naive reward-based approach
quickly becomes unstable, causing the training reward to collapse (Figure 3(a)). In stark contrast,
the training curves for our ASPO algorithm with both conservative and aggressive settings remain
stable and almost perfectly aligned with the baseline. Furthermore, this stability does not come at
the cost of final performance. Figure 3(b) shows that the final “avg@16” accuracy on AIME25 for
both variants is statistically indistinguishable from the baseline. This is a crucial result: our method
successfully avoids the pitfalls of reward modification, ensuring that the primary goal of solving the
problem correctly is not sacrificed.

A significant shift in cognitive behavior. Having established the method’s safety, we now demon-
strate its effectiveness in reshaping the model’s reasoning strategy. Figure 4 presents a comprehensive
analysis of the model’s code-use behavior on AIME25, averaged over 16 responses per question.
The results show a dramatic and targeted shift. The most significant change is in the code invoca-
tion timing (Figure 4(b)), where the average position of the first code call is brought forward from
4,000 tokens in the baseline down to 1,000 tokens. Concurrently, the model becomes a much more
active tool user: the average number of code rounds per problem more than doubles, from 1.3 to
3.3 (Figure 4(e)), and the code ratio approaches nearly 100%, indicating that using the interpreter
becomes a default part of the model’s process (Figure 4(c)). This behavioral shift is starkly evident
when examining the distribution of responses for a single challenging problem. For instance, on
Q30 of the AIME25, the baseline model exhibited reluctant and inconsistent tool use: out of 16
independent responses, four failed to make a single code call, and the median number of invocations
was just 2. In stark contrast, our ASPO-trained model integrated the tool as an indispensable part of
its problem-solving process. It invoked the code in all 16 responses for the same problem, and the
median number of tool calls increased from 2 to 13. More significantly, a quarter of the responses
demonstrated highly iterative behavior, making more than 20 tool calls, which is entirely absent in the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

GRPO-trained baseline. This shows a clear transformation from a conservative, late-stage “calculator”
usage pattern to an early, iterative, and exploratory “interactive partner” paradigm.

Controllability and absence of reward hacking. Importantly, this behavioral shift is achieved
without inducing reward hacking. We manually inspected a large number of samples and found no
instances of the model inserting trivial or meaningless code early in its response merely to satisfy the
incentive. The stability of the final task accuracy (Figure 3(b)) and the code pass ratio (Figure 4(d))
further substantiates this. Finally, the difference between the conservative and aggressive settings
demonstrates that the degree of behavioral change is tunable via the hyperparameters δ and k.

0 20 40 60 80
7000

8000

9000

10000

11000

12000
(a) Response length

0 20 40 60 80
1000

2000

3000

4000

5000

6000

7000
(b) Code invocation timing

0 20 40 60 80

0.4

0.6

0.8

1.0
(c) Code ratio

0 20 40 60 80
Training steps

0.65

0.70

0.75

0.80

0.85

0.90
(d) Code pass ratio

Baseline
= 1.5, k = 0.7
= 2, k = 0.9

0 20 40 60 80
Training steps

0.5

1.0

1.5

2.0

2.5

3.0

(e) Code rounds

0 20 40 60 80
Training steps

15

20

25

30
(f) Code line

Figure 4: Evaluation results of the baseline and ASPO algorithm on AIME25. (a) Response length,
(b) code invocation timing, (c) code ratio, (d) code pass ratio, (e) code rounds and (f) code lines.

5 CONCLUSIONS

In this work, we presented a comprehensive investigation into the foundational mechanisms of
Tool-Integrated Reasoning (TIR). We moved beyond empirical demonstrations to establish a formal
theoretical framework explaining its effectiveness. Our core theoretical contribution is the proof
that TIR enables a strict expansion of both the empirical and feasible support of an LLM, breaking
the “invisible leash” that constrains pure-text models and making complex algorithmic strategies
practically achievable within finite token budgets. On the algorithmic front, we identified the
instability of reward shaping for guiding model behavior in TIR systems and proposed Advantage
Shaping Policy Optimization (ASPO), a stable and effective alternative that directly modifies the
advantage function.

Our experiments provided strong empirical validation for these claims. We demonstrated that TIR
model equipped with a Python interpreter decisively surpasses the performance of pure-text models
across challenging mathematical reasoning benchmarks. Our analysis, using a novel “algorithmic
friendliness” metric, revealed that TIR’s benefits are universal, extending even to problems that are
highly abstract and less amenable to direct computation. Qualitative analysis further uncovered the
sophisticated, emergent cognitive patterns that arise from the synergy between LLM reasoning and
tool execution.

Ultimately, our findings advocate for a paradigm shift: viewing LLMs not as monolithic problem-
solvers, but as core reasoning engines that intelligently delegate computational tasks to specialized,
efficient tools. The principles and methods developed here, particularly ASPO, open avenues for
more nuanced and stable control over the behavior of powerful tool-integrated agents.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Fei Bai, Yingqian Min, Beichen Zhang, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, Zheng Liu,
Zhongyuan Wang, and Ji-Rong Wen. Towards effective code-integrated reasoning. arXiv preprint
arXiv:2505.24480, 2025.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Team DeepSeek. DeepSeek-R1 incentivizes reasoning in LLMs through reinforcement learning.
Nature, 645:633–638, 2025.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. ReTool: Reinforcement learning for strategic tool use in LLMs.
arXiv preprint arXiv:2504.11536, 2025.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
Liang Chen, Runxin Xu, et al. Omni-math: A universal olympiad level mathematic benchmark for
large language models. arXiv preprint arXiv:2410.07985, 2024.

Team Gemini. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context,
and next generation agentic capabilities. arXiv preprint arXiv:2507.06261, 2025.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-R1: Training LLMs to reason and leverage search engines with reinforcement
learning. arXiv preprint arXiv:2503.09516, 2025.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tülu 3: Pushing frontiers in
open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

Kuan Li, Zhongwang Zhang, Huifeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baixuan
Li, Zhengwei Tao, Xinyu Wang, et al. WebSailor: Navigating super-human reasoning for web
agent. arXiv preprint arXiv:2507.02592, 2025a.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. ToRL: Scaling tool-integrated RL. arXiv preprint
arXiv:2503.23383, 2025b.

