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ABSTRACT

The human auditory cortex is topographically organized. Neurons with similar
response properties are spatially clustered, forming smooth maps for acoustic fea-
tures such as frequency in early auditory areas, and modular regions selective for
music and speech in higher-order cortex. Yet, evaluations for current computa-
tional models of auditory perception do not measure whether such topographic
structure is present in a candidate model. Here, we show that cortical topography
is not present in the previous best-performing models at predicting human auditory
fMRI responses. To encourage the emergence of topographic organization, we
adapt a cortical wiring-constraint loss originally designed for visual perception.
The new class of topographic auditory models, TopoAudio, are trained to classify
speech, and environmental sounds from cochleagram inputs, with an added con-
straint that nearby units on a 2D cortical sheet develop similar tuning. Despite
these additional constraints, TopoAudio achieves high accuracy on benchmark
tasks comparable to the unconstrained non-topographic baseline models. Further,
TopoAudio predicts the fMRI responses in the brain as well as standard models,
but unlike standard models, TopoAudio develops smooth, topographic maps for
tonotopy and amplitude modulation (common properties of early auditory repre-
sentation, as well as clustered response modules for music and speech (higher-
order selectivity observed in the human auditory cortex). TopoAudio is the first
end-to-end biologically grounded auditory model to exhibit emergent topography,
and our results emphasize that a wiring-length constraint can serve as a general-
purpose regularization tool to achieve biologically aligned representations.

1 INTRODUCTION

The human auditory cortex has a well documented topographic organization in which neurons with
similar response properties are spatially clustered (Moerel et al., |2014; Brewer & Barton, 2016;
Scheich| [1991}; [Kanold et al.| 2014 Read et al. [2002; |[Leaver & Rauschecker, [2016). In early
auditory areas, this organization gives rise to smooth topographic maps for acoustic features such
as frequency (tonotopy), amplitude modulation, and pitch (Reale & Imigl [1980; Bendor & Wang,
2005} (Wessinger et al.l [1997; |Allen et al. [2022; Joris et al.| 2004; Baumann et al., 2015} Norman-
Haignere et al.,2013). In higher-order regions, distinct clusters emerge for more complex categories
like music and speech (Zatorre et al., 2002} |Leaver & Rauschecker, 2010; Norman-Haignere et al.
2015} 2022} Harris et al. 2023} [Williams et al., [2022; [Fedorenko et al., 2012} [Boebinger et al.,
2021). In recent years, computational models have emerged that capture key aspects of human
auditory behavior (Francl & McDermott, [2022} |Saddler et al., 2020; 2021} |Saddler & McDermott,
2024; [Koumura et al.| [2023) and predict neural responses (Kell et al.| [2018; [Tuckute et al., 2023
Giordano et al., 2023} |Giiclii et al., 2016; |Khatami & Escabil [2020; [Vaidya et al.| {2022} |[Millet et al.}
2022; Rupp et al., [2025). Yet even the leading models of the auditory cortex (Tuckute et al., [2023)
neither incorporate, evaluate, nor explain the topography observed in the brain.

To develop such models, we take inspiration from recent work that utilizes wiring-length constraints
to induce topographic structure. One compelling hypothesis for the ubiquitous nature of corti-
cal maps is that they emerge from optimizing task representations under wiring-length constraints
(Kaas,,|1997; |Chklovskii & Koulakov, [2004; Jacobs & Jordan, |1992)). If wiring-length indeed serves
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Figure 1: TopoAudio: Topographic audio models. Raw sound waveforms are transformed into
cochleagrams, which serve as inputs to the neural network backbone (middle). The baseline model
(middle, top) is trained using only a task loss and learns spatially disorganized internal representa-
tions. In contrast, our proposed model TopoAudio is trained with an additional spatial smoothness
constraint via TopoLoss. This results in smooth, topographically organized representations that re-
semble those observed in human auditory cortex (right).

as a domain-general principle in neural representation, then it should suffice to capture cortical maps
in any modality. This principle was recently implemented in vision models [Lee et al| (2020); [Mar-|
galit et al.| (2024); [Qian et al.| (2024); [Deb et al. (2025)), where a wiring-length constraint led to an
emergence of topographic information and a better alignment with neural data. More recently, in
attempt to show generality, a wiring-length constraint was applied to language models
2025} [Deb et al. [2025)), however the overall topography of core language regions in the biological
brain is debated, so it is unclear if these results lead to a more biological model. The auditory do-
main is a natural test of this wiring-length hypothesis — it encodes dynamic features, and has some
known topographic structure.

In this work, we present TopoAudio, the first suite of end-to-end topographic auditory models. Our
models achieve competitive performance at predicting fMRI responses in the human auditory cortex
and perform at par with baseline models on auditory classification tasks. Beyond these standard
evaluations, we further investigate if the wiring-length constraint leads to hallmark features of audi-
tory cortical organization: smooth tonotopic and modulation maps, and spatially clustered regions
selective for speech and music. We find that the internal representations of TopoAudio models
are more geometrically aligned with human brain data than standard models, demonstrating that
incorporating topographic structure yields models that are both high-performing and biologically
grounded. Our TopoAudio models provide strong evidence of a domain-general principle for intro-
ducing topography into Al models, enabling them to capture the emergence of spatial organization
in any modality.

