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Abstract

In recent years, reinforcement learning (RL) has shown remarkable success in1

robotics when a fast and accurate simulator is available for a given task. When using2

RL and simulation, more simulator realism is generally beneficial but becomes3

harder to obtain as robots are deployed in increasingly complex and widescale4

domains. In such settings, simulators will likely fail to model all relevant details5

of a given target task. In this paper, we formalize and study the abstract sim2real6

problem: given an abstract simulator that models a target task at a coarse level7

of abstraction, how can we train a policy with RL in the abstract simulator and8

successfully transfer it to the real-world? We formalize this problem using the9

language of state abstraction from the RL literature. This framing shows that an10

abstract simulator can be grounded to match the target task if the abstract dynamics11

take the history of states into account. Based on the formalism, we then introduce12

a method that uses a small amount of real-world task data and learns to correct13

the dynamics of the abstract simulator. We then show that these methods enable14

successful policy transfer both in sim2sim and sim2real evaluation.15

1 Introduction16

Reinforcement learning (RL) has demonstrated remarkable success across diverse application do-17

mains, from game playing Wurman et al. [2022] to robotic manipulation Andrychowicz et al. [2020],18

navigation Wijmans et al. [2019], and locomotion Hwangbo et al. [2019]. Despite these achievements,19

deploying RL in complex, real-world scenarios remains non-trivial due to a combination of expensive20

data collection, partial observability, and intricate physical dynamics. Simulators offer a safer and21

less costly alternative to real-world learning, but often rely on approximate physics engines that may22

omit crucial phenomena (e.g., latency) or introduce modeling artifacts Yoon et al. [2023]. Dynamics23

domain randomization Peng et al. [2018] aims to address the sim2real gap by robustifying agents to24

varied simulated conditions. However, in practice, it may be difficult to specify a complete set of25

randomizations that can fully capture the complexity of real systems, leaving policies vulnerable to26

unmodeled dynamics that result in poor performance when deployed.27

To reduce the burden of identifying highly detailed simulators, researchers have turned to more28

extreme forms of simplified, abstracted simulation Truong et al. [2023]. More abstract simulators29

can significantly speed up experimentation and simplify the modeling process, making RL more30

accessible and efficient to develop Labiosa et al. [2024], ?. However, a highly simplified simulator31

runs the risk of ignoring essential dynamics that can arise in the real world, leading to policies that32

fail when transferred. An additional limitation of abstract simulators is partial observability: when33

more details of the environment are stripped away in the abstract simulator’s state representation, the34

agent may not have direct access to critical factors that strongly influence performance in reality. If35

the learned policy is unaware of such factors, it will learn a policy that fails when transferred to the36

physical system.37
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With this motivation in mind, in this paper, we aim to answer the question:38

“Can we use real-world data to modify an abstract simulator so that RL in the modified simulator39

produces a performant policy for a real robot?"40

Toward answering this question, we first formalize the problem of abstract sim2real transfer using the41

notion of a state abstraction from the RL literature. Using this formalism, we identify that the key to42

grounding the abstract simulator and transferring performant policies is to learn simulator corrections43

and policies as functions of abstract state and action histories to mitigate the partial observability44

induced by abstraction. We leverage this insight to develop a new method, ASTRA (Augmented45

Simulation with self-predicTive abstRAction), that uses a small amount of real-world data to ground46

an abstract simulator. We validate this method through sim2real tasks with the humanoid NAO robot47

and sim2sim experiments in navigation and humanoid locomotion, where we show that it enables48

successful abstract sim2real transfer where other baselines fail.49

2 Related Work50

Sim2real transfer has been extensively studied in robotics Zhao et al. [2020]. While most work51

assumes high-fidelity simulators that share state spaces with target domains, we address transfer from52

abstract simulators with fundamentally different state representations. This distinction necessitates53

novel approaches because abstraction induces partial observability Allen et al. [2021]. We review54

work on abstraction in sim2real, simulator grounding methods, and reinforcement learning with state55

abstraction.56

Abstraction and Sim2Real The sim2real research community has acknowledged the importance57

of developing the capability of robots that can learn with abstract simulators of the world Höfer et al.58

[2020]. In addition to the practical motivation that an abstract simulator is easier to specify, evidence59

from psychology suggests that humans seamlessly plan actions with abstract models Ho et al. [2022].60

