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Recommender Transformers with Behavior Pathways
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ABSTRACT
Sequential recommendation requires the recommender to capture
the evolving behavior characteristics from logged user behavior
data for accurate recommendations. Nevertheless, user behavior
sequences are viewed as a script with multiple ongoing threads
intertwined. We find that only a small set of pivotal behaviors can
be evolved into the user’s future action. As a result, the future
behavior of the user is hard to predict. We conclude this character-
istic for sequential behaviors of each user as the behavior pathway.
Different users have their unique behavior pathways. Among exist-
ing sequential models, transformers have shown great capacity in
capturing global-dependent characteristics. However, these models
mainly provide a dense distribution over all previous behaviors
using the self-attention mechanism, making the final predictions
overwhelmed by the trivial behaviors not adjusted to each user. In
this paper, we build the Recommender Transformer (RETR) with a
novel Pathway Attention mechanism. RETR can dynamically plan
the behavior pathway specified for each user, and sparingly activate
the network through this behavior pathway to effectively capture
evolving patterns useful for recommendation. The key design is a
learned binary route to prevent the behavior pathway from being
overwhelmed by trivial behaviors. Pathway attention is model-
agnostic and can be applied to a series of transformer-based models
for sequential recommendation. We empirically evaluate RETR on
seven intra-domain benchmarks and RETR yields state-of-the-art
performance. On another five cross-domain benchmarks, RETR
can capture more domain-invariant representations for sequential
recommendation.
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1 INTRODUCTION
Recommender systems [19, 30, 48] have been widely adopted in
real-world industrial applications such as E-commerce and social
media. Benefiting from the increase in computing power and model
capacity, some recent efforts formulate recommendation as a time-
series forecasting problem, known as sequential recommendation [6,
22]. The core idea of this field is to infer upcoming actions based on
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user’s historical behaviors, which are reorganized as time-ordered
sequences. This intuitive modeling of recommendation is proved
time-sensitive and context-aware to make precise predictions.

Recent advanced sequential recommendation models, such as
SASRec [22], Bert4Rec [38] and SMRec [6], develop the transformer
architecture to learn the sequential patterns. The transformer ar-
chitecture brings these model powerful capacity to capture the
characteristic of how users’ future behaviors are interacted with all
previous behaviors. However, the user behavior may be casual or
only associated with relevant subset behaviors. Interacting with all
previous behaviours will bring redundant information and make
the most relevant behaviors overwhelmed by the trivial behaviors.

Recent advanced sequential recommendation models, such as
SASRec [22], Bert4Rec [38] and S3-Rec [50], have achieved signifi-
cant improvements. Transformers enable these models to recognize
global-range sequential patterns, and to model how future behav-
iors are anchored in historical ones. The self-attention mechanism
does make it possible to explore all previous behaviors of each user,
with the whole neural network activated. However, misuse of all
user information, regardless of whether it is informative or not,
floods models with trivial ones, makes models dense in neuron
connections and inefficient in computation, and results in key be-
haviors losing voice. And this clearly contradicts with the way our
brain works.

The human being has many different parts of the brain special-
ized for various tasks, yet the brain only calls upon the relevant
pieces for a given situation [47]. To some extent, user behavior
sequences can be viewed as a script with multiple ongoing threads
intertwined. And only key clues suggest what will happen next. In
sequential recommendation, we find that only a small part of piv-
otal behaviors can be evolved into the user’s future action. And we
conclude this characteristics of sequential behaviors as the behavior
pathway.

Different users have their unique behavior pathways, and we
have provided three typical examples: (a) Correlated behavior path-
way: A user’s behavior pathway is closely associated with behaviors
in a certain period. As shown in the first line of Figure 1, the mouse
is clicked many times recently, leading to the final decision to buy
a mouse. (b) Casual behavior pathway: A user’s behavior pathway
is interested in a specific item at casual times. In the second line
of Figure 1, the backpack is randomly clicked sequentially in a
multi-hop manner. (c) Drifted behavior pathway: A user’s behavior
pathway in a particular brand might drift over time. In the third
line of Figure 1, the user was initially interested in a keyboard, but
suddenly became interested in buying a phone at last. It’s challeng-
ing to capture these potential behaviors dynamically for each user
to make precise recommendations.

Motivated by the Pathways [10], a new way of thinking about
AI, which builds a single model that is sparsely activated for all
tasks with small pathways through the network called into action
as needed, we propose a novel Recommender Transformer (RETR)
with a Pathway Attention mechanism. RETR dynamically explores
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Figure 1: Typical examples of the behavior pathway for different users: correlated, causal, and drifted. The behavior pathway is
outlined by the red boxes.

behavior pathways for different users and then captures evolving
patterns through these pathways. The user-dependent pathway at-
tention, which incorporates a pathway router, determines whether
or not a behavior token will be maintained in the behavior pathway.
The pathway router generates a customized binary route for each
token based on their information redundancy. RETR has a stacked
structure, and successive pathway routers constitute a hierarchical
evolution of user behaviors. To enable the pathway router to be
end-to-end optimized, we propose an adaptive Gumbel-Softmax
sampling strategy to overcome the non-differentiable problem of
sampling from a Bernoulli distribution.

To effectively capture the evolving patterns via the behavior path-
way, our pathway attention mechanism makes RETR mainly attend
to the obtained pathway.We force the model to focus on the most in-
formative behaviors by using the query routed through the behavior
pathway. We cut off the interaction from the off-pathway behaviors
of the query. Compared with using all previous behaviors, our path-
way attention mechanism is obviously more effective and can avoid
the most informative tokens being overwhelmed by trivial behav-
iors. Besides, our pathway attention mechanism is model-agnostic
and can be easily applied to the existing transformer-based models.
To validate the effectiveness of our approach, we conduct experi-
ments on seven intra-domain competitive datasets for sequential
recommendations and RETR achieves state-of-the-art performance;
Furthermore, our RETR also achieves consistent performance im-
provements under the cross-domain setting, indicating RETR can
capture more domain-universal representation for sequential rec-
ommendation.

Our main contributions can be summarized as follows:

• We first propose the concept of behavior pathway for se-
quential recommendation, and find the key to the recom-
mender is to dynamically capture the behavior pathway for
each user.

• We propose the novel Recommender Transformer (RETR)
with a novel pathway attention mechanism, which can
generate the behavior pathway hierarchically and capture
the evolving patterns dynamically through the pathway.

• We validate the effectiveness of RETR on 7 intra-domain
benchmarks and 5 cross-domain benchmarks, both achiev-
ing state-of-the-art performance. RETR can capture more
domain-invariant representations and our pathway atten-
tion can be applied togetherwith a rich family of transformer-
based models to yield consistent improvements.

2 RELATEDWORK

Traditional recommendation approaches. Capturing evolving
behavior characteristics is crucial for many online applications,
such as advertising, social media and E-commerce, and it is the
key challenge for sequential recommendation [1, 5, 9, 13, 22, 29, 33,
46, 51]. Traditional recommendation approach, such as the collab-
orative filtering (CF) [18] based on matrix approximation [24, 25],
always assumes that the user’s behavior is static. However, in prac-
tice, user behaviors often change over time due to various reasons,
making the CF deteriorate in a real-world application.

Sequential recommendation approaches. To overcome this
challenge, some methods, such as FPMC [16] and HRM [41], use

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Recommender Transformers with Behavior Pathways Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Markov chains to capture sequential patterns by learning user-
specific transition matrices. Higher-order Markov Chains assume
the next action is related to several previous actions. Benefit from
this strong inductive bias, MC-based methods [15, 16] show supe-
rior performance in capturing short-term patterns. At the same
time, there is a potential state space explosion problem when these
approaches are faced with different possible sequences [42]. In
recent years, many works have been using the deep neural net-
work for sequential recommendation. The GRU4Rec [19] and the
RepeatNet [34] adopt the recurrent network to capture dynamic
patterns from the user behaviors dependent on sequence positions.
The RNN-based models achieve competitive performance in cap-
turing short-term behavior patterns but cannot capture long-term
behavior patterns effectively. The CNN-based model, such as Caser
[40], applies convolutional operations to extract transitions while
tending to overlook the intrinsic relationship across user behaviors.
The GNN-based methods, such as SRGNN [44], GCSAN [45], Jodie
[26] and TGN [35] model behavior sequences as graph-structured
data and incorporate an attention mechanism for a session-based
recommendation. In addition, DIN [49] uses the gate mechanism
to weight different user behaviors. However, concatenating all be-
haviors makes these models overlook the sequential characteristics.
Recently, the MLP-based model like FMLP-Rec [51] uses the MLP
as the backbone for sequential recommendation. However, these
methods are still overwhelmed by the trivial behaviors.

Transformer-based models for Sequential Recommendation.
SASRec [22], BertRec [38], S3-Rec [50], TGSRec [12], LightSANs
[11] and SSE-PT [43] introduce the transformer architecture into se-
quential recommendation, whichmight lead to the over-parameterized
architecture of Transformer-based methods. These models capture
the evolving patterns by the self-attention mechanism, interacting
with all previous behaviors. However, dense interactions will make
the model not adapt to different users and overwhelm behavior
pathways. Some methods like Locker [17] and Rec-denoiser [7]
propose the sparse attention mechanism with learned mask, while
they may overlook the ability of capturing the behavior pathway
in the token level. To tackle this challenge, our paper builds the
Recommender Transformer (RETR) with a new Pathway Attention
mechanism that is dynamically activated for the behavior pathway
of all users. Distinct from the previous routing architecture like
Switch Transformer [14] using the MoE [37] structure for natural
language tasks or TRAR [52] using the learned sparse attention
for visual question answering, our RETR is designed explicitly for
sequential recommendation. Our RETR uses the pathway router to
adaptively route the sequential behavior of each user rather than
routing the experts of feed-forward networks in switch transformer.