2 RELATED WORKS

2.1 TOPOGRAPHIC MODELS IN VISION AND LANGUAGE.

Topography is ubiquitous across sensory cortices. Perhaps the best known example is the visual
cortex, where in early visual cortex neurons are arranged in fine-scale maps for orientation prefer-
ence - forming structured motifs such as pinwheels. At larger scales, cortical maps
exhibit biases for real-world properties like object size, animacy (Konkle & Olival [201T}; [Konkle &
[2013)), and eccentricity, including specialized regions selective for faces, bodies, scenes,
and words (Kanwisher] 2000} [Grill-Spector et al.| 2004} [Epstein et al., [1999; [Downing et al. 2006}
[200T; McCandliss et al.,[2003). These observations from the brain have inspired the development
of topographic deep learning models that jointly optimize for local similarity on internal represen-
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tations along with task performance (Lee et al., [2020; Margalit et al.} 2024}, [Qian et al, 2024} [Deb
2025).

There are broadly three approaches to inducing topography in neural networks during training. The
first involves models like TDANNS, which promote spatial topography by encouraging distance-
dependent response similarity using an exponential falloff function, mimicking the spatial correla-
tion function obtained from experimental recordings from high-level visual cortex
Margalit et all, [2024). The second approach relies on lateral interactions, where nearby units are
encouraged to perform similar computations, as in LLCNNSs and related architectures
2024} [Dehghani et al., [2024). The third approach, TopoNets, is inspired by early synaptic pruning
and Turing patterns, promotes topography by encouraging nearby units to develop similar weights,
leading to smooth tuning across a cortical sheet 2025). Among the three strategies,
TopoNets and TDANNSs have been successfully applied to both convolutional networks and trans-
formers, and have shown promise beyond vision, including in the language domain (Rathi et al.]
2024}, Deb et all, 2025} Binhuraib et al.}, [2023). In this work, we directly test whether topographic
constraints constitute a domain-general organizing principle. Specifically, we show that topography,
successfully transfers to audition, a fundamentally distinct domain that has never been tested before.
This is a critical scientific test of whether the principles underpinning cortical topography are truly
shared across the brain and can be leveraged for model interpretability.

2.2 TOPOGRAPHY IN AUDITORY CORTEX AND AUDITORY MODELS

The topographic organization of auditory responses begins in the periphery with frequency prefer-
ences, or tonotopy, of auditory nerve fibers innervating the cochlea (Dallos et al.,[1996)). This tono-
topic structure is inherited by later brain regions subcortically and cortically (Pantev et al., [T995}
[Ceaver & Rauschecker, [2016). Functional and anatomical subfields for other stimulus attributes
have been reported in other subcortical and cortical regions, such as maps of spatial location in owl
auditory midbrain|Knudsen & Konishi|(1978)), topographical organization of responses to amplitude
modulated sounds (Joris et al., [2004; [Baumann et al., 2015), and specific neural populations for
speech, music, and song in human auditory cortex (Norman-Haignere et al.} 2013} [2022).

Tonotopic organization has long been part of the standard input representation for auditory model
training, with models trained on representations such as mel-frequency cepstral coefficients (Mer-

1976) and cochleagrams (Glasberg & Moore], [1990; McDermott & Simoncelli, [2011) that
enforce neighboring input channels to have similar frequency tuning (Slaneyl [1998). Recent years

have seen a surge of brain-like deep learning models of auditory cortex (Tuckute et al.}[2023)) trained
to perform real-world auditory tasks such as speech or music recognition, often with a biologically
inspired tonotopic front-end. These models have been shown to predict human behavior and neural
responses with increasing accuracy (Kell et al 2018} [Giordano et all, 2023}, [Tuckute et al, 2023},
[Francl & McDermott, 2022} [Koumura et al., 2023). However, the internal topographic structure of
these models has been rarely evaluated beyond investigating hierarchical organization (Kell et al.,
2018}, [Tuckute et al.} [2023)), that is, early layers of the models are shown to predict primary audi-
tory cortex, and late layers of the models are shown to predict higher-order auditory areas. Our
work develops evaluation procedures for measuring the presence of smooth topographic maps in the
domains of audio frequency, amplitude modulation, speech, and music.

3 METHODS

3.1 SPATIAL LOSS

To investigate how topographic constraints shape auditory representations, we adapted the TopoLoss
framework to the auditory domain. As before, we define a 2D “cortical sheet”
from convolutional layers in the auditory model on which to enforce topography. Each convolutional
kernel in the model is mapped onto this sheet. For a convolutional layer with ¢j,py input channels

and coupue OUtput channels, and a kernel size of k£ x k, the weight tensor W' € IR Coupu X Cinpur X kX E- g
reshaped into a cortical representation C' € R"*®X4 where h x w = Coutput> ANd d = Cinpuc - K - k.
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To encourage smoothness in the cortical sheet C"***<  we apply a blurring operation that removes
high-frequency variations. We compute a blurred version C” of the cortical sheet using a downsam-
pling factor ¢}, = ¢,, = 3 followed by upsampling:

h w

Blur(X, Ohd)w) = fup (fdown <X7 a (pw) 7h7w> (])

The TopoLoss is then defined as the negative mean cosine similarity between the original and blurred
cortical maps:

N
1 c;-C!

