© ® N O oA~ W N =

Abstract Sim2Real through Approximate Information
States

Anonymous Author(s)
Affiliation
Address

email

Abstract

In recent years, reinforcement learning (RL) has shown remarkable success in
robotics when a fast and accurate simulator is available for a given task. When using
RL and simulation, more simulator realism is generally beneficial but becomes
harder to obtain as robots are deployed in increasingly complex and widescale
domains. In such settings, simulators will likely fail to model all relevant details
of a given target task. In this paper, we formalize and study the abstract sim2real
problem: given an abstract simulator that models a target task at a coarse level
of abstraction, how can we train a policy with RL in the abstract simulator and
successfully transfer it to the real-world? We formalize this problem using the
language of state abstraction from the RL literature. This framing shows that an
abstract simulator can be grounded to match the target task if the abstract dynamics
take the history of states into account. Based on the formalism, we then introduce
a method that uses a small amount of real-world task data and learns to correct
the dynamics of the abstract simulator. We then show that these methods enable
successful policy transfer both in sim2sim and sim2real evaluation.

1 Introduction

Reinforcement learning (RL) has demonstrated remarkable success across diverse application do-
mains, from game playing Wurman et al.|[2022] to robotic manipulation Andrychowicz et al.|[2020],
navigation Wijmans et al|[2019]], and locomotion Hwangbo et al.|[2019]. Despite these achievements,
deploying RL in complex, real-world scenarios remains non-trivial due to a combination of expensive
data collection, partial observability, and intricate physical dynamics. Simulators offer a safer and
less costly alternative to real-world learning, but often rely on approximate physics engines that may
omit crucial phenomena (e.g., latency) or introduce modeling artifacts|Yoon et al.|[2023]]. Dynamics
domain randomization |Peng et al.| [2018]] aims to address the sim2real gap by robustifying agents to
varied simulated conditions. However, in practice, it may be difficult to specify a complete set of
randomizations that can fully capture the complexity of real systems, leaving policies vulnerable to
unmodeled dynamics that result in poor performance when deployed.

To reduce the burden of identifying highly detailed simulators, researchers have turned to more
extreme forms of simplified, abstracted simulation [Truong et al.[[2023]]. More abstract simulators
can significantly speed up experimentation and simplify the modeling process, making RL more
accessible and efficient to develop Labiosa et al.|[2024], ?. However, a highly simplified simulator
runs the risk of ignoring essential dynamics that can arise in the real world, leading to policies that
fail when transferred. An additional limitation of abstract simulators is partial observability: when
more details of the environment are stripped away in the abstract simulator’s state representation, the
agent may not have direct access to critical factors that strongly influence performance in reality. If
the learned policy is unaware of such factors, it will learn a policy that fails when transferred to the
physical system.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

38

39
40

41
42
43
44
45
46
47
48
49

50

51
52
53
54
55
56

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

74
75
76
77
78
79
80
81
82

83
84
85
86
87
88
89
90

With this motivation in mind, in this paper, we aim to answer the question:

“Can we use real-world data to modify an abstract simulator so that RL in the modified simulator
produces a performant policy for a real robot?"

Toward answering this question, we first formalize the problem of abstract sim2real transfer using the
notion of a state abstraction from the RL literature. Using this formalism, we identify that the key to
grounding the abstract simulator and transferring performant policies is to learn simulator corrections
and policies as functions of abstract state and action histories to mitigate the partial observability
induced by abstraction. We leverage this insight to develop a new method, ASTRA (Augmented
Simulation with self-predicTive abstRAction), that uses a small amount of real-world data to ground
an abstract simulator. We validate this method through sim2real tasks with the humanoid NAO robot
and sim2sim experiments in navigation and humanoid locomotion, where we show that it enables
successful abstract sim2real transfer where other baselines fail.

2 Related Work

Sim2real transfer has been extensively studied in robotics [Zhao et al.|[2020]. While most work
assumes high-fidelity simulators that share state spaces with target domains, we address transfer from
abstract simulators with fundamentally different state representations. This distinction necessitates
novel approaches because abstraction induces partial observability |Allen et al.|[2021]. We review
work on abstraction in sim2real, simulator grounding methods, and reinforcement learning with state
abstraction.

Abstraction and Sim2Real The sim2real research community has acknowledged the importance
of developing the capability of robots that can learn with abstract simulators of the world [Hofer et al.
[2020]. In addition to the practical motivation that an abstract simulator is easier to specify, evidence
from psychology suggests that humans seamlessly plan actions with abstract models|Ho et al.| [2022].
Several works have demonstrated the possibility and even advantages of abstract simulators compared
to high-fidelity simulators. Nachum et al. showed that a high-level policy for robot navigation
can be trained in a high-fidelity simulator but only using an abstract state representation as input
Nachum et al.|[2019]. Miller et al. show that abstraction can aid sim2real transfer in autonomous
driving |[Miiller et al.|[2018]). Jain et al. improve learning of visual navigation policies by first training
in an abstract grid simulator Jain et al.| [2021]]. Truong et al. found that reducing a simulator’s
fidelity (switching from a dynamics to kinematic motion model) enables improved transfer of visual
navigation policies, particularly when the wall-clock time of training is limited [Truong et al.|[2023].
However, these works use abstraction without formal analysis of its implications. Related to the
idea of formalizing abstract sim2real, Cutler et al. formalize the notion of multi-fidelity simulators
and develop a method for transferring knowledge between simulators |Cutler et al.|[2014]], but focus
on value approximation rather than state space mismatches. We provide the first formal treatment
showing that abstraction induces partial observability, necessitating history-based grounding methods.