3 METHOD
Suppose that we have a set of users and items, denoted by U
and I respectively. In the task of sequential recommendation,
chronologically-ordered behaviors of a user 𝑢 ∈ U could be repre-
sented by a user-interacted item sequence: {𝑖1, · · · , 𝑖𝑛}. Formally,
given a user 𝑢 with her or his behavior sequence {𝑖1, · · · , 𝑖𝑛}, the
goal of sequential recommendation is to predict the next item
the user 𝑢 would interact with at the (𝑛 + 1)-th step, denoted as
𝑝 (𝑖𝑛+1 | 𝑖1:𝑛).

As aforementioned, we highlight the key to sequential recom-
mendation as the exploration of user-tailored behavior pathways,
through which evolving characteristics could be learned. Motivated
by this, we propose a novel Recommender Transformer (RETR) with
a new Pathway Attention, the core subassembly of which is a path-
way router. Besides the modification of architecture, we additionally
introduce a hierarchical update strategy for the behavior pathway
in the feed-forward procedure.

3.1 Recommender Transformer
Considering the limitation of overwhelming attention in Trans-
formers [4] for sequential recommendation, we renovate the vanilla
architecture to the Recommender Transformer (RETR) with a Path-
way Attention mechanism, as shown in Figure 2.

Model inputs. To obtain the model inputs, we follow the sliding
window practice and transform the user’s behavior sequence into a
fixed-length-𝑁 sequence 𝑠 = (𝑠1, 𝑠2, . . . , 𝑠𝑁 ). Then we produce an
item embedding matrix EI ∈ R | I |×𝑑 , where 𝑑 is the embedding
dimensionality.We perform a look-up operation from EI to retrieve
the input embedding matrix E𝑠 ∈ R𝑁×𝑑 for sequence 𝑠 . Besides, we
also add a learnable position embedding P𝑠 ∈ R𝑁×𝑑 for sequence
𝑠 . Finally, we can generate the input embedding of each behavior
sequence 𝑠 as X𝑠 = E𝑠 + P𝑠 ∈ R𝑁×𝑑 .

Overall architecture. Recommender Transformer is character-
ized by stacking the Pathway Attention blocks and feed-forward
layers alternately, containing 𝐿 blocks. This stacking structure is
conducive to learning behavior representations hierarchically. The
overall equations of block 𝑙 are formalized as

Ẑ𝑙 ,R𝑙 = Path-MSA (Z𝑙−1,R𝑙−1)

Ẑ𝑙 = LN (Ẑ𝑙 + Z𝑙−1)

Z𝑙 = LN (FFN (Ẑ𝑙 ) + Ẑ𝑙 ),

(1)

where Z𝑙 ∈ R𝑁×𝑑 , 𝑙 ∈ {1, · · · , 𝐿} denotes the output of the 𝑙-th
block. The initial input Z0 = X𝑠 ∈ R𝑁×𝑑 represents the raw be-
havior embedding. R𝑙−1 ∈ R𝑁×1 is the previous route from the
(𝑙 − 1)-th block and we initialize all elements in the route R0 to 1.
Path-MSA(·) is to conduct the pathway multi-head self-attention.
LN(·) is to conduct layer normalization [3] and FFN represents the
point-wise feed-forward network [4].

3.1.1 Pathway Attention. Note that the single-branch self-attention
mechanism [4] in vanilla transformer cannot model the behav-
ior pathway dynamically, resulting in key behaviors being over-
whelmed by those non-pivotal or trivial ones. To solve this problem,
we propose the Pathway Attention mechanism, as shown in Figure
2, which can dynamically attend to the behavior pathway of pivotal
behavior tokens.

Pathway router. The pathway attention employs a sequence-
adaptive pathway router to custom-tailor behavior pathway routes
for users. The router generates a binary route R𝑙 ∈ {0, 1}𝑁 to de-
termine whether a behavior token would be part of the behavior
pathway or not. Each router takes the pre-order route R𝑙−1 and
user behavior tokens Z𝑙−1 ∈ R𝑁×𝑑 of the (𝑙 − 1)-th block as its

3
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Figure 2: Illustration of our proposed approach. AdaShare learns the layer sharing pattern among multiple
tasks through predicting a select-or-skip policy decision sampled from the learned task-specific policy distribution
(logits). These select-or-skip vectors define which blocks should be executed in different tasks. A block is said
to be shared across two tasks if it is being used by both of them or task-specific if it is being used by only one
task for predicting the output. During training, both policy logits and network parameters are jointly learned
using standard back-propagation through Gumbel-Softmax Sampling. We use task-specific losses and policy
regularizations (to encourage sparsity and sharing) in training. Best viewed in color.

only one task for predicting the output. In this way, the select-or-skip policy of all blocks and tasks
(U = {ul,k}lL,kK ) determines the adaptive feature sharing mechanism over the given task set T .

As the number of potential configurations for U is 2L⇥K which grows exponentially with the
number of blocks and tasks, it becomes intractable to manually find such a U to get the optimal
feature sharing pattern in multi-task learning. Instead of handcrafting this policy, we adopt Gumbel-
Softmax Sampling [25] to optimize U jointly with the network parameters W through standard
back-propagation. Moreover, we introduce two policy regularizations to achieve effective knowledge
sharing in a compact multi-task network, as well as a curriculum learning strategy to stabilize the
optimization in the early stages. After the training finishes, we sample the binary decision ul,k for
each block l from ul,k to decide what blocks to select or skip in the task Tk. Specifically, with the
help of the select-or-skip decisions, we form a novel and non-trivial network architecture for MTL
parameter-sharing, and share knowledge at different levels across all tasks in a flexible and efficient
way. At test time, when a novel input is presented to the multi-task network, the optimal policy is
followed, selectively choosing what blocks to compute for each task. Our proposed approach not only
encourages positive sharing among tasks via shared blocks but also minimizes negative interference
by using task-specific blocks when necessary.

Learning a Task-Specific Policy. In AdaShare, we learn the select-or-skip policy U and network
weights W jointly through standard back-propagation from our designed loss functions. However,
each select-or-skip policy ul,k is discrete and non-differentiable and this makes direct optimization
difficult. Therefore, we adopt Gumbel-Softmax Sampling [25] to resolve this non-differentiability
and enable direct optimization of the discrete policy ul,k using back-propagation.

Gumbel-Softmax Sampling. The Gumbel-Softmax trick [25, 36] is a simple and effective way to
substitutes the original non-differentiable sample from a discrete distribution with a differentiable
sample from a corresponding Gumbel-Softmax distribution. We let ⇡l,k = [1 � ↵l,k,↵l,k] be the
distribution vector of the binary random variable ul,k that we want to optimize, where the logit ↵l,k

represents the probability that the l-th block is selected to execute in the task Tk.

In Gumbel-Softmax Sampling, instead of directly sampling a select-or-skip decision ul,k for the l-th
block in the task Tk from its distribution ⇡l,k, we generate it as,

ul,k = arg max
j2{0,1}

�
log ⇡l,k(j) + Gl,k(j)

�
, (1)

where Gl,k = � log(� log Ul,k) is a standard Gumbel distribution with Ul,k sampled from a uniform
i.i.d. distribution Unif(0, 1). To remove the non-differentiable argmax operation in Eq. 1, the Gumbel
Softmax trick relaxes one-hot(ul,k) 2 {0, 1}2 (the one-hot encoding of ul,k) to vl,k 2 R2 (the soft
select-or-skip decision for the l-th block in Tk) with the reparameterization trick [25]:

vl,k(j) =
exp

�
(log ⇡l,k(j) + Gl,k(j))/⌧

�
P

i2{0,1}
exp

�
(log ⇡l,k(i) + Gl,k(i))/⌧

� , (2)
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only one task for predicting the output. In this way, the select-or-skip policy of all blocks and tasks
(U = {ul,k}lL,kK ) determines the adaptive feature sharing mechanism over the given task set T .

As the number of potential configurations for U is 2L⇥K which grows exponentially with the
number of blocks and tasks, it becomes intractable to manually find such a U to get the optimal
feature sharing pattern in multi-task learning. Instead of handcrafting this policy, we adopt Gumbel-
Softmax Sampling [25] to optimize U jointly with the network parameters W through standard
back-propagation. Moreover, we introduce two policy regularizations to achieve effective knowledge
sharing in a compact multi-task network, as well as a curriculum learning strategy to stabilize the
optimization in the early stages. After the training finishes, we sample the binary decision ul,k for
each block l from ul,k to decide what blocks to select or skip in the task Tk. Specifically, with the
help of the select-or-skip decisions, we form a novel and non-trivial network architecture for MTL
parameter-sharing, and share knowledge at different levels across all tasks in a flexible and efficient
way. At test time, when a novel input is presented to the multi-task network, the optimal policy is
followed, selectively choosing what blocks to compute for each task. Our proposed approach not only
encourages positive sharing among tasks via shared blocks but also minimizes negative interference
by using task-specific blocks when necessary.