ﬁoo:_ E : 1,/ (2)
“ N = |Gl

This encourages neurons with similar functions to be spatially clustered, enhancing topographic
organization. Finally, we integrate the TopoLoss with the primary task 10sS Lirqining as:

Etotal - ‘Ctraining +7- ﬁtopo (3)

where 7 is a scaling coefficient controlling the influence of topographic regularization. Higher values
of T encourage stronger topographic organization.

3.2 TOPOAUDIO ARCHITECTURE AND TRAINING

Architectures. Our models are based on two state-of-the-art auditory neural network backbones:
CochResNet50 and the Audio Spectrogram Transformer (AST). We specifically selected these two
complementary architectures because they were shown to be the most accurate models of human
auditory cortex responses (Tuckute et al.}[2023). CochResNet50 adapts the standard ResNet50 back-
bone to operate on time—frequency cochleagrams using 2D convolutions. The input
to the model is a single-channel cochleagram of shape (1,211, 390), representing 211 frequency
bins across 390 time steps. For the CochResNet50, the topographic loss was applied to the sec-
ond convolutional layer within each residual block, promoting spatial smoothness and topographic
organization across successive hierarchical stages of the network.

AST, in contrast, leverages a transformer-based architecture to model audio spectrograms through
non-overlapping patches and global self-attention 2021). In our adaptation, AST also
operates on cochleagram, ensuring architectural differences rather than input representation drive
performance differences. The topographic loss was applied to the first feed-forward projection layers
within each transformer block. All models were trained on 4 xH200 NVIDIA GPUs using identical
multi-task objectives (see next section), ensuring a fair comparison across architectures.

Training objective. All TopoAudio models were trained on the Word-Speaker-Noise dataset
(Feather et al., 2019), which supports multi-task learning for (1) word recognition, (2) speaker iden-
tification, and (3) background noise classification. The dataset includes 230,356 speech clips across
793 word classes and 432 speaker identities, with class sampling designed to reduce overlap (no
more than 25% samples from any one word-speaker pair). Background audio was drawn from
718,625 curated AudioSet clips consisting of human and animal sounds, various musical clips, and
environmental sounds to ensure diverse and high-quality noise.

Training samples included speech-only, noise-only, and speech+noise mixtures, with augmentations
such as random cropping, RMS normalization, and variable SNR mixing (—10 dB to 410 dB). This
setup enabled supervised learning across all tasks with consistent preprocessing. This robust training
procedures makes it a strong test-bed for assessing how topographic constraints influence auditory
model organization and performance.

3.3 MODEL EVALUATIONS

We benchmarked the performance of models trained with and without topography across a range
of auditory domains: ESC-50 (Piczakl [2015)) for environmental sound classification, NSynth (Engel
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et al.| 2017) for musical instrument classification, and Speech Commands (Warden) [2018)) for word
and speaker recognition. Lastly, we evaluated these models on human auditory cortex datasets such
as NH2015 (Norman-Haignere et al., 2015) and B2021 (Boebinger et al., 2021).

3.3.1 ACCURACY

For ESC-50, which includes 2,000 environmental sound clips across 50 categories, we followed the
standard five-fold cross-validation protocol. Representations were taken from the penultimate layer
of each model (e.g., AvgPool for ResNet50, CLS token for transformer). Each 5-second ESC-50
clip was randomly cropped into five 2-second segments to match the model input duration. All five
crops of a training clip were used as independent training samples. During evaluation, we applied
majority voting across the five crops of each test clip to determine the predicted class label. We
applied cross-validation over five regularization parameters (C' = [0.01,0.1, 1.0, 10.0, 100.0]). The
final accuracy was averaged over the five ESC-50 folds.

For NSynth, which consists of approximately 300,000 musical notes played by a variety of instru-
ments, we focused on the task of instrument family classification. Each audio clip is 4 seconds long
and labeled with one of 11 instrument families (e.g., strings, brass, keyboard). To match input re-
quirements of our models, we used the first 2-second segment of each clip. Similar to the ESC-50
pipeline, representations were extracted from the final pooling layer of each pretrained model and
used to train an SVM with similar choice of cross-validation. We adopted the official NSynth val-
idation and test splits, training on the validation set and evaluating top-1 classification accuracy on
the test set.

For Speech Commands v2, which contains approximately 100,000 1-second utterances of 35 spoken
command words (e.g. yes, no, up, down). To ensure consistency with model’s input during training,
each audio clip was zero-padded to 2-seconds. We extracted frozen representations from the final
pooling layer and trained a linear SVM to classify the command labels. We followed the standard
validation-test split provided by the dataset: the SVM was trained on the validation set and evaluated
on the held-out test set. Accuracy was measured as top-1 accuracy across all 35 classes.

3.3.2 ESTIMATING SPATIAL TOPOGRAPHY: SMOOTHING

To quantify spatial topography in model representations, we used a smoothness score that compares
the tuning similarity of spatially nearby model unit pairs to that of distant pairs (Margalit et al.,
2024; |Deb et al.| [2025). Let = be a vector of pairwise tuning similarity values sorted in order of
increasing cortical distance. The smoothness score S(x) is then defined as:

S(a) = max(z) — ao 4)

Lo

where 1z is the tuning similarity for the closest unit pair, and max(x) represents the highest simi-
larity across all distances. This metric captures how much tuning similarity drops with increasing
distance, with higher values indicating smoother topographic organization across the cortical sheet.
Higher smoothness indicates that units with similar representations are spatially closer, reflecting
stronger topographic structure.