OpenAI. Introducing GPT-5. Blog post, Aug 2025a. URL https://openai.com/index/
gpt-5/. Accessed on August 22, 2025.

OpenAI. Introducing o3 and o4-mini. Blog post, April 2025b. URL https://openai.com/
index/introducing-o3-and-o4-mini/. Accessed on August 22, 2025.

Team Qwen. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. DeepSeekMath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Fang Wu, Weihao Xuan, Ximing Lu, Zaid Harchaoui, and Yejin Choi. The invisible leash: Why
RLVR may not escape its origin. arXiv preprint arXiv:2507.14843, 2025.

xAI. Grok 4. Blog post, Jul 2025. URL https://x.ai/blog/grok-4. Accessed on August
22, 2025.

Zhongwen Xu, Xianliang Wang, Siyi Li, Tao Yu, Liang Wang, Qiang Fu, and Wei Yang. Agents play
thousands of 3D video games. arXiv preprint arXiv:2503.13356, 2025.

10

https://openai.com/index/gpt-5/
https://openai.com/index/gpt-5/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://x.ai/blog/grok-4

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhenghai Xue, Longtao Zheng, Qian Liu, Yingru Li, Zejun Ma, and Bo An. SimpleTIR: End-to-end
reinforcement learning for multi-turn tool-integrated reasoning. arXiv preprint arXiv:2509.02479,
2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, et al. DAPO: An open-source LLM reinforce-
ment learning system at scale. arXiv preprint arXiv:2503.14476, 2025.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in LLMs beyond the base model?
arXiv preprint arXiv:2504.13837, 2025.

A LLM USAGE

During the preparation of this work, we used LLM to aid in polishing the manuscript and improving
language. All final content was reviewed and revised by the authors to ensure its accuracy and
originality. The core ideas, methods, and conclusions of the paper are solely the work of the authors.

B THE THEORETICAL BACKGROUND

To ground our proof, we adopt the theoretical framework proposed by Wu et al. (2025), which
formalizes the limitations of standard on-policy reinforcement learning (DeepSeek, 2025; Lambert
et al., 2024; Schulman et al., 2017) on training LLMs.
Definition B.1 (Support of a Model (adapted from (Wu et al., 2025))). Let Y be the space of all
possible generative trajectories. The support of a model with distribution p(y|x) is the set of all
trajectories that can be generated with a non-zero probability for a given prompt x:

supp(p) := {y ∈ Y | p(y|x) > 0}

Definition B.2 (Empirical Support (from Wu et al. (2025))). For a threshold ε > 0, define the
empirical support of p as

suppε(p) := {y ∈ Y | p(y|x) ≥ ε}.

This definition is central to understanding a model’s intrinsic capabilities. The following theorem
from Wu et al. (2025) establishes a key constraint for models trained with Reinforcement Learning
from Verifiable Rewards (RLVR) (Lambert et al., 2024; DeepSeek, 2025):

Theorem B.3 (Support Preservation under RLVR (from Wu et al. (2025))). Let πθ(y|x) be an
RLVR-trained policy distribution initialized from a base model with distribution q(y|x). For any
prompt x, the support of the trained policy is a subset of the support of the base model:

supp(πθ) ⊆ supp(q)

This implies that if q(y∗|x) = 0 for a correct trajectory y∗, then RLVR can never discover y∗.

Theorem B.3 formalizes the “invisible leash”: RLVR can only re-weight probabilities within the
model’s pre-existing support. We next show a strictly stronger, practical statement under an empirical-
support view.

C THE DETAILED PROOF OF SUPPORT EXPANSION

We consider two types of LLMs in this work. A pure-text model is a standard language model
with distribution qtext that generates tokens exclusively from its vocabulary V . We compare this to a
tool-integrated model, a system (M,O) with distribution pTIR, which pairs a language model M with
a deterministic external oracle O (e.g., a Python interpreter). The generative process for this model
includes not only probabilistic token generation from V but also deterministic tool-use transitions. In
such a transition, the model M emits a tool call ycall, the oracle executes it, and the resulting output
yout = O(ycall) is deterministically returned as the next state.

Now we present the detailed proof of Theorem 3.1.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Proof. The proof proceeds in two parts. First, we establish the subset relationship (⊆), and second,
we prove the relationship is strict (̸=) by demonstrating the existence of trajectories accessible only
to the tool-integrated model.

Part 1: Proving supp(qtext) ⊆ supp(pTIR)

Let y be an arbitrary trajectory in the support of the pure-text model, such that qtext(y|x) > 0.
The trajectory y consists exclusively of tokens from the vocabulary V . The tool-integrated model
pTIR can generate this same trajectory by adopting a policy of never invoking the external oracle
O. Since its generative capabilities subsume those of qtext, it can assign a non-zero probability to
the trajectory y. Thus, for any y ∈ supp(qtext), it follows that y ∈ supp(pTIR), establishing that
supp(qtext) ⊆ supp(pTIR).

Part 2: Proving Strictness

To prove strictness, we use a constructive approach based on a standard cryptographic primitive: a
random oracle. Let us consider a problem instance where the solution requires computing yout =
H(x), where H is a random oracle. A random oracle is a theoretical black box that, for any new
input query, returns an output chosen uniformly at random from its output space (e.g., {0, 1}m), but
deterministically returns the same output for repeated queries of the same input. This construction is
theoretically convenient and serves as an idealization of practical cryptographic hash functions (e.g.,
SHA-256). For a model without access to the oracle, its only strategy to find yout is to guess it. The
probability of correctly guessing a specific m-bit string is 2−m.