Learning a Task-Specific Policy. In AdaShare, we learn the select-or-skip policy U and network
weights W jointly through standard back-propagation from our designed loss functions. However,
each select-or-skip policy ul,k is discrete and non-differentiable and this makes direct optimization
difficult. Therefore, we adopt Gumbel-Softmax Sampling [25] to resolve this non-differentiability
and enable direct optimization of the discrete policy ul,k using back-propagation.

Gumbel-Softmax Sampling. The Gumbel-Softmax trick [25, 36] is a simple and effective way to
substitutes the original non-differentiable sample from a discrete distribution with a differentiable
sample from a corresponding Gumbel-Softmax distribution. We let ⇡l,k = [1 � ↵l,k,↵l,k] be the
distribution vector of the binary random variable ul,k that we want to optimize, where the logit ↵l,k

represents the probability that the l-th block is selected to execute in the task Tk.

In Gumbel-Softmax Sampling, instead of directly sampling a select-or-skip decision ul,k for the l-th
block in the task Tk from its distribution ⇡l,k, we generate it as,

ul,k = arg max
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Figure 2: Illustration of our proposed approach. AdaShare learns the layer sharing pattern among multiple
tasks through predicting a select-or-skip policy decision sampled from the learned task-specific policy distribution
(logits). These select-or-skip vectors define which blocks should be executed in different tasks. A block is said
to be shared across two tasks if it is being used by both of them or task-specific if it is being used by only one
task for predicting the output. During training, both policy logits and network parameters are jointly learned
using standard back-propagation through Gumbel-Softmax Sampling. We use task-specific losses and policy
regularizations (to encourage sparsity and sharing) in training. Best viewed in color.
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i.i.d. distribution Unif(0, 1). To remove the non-differentiable argmax operation in Eq. 1, the Gumbel
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(logits). These select-or-skip vectors define which blocks should be executed in different tasks. A block is said
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using standard back-propagation through Gumbel-Softmax Sampling. We use task-specific losses and policy
regularizations (to encourage sparsity and sharing) in training. Best viewed in color.
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(U = {ul,k}lL,kK ) determines the adaptive feature sharing mechanism over the given task set T .

As the number of potential configurations for U is 2L⇥K which grows exponentially with the
number of blocks and tasks, it becomes intractable to manually find such a U to get the optimal
feature sharing pattern in multi-task learning. Instead of handcrafting this policy, we adopt Gumbel-
Softmax Sampling [25] to optimize U jointly with the network parameters W through standard
back-propagation. Moreover, we introduce two policy regularizations to achieve effective knowledge
sharing in a compact multi-task network, as well as a curriculum learning strategy to stabilize the
optimization in the early stages. After the training finishes, we sample the binary decision ul,k for
each block l from ul,k to decide what blocks to select or skip in the task Tk. Specifically, with the
help of the select-or-skip decisions, we form a novel and non-trivial network architecture for MTL
parameter-sharing, and share knowledge at different levels across all tasks in a flexible and efficient
way. At test time, when a novel input is presented to the multi-task network, the optimal policy is
followed, selectively choosing what blocks to compute for each task. Our proposed approach not only
encourages positive sharing among tasks via shared blocks but also minimizes negative interference
by using task-specific blocks when necessary.

Learning a Task-Specific Policy. In AdaShare, we learn the select-or-skip policy U and network
weights W jointly through standard back-propagation from our designed loss functions. However,
each select-or-skip policy ul,k is discrete and non-differentiable and this makes direct optimization
difficult. Therefore, we adopt Gumbel-Softmax Sampling [25] to resolve this non-differentiability
and enable direct optimization of the discrete policy ul,k using back-propagation.

Gumbel-Softmax Sampling. The Gumbel-Softmax trick [25, 36] is a simple and effective way to
substitutes the original non-differentiable sample from a discrete distribution with a differentiable
sample from a corresponding Gumbel-Softmax distribution. We let ⇡l,k = [1 � ↵l,k,↵l,k] be the
distribution vector of the binary random variable ul,k that we want to optimize, where the logit ↵l,k

represents the probability that the l-th block is selected to execute in the task Tk.

In Gumbel-Softmax Sampling, instead of directly sampling a select-or-skip decision ul,k for the l-th
block in the task Tk from its distribution ⇡l,k, we generate it as,
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where Gl,k = � log(� log Ul,k) is a standard Gumbel distribution with Ul,k sampled from a uniform
i.i.d. distribution Unif(0, 1). To remove the non-differentiable argmax operation in Eq. 1, the Gumbel
Softmax trick relaxes one-hot(ul,k) 2 {0, 1}2 (the one-hot encoding of ul,k) to vl,k 2 R2 (the soft
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tasks through predicting a select-or-skip policy decision sampled from the learned task-specific policy distribution
(logits). These select-or-skip vectors define which blocks should be executed in different tasks. A block is said
to be shared across two tasks if it is being used by both of them or task-specific if it is being used by only one
task for predicting the output. During training, both policy logits and network parameters are jointly learned
using standard back-propagation through Gumbel-Softmax Sampling. We use task-specific losses and policy
regularizations (to encourage sparsity and sharing) in training. Best viewed in color.

only one task for predicting the output. In this way, the select-or-skip policy of all blocks and tasks
(U = {ul,k}lL,kK ) determines the adaptive feature sharing mechanism over the given task set T .

As the number of potential configurations for U is 2L⇥K which grows exponentially with the
number of blocks and tasks, it becomes intractable to manually find such a U to get the optimal
feature sharing pattern in multi-task learning. Instead of handcrafting this policy, we adopt Gumbel-
Softmax Sampling [25] to optimize U jointly with the network parameters W through standard
back-propagation. Moreover, we introduce two policy regularizations to achieve effective knowledge
sharing in a compact multi-task network, as well as a curriculum learning strategy to stabilize the
optimization in the early stages. After the training finishes, we sample the binary decision ul,k for
each block l from ul,k to decide what blocks to select or skip in the task Tk. Specifically, with the
help of the select-or-skip decisions, we form a novel and non-trivial network architecture for MTL
parameter-sharing, and share knowledge at different levels across all tasks in a flexible and efficient
way. At test time, when a novel input is presented to the multi-task network, the optimal policy is
followed, selectively choosing what blocks to compute for each task. Our proposed approach not only
encourages positive sharing among tasks via shared blocks but also minimizes negative interference
by using task-specific blocks when necessary.

Learning a Task-Specific Policy. In AdaShare, we learn the select-or-skip policy U and network
weights W jointly through standard back-propagation from our designed loss functions. However,
each select-or-skip policy ul,k is discrete and non-differentiable and this makes direct optimization
difficult. Therefore, we adopt Gumbel-Softmax Sampling [25] to resolve this non-differentiability
and enable direct optimization of the discrete policy ul,k using back-propagation.

Gumbel-Softmax Sampling. The Gumbel-Softmax trick [25, 36] is a simple and effective way to
substitutes the original non-differentiable sample from a discrete distribution with a differentiable
sample from a corresponding Gumbel-Softmax distribution. We let ⇡l,k = [1 � ↵l,k,↵l,k] be the
distribution vector of the binary random variable ul,k that we want to optimize, where the logit ↵l,k

represents the probability that the l-th block is selected to execute in the task Tk.

In Gumbel-Softmax Sampling, instead of directly sampling a select-or-skip decision ul,k for the l-th
block in the task Tk from its distribution ⇡l,k, we generate it as,

ul,k = arg max
j2{0,1}
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log ⇡l,k(j) + Gl,k(j)
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where Gl,k = � log(� log Ul,k) is a standard Gumbel distribution with Ul,k sampled from a uniform
i.i.d. distribution Unif(0, 1). To remove the non-differentiable argmax operation in Eq. 1, the Gumbel
Softmax trick relaxes one-hot(ul,k) 2 {0, 1}2 (the one-hot encoding of ul,k) to vl,k 2 R2 (the soft
select-or-skip decision for the l-th block in Tk) with the reparameterization trick [25]:
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regularizations (to encourage sparsity and sharing) in training. Best viewed in color.

only one task for predicting the output. In this way, the select-or-skip policy of all blocks and tasks
(U = {ul,k}lL,kK ) determines the adaptive feature sharing mechanism over the given task set T .

As the number of potential configurations for U is 2L⇥K which grows exponentially with the
number of blocks and tasks, it becomes intractable to manually find such a U to get the optimal
feature sharing pattern in multi-task learning. Instead of handcrafting this policy, we adopt Gumbel-
Softmax Sampling [25] to optimize U jointly with the network parameters W through standard
back-propagation. Moreover, we introduce two policy regularizations to achieve effective knowledge
sharing in a compact multi-task network, as well as a curriculum learning strategy to stabilize the
optimization in the early stages. After the training finishes, we sample the binary decision ul,k for
each block l from ul,k to decide what blocks to select or skip in the task Tk. Specifically, with the
help of the select-or-skip decisions, we form a novel and non-trivial network architecture for MTL
parameter-sharing, and share knowledge at different levels across all tasks in a flexible and efficient
way. At test time, when a novel input is presented to the multi-task network, the optimal policy is
followed, selectively choosing what blocks to compute for each task. Our proposed approach not only
encourages positive sharing among tasks via shared blocks but also minimizes negative interference
by using task-specific blocks when necessary.