3.3.3 ESTIMATING SELECTIVITY

To visualize the selectivity of model units for specific categories, we extracted layer-wise representa-
tions in response to annotated stimuli and applied a standard t-statistic-based measure. Specifically,
for each target category c, we compared the distribution of activation values to those from other
categories o using the following formula:

_ ,uc - //Lo
t= 703 = 5)
Ne "N,

Here, p, 0, and N represent the mean, standard deviation, and number of samples for each category,
respectively. This score reflects how strongly a unit differentiates the target category from others,
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Figure 2: Topographic auditory models maintain overall voxel-wise brain predictivity. A) Brain
maps display peak voxel-wise predictions across the auditory cortex for the baseline and topographic
ResNet50. The colormap indicates the mean variance explained at each cortical vertex, averaged
across subjects on the fsaverage surface. The model layers are shown from left to right, corre-
sponding to increasing depth in the network hierarchy. B) ResNet50 model prediction accuracy as
a function of depth in the network hierarchy for variants of the ResNet50 model on the NH2015
(Norman-Haignere et al., 2015) and B2021 (Boebinger et al.} 2021) datasets. Note that the baseline
model and the TopoAudio are highly overlapping. C) Bar plot summarizing peak encoding per-
formance across all voxels for each model variant, including the random-initialized, baseline, and
TopoAudio models for both the ResNet50 and AST architectures.

with higher values indicating greater selectivity. Layer maps are visualized by showing selectivity
measured from each filter (for convolution-based models) or units (for transformer-based models)
arranged on the 2D cortical sheet. When units with similar preferences cluster together spatially, the
map appears smooth or patchy demonstrating topographic structure for the measured feature; when
preferences are scattered, the map looks disorganized Figures [3]and ]

3.3.4 FEATURES AND VOXEL DECOMPOSITION

Functional selectivities for speech and music are often not directly observable at the voxel level in
fMRI data, and are instead inferred by decomposing voxel responses into a small number of latent
componentsNorman-Haignere et al[(2015]). To analyze the structure of model and brain responses,
we adapted this voxel decomposition technique to the fMRI response matrix and model activations.
Specifically, we adopted Non-parametric decomposition algorithm (Norman-Haignere et al., 2015)),
which factorizes a data matrix D € R5*Y (where S for stimuli and V for voxels/features) into a
response matrix R € R°*Y and a weight matrix W € R™V*" (where N for number of components),
such that:

D~ RW (6)

This method is conceptually related to Independent Component Analysis (ICA), but differs in its
approach to estimating non-Gaussianity. Instead of using contrast functions or kurtosis, it directly
minimizes the entropy of the weight distribution using a histogram-based entropy estimator. This al-
lows for the discovery of meaningful structure in high-dimensional data, including sparse or skewed
distributions (Figure[d). This enabled us to extract shared components that capture interpretable spa-
tial structure - such as tonotopic and category-selective regions. As has been shown in prior work,
6-components were sufficient to account for more than 80% of the noise-corrected variance in voxel
responses (Norman-Haignere et al [2015)). Similarly, we adopted N = 6 components for features
and voxel decomposition.
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Figure 3: TopoAudio models exhibit signatures of early auditory representations. A) Tonotopic
maps in baseline ResNet50s and ASTs (top row) are spatially disorganized, whereas TopoAudio
models with topographic constraints (7 = 25 for ResNet50s, 7 = 5 for ASTs; bottom row) exhibit
smooth, spatially clustered frequency maps. B) Amplitude modulation tuning maps show a similar
pattern: baseline models lack clear organization (top row), while topographic models (bottom row)
develop coherent spatial clusters resembling auditory cortical maps.

4 RESULTS

4.1 TOPOAUDIO MODELS PRESERVE PERFORMANCE UNDER TOPOGRAPHIC CONSTRAINTS

A typical concern with topographic neural network models is that introducing spatial constraints
often leads to substantial drops in task performance on standard engineering tests
[2024). To examine whether this tradeoff holds in the auditory domain, we evaluated TopoAudio
with varying levels of topographic smoothness (controlled by hyperparameter 7), against baseline
non-topographic models on three benchmark datasets: environmental sounds, speech, and music
(see section 3).

Appendix Table [T] shows the model performance accuracy for all models across each evaluation
domain. Critically, despite the additional topographic constraint, all TopoAudio variants maintained
high classification accuracy across tasks. Performance was consistently comparable to the non-
topographic baseline model. These results demonstrate that topographic organization can be induced
in auditory networks without sacrificing task performance, and establish TopoAudios as competitive
auditory models suitable for further analyses.

4.2 ToPOAUDIOS PREDICT HUMAN FMRI RESPONSES WITH HIGH ACCURACY

A key requirement for any biologically inspired model is that it must retain strong predictive perfor-
mance while better aligning with the structure of neural data. To assess whether brain predictivity is
maintained even with topographic constraints (7), we evaluated the predictive abilities of TopoAu-
dios and the baseline ResNet50 architecture using two fMRI datasets, NH2015 (Norman-Haignere|
and B2021 (Boebinger et al., [2021). Following prior work (Tuckute et al.| 2023), we
computed the voxel-wise explained variance (adjusted R?) using linear regression across each layer
of the model hierarchy.