Simulator Grounding The methods we introduce are most closely related to existing methods for
sim2real that ground a simulator’s dynamics to more closely match real-world dynamics. This class
of methods includes system identification, by which the parameters of a simulator are tuned based on
real-world experimental trials Astrém and Eykhoff| [[1971]], Armstrong| [1987]. Many recent works in
the sim2real literature have proposed using real-world data to learn corrections to a given simulator
Ajay et al.|[2018]], Bousmalis et al.| [2018]], Golemo et al.|[2018]], Hanna et al.|[2021]], Heiden et al.
[2021]], Karnan et al.|[2020]]. These works focus on how to apply corrections and how to learn them
with limited data. We extend these approaches to highly abstract simulators where ¢ induces partial
observability.

Reinforcement Learning with Abstraction Our work uses the theory of state abstraction from the
RL literature to formalize and identify methods for the abstract sim2real problem. While there is
substantial work in state-abstractionAbel| [2022]], abstract sim2real is most closely related to the use
of abstraction for model-based RL Jiang et al.|[2015]], Chaudhari et al.| [2024]]. Unlike these works,
sim2real starts with a given simulator. State abstraction is known to induce partial observability when
applied to states in an MDP |Allen et al.[[2021]]. When states cannot be fully observed (POMDPs),
integrating historical information becomes critical |[Littman and Sutton| [2001]],[Hausknecht and Stone
[2015]]. Interestingly, memory can also improve performance in nominally fully observed MDPs, as

91
92
93
94
95

96

97

98

99
100
101
102
103
104

105

106

107
108
109
110
111
112
113
114
115
116
117
118
119
120

121

122
123
124

125
126
127
128
129
130
131
132
133
134
135
136
137

138
139
140
141

shown in robotic manipulation |Andrychowicz et al.|[2020] and continuous control [Patil et al.|[2024].
Bisimulation defines state equivalence via reward and dynamics (Givan et al.[[2003]]. Subramanian et
al. [Subramanian et al.|[2022]] proposed Approximate Information States (AIS), which unify reward
and transition prediction to train a history encoder that preserves enough information for near-optimal
decision making.

3 Preliminaries

We next formalize the RL objective and then formalize the standard sim2real transfer problem.

Reinforcement Learning We formalize an RL task as a Markov decision process (MDP), M =
(S, A, P,r, fy), in which S denotes the set of states, A the set of actions, P: S x A — A(S) the
transition dynamics, r: S X A — R the reward function, and v € [0,1) the discount factor. We
assume that states are fully observable (or can be reliably estimated) and that the transition dynamics
are unknown. At each timestep i, the agent observes a state s; € S, takes an action a; € A, and
then transitions to a new state s;1 with probability P(s; 11 | s;,a;). It also receives a scalar reward
r; = r(si,a;). Apolicy 7 : S — A(A) maps states to action distributions. The agent’s objective is

to maximize the expected discounted return: Jyq(7w) = E [Z;’io oK r(si, ai)} , where s; and a; are
generated by following the policy 7 in M.

Sim2Real We follow prior work in the literature by formalizing the sim2real problem as transfer
between two MDPs with different state transition dynamics. Let the target domain (real world)
be represented by the MDP, M, := (S JA, Py 'y), where S is the target domain state space, P;
describes the true transition dynamics, r is the reward function, and v € [0, 1) is the discount factor.
Let the source environment (simulator) be represented by the MDP, M, = (S JA, Py, 7), which
shares the same state and action spaces with M, but approximates real-world dynamics with the
transition function, P;. The sim2real problem is to find a policy, 7, using RL in M that maximizes
target environment performance, JJq, (7). Under this formalism, the main challenge of sim2real is
that P; # P; and consequently, Jaq_ (7) # Jaq, (). This so-called reality gap can cause well-trained
policies in M to fail upon deployment in M;. However, because both MDPs share the same state
and action spaces, one can, in principle, adjust or learn modifications to P so that it more closely
matches P;. In practice, such modifications are performed with either careful system identification
(e.g., Tan et al. carefully calibrate the model of a quadrupedal robot Tan et al.|[2018]]) or through
machine learning (e.g.,|Golemo et al.| [2018]]).

4 Abstract Sim2Real

In this section, we formalize the abstract sim2real problem using the theory of state abstraction
from the RL literature. This formalization reveals that abstraction induces partial observability,
necessitating history-based grounding methods that preserve task-relevant information.

We define an abstract simulator as an MDP over an abstract state-space, M := (8%, A, Ps,7s,7),
where the state space S* is deliberately smaller than the real state space S*. Two examples of abstract
state spaces are either compressing states in S? to a finite set of discrete abstract states or to have
S* be a subspace of S? (e.g., by dropping some dimensions of the real-world state). We assume the
mapping from real-world states to abstract simulator states is known and define it as: ¢ : S* — S°.
With slight abuse of notation, we also write ¢ : H! — H® to denote applying ¢ to every state s
in a trajectory of target environment states, h® € H', so as to obtain a trajectory of abstract states,
h® € H?. Note that the simulator’s transition function, Ps, is necessarily simpler than P; because
¢ merges or discards details that are present in S?. In this work, we will assume that the abstract
simulator and real-world share the same action space, .A. If action spaces differ (e.g., high-level
commands vs. low-level torques), we assume access to an action transformation function, like a PD
controller or a learned low-level policy, to map actions from M to M,. As with standard sim2real,
our objective is to use RL in M to learn a policy, 7, that maximizes J a4, (7).