Learning a Task-Specific Policy. In AdaShare, we learn the select-or-skip policy U and network
weights W jointly through standard back-propagation from our designed loss functions. However,
each select-or-skip policy ul,k is discrete and non-differentiable and this makes direct optimization
difficult. Therefore, we adopt Gumbel-Softmax Sampling [25] to resolve this non-differentiability
and enable direct optimization of the discrete policy ul,k using back-propagation.

Gumbel-Softmax Sampling. The Gumbel-Softmax trick [25, 36] is a simple and effective way to
substitutes the original non-differentiable sample from a discrete distribution with a differentiable
sample from a corresponding Gumbel-Softmax distribution. We let ⇡l,k = [1 � ↵l,k,↵l,k] be the
distribution vector of the binary random variable ul,k that we want to optimize, where the logit ↵l,k

represents the probability that the l-th block is selected to execute in the task Tk.

In Gumbel-Softmax Sampling, instead of directly sampling a select-or-skip decision ul,k for the l-th
block in the task Tk from its distribution ⇡l,k, we generate it as,

ul,k = arg max
j2{0,1}
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log ⇡l,k(j) + Gl,k(j)
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, (1)

where Gl,k = � log(� log Ul,k) is a standard Gumbel distribution with Ul,k sampled from a uniform
i.i.d. distribution Unif(0, 1). To remove the non-differentiable argmax operation in Eq. 1, the Gumbel
Softmax trick relaxes one-hot(ul,k) 2 {0, 1}2 (the one-hot encoding of ul,k) to vl,k 2 R2 (the soft
select-or-skip decision for the l-th block in Tk) with the reparameterization trick [25]:
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Figure 2: The architecture of Recommender Transformer (RETR) on the right subfigure. Pathway Attention (left) explores
the behavior pathway by the pathway router (orange module) and captures the evolving sequential characteristics of the use
behaviors by the multi-head attention.

inputs. All elements in the route are initialized by 1 and are updated
progressively in training.

Foremost, to suppress the potential disturbance to the model
caused by the local drifted interest (Figure 1), it is crucial to incor-
porate the global information in the route generation. We apply
the average pooling to all the preserved behavior tokens routed
by R𝑙−1, and produce the global sequential representation via a
multilayer perceptron (MLP) module. Then, we combine this global
representation with the inputs and employ a residual connection
to maintain the original input information. Finally, we feed them
to another MLP layer to predict the probabilities of keeping or
dropping the behavior tokens. All MLP layers are column-wise and
operate on the embedding dimensionality. The above procedure
can be formulated as follows:

Z𝑙emb = Z𝑙−1 + Z𝑙−1 ⊙ MLP

(∑𝑁
𝑖=1 R

𝑙−1
𝑖

Z𝑙−1
𝑖∑𝑁

𝑖=1 R
𝑙−1
𝑖

)
𝝅 = Softmax (MLP(Z𝑙emb)) ∈ R

𝑁×2,

(2)

where ⊙ is the Hadamard product. For 𝑡 ∈ {1, 2, · · · , 𝑁 }, we let
𝝅𝑡 = [1 − 𝛼𝑡 , 𝛼𝑡 ], where the logit 𝛼𝑡 denotes the probability that
the 𝑡-th behavior token is kept alive for the behavior pathway.

Adaptive Gumbel-Softmax sampling from 𝝅 for router. Our
goal is to generate the binary route from 𝝅 . However, sampling from
𝝅 directly is non-differentiable, and it will impede the gradient-
based training. Gumbel-Softmax [21] is an effective way to ap-
proximate the original non-differentiable sample from a discrete
distribution with a differentiable sample from a Gumbel-Softmax
distribution. Thus, we adapt the Gumbel-Softmax technique to
achieve such a sampling procedure. Instead of directly sampling

a keep-or-drop decision R̂𝑙𝑡 for the 𝑡-th behavior token from the
distribution 𝝅𝑡 , we generate it as:

R̂𝑙𝑡 = argmax
𝑗∈{0,1}

(log𝜋𝑡 ( 𝑗) +𝐺𝑡 ( 𝑗)) , (3)

where 𝐺𝑡 = − log(− log𝑈𝑡 ) is a standard Gumbel distribution, and
𝑈𝑡 is sampled i.i.d. from a uniform distribution Uniform(0, 1). To
remove the non-differentiable argmax operation in (3), the stan-
dard Gumbel-Softmax uses the reparameterization trick [21] as a
differentiable approximation to relax the one-hot R̂𝑙𝑡 ∈ {0, 1} to
𝑣𝑡 ∈ R2:

𝑣𝑡 ( 𝑗) =
exp((log𝜋𝑡 ( 𝑗) +𝐺𝑡 ( 𝑗))/𝜏)∑

𝑖∈{0,1} exp((log𝜋𝑡 (𝑖) +𝐺𝑡 (𝑖))/𝜏)
, 𝑗 ∈ {0, 1}, (4)

where 𝜏 is the temperature parameter of the Softmax. However, it
remains a well-known challenge to tune the temperature in Gumbel-
Softmax since a low temperature will cause a high variance in
gradient magnitude and a high temperature will lead to an over-
smoothing probability. Furthermore, a fixed temperature is not
adaptive across different datasets or behaviors of each user, which
incurs huge tweaking cost. Motivated by these difficulties, our
propose an adaptive variant of Gumbel-Softmax that introduces
the token-specific weight mechanism into the Gumbel-Softmax:

𝝎 = ReLU
(
MLP

(
Z𝑙emb

))
∈ R𝑁×1,

𝑣𝑡 ( 𝑗) =
exp(𝜔𝑡 log𝜋𝑡 ( 𝑗) +𝐺𝑡 ( 𝑗))∑

𝑖∈{0,1} exp(𝜔𝑡 log𝜋𝑡 (𝑖) +𝐺𝑡 (𝑖))
, 𝑗 ∈ {0, 1},

(5)

where 𝜔𝑡 is the weight specific for each token 𝑡 of each sequence.
For different user behaviors, we use an MLP module to dynam-
ically introduce the weight from the inputs Z𝑙emb, avoiding the
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high variance in the gradient and mitigating the over-smoothing
phenomenon. Our adaptive Gumbel-Softmax can make RETR dy-
namically adapt to diverse datasets and user behaviors without
tuning the temperature.

Hierarchical update strategy for router. The preliminary route
R̂𝑙 , sampled from 𝝅 , is not a final decision. In our design, once a
token fails to be routed in a certain block, it would permanently
lose the privilege to be part of the behavior pathway in the fol-
lowing feed-forward procedure. This constitutes a more efficient
hierarchical pathway router strategy. Thus finally we formulate the
route R𝑙 ∈ R𝑁×1 as the Hadamard product of R̂𝑙 and the pre-order
route R𝑙−1 in the (𝑙 − 1)-th block:

R𝑙 = R̂𝑙 ⊙ R𝑙−1 . (6)

Multi-head pathway attention. The standard multi-head self-
attention mechanism retrieves sequential characteristics by exploit-
ing all behavior tokens, making the behavior pathway overwhelmed
by the trivial behaviors. In the proposed pathway attention, the
pathway router would be firstly applied to the input behavior to-
kens to route information. The pathway router would not pare
down the number of tokens, but only the interactions between the
off-pathway and on-pathway tokens, as these off-pathway tokens
may also convey contextual information.

Specifically, for the query Q, key K, and value V in the pathway
attention: the query is routed by the pathway router through token-
wise multiplication between R𝑙𝑡 and Z𝑙−1𝑡 , to prevent the pathway
from being overwhelmed and to force the pathway attention to
attend to the behavior pathway. The key and value are the original
input behavior tokens, to ensure that the contextual information
from off-pathway behavior tokens can be captured as well:

Q𝑚,K𝑚,V𝑚 = (R𝑙Z𝑙−1)W𝑙
Q𝑚

,Z𝑙−1W𝑙
K𝑚

,Z𝑙−1W𝑙
V𝑚

Ẑ𝑙𝑚 = Softmax

(
Q𝑚KT

𝑚√︁
𝑑/ℎ

)
V𝑙𝑚,

(7)

where𝑚 ∈ {1, 2, · · · , ℎ} is the head index in the multi-head self-
attention;W𝑙

Q𝑚
,W𝑙

K𝑚
,W𝑙

V𝑚
∈ R𝑑×

𝑑
ℎ are transformation matrices

learned from data. Finally, the outputs
{
Ẑ𝑙𝑚 ∈ R𝑁× 𝑑

ℎ

}
1≤𝑚≤ℎ of

multiple heads are concatenated into Ẑ𝑙 ∈ R𝑁×𝑑 . We use Ẑ𝑙 ,R𝑙 =
Path-MSA (Z𝑙−1,R𝑙−1) to summarize the above pathway attention.
Its output is further transformed by (1) to form the final output of
the 𝑙-th block Z𝑙 ∈ R𝑁×𝑑 .

In the prediction of the (𝑡 + 1)-th behavior, only the first 𝑡 ob-
servable behaviors should be taken into account. To avoid a future
information leak and ensure causality, we apply a causal pathway
attention in that a look-ahead mask is employed and all links be-
tween Q𝑗 and K𝑖 ( 𝑗 > 𝑖) are removed.