Figure 2]shows that both baseline and TopoAudios achieved comparable levels of predictivity across
layers. This is evident in the qualitative prediction maps projected onto the cortical surface (Fig-
ure ), where both models showed similar levels of adjusted R? across voxels. Both models also
showed characteristic features of cortical predictivity. Prediction accuracies improve across model
layers. This is apparent more clearly in Figure 2B which shows that model prediction accuracy
peaks around the 6th topographic layer. It is particularly striking that prediction accuracy is nearly
indistinguishable between the baseline and TopoAudios. The five curves corresponding to the base-
line model and the different topographic variants of TopoAudios are virtually superimposed. As a
further quantification, Figure 2IC demonstrates that adding the topographic constraint does little to
reduce the overall model prediction accuracy in both the ResNet50 architecture and the AST archi-
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Figure 4: TopoAudio models show late auditory representations related to speech and music
selectivity. Selectivity maps show t¢-values for speech (green) and music (blue) preferences, with
baseline models (top row) lacking the clear modular structure seen in the TopoAudio models (bottom
row).

tecture. This pattern held not only across the whole auditory cortex but also within specific regions
of interest (ROIs obtained from (Norman-Haignere et al., 2015)). When we repeated the analysis
separately for early tonotopic regions, pitch-selective regions, and higher-order music and speech
areas, we observed the same trends. TopoAudios were as predictive as baseline models for all ROIs.
Together these results confirm that inducing topographic constraints do not impair their ability to
predict fMRI responses in auditory cortex. Thus, TopoAudios preserve both task performance (on
engineering metrics) and predictive accuracy (on 2 distinct fMRI datasets) while producing spatially
structured internal representations. The similarity of the TopoAudios to the baseline models leads
to a natural question: are these models actually the same, or are our evaluations not sensitive
enough to reveal the differences?

4.3 TOPONETS RECAPITULATE THE SIGNATURES OF EARLY AND LATE AUDITORY
PROCESSING IN THE BRAIN

To evaluate whether TopoAudios develop biologically meaningful auditory representations, we ex-
amined whether these models show known signatures of auditory processing. Specifically, we as-
sessed whether the topographic structures within the TopoAudios give rise to tonotopic and ampli-
tude modulation (AM) maps, typically considered features of early auditory processing, as well as
selective responses to music and speech, characteristic of higher-order auditory areas.

Figure B]A shows the observed tonotopic maps in the early layers (layer 1.1 and layer 2.1 in
ResNet50s and blocks.9.mlp.fcl in ASTs) of the baseline and topographic models. The frequency
preferences appear randomly distributed on the cortical sheet for the baseline models (top). In con-
trast, the same layers for the TopoAudio model (below) show a smooth frequency gradients which
qualitatively resembles the tonotopic organization observed in primary auditory cortex. Similarly,
in the AM tuning maps (Figure 3B), the baseline model is fragmented and disorganized, while the
TopoAudio model develops smooth spatial transitions, considered another hallmark of early auditory
areas.

Figure [4] examines the late-stage selectivity for speech and music observed in the human auditory
cortex using fMRI-like selectivity maps (see section[3) applied to a later layer (layer 3.1 in ResNet50
and blocks.9.mlp.fcl in ASTs) of baseline and TopoAudio models. For both speech (green) and mu-
sic (blue), baseline models (top row) show spatially inconsistent selectivity on the cortical sheet.
By constrast, TopoAudios exhibit spatially clustered patches of selectivity for speech and music,
mirroring the modular organization observed in non-primary auditory cortex. This result is striking,
as such modularity for music and speech emerged purely from task optimization with spatial con-
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Figure 5: TopoAudio models better align with human speech and music-selective cortical com-
ponents.(A) Correlation between model-derived ICA components and brain-inferred ICA com-
ponents selective for speech (green) and music (blue), across layers of the ResNet50 hierarchy.
TopoAudios show the highest similarity with brain components at layer 3, consistent with the emer-
gence of high-level selectivity in the auditory cortex.(B) Summary of brain-model ICA compo-
nent correlations for each TopoNet variant (7 = 5-100) compared to the baseline ResNet50. Topo-
graphic models yield higher median correlation with brain-derived components for both music and
speech. (C) Category response profiles of ICA componenets derived from human fMRI (top), base-
line ResNet50 (middle), and TopoAudio (bottom). Responses are grouped by stimulus categories.

straints. However, a limitation of this finding is its qualitative nature. To address this concern, we
next quantified the correspondence between model-based selectivity maps and empirical fMRI data
from human auditory cortex

Using human fMRI responses to a large set of natural sounds, selectivity for music and speech is
often inferred by factorizing the fMRI responses from the auditory cortex into spatial components
using ICA. This approach consistently reveals components that are selectively responsive to music
or speech stimuli (Norman-Haignere et al.,[2015} |Boebinger et al., [2021)). To evaluate whether such
category-selective structure emerges in our models, we applied the same analysis to the activation
patterns in TopoAudios. For each model layer, we performed the non-parameteric decomposition al-
gorithm (Norman-Haignere et al.,[2015) on the model unit responses (using six components, consis-
tent with human analyses) and identified the component that best matched the brain-inferred music
or speech component. In Figure[5]A, we show the correlation between brain and model components
across the model hierarchy. For both music and speech, TopoAudios showed the highest correlation
with the fMRI components at layer 3, mirroring the depth at which late-stage selectivity emerges in
the human auditory cortex.