Abstract sim2real raises two new challenges beyond the standard sim2real problem: the policy
learned in the abstract simulator may lack crucial information for optimal control and the simplified
transitions, P, cannot be modified in their present functional form to match P,. The root of both
challenges is that, in general, state abstractions induce partial observability |Allen et al.|[2021].

142
143
144
145
146
147
148
149
150

151
152
153
154
155

156

157
158
159
160
161
162
163
164
165
166
167
168
169
170

171

172
173
174
175
176
177

178

179
180

181

Perhaps the most obvious consequence of partial observability is that a policy, 7 : S* — A(A),
trained in the abstract simulator might be missing information that is otherwise available in states in
St. The second consequence is that we cannot directly apply simulator grounding methods using
experience from M. To see this, consider if we have a trajectory, s}, ag, s}, ..., sk, collected by
running some policy in M;. Applying the abstraction, ¢, to each state in this trajectory results in
a trajectory, s§, ao, s, ..., 7. However, the Markov property fails to hold in general meaning that
Pr(sj,|sf,a;) # Pr(s;, s}, ai, s{_1,a;—1) Allen et al.|[2021]]. Consequently, naively attempting
to make P (s7, [sf,a;) = Pr(sf,|s;, a;) will fail to ground the dynamics of the abstract state to
the real world.

Since abstraction induces partial observability, a straightforward approach is to extend existing neural-
network-based grounding methods (e.g.,|Golemo et al.[[2018]], Hanna et al.| [2021]]) with recurrent
networks to learn history-conditioned corrections and to train history-based policies. However,
solely optimizing for next abstract state prediction has no guarantee of preserving all task-relevant
information for control. This observation motivates the method that we introduce in the next section.

S ASTRA: Augmented Simulation with Self-Predictive Abstraction

A natural approach to abstract sim2real is to use real-world data to align the abstract simulator’s
dynamics with the real-world’s dynamics. A straightforward way to address the partial observability
induced by abstraction is to extend neural correction methods (e.g.,[Hanna et al.|[2021]], Golemo
et al.| [2018]]) with recurrent neural networks (RNNs) so that corrections can be based on full
state-action histories. Under this extension, these approaches would learn a correction function
¥ H® x A x S§% — S° that predicts adjustments to the simulator’s next state so that it matches the
next abstract state observed in the real world. This approach optimizes the hidden representation
of the RNN solely for prediction accuracy through an MSE loss, which may not necessarily lead to
a hidden representation that contains all task relevant information. To explicitly shape the hidden
state representation toward retaining task-relevant information, we introduce a new method, ASTRA
(Augmented Simulation with self-predicTive abstRAction). The key novelty of ASTRA is to
augment simulator grounding with loss terms motivated from the literature on self-predictive state
abstractions. Algorithm || provides pseudocode for the ASTRA training procedure; Algorithm
provides pseudocode for RL training with ASTRA.

5.1 Grounding with Self-Prediction Losses

ASTRA encodes history h{ = (s§,a1,...,57,a,-1) with a recurrent encoder 6 (e.g., GRU or
LSTM), producing a latent vector 2§ = 0(h{) € Z. To train this encoder, we use the paired trajectory
collection method from |Golemo et al.|[2018]], executing the same sequence of actions in both the
abstract simulator and target environment, yielding corresponding state sequences (s5, s3, . ..) and
(s, sh,...) where s§ = ¢(s!). Our objective is to learn the encoder such that z{ contains sufficient
information both for grounding the abstract simulator and learning an effective policy. Specifically,
we seek a representation z{ = 6(h{) such that (i) rewards are predictable from z{ via a learned
reward predictor 7:
E[rf ’ hf,ai} ~ 7 (2], a;),
and (ii) the next latent depends on the past only through z; (Markov in latent space):
P (251 | B, ai) = P(25q | 25, a5) -

We encourage 6 to approximately satisfy these constraints via loss functions that are inspired from the
concept of an approximate information state (AIS) [Subramanian et al.|[2022]], [Patil et al.| [2024]]. An
AIS representation contains sufficient information to predict rewards in the real-world environment
as well as the representation at the next time-step. AIS representations are closely related to self-
predictive abstractions |Guo et al|[2022]], Schwarzer et al.|[2021]. We will train the encoder used by
ASTRA such that it produces an AIS hidden state representation.

Concretely, we augment encoder training with two losses, in addition to an MSE loss on the next

abstract state. First, ASTRA learns a transition model P(zf,a;) = (u;,logo?) that outputs the
parameters of a Gaussian N (p;, 02) that approximates the distribution of z? ' 1- We train both the

transition model and encoder to minimize the negative log-likelihood Ly = — ;log [N (zf 1 |

182
183
184
185

186

187

189

190
191
192
193
194
195
196

197
198

199
200
201
202
203

i ai)] , driving P to mirror real-world transitions in latent space. Second, we train a reward model

7(z5,a;) — 7, that predicts the reward observed in the target environment, r¢; we jointly train
the reward model and encoder to minimize the mean-squared error L,e,, = |7 — 7| Third,
as done with other neural grounding methods, ASTRA predicts the next abstract state: Ly =

Do H 580 f¢(5§+1) ||2 ASTRAs total training objective is then £ = A1 Lyans + A2 Lrew + A3 Laps.