Several works have demonstrated the possibility and even advantages of abstract simulators compared61

to high-fidelity simulators. Nachum et al. showed that a high-level policy for robot navigation62

can be trained in a high-fidelity simulator but only using an abstract state representation as input63

Nachum et al. [2019]. Müller et al. show that abstraction can aid sim2real transfer in autonomous64

driving Müller et al. [2018]. Jain et al. improve learning of visual navigation policies by first training65

in an abstract grid simulator Jain et al. [2021]. Truong et al. found that reducing a simulator’s66

fidelity (switching from a dynamics to kinematic motion model) enables improved transfer of visual67

navigation policies, particularly when the wall-clock time of training is limited Truong et al. [2023].68

However, these works use abstraction without formal analysis of its implications. Related to the69

idea of formalizing abstract sim2real, Cutler et al. formalize the notion of multi-fidelity simulators70

and develop a method for transferring knowledge between simulators Cutler et al. [2014], but focus71

on value approximation rather than state space mismatches. We provide the first formal treatment72

showing that abstraction induces partial observability, necessitating history-based grounding methods.73

Simulator Grounding The methods we introduce are most closely related to existing methods for74

sim2real that ground a simulator’s dynamics to more closely match real-world dynamics. This class75

of methods includes system identification, by which the parameters of a simulator are tuned based on76

real-world experimental trials Åström and Eykhoff [1971], Armstrong [1987]. Many recent works in77

the sim2real literature have proposed using real-world data to learn corrections to a given simulator78

Ajay et al. [2018], Bousmalis et al. [2018], Golemo et al. [2018], Hanna et al. [2021], Heiden et al.79

[2021], Karnan et al. [2020]. These works focus on how to apply corrections and how to learn them80

with limited data. We extend these approaches to highly abstract simulators where ϕ induces partial81

observability.82

Reinforcement Learning with Abstraction Our work uses the theory of state abstraction from the83

RL literature to formalize and identify methods for the abstract sim2real problem. While there is84

substantial work in state-abstractionAbel [2022], abstract sim2real is most closely related to the use85

of abstraction for model-based RL Jiang et al. [2015], Chaudhari et al. [2024]. Unlike these works,86

sim2real starts with a given simulator. State abstraction is known to induce partial observability when87

applied to states in an MDP Allen et al. [2021]. When states cannot be fully observed (POMDPs),88

integrating historical information becomes critical Littman and Sutton [2001], Hausknecht and Stone89

[2015]. Interestingly, memory can also improve performance in nominally fully observed MDPs, as90
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shown in robotic manipulation Andrychowicz et al. [2020] and continuous control Patil et al. [2024].91

Bisimulation defines state equivalence via reward and dynamics Givan et al. [2003]. Subramanian et92

al. Subramanian et al. [2022] proposed Approximate Information States (AIS), which unify reward93

and transition prediction to train a history encoder that preserves enough information for near-optimal94

decision making.95

3 Preliminaries96

We next formalize the RL objective and then formalize the standard sim2real transfer problem.97

Reinforcement Learning We formalize an RL task as a Markov decision process (MDP),M =98 (
S,A, P, r, γ

)
, in which S denotes the set of states, A the set of actions, P : S × A → ∆(S) the99

transition dynamics, r : S × A → R the reward function, and γ ∈ [0, 1) the discount factor. We100

assume that states are fully observable (or can be reliably estimated) and that the transition dynamics101

are unknown. At each timestep i, the agent observes a state si ∈ S, takes an action ai ∈ A, and102

then transitions to a new state si+1 with probability P (si+1 | si, ai). It also receives a scalar reward103

ri = r(si, ai). A policy π : S → ∆(A) maps states to action distributions. The agent’s objective is104

to maximize the expected discounted return: JM(π) = E
[∑∞

i=0 γ
i r
(
si, ai

)]
, where si and ai are105

generated by following the policy π inM.106

Sim2Real We follow prior work in the literature by formalizing the sim2real problem as transfer107

between two MDPs with different state transition dynamics. Let the target domain (real world)108

be represented by the MDP,Mt :=
(
S,A, Pt, r, γ

)
, where S is the target domain state space, Pt109

describes the true transition dynamics, r is the reward function, and γ ∈ [0, 1) is the discount factor.110