We next quantified these correlations across all model variants. As shown in Figure[5B, the TopoAu-
dios consistently produced higher correlations with brain-inferred components than the baseline
models. For the music component, the median correlation across TopoAudio variants was 0.915,
compared to 0.84 for the baseline. For the speech component, the TopoAudio models again showed
higher median correlation (0.56) compared to the baseline (0.30). These results indicate that topo-
graphic constraints enhance the emergence of music- and speech-selective representations that align
more closely with those observed in the human brain. We then plotted the response profiles of the
components derived from humans, the baseline model, and the TopoAudio models grouped by the
auditory stimulus categories from the original dataset (Norman-Haignere et al., 2015) in Figure [5[C.
The inferred components from the brain (top), the baseline model (middle) and the TopoAudios
exhibited clear and selective responses to music and speech categories, confirming that the model
components capture aspects of music and speech selectivity also observed human brains.
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5 DISCUSSION

In this work, we tested whether the topographic organization of the auditory cortex could emerge in
deep neural networks by optimizing for auditory tasks under a spatial smoothness constraint. We in-
troduced TopoAudio, the first end-to-end topographic models of the auditory system. These models
recapitulate the hierarchical organization of auditory cortex and reproduce hallmark features such as
smooth tonotopic and amplitude-modulation maps in early layers, and spatially clustered selectiv-
ity for music and speech in later layers, all while maintaining strong auditory task performance and
fMRI predictivity. None of these features were hand-engineered. They emerged naturally from task-
driven optimization combined with a topographic constraint. Crucially, the topographic models also
provide a closer match to the internal structure of auditory cortex. Compared to non-topographic
baselines, TopoAudio models align significantly better with ICA maps derived from human fMRI
data. This suggests that our models not only predict the brain’s responses but also better capture the
fine-grained representational geometry that underlies how the brain organizes sound. In doing so,
they offer a stronger test of model-brain similarity, moving beyond surface-level prediction toward
an assessment of deeper structural and computational alignment.

Our findings in audition, combined with prior topographic modeling work in vision and language,
provide strong corroborating evidence for a unified computational strategy employed by the brain
to efficiently encode information under its architectural constraints. This success in a new sensory
domain provides a powerful test of the principle’s generality, showing it is not a quirk of visual
processing but a foundational component of sensory representation across the cortex. Further, the
similarity of topographic structure between models and biological systems can serve as an additional
evaluation of models in an era where many models seem to be performing equally well on many of
our standard benchmarks (Tuckute et al.l 2023} |(Conwell et al. 2024; Ratan Murty et al.| 2021}
Feather et al., 2025]).

The primary focus of this work was to evaluate whether our topographic auditory models capture the
representational features observed in biological auditory systems. It is important to note that there
is a long history in auditory neuroscience of searching for auditory maps. Multiple studies have
suggested that the topographic structure of auditory cortex might in fact be quite complex (Schreiner
& Winer, 2007; [Kanold et al., 2014; [IMiddlebrooks} [2021)), and that we do not yet have a good
description of its organization. For example, even though there is general agreement that speech
and music selective neural populations exist in the brain, the general locations and numbers of such
patches are not well characterized. Future data collected to characterize the biological topography
of the auditory system can be incorporated into evaluations of topographic models. Additionally, by
building topographic models of auditory cortex trained on natural stimuli, TopoAudios can serve as
a computational tool for exploring and testing theories of cortical organization, potentially revealing
previously unknown structure in auditory cortex.

Limitations and Future work: This work serves as a starting point for topographic auditory mod-
els. Here, we only investigated two DNN architectures trained on the same task, but the same type
of topographic loss could be applied to other DNN architectures or combined with a different set of
tasks. Additionally, other datasets may be better for evaluating details of the topographic structure
of the auditory system, as the fMRI dataset lacks fine-grained temporal resolution and may hide
some spatial structure Norman-Haignere et al.| (2022)). Nevertheless, the present results provide a
computational framework for studying the emergence of cortical organization toward models that
unify task performance with biological structure.

10



Under review as a conference paper at ICLR 2026

REFERENCES

Emily J Allen, Juraj Mesik, Kendrick N Kay, and Andrew J Oxenham. Distinct representations of
tonotopy and pitch in human auditory cortex. Journal of Neuroscience, 42(3):416-434, 2022.

Simon Baumann, Timothy D Griffiths, Li Sun, Christopher I Petkov, Alexander Thiele, and Adrian
Rees. Orthogonal representation of sound dimensions in the primate midbrain. Nature neuro-
science, 14(4):423-425, 2011.

Simon Baumann, Olivier Joly, Adrian Rees, Christopher I Petkov, Li Sun, Alexander Thiele, and
Timothy D Griffiths. The topography of frequency and time representation in primate auditory
cortices. elife, 4:¢03256, 2015.

Daniel Bendor and Xiaoqin Wang. The neuronal representation of pitch in primate auditory cortex.
Nature, 436(7054):1161-1165, 2005.

Taha Binhuraib, Greta Tuckute, and Nicholas Blauch. Topoformer: brain-like topographic organi-
zation in transformer language models through spatial querying and reweighting. arXiv preprint
arXiv:2510.18745, 2025.

Gary G Blasdel. Orientation selectivity, preference, and continuity in monkey striate cortex. Journal
of Neuroscience, 12(8):3139-3161, 1992.