In our implementation, 8, P, 7 and f,,s share a common backbone with three task-specific heads; we
optimize all parameters jointly under L.

Algorithm 1 ASTRA Simulator Grounding

1: for epoch =1 to Nphase1 do
2: Update 0,]5, 72

3: Encode source states: z° < 0(h®)

4: Predict latent transition: (u,logo?) < P(2°,a)

5: Predict reward: 7 < #(2°, a)

6: Predict next abstract state: 57 | < fans(2°,a)

7: Compute losses: Lirans = —log V(27 | Wiy 02), Lrew = || — rt)|%, Laps = 1851 —
CIN

8: Aggregate objective: £ = A1 Lyans + A2Lrew + A3Laps

9: Update (0, P,7) with V.L

10: end for

5.2 Target Environment Abstraction

ASTRA trains a policy that takes the learned AIS representation as input. Consequently, we need an
encoder to produce these latent states when running the policy in the target environment. To do this,
ASTRA abstracts target history h’ into the same latent space Z. Specifically, we learn a target encoder
¢ : H' — Z that maps target history into the same latent space, defining 2! = ((h!). To ensure
compatibility with the source encoder 6§, ASTRA enforces that 2! and z; have similar distributions for
corresponding actions. Let p := P(zf, |27, a;) and p} := P(z/ |2}, a;), the alignment is achieved
by minimizing Lajign = D (pf, pt) where we use Maximum Mean Discrepancy (MMD) as D. For
alignment we freeze 6, P, 7 and update only (; after alignment, (is kept fixed for deployment. The
target encoder then enables deploying the policy trained in the grounded abstract simulator.

We note that both NAS and ASTRA use representations of history to implicitly infer relevant state
features that are unmodelled in the abstract simulator. While this approach is a principled method of
grounding abstract simulators, if the abstraction, ¢, is too coarse, even using history may not enable
accurate grounding. ASTRA’s latent representation guides policy learning to make better use of the
partial signals that are available in temporal data.

Algorithm 2 Policy Learning with Grounded Simulator

Require: RL algorithm A
1: Initialize A
2: for episode = 1 to M do
3: [Initialize the abstract simulator states at s{ and history hj
4: fori=1toT do
5: Encode history £ to latent state z{ < @(h?)
6: Sample action a; ~ m(z7)
7 Sample 27, | ~ P(z5,a;)
8 Set 7; « (27, a;)

9: Execute action a; in the abstract simulator states
10: Apply RL update with transition (27, a;, 27, ,7;)
11: Set the abstract simulator to s7, ; < faps(2],a;), and append to hf
12: end for
13: end for

204

205
206
207
208
209

210
211
212
213
214
215
216
217

218

219
220
221
222
223
224

225
226
227
228
229
230
231
232
233

234
235

237

238

i ==

N ;@Q% % v
*

T . Gt

Success Rate
o
s
Success Rate

°
=

S

2 5 CHENERY
RSN AN SRR N S YC I A NP C . SR O R AR SN A A C N N CPC P K
RIS & & v"gx & g"x & & & & & S & & v”’gx & @‘;x & & & & &
Sl SN RN SIS S SN
P ey s LA AP
Method Method

Figure 1: Success rates on navigation tasks.

6 Experiments

In this section, we empirically study abstract sim2real transfer to answer the following three questions:
(1) Can history-based approaches with recurrent policies enable transfer of policies trained in abstract
simulators? (ii) Does learning a self-predictive representation improve transfer efficacy compared to
methods that only optimize prediction accuracy? (iii) How does the level of abstraction affect the
relative importance of grounding methods versus domain randomization?

To address these questions, we evaluate transfer across navigation, humanoid locomotion, and real
robot tasks with varying abstraction levels. We evaluate ASTRA against four baselines. Direct
Transfer (DT) establishes the abstract sim2real gap. In our experiments, DR serves as a minimal
domain randomization baseline using only action noise. COMPASS Huang et al.| [2023]] represents a
state-of-the-art domain-randomization style method. NAS |Golemo et al.|[2018]] serves as a strong and
representative baseline for neural grounding methods that use real-world data and recurrent networks
to learn history-based simulator corrections. While NAS optimizes solely for prediction accuracy,
ASTRA incorporates self-predictive losses to preserve task-relevant information.

6.1 Legged Robot Navigation - Sim2Sim

Our abstract simulator uses a point-mass with velocity commands (vg,v,) and planar state
(x,y,vs,vy), while the target AntMaze environment has a 29-dimensional state containing torso
pose and joint angles/velocities. This abstraction gap is substantial: the simulator omits leg contacts,
joint dynamics, and orientation drift that critically affect quadruped locomotion. A separately trained
low-level controller, frozen during all experiments, converts high-level velocity commands to joint
torques in the target environment.