Now, consider a trajectory y∗ = (y∗prefix, yout, y
∗
suffix) that involves computing H(x). We assume the

underlying language model for both pTIR and qtext is identical. The tool-integrated model pTIR can
invoke the oracle to obtain yout deterministically. In contrast, the pure-text model, qtext, must guess
yout from an output space of size 2m, succeeding with a probability of only 2−m. Thus, the total
probabilities of producing y∗ are directly related:

qtext(y
∗|x) = pTIR(y

∗|x) · 2−m.

For any non-negligible probability pTIR(y
∗|x) and a sufficiently large m, the corresponding qtext(y

∗|x)
becomes arbitrarily small. We can therefore always choose an ε such that qtext(y

∗|x) < ε ≤
pTIR(y

∗|x). So we find that y∗ /∈ suppε(qtext) while y∗ ∈ suppε(pTIR). This establishes strictness.

D THE DETAILED PROOF OF FEASIBLE SUPPORT SUPREMACY

Here we present the detailed proof of Theorem 3.4.

Proof. The proof requires showing both inclusion (⊆) and strictness (̸=).

Inclusion (⊆): Any algorithmic strategy that is feasibly executable by a pure-text model within
budget B is, by definition, also executable by a tool-integrated model that simply abstains from using
its tool.

Strictness (̸=): We must show there exists an algorithmic class [yA] in suppB(pTIR) but not in
suppB(qtext). This follows directly from the divergent scaling properties of natural language versus
programmatic representations, as illustrated in Tables 1-4. For any algorithm whose pure-text
simulation cost scales with problem size n (e.g., Ω(n), Ω(V +E)), we can choose a size nB such
that the cost exceeds any finite budget B. The programmatic representation, costing O(1), remains
within budget. Thus, for a sufficiently large problem size, the corresponding algorithmic classes are
in the feasible support of pTIR but not qtext, proving strict inclusion.

E EXTENSIONS TO OTHER TOOLS AND INTERACTIONS WITH ENVIRONMENTS

Our arguments in Sections 3.1.2 and 3.2 extend beyond Python to a broad family of external tools
and interactive settings. At a high level, any interface that (i) affords state transitions not expressible
by next-token sampling alone and/or (ii) delivers high information per token of I/O will both expand
support (Section 3.1.2) and strictly enlarge feasible support under a token budget (Section 3.2).

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Search and Retrieval Agents. Consider web search, retrieval APIs, or domain databases (e.g.,
scholarly indices, code search). Let an external retriever implement a (possibly stochastic) mapping
R : (q, s) 7→ r, where q is a query issued by the LLM and s is the (latent) world/index state at the
time of the call. Even when R is not perfectly deterministic, the trajectory that includes the returned
snippet r is unreachable for a pure-text model unless it guesses the salient facts in r token-by-token.
This mirrors the random-oracle argument in Theorem 3.4: as the entropy of r conditioned on (q, x)
grows, the probability that a pure-text model reproduces r by chance decays exponentially, while a
tool-augmented model obtains r via a single call. Hence support expands, and under any fixed budget
B the feasible set also strictly expands once the text-only paraphrase of r would exceed B.

Checkers, Verifiers, and Program Runners. Beyond “heavy” computation, many tools act as
verifiers: unit tests, symbolic algebra checkers, SAT/SMT solvers, theorem provers, type checkers,
or even a Python REPL used only to validate a candidate answer. Such tools add deterministic
pruning transitions to the trajectory graph: incorrect branches are cut immediately with O(1) tokens.
This reduces the exploration burden under RLVR-style training and enlarges the set of practically
reachable strategies under a budget.

Stateful External Memory. Tools can expose memory larger and more persistent than the model’s
context: key–value caches, external scratchpads, vector stores, or file systems. Each call updates an
external state mt+1 = U(mt, at) and reads views vt = V (mt) at O(1) token cost. Strategies that
require memory |m| ≫ B are impossible to realize faithfully in pure text (which must inline m), but
become feasible when memory lives outside the context window.
Proposition E.1 (Informal; External State as Unbounded Scratchpad). Suppose an algorithm requires
Ω(n) writable memory cells for problem size n. If a tool exposes these cells with per-step I/O
O(1), then for sufficiently large n, the algorithm’s equivalence class lies in suppB(pTIR) but not in
suppB(qtext) for any fixed B.

Embodied and Interactive Environments. When the LLM acts in an MDP or game environ-
ment (Xu et al., 2025), the environment transition st+1 = E(st, at) is itself an external oracle. Our
earlier support-expansion argument applies verbatim: trajectories that include specific environment
observations or states are unreachable by text-only generation unless they are guessed token-by-
token. Token-efficiency arguments also lift: environment interactions can realize long-horizon plans
with summarized textual traces, whereas a pure-text simulation would require enumerating each
counterfactual step.

Noisy or Non-Deterministic Tools. Stochastic returns (e.g., fluctuating search rankings) do not
invalidate support expansion. What matters is the existence of some positive-probability outputs with
substantial conditional entropy that are infeasible to reproduce via text within budget. In other words,
determinism is a convenience, not a necessity, for our conclusions.

Composing Multiple Tools. Real agents chain retrieval, computation, verification, and environment
actions. Composition behaves monotonically:
Proposition E.2 (Informal; Monotone Closure under Composition). Let T1, . . . , Tk be tools with
per-call costs that sum to at most B. If each Ti individually yields a strict feasible-support gain
for some subproblem family at size ni, then there exist composite tasks for which the sequential (or
branched) use of {Ti} yields a strict feasible-support gain over any pure-text policy at the same total
budget.

Takeaway. “Python” is merely one instantiation of a broader principle, our extensions unify code
execution, search, verification, memory, and embodied interaction under the same analytical lens.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

F EXAMPLES ON TOKEN EFFICIENCY

Table 1: Contrasting Token Efficiency for an Iterative Task (N → ∞)

Programmatic Approach (Python) Natural Language Reasoning
A symbolic, abstract representation of the com-
putation. The token cost is constant and indepen-
dent of N .

A concrete, step-by-step enumeration of the com-
putation. The token cost scales with the magni-
tude of N .