Model-agnostic pathwaymechanism. It is worth noting that our
pathway attention is a lightweight module readily pluggable into
any transformer-based model by replacing the self-attention mech-
anism with our pathway attention while remaining the architecture
unchanged. To verify the effectiveness of our model-agnostic path-
way mechanism, we apply our pathway attention to mainstream
sequential recommendation transformers: BERTRec [38], SASRec

[22], SMRec [6], S3-Rec [50], TGSRec [12], and LightSANs [11],
which further enhances the performance and generalization of the
these models.

3.2 Prediction Layer and Training Objective

Prediction layer. In the final layer of RETR, we calculate the user’s
preference score for the item 𝑘 in the step (𝑡 + 1) in the context of
user behavior history as 𝑝 (𝑖𝑡+1 = 𝑘 | 𝑖1:𝑡 ) = 𝑒𝑘 ·Z𝐿𝑡 , where 𝑒𝑘 is the
representation of item 𝑘 from item embedding matrix EI , and Z𝐿𝑡
is the output of the 𝐿-th block in RETR at step 𝑡 , with 𝐿 being the
number of RETR blocks.

Training objective.We adopt the pairwise ranking loss to optimize
the RETR model parameters as:

L = −
∑︁
𝑢∈U

𝑛∑︁
𝑡=1

log𝜎
(
𝑝 (𝑖𝑡+1 | 𝑖1:𝑡 ) − 𝑝 (𝑖−𝑡+1 | 𝑖1:𝑡 )

)
, (8)

where we pair each ground-truth item 𝑖𝑡+1 with a randomly sam-
pled negative item 𝑖−

𝑡+1. In each epoch, we randomly generate one
negative item for each time step in each sequence. This pairwise
ranking loss is widely adopted in previous literature of sequential
recommendation [22, 51].

4 EXPERIMENTS
We extensively evaluate the proposed Recommender Transformer
(RETR) on seven intra-domain real-world benchmarks and five
cross-domain benchmarks. Due to page limitation, we also include
further ablation study results and visualization examples in Appen-
dix A.1 and Appendix A.2 respectively.

Intra-domain setting. We evaluate RETR on seven intra-domain
datasets: Netflix, MSD, Taobao, Yelp, Tmall, Steam, and Movie-
Lens1M. All methods are trained from scratch on these datasets.
The statistics of the seven datasets are summarized in Table 12 of
Appendix A.3 and the description for these datasets can be found
therein. All datasets are widely used for sequential recommenda-
tion task. It is notable that Netflix, MSD, Taobao and Steam are
large-scale datasets.

Cross-domain setting. We evaluate the ability of RETR to cap-
ture the domain-invariant representation for sequential recom-
mendation under the cross-domain setting. Following the train-
ing strategy in UniSRec [20], we pre-train our RETR on multiple
datasets “Grocery and Gourmet Food”, “Home and Kitchen”, “CDs
and Vinyl”, “Kindle Store” and “Movies and TV”, and then fine-
tune the pre-trained RETR respectively on different target datasets
“Prime Pantry”, “Industrial and Scientific”, “Musical Instruments”,
“Arts, Crafts and Sewing” and “Office Products”. These are all sub-
categories in the Amazon datasets [31]. The detailed descriptions
of source and target datasets are described in Appendix A.3.

Evaluation metrics. We apply top-k Hit Ratio (HR@k), top-k
Normalized Discounted Cumulative Gain (NDCG@k) and Mean Re-
ciprocal Rank (MRR) for evaluation, reporting HR@10, NDCG@10
and MRR of the results. Besides, following the standard strategy
in SASRec [22], we pair the ground-truth item with 100 randomly
sampled negative items that the user has not interacted with. All
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Table 1: Performance of state-of-the-art models under the intra-domain setting. Rec-denoiser (2022) uses BertRec as the
backbone.

Datasets Meric BERT4Rec SASRec SMRec S3-Rec SINE TGSRec LightSAN Locker Rec-denoiser Jodie TGN RETR

Netflix
HR@10 0.4792 0.4622 0.4848 0.4917 0.4902 0.4887 0.4852 0.4897 0.4913 0.4813 0.4802 0.5184
NDCG@10 0.3330 0.3202 0.3492 0.3571 0.3601 0.3512 0.3441 0.3557 0.3582 0.3368 0.3318 0.3795
MRR 0.2652 0.2519 0.2725 0.2819 0.2796 0.2778 0.2785 0.2873 0.2886 0.2687 0.2612 0.3175

MSD
HR@10 0.4819 0.4766 0.5083 0.5315 0.5264 0.5137 0.4994 0.5495 0.5581 0.4825 0.4782 0.5963
NDCG@10 0.4891 0.4831 0.5112 0.5381 0.5304 0.5279 0.5163 0.5495 0.5471 0.4872 0.4832 0.6012
MRR 0.3120 0.3079 0.3302 0.3494 0.3667 0.3612 0.3451 0.3686 0.3723 0.3224 0.3102 0.4025

Taobao
HR@10 0.1261 0.1182 0.1272 0.1336 0.1580 0.1537 0.1590 0.1584 0.1603 0.1447 0.1421 0.1803
NDCG@10 0.0425 0.0391 0.0531 0.0627 0.0873 0.0745 0.0794 0.0922 0.0952 0.0582 0.0571 0.1218
MRR 0.0489 0.0436 0.0721 0.0788 0.0934 0.0802 0.0841 0.0928 0.0967 0.0628 0.0603 0.1149

Yelp
HR@10 0.7597 0.7373 0.7548 0.7597 0.7564 0.7533 0.7552 0.7503 0.7520 0.7492 0.7473 0.7775
NDCG@10 0.4778 0.4642 0.4789 0.4937 0.4902 0.4887 0.4863 0.4935 0.4973 0.4792 0.4784 0.5169
MRR 0.4026 0.3927 0.4023 0.4107 0.4093 0.4072 0.4086 0.4189 0.4214 0.3997 0.3985 0.4378

MovieLens
HR@10 0.8269 0.8233 0.8302 0.8352 0.8311 0.8303 0.8294 0.8349 0.8368 0.8277 0.8259 0.8513
NDCG@10 0.5965 0.5936 0.6079 0.6172 0.6134 0.6081 0.6119 0.6003 0.6128 0.6009 0.5998 0.6397
MRR 0.5614 0.5573 0.5703 0.5812 0.5801 0.5734 0.5791 0.5787 0.5812 0.5651 0.5627 0.5978

Tmall
HR@10 0.6196 0.6275 0.6476 0.6687 0.6512 0.6506 0.6399 0.6703 0.6729 0.6384 0.6362 0.7214
NDCG@10 0.5025 0.5049 0.5192 0.5423 0.5411 0.5372 0.5415 0.5792 0.5830 0.5307 0.5198 0.6197
MRR 0.4026 0.4804 0.4934 0.5194 0.5147 0.5121 0.5119 0.5373 0.5426 0.5003 0.4997 0.5903

Steam
HR@10 0.8656 0.8729 0.8792 0.8813 0.8765 0.8773 0.8832 0.8831 0.8892 0.8780 0.8731 0.9079
NDCG@10 0.6283 0.6306 0.6408 0.6573 0.6502 0.6491 0.6519 0.6497 0.6523 0.6451 0.6399 0.6835
MRR 0.5883 0.5925 0.6011 0.6135 0.5972 0.6003 0.6104 0.6114 0.6159 0.5873 0.5798 0.6383

metrics are calculated according to the ranking of the items and we
report the average score.

Baseline methods.We compare our RETR with several state-of-
the-art sequence recommendation models. Specifically, we compare
our RETR with state-of-the-art transformer-based sequential rec-
ommendation models: Rec-denoiser [7], Locker [17], SASRec [22],
BertRec [38], SMRec [6]. S3-Rec [50], TGSRec [12] and LightSANs
[11]. These methods adopt the attention mechanism to make pre-
cise recommendations. Note that Rec-denoiser [7] and Locker [17]
are novel transformer-based models with learnable sparse attention.
Besides, we also compare our RETR with state-of-the-art graph-
based sequential recommendation methods: Jodie [26] and TGN
[35]. We further compare our approach with some cross-domain
recommendation models RecGURU [27] and UniSRec [20]. All base-
line methods are configured using default parameters of the original
paper or optimal parameters which can produce their best results
through a grid search.

Implementation details. Our model is supervised by the pair-
wise rank loss in (8), using the ADAM [23] optimizer with an initial
learning rate of 0.001. Batch size is set to 512. Themaximum number
of training epochs for all methods is set to 300. All hyperparame-
ters are tuned on the validation set. The training process is early
stopped within 10 epochs. Our RETR has 𝐿 = 2 layers, and each
layer has ℎ = 4 heads (the ablation study of multi-head attention
can be found in Appendix ??) and dimension 𝑑 is set to be 256. The

maximum sequence length 𝑁 is set to 200 for MovieLens1M and
100 for the other intra-domain and cross-domain datasets. In the
cross-domain setting, we further pre-train the proposed approach
and baseline methods from multiple datasets following the training
strategy in UniSRec [20] for 300 epochs using the default param-
eters from UniSRec [20]. All models are pretrained without using
the item ID embeddings. In the phase of finetuning on the target
domain, we use the item ID embeddings and fix the backbone for all
competing pretrained models. All experiments are repeated three
times, implemented in PyTorch [32], and conducted on a single
NVIDIA 3090 GPU.