We evaluate on two maze configurations: U-Maze with a single 90° turn and Long Maze with multiple
turns. We measure success rates over 10 seeds with 100 trajectories each. Initial and goal positions
are sampled from Gaussians around fixed poses. For training data, we collect 200 trajectories
(average length 500 steps) using a random behavior policy 7y to generate paired data between
domains. For this domain, DR uses action noise (¢ ~ N (0, 0.05)) and scaling (§ ~ U[—0.1,0.1]).
COMPASS randomizes friction (i € [0.8, 1.2]), position noise (£0.03m), velocity noise (< 0.02m/s),
heading bias (15), action parameters, and control timestep (At € [0.015,0.025]s). To upper bound
performance, we include policies trained directly in AntMaze: Target uses the abstracted state ¢(s')
while Full Obs has access to the complete state.

Figures |1 reveal two key findings. First, GRU policies consistently outperform MLPs across all
methods, confirming temporal memory mitigates abstraction-induced partial observability. Second,
among GRU policies, ASTRA achieves the highest success rate. NAS, our representative baseline,
ranks second, followed by COMPASS, DR, and DT. This performance gap widens in Long Maze.

6.2 Humanoid Locomotion

239
240
241
242
243
244
245
246

247
248
249
250
251
252
253
254
255
256
257

259
260
261
262
263

264
265
266
267
268
269
270
271
272

[0 DT [DR [COMPASS [NAS [ASTRA [Target
Average Return

5000 _I_
3000
2000
- !—_Y_Y“’J—l—l—}
0

Average Timesteps Survived

IS
S
s}
S

Average Return

1000

800

600

400

- !ﬁ—l—,—li
0

Walker2D Kinematics Extended Kinematics
Abstraction Level

Avg. Timesteps Survived

Figure 3: Humanoid locomotion results across three abstraction levels (10 seeds; higher is better).

We examine how abstraction level affects
transfer by testing three variants of the high-
DoF Humanoid [Duan et al.| [2016]], each
representing different levels of state and
morphological abstraction. All policies out-
put joint position commands that a PD con-
troller (K, = 200, K5 = 10) converts to
torques in the target environment.

-
Simplified Morphology Kinematics Only Extended Kinematics

Most Abstract Least Abstract
Three abstraction levels systematically vary
the simulator fidelity: (1) WALKER2D: Figure 2: Abstraction hierarchy used for humanoid lo-

The most abstract variant models the hu- comotion experiments: Walker2D, Kinematics, and Ex-

manoid’s upper body as a single rigid link, tended Kinematics.

reducing observations to leg positions, joint

angles, and foot contacts—omitting arm, torso, and center-of-mass (CoM) information. Only 4 joints
are controllable (left/right knee and thigh), each operating around a single axis. (2) KINEMATICS: Pre-
serves the full humanoid morphology with observations including positions and velocities of all joints.
Actions are interpreted as desired joint positions rather than torques, maintaining complete body
structure while abstracting force-level dynamics. (3) EXTENDED KINEMATICS: Augments kinematic
abstraction with robot-level information including CoM and translational velocity [Radosavovic et al.|
2024, capturing global dynamics while maintaining position control.

We collect 200 trajectories (average length 500 steps) using a suboptimal PPO policy, as random
policies fail immediately and thus produce highly irrelevant data for bipedal locomotion. For
humanoid domains, DR uses action noise (¢ ~ A(0,0.05)) and scaling (6 ~ U[—0.05,0.05]).
COMPASS additionally randomizes joint friction (i € [0.8,1.2]), observation noise (scaling factor
d ~ U[0.9,1.1]), and control timestep (At € [0.015,0.025]s).

Figure [3|reveals how abstraction level critically impacts transfer success. In the skeletal Walker2D
setting, DT, DR, and COMPASS learn policies that terminate quickly (within 63 timesteps). NAS
shows improvement through history-based simulator grounding. ASTRA achieves the best perfor-
mance, maintaining balance longest Full-body KINEMATICS stabilizes all algorithms and narrows
the reality gap, with COMPASS now outperforming NAS. EXTENDED KINEMATICS brings smaller
gains, with NAS and COMPASS approaching the target-trained upper bound while ASTRA maintains
its lead. These results demonstrate that (i) retaining essential information during abstraction is most
effective for transfer, and (ii) when abstraction is severe, ASTRA’s self-predictive grounding proves
most effective

273

274
275
276
277

278

279

281
282
283
284

285
286
287
288

289
290
291
292
293
294
295
296

297

298
299
300

301
302
303

304
305
306

308
309

311
312

6.3 Real Robot Evaluation

Finally, we validate our approach on a physical NAO bipedal robot, testing transfer from highly
abstract simulators to real hardware. The physical NAO presents unique challenges absent in
simulation: imprecise odometry, foot slippage, actuator delays, and camera noise. We evaluate on
two complementary tasks that stress different aspects of abstract sim2real transfer.

6.3.1 NAO Navigation

The abstract simulator models the robot as a 2D point mass with velocity control. On the real NAO,
high-level velocity control is translated to joint commands through a walk engine and sensor readings
are mapped to high-level pose estimates with a state-estimation module. The robot must navigate a
physical maze to reach a 0.3-m radius goal zone without wall collisions. Runs are initialized from
three distinct start poses per seed; episodes terminate after 500 control steps or upon completion.
Performance metrics: success rate, distance traveled (m), and completion time (s) over three seeds.