1 # N can be 10,000,000 or more
2 for i in range(N):
3 # Perform some check
4 check(i)
5

”Okay, to solve this, I must check every number.
First, for n=1, I perform the check...
Next, for n=2, I perform the check...
Next, for n=3, I perform the check...
...
(This enumeration continues for millions of
steps)
...
Finally, for n=10,000,000, I perform the
check...”

Token Cost: A few dozen tokens. Scales as
O(1). This is highly efficient and scalable.

Token Cost: Proportional to N . Scales as Ω(N).
This is inefficient and becomes intractable for
large N , quickly exceeding any feasible context
window.

Table 2: Contrasting Token Efficiency for Solving Large Linear Systems

Programmatic Approach (Python) Natural Language Reasoning
A single call to a highly optimized numerical li-
brary solves Ax = b. The token cost is constant,
independent of the matrix dimension n.

A detailed explanation of Gaussian elimination,
requiring a description of each row operation.
The token cost scales with the matrix size.

1 import numpy as np
2 # A is a large n x n matrix,
3 # e.g., n=1000
4 x = np.linalg.solve(A, b)

”To solve the system, we perform Gaussian elimi-
nation. First, to eliminate the first variable from
the second row, we subtract A2,1/A1,1 times the
first row from the second row. We must do this for
all n− 1 rows below the first. Next, we use the
new second row to eliminate the second variable
from the rows below it... (This narration contin-
ues for O(n2) elements and O(n3) operations).”

Token Cost: A few tokens. Scales as O(1).
Enables solving massive systems within a tiny
token budget.

Token Cost: Proportional to the number of ele-
ments in the matrix to sketch. Scales as Ω(n2).
A full narration would scale as Ω(n3).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 3: Contrasting Token Efficiency for a Dynamic Programming Task (Fibonacci Sequence)

Programmatic Approach (Python) Natural Language Reasoning
A compact representation of the recurrence rela-
tion, with a token cost independent of the input
integer N .

A verbose, step-by-step calculation of every sub-
problem’s solution, with a token cost that grows
with N .

1 memo = {0: 0, 1: 1}
2 def fib(n):
3 if n in memo: return memo[n]
4 memo[n] = fib(n-1) + fib(n-2)
5 return memo[n]

”To get fib(5), I need fib(4) and fib(3). Fib(2) is
fib(1)+fib(0) = 1+0 = 1. Fib(3) is fib(2)+fib(1)
= 1+1 = 2. Fib(4) is fib(3)+fib(2) = 3+1 = 4. So,
fib(5) is fib(4)+fib(3) = 4+2 = 6... Wait, let me
recheck. fib(4) is 3+2=5. No, fib(4) is 2+1=3.
Okay, so fib(5) is 3+2=5.”

Token Cost: O(1) Token Cost: Ω(N)

Table 4: Contrasting Token Efficiency for Search Algorithms

Programmatic Approach (Python) Natural Language Reasoning
An abstract procedure for state-space traversal,
using data structures like a queue and a set.

A full, step-by-step narration of the entire explo-
ration process, including every node visited and
every state change of the queue.

1 from collections import deque
2

3 def bfs(graph, start_node):
4 queue = deque([start_node])
5 visited = {start_node}
6 while queue:
7 node = queue.popleft()
8 # Process node
9 for neighbor in graph[node]:

10 if neighbor not in visited
:

11 visited.add(neighbor)
12 queue.append(neighbor)
13

”I start at node ’A’. Queue is [’A’], visited is
’A’. I pop ’A’. Its neighbors are ’B’, ’C’. Queue is
now [’B’, ’C’], visited is ’A’,’B’,’C’. I pop ’B’. Its
neighbor is ’D’. Queue is now [’C’, ’D’], visited
is ’A’,’B’,’C’,’D’. I pop ’C’...” (and so on)

Token Cost: Constant cost for the algorithm’s
definition. Scales as O(1).

Token Cost: Proportional to the number of ver-
tices and edges, V + E. Scales as Ω(V + E).

G ANALYSIS OF THE FAILED REWARD-BASED APPROACH

To encourage the earlier code invocation, our initial and most direct approach was to introduce an
early-code reward directly into the reward function. For each response i that is both correct and
code-containing in a group of samples, we added a reward term r′i that penalizes later code invocation:

Ri = 1 + r′i where r′i = δ · clip
(
pi − mean(p)

std(p)
,−c, c

)
.

where p is the set of first code invocation positions for all correct, code-containing responses within
the group. Furthermore, δ is a negative coefficient to encourage early code invocation, and c is
a clipping hyperparameter. However, this seemingly innocuous modification proved to be highly
destabilizing during training (see experimental details in Section 4.4 and Figure 3 (a)). In algorithms
like GRPO that rely on group normalized advantage, this design has a critical flaw. In the common
scenario where all samples in a group are correct, the primary reward signal (the constant ‘1’) is

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

entirely eliminated by the normalization. The advantage calculation then becomes:

Ai =
Ri − mean(R)

std(R)
=

(1 + r′i)− (1 + mean(r′))
std(r′)

=
r′i − mean(r′)

std(r′)

This leads to a catastrophic outcome: (1) the primary signal about answer correctness disappears,
(2) the auxiliary signal r′i is amplified to the same magnitude as the original primary signal, and (3)
due to the nature of standardization, approximately half of these correct responses receive a negative
advantage and are thus heavily penalized, solely because their code invocation is later than the group’s
average.

H EXPERIMENTAL SETUP

0 20 40 60 80
Training steps

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

(%
)

(a) Training accuracy

TIR
Pure-text

0 20 40 60 80
Training steps

0.55

0.60

0.65

AI
M

E2
5

Ac
cu

ra
cy

(%
)

(b) Test accuracy
TIR
Pure-text

Figure 5: The (a) training and (b) testing accuracy of the TIR and pure-text RL on Qwen3-8B model.
The AIME25 accuracy (b) is the average of 16 responses.