Dana Boebinger, Sam V Norman-Haignere, Josh H McDermott, and Nancy Kanwisher. Music-
selective neural populations arise without musical training. Journal of Neurophysiology, 125(6):
2237-2263, 2021.

Alyssa A Brewer and Brian Barton. Maps of the auditory cortex. Annual review of neuroscience, 39
(1):385-407, 2016.

Dmitri B Chklovskii and Alexei A Koulakov. Maps in the brain: what can we learn from them?
Annu. Rev. Neurosci., 27(1):369-392, 2004.

Colin Conwell, Jacob S Prince, Kendrick N Kay, George A Alvarez, and Talia Konkle. A large-scale
examination of inductive biases shaping high-level visual representation in brains and machines.
Nature communications, 15(1):9383, 2024.

Peter Dallos, Arthur N Popper, and Richard R Fay. The cochlea. 1996.

Mayukh Deb, Mainak Deb, and Apurva Ratan Murty. Toponets: High performing vision and lan-
guage models with brain-like topography. In The Thirteenth International Conference on Learn-
ing Representations, 2025. URL https://openreview.net/forum?id=THqWPzLO0Oe.

Amirozhan Dehghani, Xinyu Qian, Asa Farahani, and Pouya Bashivan. Credit-based self organiz-
ing maps: training deep topographic networks with minimal performance degradation. In The
Thirteenth International Conference on Learning Representations, 2024.

Paul E Downing, Yuhong Jiang, Miles Shuman, and Nancy Kanwisher. A cortical area selective for
visual processing of the human body. Science, 293(5539):2470-2473, 2001.

Paul E Downing, AW-Y Chan, Marius Vincent Peelen, CM Dodds, and N Kanwisher. Domain
specificity in visual cortex. Cerebral cortex, 16(10):1453-1461, 2006.

Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and
Mohammad Norouzi. Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders,
April 2017. URL http://arxiv.org/abs/1704.01279. arXiv:1704.01279 [cs].

Russell Epstein, Alison Harris, Damian Stanley, and Nancy Kanwisher. The parahippocampal place
area: recognition, navigation, or encoding? Neuron, 23(1):115-125, 1999.

Jenelle Feather, Alex Durango, Ray Gonzalez, and Josh McDermott. Metamers of neural networks
reveal divergence from human perceptual systems. Advances in Neural Information Processing
Systems, 32, 2019.

11


https://openreview.net/forum?id=THqWPzL00e
http://arxiv.org/abs/1704.01279

Under review as a conference paper at ICLR 2026

Jenelle Feather, Meenakshi Khosla, N Murty, and Aran Nayebi. Brain-model evaluations need the
neuroai turing test. arXiv preprint arXiv:2502.16238, 2025.

Evelina Fedorenko, Josh H McDermott, Sam Norman-Haignere, and Nancy Kanwisher. Sensitivity
to musical structure in the human brain. Journal of neurophysiology, 108(12):3289-3300, 2012.

Andrew Francl and Josh H McDermott. Deep neural network models of sound localization reveal
how perception is adapted to real-world environments. Nature human behaviour, 6(1):111-133,
2022.

Bruno L Giordano, Michele Esposito, Giancarlo Valente, and Elia Formisano. Intermediate acoustic-
to-semantic representations link behavioral and neural responses to natural sounds. Nature Neu-
roscience, 26(4):664-672, 2023.

Brian R Glasberg and Brian CJ Moore. Derivation of auditory filter shapes from notched-noise data.
Hearing research, 47(1-2):103-138, 1990.

Yuan Gong, Yu-An Chung, and James Glass. Ast: Audio spectrogram transformer, 2021. URL
https://arxiv.org/abs/2104.01778.

Kalanit Grill-Spector, Nicholas Knouf, and Nancy Kanwisher. The fusiform face area subserves
face perception, not generic within-category identification. Nature neuroscience, 7(5):555-562,
2004.

Umut Giiclii, Jordy Thielen, Michael Hanke, and Marcel Van Gerven. Brains on beats. Advances in
Neural Information Processing Systems, 29, 2016.

Ilana Harris, Efe C Niven, Alex Griffin, and Sophie K Scott. Is song processing distinct and special
in the auditory cortex? Nature Reviews Neuroscience, 24(11):711-722, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for
Image Recognition, December 2015. URL http://arxiv.org/abs/1512.03385,
arXiv:1512.03385 [cs].

Robert A Jacobs and Michael I Jordan. Computational consequences of a bias toward short connec-
tions. Journal of cognitive neuroscience, 4(4):323-336, 1992.

Philip X Joris, Christoph E Schreiner, and Adrian Rees. Neural processing of amplitude-modulated
sounds. Physiological reviews, 84(2):541-577, 2004.

Jon H Kaas. Topographic maps are fundamental to sensory processing. Brain Re-
search Bulletin, 44(2):107-112, 1997. ISSN  0361-9230. doi:  https://doi.org/10.
1016/S0361-9230(97)00094-4. URL https://www.sciencedirect.com/science/
article/pii/S0361923097000944.

Patrick O Kanold, Israel Nelken, and Daniel B Polley. Local versus global scales of organization in
auditory cortex. Trends in neurosciences, 37(9):502-510, 2014.

Nancy Kanwisher. Domain specificity in face perception. Nature neuroscience, 3(8):759-763, 2000.