We augment 50 collected trajectories to 200 through rotational and translational transformations.
COMPASS randomizes ground friction p € U[0.8, 1.2], foot slippage (20% probability), position
noise (£0.03m), velocity noise (< 0.02m/s), heading bias (+5), action noise (¢ ~ AN(0,0.05),
scaling § ~ U[—0.1,0.1]), and control timestep (At € U[0.015,0.025]s).

Table [Il shows ASTRA achieves 73% success Table 1: NAO navigation results (3 seeds).
rate, significantly outperforming direct transfer

(27%). COMPASS reaches 50% through exten- Method Success Rate Distance (m) Time (s)
sive randomization, while NAS achieves 53%

using history-based corrections. ASTRA signifi- BE 8%; i 8%} 19959(; g?gé
cantly outperforms all baselines at 73%, demon- COMPASS 0.50 + 0.08 12.70 85.37
strating superior handling of unmodeled effects ~ NAS 0.53 + 0.06 12.41 80.77
like foot slippage and odometry drift. ASTRA 0.73 +£0.05 12.33 82.54

6.3.2 NAO Ball-Kicking

The abstract simulator uses a 2D point agent with simplified ball physics. Real-world ball tracking
uses monocular vision with noise and dropouts. The NAO must kick a ball into a goal within 30s.
Each seed evaluates 20 trials with random starts, measuring success rate and completion time.

We collect 200 trajectories using a random policy. COMPASS randomizes ground friction p €
U[0.8, 1.2], ball position/velocity (simulating camera uncertainty), and post-contact ball direction
(simulating foot-ball contact variations).

Method Success Rate Time (s)

DT 0.07 £ 0.03 13.2 :
DR 0.12 + 0.04 17.4 ' &
NAS 0.37 £ 0.22 17.2 '

COMPASS 0.40 £ 0.25 19.2
ASTRA 0.56 + 0.05 21.7

Table 2: Ball-kicking performance over 3 Figure 4: Left: abstract dribble simulator. Right:
seeds. NAO kicking ball.

Table[2] shows ASTRA achieves 56% success rate, substantially outperforming all baselines. NAS
(37%) shows improvement over DT and DR through history processing, but still falls short of
ASTRA’s performance in handling camera noise and contact uncertainty.

6.4 Data Efficiency Analysis

The amount of real-world data required for effective simulator grounding directly impacts practical
deployment. Therefore, this analysis examines how performance scales with dataset size using
navigation in sim2sim as a representative task. We evaluate ASTRA’s data efficiency compared to
the strongest baseline (NAS) across six dataset sizes: 25%, 50%, 75%, 100%, 125%, and 150% of a
baseline dataset containing 200 trajectories. Each configuration is evaluated through downstream

313
314
315

317
318
319
320

321

322
323
324
325
326
327
328

329

330
331

333
334
335

336
337

338
339
340

25% 50% 75% 100% 125%

i
.

vy

00
VX

°
S

o
&

°
=

°
w

o
N

—e— ASTRA
—— NAS

Success Rate

°

°
°

25% 50% 75% 100% 125% 150%

Dataset Size (%)

Figure 5: Dataset efficiency analysis. Top: position coverage, middle: velocity distribution, bottom:
transfer performance. Shaded regions indicate performance variability across 5 seeds.

RL success rate with MLP policy networks across 5 independent seeds. Figure [5]shows the position
coverage (top), velocity coverage (middle), and transfer performance (bottom) as dataset size increases.
The results demonstrate clear diminishing returns in data collection for simulator grounding. ASTRA
achieves its steepest improvement between 25% and 75% of the baseline dataset, with performance
plateauing beyond 100%. This trend also holds for NAS, though at lower absolute performance.
Notably, doubling the dataset from 75% (150 trajectories) to 150% (300 trajectories) yields less than
10% improvement in success rate. The variance patterns indicate that performance stability emerges
around 100% data, suggesting this represents sufficient coverage of the state space.

7 Conclusion

In this paper, we studied the question of how to enable a robot to use RL in a so-called abstract
simulator and the resulting policy transfer to the real-world. We first formalized the abstract sim2real
problem which highlighted the need to learn history-based policies and to consider histories of
abstract state sequences when grounding the dynamics of an abstract simulator to the real-world.
‘We then introduced a novel method, ASTRA, to learn correction functions for abstract simulators.
Finally, we showed in sim2sim and sim2real experiments that this method enables policies trained in
abstract simulators to effectively transfer to target domains.

References

D. Abel. A Theory of Abstraction in Reinforcement Learning, Mar. 2022. URL http://arxiv.
org/abs/2203.00397. arXiv:2203.00397 [cs].

A. Ajay, J. Wu, N. Fazeli, M. Bauza, L. P. Kaelbling, J. B. Tenenbaum, and A. Rodriguez. Augmenting
physical simulators with stochastic neural networks: Case study of planar pushing and bouncing.
In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
3066-3073. IEEE, 2018.

C. Allen, N. Parikh, O. Gottesman, and G. Konidaris. Learning Markov State Abstractions for Deep
Reinforcement Learning. 2021.