Let the source environment (simulator) be represented by the MDP,Ms =
(
S,A, Ps, r, γ

)
, which111

shares the same state and action spaces withMt but approximates real-world dynamics with the112

transition function, Ps. The sim2real problem is to find a policy, π, using RL inMs that maximizes113

target environment performance, JMt
(π). Under this formalism, the main challenge of sim2real is114

that Ps ̸= Pt and consequently, JMs
(π) ̸= JMt

(π). This so-called reality gap can cause well-trained115

policies inMs to fail upon deployment inMt. However, because both MDPs share the same state116

and action spaces, one can, in principle, adjust or learn modifications to Ps so that it more closely117

matches Pt. In practice, such modifications are performed with either careful system identification118

(e.g., Tan et al. carefully calibrate the model of a quadrupedal robot Tan et al. [2018]) or through119

machine learning (e.g., Golemo et al. [2018]).120

4 Abstract Sim2Real121

In this section, we formalize the abstract sim2real problem using the theory of state abstraction122

from the RL literature. This formalization reveals that abstraction induces partial observability,123

necessitating history-based grounding methods that preserve task-relevant information.124

We define an abstract simulator as an MDP over an abstract state-space,Ms := (Ss,A, Ps, rs, γ) ,125

where the state space Ss is deliberately smaller than the real state space St. Two examples of abstract126

state spaces are either compressing states in St to a finite set of discrete abstract states or to have127

Ss be a subspace of St (e.g., by dropping some dimensions of the real-world state). We assume the128

mapping from real-world states to abstract simulator states is known and define it as: ϕ : St → Ss.129

With slight abuse of notation, we also write ϕ : Ht → Hs to denote applying ϕ to every state st130

in a trajectory of target environment states, ht ∈ Ht, so as to obtain a trajectory of abstract states,131

hs ∈ Hs. Note that the simulator’s transition function, Ps, is necessarily simpler than Pt because132

ϕ merges or discards details that are present in St. In this work, we will assume that the abstract133

simulator and real-world share the same action space, A. If action spaces differ (e.g., high-level134

commands vs. low-level torques), we assume access to an action transformation function, like a PD135

controller or a learned low-level policy, to map actions fromMs toMt. As with standard sim2real,136

our objective is to use RL inMs to learn a policy, π, that maximizes JMt
(π).137

Abstract sim2real raises two new challenges beyond the standard sim2real problem: the policy138

learned in the abstract simulator may lack crucial information for optimal control and the simplified139

transitions, Ps, cannot be modified in their present functional form to match Pt. The root of both140

challenges is that, in general, state abstractions induce partial observability Allen et al. [2021].141
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Perhaps the most obvious consequence of partial observability is that a policy, π : Ss → ∆(A),142

trained in the abstract simulator might be missing information that is otherwise available in states in143

St. The second consequence is that we cannot directly apply simulator grounding methods using144

experience fromMt. To see this, consider if we have a trajectory, st0, a0, s
t
1, ..., s

t
T , collected by145

running some policy inMt. Applying the abstraction, ϕ, to each state in this trajectory results in146

a trajectory, ss0, a0, s
s
1, ..., s

s
T . However, the Markov property fails to hold in general meaning that147

Pr(ssi+1|ssi , ai) ̸= Pr(ssi+1|ssi , ai, ssi−1, ai−1) Allen et al. [2021]. Consequently, naively attempting148

to make Ps(s
s
i+1|ssi , ai) ≈ Pr(ssi+1|ssi , ai) will fail to ground the dynamics of the abstract state to149

the real world.150

Since abstraction induces partial observability, a straightforward approach is to extend existing neural-151

network-based grounding methods (e.g., Golemo et al. [2018], Hanna et al. [2021]) with recurrent152

networks to learn history-conditioned corrections and to train history-based policies. However,153

solely optimizing for next abstract state prediction has no guarantee of preserving all task-relevant154

information for control. This observation motivates the method that we introduce in the next section.155

5 ASTRA: Augmented Simulation with Self-Predictive Abstraction156

A natural approach to abstract sim2real is to use real-world data to align the abstract simulator’s157

dynamics with the real-world’s dynamics. A straightforward way to address the partial observability158

induced by abstraction is to extend neural correction methods (e.g., Hanna et al. [2021], Golemo159

et al. [2018]) with recurrent neural networks (RNNs) so that corrections can be based on full160

state-action histories. Under this extension, these approaches would learn a correction function161