4.1 Intra-domain Results
The results of different methods on seven intra-domain datasets
are shown in Table 1. We can easily find that transformer-based
models, SASRec [22], BertRec [38], SMRec [6], S3-Rec [50], TGSRec
[12] and LightSANs [11], achieve competitive performance on most
datasets, indicating that the transformer-based models have a better
capacity to capture sequential behaviors of complex characteris-
tics. These models can capture the interaction information between
all previous user behaviors via the attention mechanism. Besides,
the graph-based models like Jodie [26] and TGN [35] also achieve
competitive performance. Rec-denoiser [7] and Locker [17] intro-
duce novel sparse attention mechanisms, thereby achieving better
performance compared with other baselines. This validates the ef-
fectiveness of the learned mask attention. While these baselines
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Table 2: Performance comparison of different competitive methods under the cross-domain setting. X-* indicates the model
pre-trained on multiple datasets and finetuned on a target dataset (“X” stands for “cross-domain”) following the training
procedure of UniSRec (2022).

Target Datasets Meric X-SMRec X-LightSAN X-Locker X-Rec-denoiser UniSRec RecGURU X-RETR

Scientific HR@10 0.1304 0.1315 0.1312 0.1329 0.1235 0.1023 0.1459
NDCG@10 0.0706 0.0725 0.0744 0.0752 0.0634 0.0572 0.0865

Pantry HR@10 0.0713 0.0725 0.0741 0.0734 0.0693 0.0469 0.0847
NDCG@10 0.0327 0.0321 0.0346 0.0338 0.0311 0.0209 0.0425

Instruments HR@10 0.1293 0.1278 0.1316 0.1301 0.1267 0.1113 0.1353
NDCG@10 0.0792 0.0778 0.0830 0.0813 0.0748 0.0681 0.0893

Arts HR@10 0.1281 0.1275 0.1283 0.1293 0.1239 0.1084 0.1378
NDCG@10 0.0749 0.0738 0.0749 0.0763 0.0712 0.0651 0.0853

Office HR@10 0.1319 0.1321 0.1336 0.1343 0.1280 0.1145 0.1426
NDCG@10 0.0842 0.0858 0.0857 0.0869 0.0831 0.0768 0.0998

are strong competitors, our RETR can achieve state-of-the-art per-
formance by a large margin on most datasets compared with the
Rec-denoiser and Locker.

Intra-domain setting. We evaluate RETR on seven intra-domain
datasets: Netflix, MSD, Taobao, Yelp, Tmall, Steam, and Movie-
Lens1M. All methods are trained from scratch on these datasets.
The statistics of the seven datasets are summarized in Table 12 of
Appendix A.3 and the description for these datasets can be found
therein. All datasets are widely used for sequential recommenda-
tion task. It is notable that Netflix, MSD, Taobao and Steam are
large-scale datasets.

Results on Yelp, MovieLens1M and Tmall. Our RETR achieves
competitive performance on Yelp and Tmall. These datasets are
sparse, containing less action information. Thus they have lots of
noisy logged information. By effectively capturing the behavior
pathway, RETR is not affected by this trivial behavior informa-
tion and captures the most informative behavior representation to
achieve better performance. Note that under the Tmall benchmark,
RETR gains 7% HR@10, 12% NDCG@10 and 14% MRR against
the strongest baseline SMRec [6]. Besides, for the MoveLens1M
benchmark, RETR also achieves the best performance among all
competing baselines.

Results on large-scale datasets. Our RETR can consistently
achieve state-of-the-art results on large-scale datasets (Netflix, MSD,
Taobao, and Steam). These datasets are challenging and difficult
to capture pivotal behavior pathway useful for precise recommen-
dation from the rich but noisy user’s behaviors. Especially for the
Taobao dataset, RETR gains relative improvements of 12% HR@10,
37% NDCG@10 and 20% MRR against the strongest baseline SINE
[39]. It provides evidence that RETR can achieve competitive per-
formance in both small- and large-scale datasets. The substantial
performance gains of our RETR indicate that focusing more on the
behavior pathway enables RETR to capture sequential characteris-
tics more efficiently and effectively than the vanilla self-attention
mechanism, which considers all previous user behaviors and is
easily overwhelmed.

4.2 Cross-domain Results
To verify the ability of RETR to capture domain-invariant represen-
tations, we evaluate pre-trained RETR on 5 target datasets under
the cross-domain setting. The multi-domain pre-training version
of RETR, denoted as X-RETR, can be effectively transferred to new
domains. We also provide the results for multi-domain pre-training
version of Rec-denoiser, SASRec, SMRec, and LightSAN, denoted
as X-Rec-denoiser, UniSRec, X-SMRec, and X-LightSAN respec-
tively. Technically, we follow the pretraining strategy of UniSRec
[20] to train all models. As shown in Table 2, the X-RETR already
achieves competitive cross-domain performance, outperforming
the state-of-the-art cross-domain method UniSRec by a large mar-
gin on most target datasets. Compared with other multi-domain
pre-trained backbones, X-RETR achieves the highest performance
and empowers better transferability among different backbones.
Specially, X-RETR gains 12% HR@10 and 22.5% NDCG@10 com-
pared with X-SMRec, on the Scientific benchmark. These results
indicate that RETR can extract domain-invariant representations
for sequential recommendation, indicating that a stronger backbone
is crucial in parallel with transfer-learning method for enhancing
the transferability. RETR can be regarded as a general backbone to
capture more domain-invariant representations.

4.3 Ablation Study
Here we provide a ablation study of RETR. For more ablation re-
sults, please refer to Appendix A.1, including the ablation study of
different hyperparameters and effectiveness of each model compo-
nent, and the explicit ablation study of adaptive Gumbel-Softmax.
Further visual examples are provided in Appendix A.2

Pathway attention towards different transformer-basedmod-
els. As described before, our RETR yields state-of-the-art perfor-
mance on all datasets. We further apply our pathway mechanism
towards different transformer-based models like BERTRec [38], SM-
Rec [6], S3-Rec [50], TGSRec [12], and LightSANs [11]. In Table
3, we observe that our pathway attention can improve the perfor-
mance of all baseline transformer-based models substantially. RETR
can be further enhanced using advanced backbones alternative to
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Table 3: Ablation study of model-agnostic pathway attention on MovieLens. Results in each column are obtained without/with
pathway attention. (↑: positive improvement using pathway attention.)

Meric BERT4Rec SMRec S3-Rec TGSRec LightSAN RETR

HR@10 0.8269 / 0.8506 ↑ 0.8302 / 0.8585 ↑ 0.8352 / 0.8594 ↑ 0.8303 / 0.8497 ↑ 0.8294 / 0.8529 ↑ 0.8513
NDCG@10 0.5965 / 0.6389 ↑ 0.6079 / 0.6486 ↑ 0.6172 / 0.6487 ↑ 0.6081 / 0.6325 ↑ 0.6119 / 0.6475 ↑ 0.6397
MRR 0.5614 / 0.5998 ↑ 0.5703 / 0.6031 ↑ 0.5812 / 0.6052 ↑ 0.5734 / 0.5973 ↑ 0.5791 / 0.5993 ↑ 0.5978

the vanilla transformers and achieve the best results among all
competing methods. These results provide strong evidences that
our proposed pathway attention is model-agnostic to transformer-
based methods and not limited to a particular architectural choice.

Number of heads and maximum sequence length. In Table 4,
we adjust the number of heads for RETR on Yelp. We find that the
performance first increases with the growth of the head number
and achieves the best performance at ℎ = 4. We perform a similar
grid search on other datasets. In Table 5, we adjust the maximum
sequence length 𝑁 for RETR on Yelp. As shown in Table 5, we find
that the performance of our RETR first increases rapidly with the
growth of the block number and achieves the best performance at
𝑁 = 100. We perform a similar grid search on other datasets.

Table 4: Ablation of the head number for RETR on the Yelp
Dataset.

Model (# ℎ) MRR

RETR (ℎ = 1) 0.4317
RETR (ℎ = 2) 0.4345
RETR (ℎ = 4) 0.4378
RETR (ℎ = 8) 0.4369

Table 5: Ablation of the maximum sequence length for RETR
on the Yelp Dataset.

Model (# maximum sequence length ) MRR

RETR (𝑁 = 25) 0.4237
RETR (𝑁 = 50) 0.4294
RETR (𝑁 = 100) 0.4378
RETR (𝑁 = 200) 0.4362

Effectiveness of eachmodel component andnumber of blocks.
In Table 6, we analyze the efficacy of each component in RETR on
the Yelp dataset and have the following observations. First, we re-
move the pathway router module and randomly choose whether it
can be maintained or dropped for each input behavior token. Re-
moving the pathway router decreases the prediction performance
a lot (MRR: 0.4354 → 0.3887), showing the necessity of learning
behavior pathway effectively based on a data-dependent module.
Second, discarding the hierarchical update strategy for the behavior
pathway also decreases the prediction performance, suggesting that

this strategy is crucial for RETR to get a more accurate behavior
pathway. In Table 7, we adjust the number of blocks for RETR on
Yelp. We find that the performance first increases rapidly with the
growth of the block number and achieves the best performance at
𝐿 = 2. We perform a similar grid search on other datasets.

Table 6: Ablation study of the effectiveness of each model
component. Experiments are conducted on the Yelp Dataset.

Model MRR

RETR 0.4378
RETR w/o Pathway Router 0.3887
RETR w/o hierarchical update 0.4234
SASRec 0.3927

Table 7: Ablation study of the number of blocks for each
RETR block. Experiments are conducted on the Yelp Dataset.