O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki, A. Petron,
M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation. The International
Journal of Robotics Research, 39(1):3-20, 2020.

http://arxiv.org/abs/2203.00397
http://arxiv.org/abs/2203.00397
http://arxiv.org/abs/2203.00397

341
342
343
344

345
346
347
348

349
350
351

352
353
354

355
356
357

358
359

360
361

362
363
364
365

366
367

368
369

370
371
372

374
375
376

377

379

380

382
383
384
385

386
387
388

B. Armstrong. On finding ’exciting’ trajectories for identification experiments involving systems
with non-linear dynamics. In 1987 IEEE International Conference on Robotics and Automation
Proceedings, volume 4, pages 1131-1139, Mar. 1987. doi: 10.1109/ROBOT.1987.1087968. URL
https://ieeexplore.ieee.org/document/1087968.

K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrishnan, L. Downs, J. Ibarz,
P. Pastor, K. Konolige, et al. Using simulation and domain adaptation to improve efficiency of

deep robotic grasping. In 2018 IEEE international conference on robotics and automation (ICRA),
pages 4243-4250. IEEE, 2018.

S. Chaudhari, A. Deshpande, B. C. d. Silva, and P. S. Thomas. Abstract Reward Processes: Leveraging
State Abstraction for Consistent Off-Policy Evaluation, Oct. 2024. URL http://arxiv.org/
abs/2410.02172. arXiv:2410.02172 [cs].

M. Cutler, T. J. Walsh, and J. P. How. Reinforcement learning with multi-fidelity simulators. In 2014
IEEE International Conference on Robotics and Automation (ICRA), pages 3888-3895. IEEE,
2014.

Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforcement
learning for continuous control. In International conference on machine learning, pages 1329-1338.
PMLR, 2016.

R. Givan, T. Dean, and M. Greig. Equivalence notions and model minimization in markov decision
processes. Artificial intelligence, 147(1-2):163-223, 2003.

F. Golemo, A. A. Taiga, A. Courville, and P-Y. Oudeyer. Sim-to-real transfer with neural-augmented
robot simulation. In Conference on Robot Learning, pages 817-828. PMLR, 2018.

Z. D. Guo, S. Thakoor, M. Pislar, B. A. Pires, F. Altché, C. Tallec, A. Saade, D. Calandriello, J.-B.
Grill, Y. Tang, M. Valko, R. Munos, M. G. Azar, and B. Piot. BYOL-Explore: Exploration by Boot-
strapped Prediction, June 2022. URL http://arxiv.org/abs/2206.08332. arXiv:2206.08332
[cs, stat].

J. P. Hanna, S. Desai, H. Karnan, G. Warnell, and P. Stone. Grounded action transformation for
sim-to-real reinforcement learning. Machine Learning, 110(9):2469-2499, 2021.

M. Hausknecht and P. Stone. Deep recurrent g-learning for partially observable mdps. In 2015 aaai
fall symposium series, 2015.

E. Heiden, D. Millard, E. Coumans, Y. Sheng, and G. S. Sukhatme. Neuralsim: Augmenting
differentiable simulators with neural networks. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 9474-9481. IEEE, 2021.

M. K. Ho, D. Abel, C. G. Correa, M. L. Littman, J. D. Cohen, and T. L. Griffiths. People con-
struct simplified mental representations to plan. Nature, 606(7912):129-136, June 2022. ISSN
1476-4687. doi: 10.1038/s41586-022-04743-9. URL https://www.nature.com/articles/
s41586-022-04743-9. Number: 7912 Publisher: Nature Publishing Group.

P. Huang, X. Zhang, Z. Cao, S. Liu, M. Xu, W. Ding, J. Francis, B. Chen, and D. Zhao. What went
wrong? closing the sim-to-real gap via differentiable causal discovery. In Conference on Robot
Learning, pages 734-760. PMLR, 2023.

J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter. Learning
agile and dynamic motor skills for legged robots. Science Robotics, 4(26):eaau5872, 2019.

S. Hofer, K. Bekris, A. Handa, J. C. Gamboa, F. Golemo, M. Mozifian, C. Atkeson, D. Fox,
K. Goldberg, J. Leonard, C. K. Liu, J. Peters, S. Song, P. Welinder, and M. White. Perspectives
on Sim2Real Transfer for Robotics: A Summary of the R:SS 2020 Workshop, Dec. 2020. URL
http://arxiv.org/abs/2012.03806. arXiv:2012.03806 [cs].

U. Jain, L.-J. Liu, S. Lazebnik, A. Kembhavi, L. Weihs, and A. G. Schwing. Gridtopix: Training
embodied agents with minimal supervision. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 15141-15151, 2021.

10

https://ieeexplore.ieee.org/document/1087968
http://arxiv.org/abs/2410.02172
http://arxiv.org/abs/2410.02172
http://arxiv.org/abs/2410.02172
http://arxiv.org/abs/2206.08332
https://www.nature.com/articles/s41586-022-04743-9
https://www.nature.com/articles/s41586-022-04743-9
https://www.nature.com/articles/s41586-022-04743-9
http://arxiv.org/abs/2012.03806

389
390
391

392
393
394
395
396

397
398
399

400
401

402
403

404
405

406
407
408

409
410
411

412
413

414
415
4

o

417
418
419

420
421
422

423
424
425

426
427
428

429
430
431

432
433

434
435
436

N. Jiang, A. Kulesza, and S. Singh. Abstraction Selection in Model-based Reinforcement Learning.
In Proceedings of the 32nd International Conference on Machine Learning, pages 179-188. PMLR,
June 2015. URL https://proceedings.mlr.press/v37/jiangl5.html. ISSN: 1938-7228.