ψ : Hs ×A× Ss → Ss that predicts adjustments to the simulator’s next state so that it matches the162

next abstract state observed in the real world. This approach optimizes the hidden representation163

of the RNN solely for prediction accuracy through an MSE loss, which may not necessarily lead to164

a hidden representation that contains all task relevant information. To explicitly shape the hidden165

state representation toward retaining task-relevant information, we introduce a new method, ASTRA166

(Augmented Simulation with self-predicTive abstRAction). The key novelty of ASTRA is to167

augment simulator grounding with loss terms motivated from the literature on self-predictive state168

abstractions. Algorithm 1 provides pseudocode for the ASTRA training procedure; Algorithm 2169

provides pseudocode for RL training with ASTRA.170

5.1 Grounding with Self-Prediction Losses171

ASTRA encodes history hsi = (ss1, a1, . . . , s
s
i , ai−1) with a recurrent encoder θ (e.g., GRU or

LSTM), producing a latent vector zsi = θ(hsi ) ∈ Z. To train this encoder, we use the paired trajectory
collection method from Golemo et al. [2018], executing the same sequence of actions in both the
abstract simulator and target environment, yielding corresponding state sequences (ss1, s

s
2, . . .) and

(st1, s
t
2, . . .) where ssi = ϕ(sti). Our objective is to learn the encoder such that zsi contains sufficient

information both for grounding the abstract simulator and learning an effective policy. Specifically,
we seek a representation zsi = θ(hsi ) such that (i) rewards are predictable from zsi via a learned
reward predictor r̂:

E
[
rti
∣∣hsi , ai] ≈ r̂(zsi , ai) ,

and (ii) the next latent depends on the past only through zsi (Markov in latent space):

P
(
zsi+1

∣∣hsi , ai) ≈ P (zsi+1

∣∣ zsi , ai) .
We encourage θ to approximately satisfy these constraints via loss functions that are inspired from the172

concept of an approximate information state (AIS) Subramanian et al. [2022], Patil et al. [2024]. An173

AIS representation contains sufficient information to predict rewards in the real-world environment174

as well as the representation at the next time-step. AIS representations are closely related to self-175

predictive abstractions Guo et al. [2022], Schwarzer et al. [2021]. We will train the encoder used by176

ASTRA such that it produces an AIS hidden state representation.177

Concretely, we augment encoder training with two losses, in addition to an MSE loss on the next178

abstract state. First, ASTRA learns a transition model P̂ (zsi , ai) = (µi, log σ
2
i ) that outputs the179

parameters of a Gaussian N (µi, σ
2
i ) that approximates the distribution of zsi+1. We train both the180

transition model and encoder to minimize the negative log-likelihood Ltrans = −
∑

i log
[
N
(
zsi+1 |181
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µi, σi
)]
, driving P̂ to mirror real-world transitions in latent space. Second, we train a reward model182

r̂(zsi , ai) → r̂i that predicts the reward observed in the target environment, rti ; we jointly train183

the reward model and encoder to minimize the mean-squared error Lrew =
∑

i∥r̂i − rti∥2. Third,184

as done with other neural grounding methods, ASTRA predicts the next abstract state: Labs =185 ∑
i

∥∥ ŝ s
i+1−ϕ

(
sti+1

)∥∥2.ASTRA’s total training objective is thenL = λ1 Ltrans + λ2 Lrew + λ3 Labs.186

In our implementation, θ, P̂ , r̂ and fabs share a common backbone with three task-specific heads; we187

optimize all parameters jointly under L.188

Algorithm 1 ASTRA Simulator Grounding

1: for epoch = 1 to Nphase1 do
2: Update θ, P̂ , r̂:
3: Encode source states: zs ← θ(hs)

4: Predict latent transition: (µ, log σ2)← P̂ (zs, a)
5: Predict reward: r̂ ← r̂(zs, a)
6: Predict next abstract state: ŝ s

i+1 ← fabs(z
s, a)