Model and Datasets. All experiments are based on the Qwen3-8B model (Qwen, 2025). For our
training data, we randomly sample 10,000 English problems from the DAPO dataset (Yu et al., 2025)
due to limited computational resources. Since our aim is to fundamentally understand the mechanisms
of TIR rather than to improve absolute accuracy of benchmarks, this dataset is sufficient for our
purpose, in contrast to the extensive training datasets used in other literature (Yu et al., 2025; Feng
et al., 2025). Our primary evaluation benchmarks are AIME24, AIME25, and a challenging subset of
the Omni-MATH dataset (Gao et al., 2024). For the latter, due to the large size of the dataset, we
curated the 512 most difficult problems that are amenable to reliable, rule-based evaluation, which we
denote as Omni-MATH-512.

Training Protocol. We train two main models for comparison: our proposed TIR model, which can
execute code to assist in its reasoning process, and a pure-text RL model as a baseline (as shown
in Figure 5). Both models are trained for 3 epochs using the DAPO algorithm (Yu et al., 2025), a
variant of GRPO (DeepSeek, 2025). During training, we use a rollout batch size of 96 problems, with
8 responses sampled per problem, a maximum response length of 16,384 tokens, and a sampling
temperature of 1.0 to encourage exploration.

Evaluation Protocol. For evaluations, we set the sampling temperature to 0.6 and maximum response
length to 16,384 tokens unless otherwise specified.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

I PASS@k DATA

Table 5 shows the detailed pass@k results for the TIR and pure-text models across the three bench-
marks, evaluated with the max sample size of 256.

Table 5: Pass@k results for the TIR model and the pure text model

k AIME24 AIME25 Omni-MATH-512
TIR Pure Text TIR Pure Text TIR Pure Text

1 0.7829 0.6331 0.6841 0.5184 0.5128 0.3585
2 0.8408 0.7184 0.7818 0.6065 0.5885 0.4208
4 0.8632 0.7703 0.8395 0.6730 0.6437 0.4707
8 0.8825 0.8050 0.8792 0.7262 0.6869 0.5153
16 0.9024 0.8312 0.9117 0.7613 0.7232 0.5570
32 0.9173 0.8496 0.9339 0.7810 0.7545 0.5942
64 0.9312 0.8645 0.9503 0.7979 0.7802 0.6271
128 0.9480 0.8813 0.9625 0.8250 0.8018 0.6575
256 0.9667 0.9000 0.9667 0.8667 0.8203 0.6836

J CAPABILITY EXPANSION AND SHRINKAGE

Flow of Problem Solvability
Pure-text TIR

Unsolved
Share: 31.6%

Solved Prob. (0, 0.25]
Share: 25.8%

Solved Prob. (0.25, 0.5]
Share: 5.9%

Solved Prob. (0.5, 0.75]
Share: 8.2%

Solved Prob. (0.75, 1]
Share: 28.5%

Unsolved
Share: 18.0%

Solved Prob. (0, 0.25]
Share: 20.9%

Solved Prob. (0.25, 0.5]
Share: 8.8%

Solved Prob. (0.5, 0.75]
Share: 8.6%

Solved Prob. (0.75, 1]
Share: 43.8%

Figure 6: The detailed flow of problem solvability on Omni-MATH-512 when transitioning from the
pure-text model to the TIR model. The solved probability of each problem is evaluated at k = 256.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

K RUBRIC FOR ALGORITHMIC FRIENDLINESS

Table 6 shows the rubric we use for Gemini Pro APIs (Gemini, 2025) to classify the math problems.

Table 6: Rubric for assessing the “algorithmic friendliness” of problems.

Score Level Description Required Insight
5 Very High (Direct

Application)
The problem is a textbook example for
a standard algorithm (e.g., backtrack-
ing). The problem statement itself al-
most serves as the specification. Almost
no mathematical insight is needed.

None beyond basic
arithmetic.

4 High (Minor In-
sight)

An algorithm provides a clear advantage,
but requires a standard, well-known
mathematical identity or simple trans-
formation to be applied. The mathemat-
ical hurdle is low.

Recalling and apply-
ing a common for-
mula or theorem.

3 Medium (Signifi-
cant Insight)

A computational solution is effective,
but only after applying a significant
mathematical insight or performing
complex problem modeling. The diffi-
culty is substantial.

A creative, problem-
specific trick or a com-
plex modeling effort.

2 Low (Impractical
Algorithm)

An algorithm is theoretically possible
but highly impractical (enormous search
space, precision issues). The algorith-
mic optimizations are equivalent in dif-
ficulty to the mathematical solution.

Insights needed are es-
sentially the mathe-
matical solution itself.

1 Very Low (Non-
computational)

The problem is fundamentally abstract
and cannot be solved by computation
(e.g., requires a formal proof, deals with
uncountable sets).

N/A.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

L PASS@k CURVES FOR PROBLEMS GROUPED BY ALGO FRIENDLINESS

1 2 4 8 16 32 64 128 256
0.2

0.4

0.6

0.8

pa
ss

@
k

(a) Algo friendliness G1
TIR
Pure-text

1 2 4 8 16 32 64 128 256
0.2

0.4

0.6

0.8

(b) Algo friendliness G2

1 2 4 8 16 32 64 128 256
0.2

0.4

0.6

0.8

(c) Algo friendliness G3

1 2 4 8 16 32 64 128 256
Number of samples k

0.2

0.4

0.6

0.8

pa
ss

@
k

(d) Algo friendliness G4

1 2 4 8 16 32 64 128 256
Number of samples k

0.2

0.4

0.6

0.8

(e) Algo friendliness G5

G1 G2 G3 G4 G5
Algo friendliness group

0

10

20

30

Pe
rc

en
ta

ge
 o

f p
ro

bl
em

s (
%

)

24

141
157

120

70

(f) Dataset Omni-MATH-512

Figure 7: (a)-(e) Pass@k curves for the TIR and pure-text models, grouped by problem algo
friendliness. (f) The distribution of algo friendliness scores across the Omni-MATH-512 dataset.
The problems are categorized into five groups based on their algo friendliness scores: 1.0–1.5 (G1),
2.0–2.5 (G2), 3.0–3.5 (G3), 4.0–4.5 (G4), and 5.0 (G5).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

M EMERGENT COGNITIVE PATTERNS OF TOOL INTEGRATION

The quantitative results of the previous sections demonstrate that TIR is universally effective, but
they do not fully explain how. If the model’s advantage is not limited to algorithmically amenable
problems, how exactly is it leveraging the code interpreter to solve problems requiring abstract
insight? Through qualitative analysis of model outputs, we have identified three distinct and recurring
patterns of code utilization that answer this question.