Model (# number of blocks) MRR

RETR (𝐿 = 1) 0.4197
RETR (𝐿 = 2) 0.4378
RETR (𝐿 = 3) 0.4342
RETR (𝐿 = 4) 0.4340

5 CONCLUSION
A sequential recommender is designed to make accurate recommen-
dations based on users’ historical behaviors. However, the users’
behaviors are dynamic and come in a continually evolving manner.
A user’s current decision may only call upon the interest from the
certain relevant behaviors of the past. We conclude these sequential
characteristics as the behavior pathway. We propose the Recom-
mender Transformer (RETR) with a novel pathway attentionmecha-
nism to tackle these challenges. The pathway attention mechanism
develops a pathway router to dynamically allocate the behavior
pathway for each user and capture the evolving patterns. RETR can
capture more domain-invariant representations and the pathway
attention is model-agnostic and can be easily applied to a series
of transformer-based methods. RETR achieves state-of-the-art per-
formance on seven intra-domain datasets and five cross-domain
benchmarks for sequential recommendation.
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A APPENDIX
A.1 Further Ablation Study

Replace the proposed pathway-based method with other
sparse attention methods. We replace the proposed pathway-
based method with two sparse attention methods: LogSparse [28]
and sparse attention [8]. As shown in Table 8, our RETR using the
pathway attention remarkably outperforms other competing meth-
ods with two sparse attention methods on Tmall. These experiment
results show that sparse attention methods cannot capture the exact
behavior pathway and show worse performance than RETR.

Table 8: Ablation study of sparse attention methods on the
Tmall dataset.

Model NDCG@10 HR@10 MRR

RETR w/ LogSparse 0.4923 0.6015 0.4735
RETR w/ Sparse-Att 0.4871 0.5873 0.4620
RETR 0.6197 0.7214 0.5903

Quantitative results on whether the proposed model effec-
tively captures a useful pathway.We give quantitive results to
validate that our RETR can effectively capture various behavior
pathways. Specifically, we evaluate our RETR using a subset of
sequences derived from the obtained behavior pathway on Tmall.
Technically, we first train RETR on Tmall. For each user, we take the
captured behavior pathway from our RETR as the inputs to retrain
a RETR rather than using the whole user’s behaviors. As shown
in Table 9, we find that using the behavior pathway as the inputs
can achieve comparable results as the original RETR which uses
complete user behaviors. It provides the evidence that our RETR
can aptly capture the useful pathway for each user.

Table 9: Quantitative results on the Tmall dataset.

Model NDCG@10 HR@10 MRR

RETR w/ pathway 0.6112 0.7142 0.5831
RETR 0.6197 0.7214 0.5903

SASRec 0.5049 0.6275 0.4804
SASRec w/ pathway 0.5778 0.6812 0.5425
SASRec w/ off-pathway 0.4383 0.5697 0.4215

What’s the essential difference between RETR and sequential
model with attention mechanism? Our RETR has two essential
differences compared with sequential model with attention mech-
anism: (1) Our RETR designs the pathway router to capture the
behavior pathway, while the other sequential models have not con-
sidered it before. As shown in Figure 3, the previous self-attention
mechanism mainly focuses on the recent behaviors, and cannot
capture the accurate behavior pathway. Only our RETR can capture
the precise behavior pathway. (2) The pathway attention for RETR
is the cross-attention between the pathway behavior tokens and

Table 10: Comparison Parameters and GFLOPs on the Yelp
Dataset.

Model Param (M) GFLOPs MRR

RETR 5.0 9.6 0.4378
SASRec [22] 5.0 9.6 0.3927
SINE [39] 5.1 9.7 0.4011
SMRec [6] 5.2 9.9 0.4023

off-pathway tokens. Our pathway cross-attention mechanism can
avoid the trivial interaction between the off-pathway tokens.

Why use the cross-attention mechanism? We choose the cross-
attentionmechanism for three main reasons: (1) The cross-attention
mechanism can force the pathway attention to attend to the behav-
ior pathway; (2) It can ensure that the contextual information from
off-pathway behavior tokens can be captured, using the original
input behavior tokens as the key and value; (3) Our pathway cross-
attention mechanism avoids the trivial interaction between the
off-pathway tokens, while the previous self-attention mechanism
for sequential models can be overwhelmed by the trivial informa-
tion in the off-pathway behavior tokens. To verify our explanation,
we further conduct evaluation experiments on Tmall. Specifically,
we train RETR on Tmall, and then use the trained RETR on Tmall
to capture the behavior pathway for each user in Tmall. We use the
pathway behaviors and off-pathway behaviors as the inputs to train
SASRec respectively. As shown in Table 9, we can see that SASRec
achieves better performance using the behavior pathway as the
inputs compared with the original SASRec using the whole user’s
behavior as the inputs. On the contrary, the off-pathway inputs hurt
SASRec’s performance seriously. Finally, our RETR achieves the
best performance, indicating that the pathway-offpathway cross-
attention is more effective than the pathway self-attention.

Evaluation on efficiency. The efficiency is compared between
SASRec [22], SINE [39] and SMRec [6] on the Yelp dataset. The
computation cost is measured with gigabit floating-point opera-
tions (GFLOPs) on the self-attention module with position encod-
ing. Meanwhile, the model scale measured with parameters is also
presented. As shown in Table 10, our RETR has almost the same
number of parameters or GFLOPs, compared with SASRec, indicat-
ing that our pathway router is a light-weight module. Our pathway
attention does not bring more costs. It’s worth noticing that the pa-
rameter scales and GLOPs of other competing transformers (apart
from SASRec) are larger than RETR, but our RETR achieves higher
performance. This result shows that our RETR is more efficient and
effective than other competing attention-based models.

Why we need to use this pathway router in sequential recom-
mendation? Previous sequential recommendation methods have
proved that the recommender can be benefited a lot from the user’s
historical behaviors, even though the behavior sequence may be
short. However, when meeting with the short behavior sequence,
the recommender still needs to deal with various behavior path-
ways and can be overwhelmed by trivial behaviors. To avoid the
recommender being overwhelmed by trivial behaviors, we design
the pathway router to capture the pivotal behavior pathway that
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Table 11: Ablation study of RETR with quantitative results on the Yelp and Tmall datasets. “-” indicates failure case of model
training.

Model Yelp Tmall
NDCG@10 HR@10 MRR NDCG@10 HR@10 MRR

RETR w/ standard Gumbel-Softmax (𝜏 = 2) 0.5113 0.7695 0.4328 0.6049 0.7084 0.5787
RETR w/ standard Gumbel-Softmax (𝜏 = 1) 0.5124 0.7719 0.4345 0.6084 0.7105 0.5803
RETR w/ standard Gumbel-Softmax (𝜏 = 0.8) 0.5136 0.7730 0.4354 0.6103 0.7138 0.5822
RETR w/ standard Gumbel-Softmax (𝜏 = 0.6) 0.5152 0.7749 0.4360 0.6095 0.7129 0.5817
RETR w/ standard Gumbel-Softmax (𝜏 = 0.4) - - - - - -
RETR w/ standard Gumbel-Softmax (𝜏 = 0.2) - - - - - -
RETR w/ Gumbel-Softmax (temperature annealing) 0.5134 0.7727 0.4350 0.6093 0.7133 0.5814
RETR w/ adaptive Gumbel-Softmax 0.5169 0.7775 0.4378 0.6197 0.7214 0.5903

explains the user’s preferences, whenever the behavior sequence
is short or long. It’s crucial to develop the pathway router to cap-
ture the behavior pathway for making precise recommendations.
The pathway router is important for sequential recommendation
models to avoid being overwhelmed by trivial user behaviors.

Ablation study for adaptive Gumbel-Softmax. The temper-
ature parameter 𝜏 is a crucial hyperparameter for the standard
Gumbel-Softmax. A fixed temperature cannot be adaptive across
different datasets or users. It is widely-known to be uneasy to
tune the temperature parameter, in that a lower value may lead to
high variances in gradients and a higher value may lead to over-
smoothing probabilities. To mitigate these technical issues, we
propose a novel adaptive Gumbel-Softmax mechanism to eliminate
the need of temperature tuning, which can produce token-specific
weights automatically adjusted to varying behaviors of each user.

As shown in Table 11, we find that RETR with the standard
Gumbel-Softmax achieves the highest performance in different
datasets at different temperatures (𝜏 = 0.8 for Tmall and 𝜏 = 0.6 for
Yelp). These results show that a fixed temperature is not adaptive
across diverse datasets. However, lower temperatures (𝜏 = 0.2, 0.4)
cause the failure ofmodel training for RETR due to the high variance
in gradients. Higher temperatures (𝜏 = 1, 2) may perform worse
because of the over-smoothing probabilities in Gumbel-Softmax. It
proves difficult to tune the temperature for the standard Gumbel-
Softmax. Previous work like TRAR [52] develops a schedule that
starts with a high temperature and gradually anneals it to a small
but non-zero value. This schedule can make the training more
stable, but it cannot achieve the best performance adaptively across
different datasets.

In contrast, RETR with the proposed adaptive Gumbel-Softmax
featured by the token-specific weight mechanism achieves the best
performance compared with the standard Gumbel-Softmax under
different temperatures. These results indicate that the adaptive
Gumbel-Softmax is much more effective in capturing the behav-
ior pathway and can be dynamically adapted to different datasets
without tuning the temperature. This adaptive mechanism can
simultaneously overcome the over-smoothing phenomenon and
dynamically avoid the high variances in gradients.