7: Compute losses: Ltrans = − logN (zsi+1 | µi, σ
2
i ), Lrew = ∥r̂ − rt∥2, Labs = ∥ŝ s

i+1 −
ϕ(sti+1)∥2

8: Aggregate objective: L = λ1Ltrans + λ2Lrew + λ3Labs

9: Update (θ, P̂ , r̂) with∇L
10: end for

5.2 Target Environment Abstraction189

ASTRA trains a policy that takes the learned AIS representation as input. Consequently, we need an190

encoder to produce these latent states when running the policy in the target environment. To do this,191

ASTRA abstracts target history ht into the same latent spaceZ . Specifically, we learn a target encoder192

ζ : Ht → Z that maps target history into the same latent space, defining zti = ζ(hti). To ensure193

compatibility with the source encoder θ, ASTRA enforces that zti and zsi have similar distributions for194

corresponding actions. Let psi := P (zsi+1|zsi , ai) and pti := P (zti+1|zti , ai), the alignment is achieved195

by minimizing Lalign = D (psi , p
t
i) where we use Maximum Mean Discrepancy (MMD) as D. For196

alignment we freeze θ, P̂ , r̂ and update only ζ; after alignment, ζ is kept fixed for deployment. The197

target encoder then enables deploying the policy trained in the grounded abstract simulator.198

We note that both NAS and ASTRA use representations of history to implicitly infer relevant state199

features that are unmodelled in the abstract simulator. While this approach is a principled method of200

grounding abstract simulators, if the abstraction, ϕ, is too coarse, even using history may not enable201

accurate grounding. ASTRA’s latent representation guides policy learning to make better use of the202

partial signals that are available in temporal data.203

Algorithm 2 Policy Learning with Grounded Simulator

Require: RL algorithm A
1: Initialize A
2: for episode = 1 to M do
3: Initialize the abstract simulator states at ss1 and history hs1
4: for i = 1 to T do
5: Encode history hsi to latent state zsi ← θ(hsi )
6: Sample action ai ∼ π(zsi )
7: Sample zsi+1 ∼ P̂ (zsi , ai)
8: Set r̂i ← r̂(zsi , ai)
9: Execute action ai in the abstract simulator states

10: Apply RL update with transition (zsi , ai, z
s
i+1, r̂i)

11: Set the abstract simulator to ssi+1 ← fabs(z
s
i , ai), and append to hsi+1

12: end for
13: end for
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Figure 1: Success rates on navigation tasks.

6 Experiments204

In this section, we empirically study abstract sim2real transfer to answer the following three questions:205

(i) Can history-based approaches with recurrent policies enable transfer of policies trained in abstract206

simulators? (ii) Does learning a self-predictive representation improve transfer efficacy compared to207

methods that only optimize prediction accuracy? (iii) How does the level of abstraction affect the208

relative importance of grounding methods versus domain randomization?209

To address these questions, we evaluate transfer across navigation, humanoid locomotion, and real210

robot tasks with varying abstraction levels. We evaluate ASTRA against four baselines. Direct211

Transfer (DT) establishes the abstract sim2real gap. In our experiments, DR serves as a minimal212

domain randomization baseline using only action noise. COMPASS Huang et al. [2023] represents a213

state-of-the-art domain-randomization style method. NAS Golemo et al. [2018] serves as a strong and214

representative baseline for neural grounding methods that use real-world data and recurrent networks215

to learn history-based simulator corrections. While NAS optimizes solely for prediction accuracy,216

ASTRA incorporates self-predictive losses to preserve task-relevant information.217

6.1 Legged Robot Navigation - Sim2Sim218

Our abstract simulator uses a point-mass with velocity commands (vx, vy) and planar state219

(x, y, vx, vy), while the target AntMaze environment has a 29-dimensional state containing torso220

pose and joint angles/velocities. This abstraction gap is substantial: the simulator omits leg contacts,221

joint dynamics, and orientation drift that critically affect quadruped locomotion. A separately trained222

low-level controller, frozen during all experiments, converts high-level velocity commands to joint223

torques in the target environment.224

We evaluate on two maze configurations: U-Maze with a single 90° turn and Long Maze with multiple225

turns. We measure success rates over 10 seeds with 100 trajectories each. Initial and goal positions226

are sampled from Gaussians around fixed poses. For training data, we collect 200 trajectories227

(average length 500 steps) using a random behavior policy π0 to generate paired data between228

domains. For this domain, DR uses action noise (ε ∼ N (0, 0.05)) and scaling (δ ∼ U [−0.1, 0.1]).229