Pattern 1: Insight-to-computation transformation. In this primary pattern, the model’s first
step is not to code, but to reason. It engages in non-trivial, text-based analysis to deconstruct a
complex problem, applying mathematical insights to transform it into a state that is amenable to a
programmatic solution. The code interpreter is then invoked to execute a genuine algorithm (such
as search, enumeration, or DP) that efficiently solves this newly formulated sub-problem under a
limited computational resource. Unlike straightforward sequential calculations one might perform
with a calculator, these algorithms often possess complex control flows (e.g., loops, recursion) that
are challenging for a language model to emulate or follow step-by-step.

For instance, as shown in Table 7, the model first uses mathematical reasoning to derive a transcenden-
tal equation from the abstract geometric problem. It then employs code to iterate the entire parameter
space of (m,n) pairs, using the Intermediate Value Theorem as a numerical method to efficiently
detect whether a solution exists for each pair.

Table 7: A case of insight-to-computation transformation.

[Question]
Let a ̸= b be positive real numbers and m,n be positive integers. An m+ n-gon P has the property that m
sides have length a and n sides have length b. Further suppose that P can be inscribed in a circle of radius
a+ b. Compute the number of ordered pairs (m,n), with m,n ≤ 100, for which such a polygon P exists for
some distinct values of a and b.

[Response]
Okay, let’s try to tackle this problem step by step.
. . .
We need to find the number of ordered pairs (m,n) where m,n ≤ 100 such that this equation has solutions
for a and b with a ̸= b. . . . So, substituting into the equation:

m · arcsin(x/2) + n · arcsin((1− x)/2) = π

. . .
But how can I find all such (m,n) pairs? Since m and n are up to 100, perhaps we can write a program to
check for each possible pair (m,n) whether there exists an x in (0, 1) such that the equation is satisfied.
But how to implement this check in Python? The problem is that the equation is transcendental and might
not have an analytical solution, so numerical methods would be needed. For each (m,n), we can define a
function f(x) = m · arcsin(x/2) + n · arcsin((1 − x)/2) − π, and check if there’s a root of f(x) = 0
in (0, 1), excluding x = 0.5. But how to check for roots? For example, we can use the Intermediate Value
Theorem. If f(x) changes sign over an interval, there’s a root in that interval.
. . .
Now, let’s proceed to write the Python code.
<code>

1 import math
2

3 def has_solution(m, n):
4 def f(x):
5 return m * math.asin(x/2) + n * math.asin((1 - x)/2) - math.pi
6

7 # Check interval (0, 0.5)
8 left = 0.0001
9 right = 0.4999

10 if f(left) * f(right) < 0:
11 return True
12

13 # Check interval (0.5, 1)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

14 left = 0.5001
15 right = 0.9999
16 if f(left) * f(right) < 0:
17 return True
18

19 return False
20

21 count = 0
22 for m in range(1, 101):
23 for n in range(1, 101):
24 if has_solution(m, n):
25 count += 1
26

27 print(count)
28

</code>

<interpreter> 940 </interpreter>
. . .
Wait, but the code is written in Python, and the interpreter output is 940. So the final answer is 940 .

Pattern 2: Exploration and verification via code. For problems where the solution path is not
immediately obvious, the model utilizes the code interpreter as an interactive sandbox for exploration
and hypothesis testing. Instead of committing to a single line of reasoning, it formulates conjectures
and writes short code snippets to test them, observe their outcomes, and iteratively refine its strategy
based on the feedback. This pattern is particularly prevalent in problems with low algorithmic
amenability, where it allows the model to build confidence and discover insights through empirical
experimentation.
Table 8 provides a clear instance of pattern 2: exploration and verification via code. The model first
derives a candidate value of λ =

√
3 from a simple case, then uses the code interpreter to numerically

explore more different scenarios. The feedbacks validate its initial hypothesis and pivot its strategy
from further exploration toward constructing a rigorous algebraic proof.
These first two patterns represent a fundamental departure from pure-text reasoning. As we established
in Section 3, they constitute entirely new Computational Equivalence Classes, new strategies for
solving problems. While a pure-text model might theoretically be able to simulate these processes,
the token cost of doing so would be astronomical. The step-by-step, trial-and-error nature of the
exploratory pattern, in particular, would lead to a blow-up in token length. Therefore, these strategies
lie far outside the Feasible Support under Budget B for any practical context window, making them
uniquely accessible to the TIR paradigm.

Table 8: A case of exploration and verification via code.

[Question]
Find the largest real number λ with the following property: for any positive real numbers p, q, r, s there exists
a complex number z = a+ bi(a, b ∈ R) such that

|b| ≥ λ|a| and (pz3 + 2qz2 + 2rz + s) · (qz3 + 2pz2 + 2sz + r) = 0.

[Response]
Okay, let’s try to tackle this problem step by step.
But how do we approach this? Maybe we can think about the problem by considering specific cases . . . Perhaps
the worst case occurs when p = q and r = s? . . . Let’s try to consider a symmetric case. . . . Maybe choosing
p = q = 1 and r = s = 1. Let’s try that. . . .
The roots are z = −1 and roots of z2 + z + 1 = 0, which are −1±i

√
3

2
. Let’s compute their |b|/|a|:

z =
−1± i

√
3

2
→ a = −1/2, b = ±

√
3/2.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

So |b| =
√
3/2, |a| = 1/2. So |b|/|a| is

√
3.

So for this case, λ can be as large as
√
3. But this is just for this specific case. . . .