H. Karnan, S. Desai, J. P. Hanna, G. Warnell, and P. Stone. Reinforced Grounded Action
Transformation for Sim-to-Real Transfer. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4397-4402, Las Vegas, NV, USA, Oct. 2020.
IEEE. ISBN 978-1-72816-212-6. doi: 10.1109/IROS45743.2020.9341149. URL https:
//ieeexplore.ieee.org/document/9341149/|

A. Labiosa, Z. Wang, S. Agarwal, W. Cong, G. Hemkumar, A. N. Harish, B. Hong, J. Kelle, C. Li,
Y. Li, et al. Reinforcement learning within the classical robotics stack: A case study in robot soccer.
arXiv preprint arXiv:2412.09417, 2024.

M. Littman and R. S. Sutton. Predictive representations of state. Advances in neural information
processing systems, 14, 2001.

M. Miiller, A. Dosovitskiy, B. Ghanem, and V. Koltun. Driving policy transfer via modularity and
abstraction. arXiv preprint arXiv:1804.09364, 2018.

O. Nachum, M. Ahn, H. Ponte, S. Gu, and V. Kumar. Multi-agent manipulation via locomotion using
hierarchical sim2real. arXiv preprint arXiv:1908.05224, 2019.

G. Patil, A. Mahajan, and D. Precup. On learning history-based policies for controlling markov
decision processes. In International Conference on Artificial Intelligence and Statistics, pages
3511-3519. PMLR, 2024.

X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real transfer of robotic control
with dynamics randomization. In 2018 IEEE international conference on robotics and automation
(ICRA), pages 3803-3810. IEEE, 2018.

I. Radosavovic, T. Xiao, B. Zhang, T. Darrell, J. Malik, and K. Sreenath. Real-world humanoid
locomotion with reinforcement learning. Science Robotics, 9(89):eadi9579, 2024.

M. Schwarzer, A. Anand, R. Goel, R. D. Hjelm, A. Courville, and P. Bachman. Data-Efficient
Reinforcement Learning with Self-Predictive Representations, May 2021. URL http://arxiv,
org/abs/2007.05929. arXiv:2007.05929 [cs, stat].

J. Subramanian, A. Sinha, R. Seraj, and A. Mahajan. Approximate information state for approximate
planning and reinforcement learning in partially observed systems. Journal of Machine Learning
Research, 23(12):1-83, 2022.

J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and V. Vanhoucke. Sim-to-Real:
Learning Agile Locomotion For Quadruped Robots. In Proceedings of Robotics: Science and
Systems, 2018. URL http://arxiv.org/abs/1804.10332.

J. Truong, M. Rudolph, N. H. Yokoyama, S. Chernova, D. Batra, and A. Rai. Rethinking sim2real:
Lower fidelity simulation leads to higher sim2real transfer in navigation. In Conference on Robot
Learning, pages 859-870. PMLR, 2023.

E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa, D. Parikh, M. Savva, and D. Batra. Dd-ppo: Learn-
ing near-perfect pointgoal navigators from 2.5 billion frames. arXiv preprint arXiv:1911.00357,
2019.

P. R. Wurman, S. Barrett, K. Kawamoto, J. MacGlashan, K. Subramanian, T. J. Walsh, R. Capo-
bianco, A. Devlic, F. Eckert, F. Fuchs, et al. Outracing champion gran turismo drivers with deep
reinforcement learning. Nature, 602(7896):223-228, 2022.

J. Yoon, B. Son, and D. Lee. Comparative study of physics engines for robot simulation with
mechanical interaction. Applied Sciences, 13(2):680, 2023.

W. Zhao, J. P. Queralta, and T. Westerlund. Sim-to-Real Transfer in Deep Reinforcement Learning
for Robotics: a Survey. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI),
pages 737-744, Dec. 2020. doi: 10.1109/SSCI47803.2020.9308468.

11

https://proceedings.mlr.press/v37/jiang15.html
https://ieeexplore.ieee.org/document/9341149/
https://ieeexplore.ieee.org/document/9341149/
https://ieeexplore.ieee.org/document/9341149/
http://arxiv.org/abs/2007.05929
http://arxiv.org/abs/2007.05929
http://arxiv.org/abs/2007.05929
http://arxiv.org/abs/1804.10332

457 K. J. Astrom and P. Eykhoff. System identification—A survey. Automatica, 7(2):123—162, Mar. 1971.
438 ISSN 0005-1098. doi: 10.1016/0005-1098(71)90059-8. URL https://www.sciencedirect,
439 com/science/article/pii/0005109871900598.

12

https://www.sciencedirect.com/science/article/pii/0005109871900598
https://www.sciencedirect.com/science/article/pii/0005109871900598
https://www.sciencedirect.com/science/article/pii/0005109871900598

	Introduction
	Related Work
	Preliminaries
	Abstract Sim2Real
	ASTRA: Augmented Simulation with Self-Predictive Abstraction
	Grounding with Self-Prediction Losses
	Target Environment Abstraction

	Experiments
	Legged Robot Navigation - Sim2Sim
	Humanoid Locomotion
	Real Robot Evaluation
	NAO Navigation
	NAO Ball-Kicking

	Data Efficiency Analysis

	Conclusion