COMPASS randomizes friction (µ ∈ [0.8, 1.2]), position noise (±0.03m), velocity noise (≤ 0.02m/s),230

heading bias (±5), action parameters, and control timestep (∆t ∈ [0.015, 0.025]s). To upper bound231

performance, we include policies trained directly in AntMaze: Target uses the abstracted state ϕ(st)232

while Full Obs has access to the complete state.233

Figures 1 reveal two key findings. First, GRU policies consistently outperform MLPs across all234

methods, confirming temporal memory mitigates abstraction-induced partial observability. Second,235

among GRU policies, ASTRA achieves the highest success rate. NAS, our representative baseline,236

ranks second, followed by COMPASS, DR, and DT. This performance gap widens in Long Maze.237

6.2 Humanoid Locomotion238
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Figure 3: Humanoid locomotion results across three abstraction levels (10 seeds; higher is better).
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Figure 2: Abstraction hierarchy used for humanoid lo-
comotion experiments: Walker2D, Kinematics, and Ex-
tended Kinematics.

We examine how abstraction level affects239

transfer by testing three variants of the high-240

DoF Humanoid [Duan et al., 2016], each241

representing different levels of state and242

morphological abstraction. All policies out-243

put joint position commands that a PD con-244

troller (Kp = 200, Kd = 10) converts to245

torques in the target environment.246

Three abstraction levels systematically vary247

the simulator fidelity: (1) WALKER2D:248

The most abstract variant models the hu-249

manoid’s upper body as a single rigid link,250

reducing observations to leg positions, joint251

angles, and foot contacts—omitting arm, torso, and center-of-mass (CoM) information. Only 4 joints252

are controllable (left/right knee and thigh), each operating around a single axis. (2) KINEMATICS: Pre-253

serves the full humanoid morphology with observations including positions and velocities of all joints.254

Actions are interpreted as desired joint positions rather than torques, maintaining complete body255

structure while abstracting force-level dynamics. (3) EXTENDED KINEMATICS: Augments kinematic256

abstraction with robot-level information including CoM and translational velocity [Radosavovic et al.,257

2024], capturing global dynamics while maintaining position control.258

We collect 200 trajectories (average length 500 steps) using a suboptimal PPO policy, as random259

policies fail immediately and thus produce highly irrelevant data for bipedal locomotion. For260

humanoid domains, DR uses action noise (ε ∼ N (0, 0.05)) and scaling (δ ∼ U [−0.05, 0.05]).261

COMPASS additionally randomizes joint friction (µ ∈ [0.8, 1.2]), observation noise (scaling factor262

δ ∼ U [0.9, 1.1]), and control timestep (∆t ∈ [0.015, 0.025]s).263

Figure 3 reveals how abstraction level critically impacts transfer success. In the skeletal Walker2D264

setting, DT, DR, and COMPASS learn policies that terminate quickly (within 63 timesteps). NAS265

shows improvement through history-based simulator grounding. ASTRA achieves the best perfor-266

mance, maintaining balance longest Full-body KINEMATICS stabilizes all algorithms and narrows267

the reality gap, with COMPASS now outperforming NAS. EXTENDED KINEMATICS brings smaller268

gains, with NAS and COMPASS approaching the target-trained upper bound while ASTRA maintains269

its lead. These results demonstrate that (i) retaining essential information during abstraction is most270

effective for transfer, and (ii) when abstraction is severe, ASTRA’s self-predictive grounding proves271

most effective272
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6.3 Real Robot Evaluation273

Finally, we validate our approach on a physical NAO bipedal robot, testing transfer from highly274

abstract simulators to real hardware. The physical NAO presents unique challenges absent in275

simulation: imprecise odometry, foot slippage, actuator delays, and camera noise. We evaluate on276

two complementary tasks that stress different aspects of abstract sim2real transfer.277

6.3.1 NAO Navigation278

The abstract simulator models the robot as a 2D point mass with velocity control. On the real NAO,279

high-level velocity control is translated to joint commands through a walk engine and sensor readings280

are mapped to high-level pose estimates with a state-estimation module. The robot must navigate a281

physical maze to reach a 0.3-m radius goal zone without wall collisions. Runs are initialized from282

three distinct start poses per seed; episodes terminate after 500 control steps or upon completion.283

Performance metrics: success rate, distance traveled (m), and completion time (s) over three seeds.284

We augment 50 collected trajectories to 200 through rotational and translational transformations.285

COMPASS randomizes ground friction µ ∈ U [0.8, 1.2], foot slippage (20% probability), position286

noise (±0.03m), velocity noise (≤ 0.02m/s), heading bias (±5), action noise (ε ∼ N (0, 0.05),287

scaling δ ∼ U [−0.1, 0.1]), and control timestep (∆t ∈ U [0.015, 0.025]s).288

Table 1: NAO navigation results (3 seeds).