This is getting a bit abstract. Maybe we can consider a case where both P (z) and Q(z) have roots with
minimal |b|/|a|, and find what that value is. . . . when t is very small. Let me try to find its roots numerically
for a specific small t. Let me write a Python code snippet to find the roots of P (z) = z3 + 2z2 + 0.2z + 0.1.
<code>

1 import numpy as np
2

3 # Coefficients for P(z) = zˆ3 + 2zˆ2 + 0.2z + 0.1
4 coeffs = [1, 2, 0.2, 0.1]
5 roots = np.roots(coeffs)
6 print(roots)
7

</code>

<interpreter> [-1.92303902+0.j, -0.03848049+0.22476716j, -0.03848049-0.22476716j]

</interpreter>
For these complex roots, |b|/|a| is 0.2248/0.0385 ≈ 5.83. . . . Wait, but this case gives a high value of |b|/|a|.
So maybe the worst case is when the minimal such value is low. . . .
But how to find that? It seems challenging without more insight. . . . Alternatively, consider using symmetry.
. . . But if we set s = 4qr/p, for example, let’s set p = 1, q = 1, r = 1, then s = 4 ∗ 1 ∗ 1/1 = 4. So
P (z) = z3 + 2z2 + 2z + 4. Let’s find its roots. Using numpy again:
<code>

1 import numpy as np
2

3 coeffs = [1, 2, 2, 4]
4 roots = np.roots(coeffs)
5 print(roots)
6

</code>

<interpreter> [-2.00000000e+00+0.j, 1.66533454e-16+1.41421356j, 1.66533454e-16-1.41421356j]

</interpreter>
So |b|/|a| is infinite (since a is nearly zero), but for practical purposes, this suggests that for this case, there
are roots with very large |b|/|a|. So this case is not helpful. . . . This suggests that for this case, we can achieve
|b|/|a| up to

√
3.

. . .
Let’s think of a case where the ratio is lower than

√
3. . . . Let me consider the case where p = q = 1, r =

1, s = 2. Then P (z) = z3 + 2z2 + 2z + 2. Let’s find its roots using numpy.
<code>

1 import numpy as np
2

3 coeffs = [1, 2, 2, 2]
4 roots = np.roots(coeffs)
5 print(roots)
6

</code>

<interpreter> [-1.54368901+0.j, -0.22815549+1.11514251j, -0.22815549-1.11514251j]

</interpreter>
So |b|/|a| = 1.115/0.228 ≈ 4.89. The real root has |b|/|a| = 0. So again, the maximum is 4.89.
This doesn’t seem to help. . . . Let me think of a different approach. . . .
Let me assume that there is a root z = a+ bi with |b| = λ|a|. Let’s assume a ̸= 0. Then, b = λa or b = −λa.
Let’s assume b = λa. . . . Substitute z = a+ λai = a(1 + λi) into P (z) = pz3 + 2qz2 + 2rz + s = 0.
. . .
Since a ̸= 0 and λ is non-zero (otherwise, we have real roots), we can divide both sides by λa:

pa2(3− λ2) + 4qa+ 2r = 0

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

This is one equation.
From the equation, since all terms except the first are positive, we must have (3− λ2) < 0, which implies
λ2 > 3, or λ >

√
3. This suggests that for any non-real root, the ratio |b|/|a| must be greater than

√
3.

. . .
So, we have two key pieces of information:

1. We found a specific case (p = q = r = s = 1) where the largest available ratio is exactly
√
3. This

means λ cannot be greater than
√
3.

2. Our general proof shows that for any case with a non-real root, the ratio must be greater than or
equal to

√
3. This means λ must be at least

√
3.

Combining these, the largest possible value for λ is exactly
√
3 .

Pattern 3: Offloading complex calculation. This is the most direct pattern of tool use, where the
model has a clear, linear path to the solution but delegates complex or tedious calculations to the
interpreter. This usage aligns with the naive view of TIR as a “calculator”, but its importance should
not be understated. By offloading these steps, the model minimizes the risk of unforced computational
errors that frequently derail long chains of pure-text thought, thereby preserving the integrity of the
overall reasoning process.
A representative example is shown in Table 9. Here, the model first performs the text-based reasoning
to establish a solution path, then uses the interpreter as a precision tool to execute the series of
intricate vector and algebraic computations that would be highly prone to manual error.
In conclusion, these emergent patterns reveal a sophisticated interplay between the LLM’s reasoning
capabilities and the code interpreter’s computational power. The model is not merely using a tool; it
is thinking with tools. This signifies a fundamental shift in strategy: rather than simply delegating
calculations from an otherwise unchanged, text-based line of thought, the model learns to generate
novel problem-solving approaches that are intrinsically synergistic with the interpreter. It formulates
plans that leverage programmatic strengths like iteration and DP from the outset, developing new
“Computational Equivalence Classes” that were previously inaccessible. Such dynamic and flexible
code invocation enables the TIR model to break the capability ceiling of its pure-text counterpart.

Table 9: A case of offloading complex calculation.

[Question]
Let acute triangle ABC have circumcenter O, and let M be the midpoint of BC. Let P be the unique
point such that ∠BAP = ∠CAM,∠CAP = ∠BAM , and ∠APO = 90◦. If AO = 53, OM = 28, and
AM = 75, compute the perimeter of △BPC.

[Response]
Okay, let’s try to solve this problem step by step.
. . .
Alternatively, maybe using coordinate geometry. Let me think about setting up coordinates.
. . .
First, compute Ax, Ay numerically.