A.2 Visual Examples

Setups. We also provide qualitative visualizations for our RETR,
and SASRec [22]. Technically, we use the GradCAM [36] to gener-
ate behavior heatmaps of the output of the last layer in each model.
Three random examples of users’ historical behaviors in the Steam
dataset are shown in sequential order through subplots (a)–(c) in
Figure 3. We provide attention heatmaps of each example at the last
ten time steps. We can observe three main behavior pathway char-
acteristics corresponding to three behavior sequences respectively:
(a) Casual behavior pathway: RPG games are randomly clicked by
the user, while the user has a continuing interest in RPGs. (b) Cor-
related behavior pathway: The user has recently been interested in
indie games. (c) Drifted behavior pathway: The user has recently
been interested in simulation games but chooses an indie game at
last.

Visualization results. We elaborate the three representative cate-
gories of behavior pathway in recommender systems with model-
learned attention heatmaps. (1) Casual behavior pathway: As shown
in Figure 3(a), the RGB game is randomly clicked at casual times.
Our RETR can capture all the RPG casual behavior pathways, while
the SASRec focuses on the incorrect recent adventure games. The
SASRec cannot capture the early clicked RPG game. This phenome-
non proves that our RETR can deal with the casual behavior path-
way effectively. (2) Correlated behavior pathway: For the correlated
behavior pathway, we also provide an example which is shown in
Figure 3(b). The indie game is clicked many times recently, leading
to the final decision to an indie game. Our RETR can effectively
capture the correlated behavior pathway. However, the SASRec
provides higher attention scores on the recent RPG games. On the
contrary, our RETR pays no attention to these wrong results, show-
ing that it has a greater ability to cope with the correlated behavior
pathway. (3) Drifted behavior pathway: As shown in Figure 3(c). The
user was initially interested in the indie game, but suddenly became
interested in simulation games recently and chose an indie game at
last. Our RETR captures the drifted behavior pathway for the indie
game and has not concentrated on the old drifted pathway – simu-
lation games, while the SASRec is affected by the trivial behaviors
of simulation games. These visualization results strongly show that
our RETR can capture various behavior pathways dynamically for
each user.
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Figure 3: Policy Visualization and Task Correlation. (a) We visualize the learned policy logits A in Tiny-
Taskonomy 5-Task learning. The darkness of a block represents the probability of that block selected for the
given task. We also provide the select-and-skip decision U from our AdaShare. In (b), we provide the task
correlation, i.e. the cosine similarity between task-specific dataset. Two 3D tasks (Surface Normal Prediction
and Depth Prediction) are more correlated and so as two 2D tasks (Keypoint Detection and Edge Detection).

order to improve the performance of Semantic Segmentation. In contrast, our approach is still able
to improve the segmentation performance instead of suffering from the negative interference by
the other two tasks. The same reduction in negative transfer is also observed in Surface Normal
Prediction in Tiny-Taskonomy 5-Task Learning. However, our proposed approach AdaShare still
performs the best using less than 1/5 parameters of most of the baselines (Table 4).

Moreover, our proposed AdaShare also achieves better overall performance across the same task
on different domains. For image classification on DomainNet [42], AdaShare improves average
accuracy over Multi-Task baseline on 6 different visual domains by 4.6% (62.2% vs. 57.6%), with the
maximum 16% improvement in quickdraw domain. For text classification task, AdaShare outperforms
the Multi-Task baseline by 7.2% (76.1% vs. 68.9%) in average over 10 different NLP datasets [8]
and maximally improves 27.8% in sogou_news dataset.

Figure 4: Task Correlation in
DomainNet. Similar tasks are
more correlated, such as real is
closer to painting than quickdraw.

Policy Visualization and Task Correlation. In Figure 3: (a), we
visualize our learned policy distributions (via logits) and the feature
sharing policy in Tiny-Taskonomy 5-Task Learning (more visual-
izations are included in supplementary material). We also adopt the
cosine similarity between task-specific policy logits as an effective
representation of task correlations (Figure 3: (b), Figure 4). We have
the following key observations. (a) The execution probability of
each block for task k shows that not all blocks contribute to the task
equally and it allows AdaShare to mediate among tasks and decide
task-specific blocks adaptive to the given task set. (b) Our learned
policy prefers to have more blocks shared only among a sub-group of
tasks in ResNet’s conv3_x layers, where middle/high-level features,
which are more task specific, are starting to get captured. By having
blocks shared by a sub-group of tasks, AdaShare encourages the
positive transfer and relieves the effect of negative transfer, resulting
in better overall performance. (c) We clearly observe that Surface
Normal Prediction and Depth Prediction, two different 3D tasks, are
more correlated, and that Keypoint prediction and Edge detection,
two different 2D tasks are more correlated (see Figure 3: (b)). Similarly, Figure 4 shows that the
domain real is closer to painting than quickdraw in DomainNet. Both results follow the intuition
that similar tasks should have similar execution distribution to share knowledge. Note that the cosine
similarity purely measures the correlation between the normalized execution probabilities of different
tasks, which is not influenced by the different optimization uncertainty of different tasks.

Computation Cost (FLOPs). AdaShare requires much less computation (FLOPs) as compared to
existing MTL methods. E.g., in Cityscapes 2-task, Cross-stitch/Sluice, NDDR, MTAN, DEN, and
AdaShare use 37.06G, 38.32G, 44.31G, 39.18G and 33.35G FLOPs and in NYU v2 3-task, they use
55.59G, 57.21G, 58.43G, 57.71G and 50.13G FLOPs, respectively. Overall, AdaShare offers on
average about 7.67%-18.71% computational savings compared to state-of-the-art methods over all
the tasks while achieving better recognition accuracy with about 50%-80% less parameters.
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Figure 3: Visualizations of behavior heatmaps for RETR and SASRec of three random users in Steam dataset. They are
corresponding to casual, correlated and drifted behavior pathways respectively.

A.3 Descriptions of the Datasets

Intra-domain datasets.Here are descriptions of the seven datasets:
(1) Netflix: Netflix dataset is a large-scale movie rating dataset re-
leased by Netflix. (2) MSD: The Million Song Dataset (MSD) is a
large-scale, metadata-rich and open-source dataset on Kaggle. (3)
Taobao: Taobao dataset [39] contains user behaviors in Taobao’s
recommender system. In experiments, we only use the click behav-
iors. (4) Yelp [2]: Yelp is a dataset for business recommendation.
We only use the transaction records after January 1st, 2019. (5)
Tmall: Tmall contains users’ shopping logs on Tmall online shop-
ping platform, which is from the IJCAI-15 competition. (6) Steam
[22]: Steam dataset is collected from a large online video game
distribution platform. This dataset includes 2,567,538 users, 15,474
games and 7,793,069 English reviews from October 2010 to January
2018. (7)MovieLens1M: this is a widely used benchmark dataset
for evaluating collaborative filtering algorithms. The version we
use is MovieLens-1M, which includes 1 million user ratings.

Cross-domain datasets. We choose five categories from Ama-
zon review datasets [20]: Grocery and Gourmet Food, Home and
Kitchen, CDs and Vinyl, Kindle Store, and Movies and TV, as the
source domain datasets for pre-training. For the target datasets, we
choose another five categories from Amazon review datasets [20]:
Prime Pantry, Industrial and Scientific, Musical Instruments, Arts,
Crafts and Sewing, and Office Products, as target domain datasets
to evaluate the proposed approach under the cross-domain setting.
The detail statistics are shown in Table 13.

Table 12: Statistics of the intra-domain datasets.

Dataset Users Items Actions

Netflix 463,435 17,769 57,000,000
MSD 571,355 41,140 34,000,000
Taobao 987,994 4,162,024 100,150,807
Yelp 30,431 20,033 316,354
MovieLens1M 6,040 3,416 1,000,000
Tmall 66,909 37,367 427,797
Steam 334,730 13,047 3,700,000

Following previous works [22], we group the interaction records
by users or sessions for all datasets and sort them by the timestamps
in ascending order. We split the historical sequence for each user
into three parts: (1) the most recent behavior for testing, (2) the
second most recent behavior for validation, and (3) all remaining
behaviors for training. During testing, the input sequences contain
training behaviors and validation behaviors. We filter less popular
items and inactive users with fewer than five interaction records.
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Table 13: Statistics of the cross-domain datasets.

Source Dataset Users Items Actions Target Dataset Users Items Actions

Food 115,349 39,670 1,027,4137 Scientific 8,442 4,385 59,427
CDs 94,010 64,439 1,118,563 Pantry 13,101 4,898 126,9626
Kindle 138,436 98,111 2,204,596 Instruments 24,962 9,964 208,926
Movies 281,700 59.203 3,226,731 Arts 45,486 21,019 395,150
Home 731,913 185,552 6,451,926 Office 87,436 25,986 684,837

13


	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Recommender Transformer
	3.2 Prediction Layer and Training Objective

	4 Experiments
	4.1 Intra-domain Results
	4.2 Cross-domain Results
	4.3 Ablation Study

	5 Conclusion
	References
	A Appendix
	A.1 Further Ablation Study
	A.2 Visual Examples
	A.3 Descriptions of the Datasets