Method Success Rate Distance (m) Time (s)
DT 0.27 ± 0.21 10.91 86.62
DR 0.33 ± 0.31 9.30 81.08
COMPASS 0.50 ± 0.08 12.70 85.37
NAS 0.53 ± 0.06 12.41 80.77
ASTRA 0.73 ± 0.05 12.33 82.54

Table 1 shows ASTRA achieves 73% success289

rate, significantly outperforming direct transfer290

(27%). COMPASS reaches 50% through exten-291

sive randomization, while NAS achieves 53%292

using history-based corrections. ASTRA signifi-293

cantly outperforms all baselines at 73%, demon-294

strating superior handling of unmodeled effects295

like foot slippage and odometry drift.296

6.3.2 NAO Ball-Kicking297

The abstract simulator uses a 2D point agent with simplified ball physics. Real-world ball tracking298

uses monocular vision with noise and dropouts. The NAO must kick a ball into a goal within 30s.299

Each seed evaluates 20 trials with random starts, measuring success rate and completion time.300

We collect 200 trajectories using a random policy. COMPASS randomizes ground friction µ ∈301

U [0.8, 1.2], ball position/velocity (simulating camera uncertainty), and post-contact ball direction302

(simulating foot-ball contact variations).303

Method Success Rate Time (s)

DT 0.07 ± 0.03 13.2
DR 0.12 ± 0.04 17.4
NAS 0.37 ± 0.22 17.2
COMPASS 0.40 ± 0.25 19.2
ASTRA 0.56 ± 0.05 21.7

Table 2: Ball-kicking performance over 3
seeds.

Figure 4: Left: abstract dribble simulator. Right:
NAO kicking ball.

Table 2 shows ASTRA achieves 56% success rate, substantially outperforming all baselines. NAS304

(37%) shows improvement over DT and DR through history processing, but still falls short of305

ASTRA’s performance in handling camera noise and contact uncertainty.306

6.4 Data Efficiency Analysis307

The amount of real-world data required for effective simulator grounding directly impacts practical308

deployment. Therefore, this analysis examines how performance scales with dataset size using309

navigation in sim2sim as a representative task. We evaluate ASTRA’s data efficiency compared to310

the strongest baseline (NAS) across six dataset sizes: 25%, 50%, 75%, 100%, 125%, and 150% of a311

baseline dataset containing 200 trajectories. Each configuration is evaluated through downstream312
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Figure 5: Dataset efficiency analysis. Top: position coverage, middle: velocity distribution, bottom:
transfer performance. Shaded regions indicate performance variability across 5 seeds.

RL success rate with MLP policy networks across 5 independent seeds. Figure 5 shows the position313

coverage (top), velocity coverage (middle), and transfer performance (bottom) as dataset size increases.314

The results demonstrate clear diminishing returns in data collection for simulator grounding. ASTRA315

achieves its steepest improvement between 25% and 75% of the baseline dataset, with performance316

plateauing beyond 100%. This trend also holds for NAS, though at lower absolute performance.317

Notably, doubling the dataset from 75% (150 trajectories) to 150% (300 trajectories) yields less than318

10% improvement in success rate. The variance patterns indicate that performance stability emerges319

around 100% data, suggesting this represents sufficient coverage of the state space.320

7 Conclusion321

In this paper, we studied the question of how to enable a robot to use RL in a so-called abstract322

simulator and the resulting policy transfer to the real-world. We first formalized the abstract sim2real323

problem which highlighted the need to learn history-based policies and to consider histories of324

abstract state sequences when grounding the dynamics of an abstract simulator to the real-world.325

We then introduced a novel method, ASTRA, to learn correction functions for abstract simulators.326

Finally, we showed in sim2sim and sim2real experiments that this method enables policies trained in327

abstract simulators to effectively transfer to target domains.328
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