Ax = (75
√
13)/7, Ay = 450/7

Then compute vectors AB and AC, their lengths, unit vectors, angle bisector direction, then reflect AM over
this direction to get the direction of AP. Then find the intersection of this line with the circle.
But implementing all this in code is time-consuming, but let’s try. Let me write the code.
<code>

1 import math
2

3 # Given values
4 AO = 53

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

5 OM = 28
6 AM = 75
7

8 # Compute Ay
9 Ay = 450 / 7

10 # Compute Ax
11 sqrt13 = math.sqrt(13)
12 Ax = (75 * sqrt13) / 7
13

14 # Coordinates of A
15 A = (Ax, Ay)
16 # Coordinates of O
17 O = (0, 28)
18 # Coordinates of M
19 M = (0, 0)
20 # Coordinates of B and C
21 B = (-45, 0)
22 C = (45, 0)
23

24 # Function to compute vector from point1 to point2
25 def vector(p1, p2):
26 return (p2[0] - p1[0], p2[1] - p1[1])
27

28 # Compute vectors AB and AC
29 AB = vector(A, B)
30 AC = vector(A, C)
31

32 # Compute lengths of AB and AC
33 len_AB = math.hypot(AB[0], AB[1])
34 len_AC = math.hypot(AC[0], AC[1])
35

36 # Compute unit vectors
37 unit_AB = (AB[0]/len_AB, AB[1]/len_AB)
38 unit_AC = (AC[0]/len_AC, AC[1]/len_AC)
39

40 # Angle bisector direction
41 angle_bisector_dir = (unit_AB[0] + unit_AC[0], unit_AB[1] + unit_AC

[1])
42

43 # Vector AM
44 AM_vec = vector(A, M)
45

46 # Function to reflect a vector over another vector
47 def reflect_vector(v, axis):
48 # Normalize the axis vector
49 axis_len = math.hypot(axis[0], axis[1])
50 if axis_len == 0:
51 return v
52 axis_unit = (axis[0]/axis_len, axis[1]/axis_len)
53

54 # Dot product
55 dot = v[0] * axis_unit[0] + v[1] * axis_unit[1]
56

57 # Projection of v onto axis
58 proj = (dot * axis_unit[0], dot * axis_unit[1])
59

60 # Reflection
61 reflected = (2*dot*axis_unit[0] - v[0], 2*dot*axis_unit[1] - v[1])
62 return reflected
63

64 # Reflect AM_vec over angle bisector direction
65 AP_dir = reflect_vector(AM_vec, angle_bisector_dir)
66

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

67 # Normalize AP_dir to get direction
68 AP_dir_len = math.hypot(AP_dir[0], AP_dir[1])
69 AP_dir_unit = (AP_dir[0]/AP_dir_len, AP_dir[1]/AP_dir_len)
70

71 # Parametric line for AP: A + t * AP_dir_unit
72 # Find intersection with circle with diameter AO
73

74 # Equation of circle with diameter AO
75 # (x - mid_x)ˆ2 + (y - mid_y)ˆ2 = rˆ2
76 mid_x = (A[0] + O[0])/2
77 mid_y = (A[1] + O[1])/2
78 r = AO / 2
79

80 # Parametric equations for line AP
81 # x = A[0] + t * AP_dir_unit[0]
82 # y = A[1] + t * AP_dir_unit[1]
83

84 # Substitute into circle equation
85 # (x - mid_x)ˆ2 + (y - mid_y)ˆ2 = rˆ2
86 # Expand and solve for t
87

88 def solve_for_t():
89 # x = A[0] + t * dx
90 # y = A[1] + t * dy
91 dx = AP_dir_unit[0]
92 dy = AP_dir_unit[1]
93

94 # Expand (x - mid_x)ˆ2 + (y - mid_y)ˆ2 = rˆ2
95 # (A[0] + t*dx - mid_x)ˆ2 + (A[1] + t*dy - mid_y)ˆ2 = rˆ2
96 # Expand terms
97 a = dx**2 + dy**2
98 b = 2 * (dx*(A[0] - mid_x) + dy*(A[1] - mid_y))
99 c = (A[0] - mid_x)**2 + (A[1] - mid_y)**2 - r**2

100

101 # Solve a*tˆ2 + b*t + c = 0
102 discriminant = b**2 - 4*a*c
103 if discriminant < 0:
104 return None
105 t1 = (-b + math.sqrt(discriminant)) / (2*a)
106 t2 = (-b - math.sqrt(discriminant)) / (2*a)
107 return t1, t2
108

109 t_values = solve_for_t()
110 if t_values:
111 t = t_values[0] # Choose one solution, the other might be A itself
112 px = A[0] + t * AP_dir_unit[0]
113 py = A[1] + t * AP_dir_unit[1]
114 P = (px, py)
115 else:
116 P = None
117

118 # Now compute perimeter of triangle BPC
119 if P:
120 def distance(p1, p2):
121 return math.hypot(p1[0]-p2[0], p1[1]-p2[1])
122

123 BP = distance(B, P)
124 CP = distance(C, P)
125 BC = distance(B, C)
126 perimeter = BP + CP + BC
127 print(perimeter)
128 else:
129 print("No intersection found")

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

130

</code>

<interpreter> 192.0 </interpreter>

The code computes the perimeter of triangle BPC and returns 192.0. Therefore, the answer is 192 .

26

	Introduction
	Related Work
	Method
	Formal Proof: Support Expansion via Tool Integration
	Theoretical Context: The Limits of Standard RL
	Proof of Support Expansion

	Token Efficiency and Feasible Support under a Budget
	The Concept of Token Efficiency
	Feasible Support under a Token Budget

	Algorithmic Improvement: Advantage Shaping for Early Code Invocation

	Experiments
	Pass@K Experiments: TIR Breaks the Capability Ceiling
	Benefits of TIR Extend Beyond Computationally-Intensive Problems
	Emergent Cognitive Patterns of Tool Integration
	Empirical Analysis of ASPO for Early Code Invocation

	Conclusions
	LLM Usage
	The Theoretical Background
	The Detailed Proof of Support Expansion
	The Detailed Proof of Feasible Support Supremacy
	Extensions to Other Tools and Interactions with Environments
	Examples on Token Efficiency
	Analysis of the Failed Reward-Based Approach
	Experimental Setup
	Pass@k Data
	Capability Expansion and Shrinkage
	Rubric for Algorithmic Friendliness
	Pass@k Curves for Problems Grouped by Algo Friendliness
	Emergent Cognitive Patterns of Tool Integration