Alexander JE Kell, Daniel LK Yamins, Erica N Shook, Sam V Norman-Haignere, and Josh H Mc-
Dermott. A task-optimized neural network replicates human auditory behavior, predicts brain
responses, and reveals a cortical processing hierarchy. Neuron, 98(3):630-644, 2018.

Fatemeh Khatami and Monty A Escabi. Spiking network optimized for word recognition in noise
predicts auditory system hierarchy. PLOS Computational Biology, 16(6):e1007558, 2020.

Eric I Knudsen and Masakazu Konishi. A neural map of auditory space in the owl. Science, 200
(4343):795-797, 1978.

Talia Konkle and Alfonso Caramazza. Tripartite organization of the ventral stream by animacy and
object size. Journal of Neuroscience, 33(25):10235-10242, 2013.

Talia Konkle and Aude Oliva. Canonical visual size for real-world objects. Journal of Experimental
Psychology: human perception and performance, 37(1):23, 2011.

12


https://arxiv.org/abs/2104.01778
http://arxiv.org/abs/1512.03385
https://www.sciencedirect.com/science/article/pii/S0361923097000944
https://www.sciencedirect.com/science/article/pii/S0361923097000944

Under review as a conference paper at ICLR 2026

Takuya Koumura, Hiroki Terashima, and Shigeto Furukawa. Human-like modulation sensitivity
emerging through optimization to natural sound recognition. Journal of Neuroscience, 43(21):
3876-3894, 2023.

Amber M Leaver and Josef P Rauschecker. Cortical representation of natural complex sounds:
effects of acoustic features and auditory object category. Journal of neuroscience, 30(22):7604—
7612, 2010.

Amber M Leaver and Josef P Rauschecker. Functional topography of human auditory cortex. Jour-
nal of Neuroscience, 36(4):1416—-1428, 2016.

Hyodong Lee, Eshed Margalit, Kamila M Jozwik, Michael A Cohen, Nancy Kanwisher, Daniel LK
Yamins, and James J DiCarlo. Topographic deep artificial neural networks reproduce the hall-

marks of the primate inferior temporal cortex face processing network. BioRxiv, pp. 2020-07,
2020.

Eshed Margalit, Hyodong Lee, Dawn Finzi, James J. DiCarlo, Kalanit Grill-Spector, and Daniel
L. K. Yamins. A unifying framework for functional organization in early and higher ventral visual
cortex. Neuron, 112(14):2435-2451.e7, July 2024. ISSN 0896-6273. doi: 10.1016/j.neuron.
2024.04.018. URL https://www.cell.com/neuron/abstract/S0896-6273(24)
00279-4. Publisher: Elsevier.

Bruce D McCandliss, Laurent Cohen, and Stanislas Dehaene. The visual word form area: expertise
for reading in the fusiform gyrus. Trends in cognitive sciences, 7(7):293-299, 2003.

Josh H McDermott and Eero P Simoncelli. Sound texture perception via statistics of the auditory
periphery: evidence from sound synthesis. Neuron, 71(5):926-940, 2011.

Paul Mermelstein. Distance measures for speech recognition, psychological and instrumental. Paz-
tern recognition and artificial intelligence, 116:374-388, 1976.

John C Middlebrooks. A search for a cortical map of auditory space. Journal of Neuroscience, 41
(27):5772-5778, 2021.

Juliette Millet, Charlotte Caucheteux, Yves Boubenec, Alexandre Gramfort, Ewan Dunbar,
Christophe Pallier, Jean-Remi King, et al. Toward a realistic model of speech processing in
the brain with self-supervised learning. Advances in Neural Information Processing Systems, 35:
33428-33443, 2022.

M Moerel, F De Martino, and E Formisano. An anatomical and functional topography of human
auditory cortical areas. front neurosci. 2014; 8: 225, 2014.

Sam Norman-Haignere, Nancy Kanwisher, and Josh H McDermott. Cortical pitch regions in humans
respond primarily to resolved harmonics and are located in specific tonotopic regions of anterior
auditory cortex. Journal of Neuroscience, 33(50):19451-19469, 2013.

Sam Norman-Haignere, Nancy G Kanwisher, and Josh H McDermott. Distinct cortical pathways for
music and speech revealed by hypothesis-free voxel decomposition. neuron, 88(6):1281-1296,
2015.

Sam V Norman-Haignere, Jenelle Feather, Dana Boebinger, Peter Brunner, Anthony Ritaccio,
Josh H McDermott, Gerwin Schalk, and Nancy Kanwisher. A neural population selective for
song in human auditory cortex. Current Biology, 32(7):1470-1484, 2022.

Christo Pantev, Olivier Bertrand, Carsten Eulitz, Chantal Verkindt, S Hampson, Gerhard Schuierer,
and Thomas Elbert. Specific tonotopic organizations of different areas of the human auditory

cortex revealed by simultaneous magnetic and electric recordings. Electroencephalography and
clinical neurophysiology, 94(1):26—40, 1995.

Karol J. Piczak. ESC: Dataset for Environmental Sound Classification. In Proceedings of the 23rd
ACM international conference on Multimedia, MM °15, pp. 1015-1018, New York, NY, USA,
October 2015. Association for Computing Machinery. ISBN 978-1-4503-3459-4. doi: 10.1145/
2733373.2806390. URL https://dl.acm.org/doi/10.1145/2733373.2806390.

13


https://www.cell.com/neuron/abstract/S0896-6273(24)00279-4
https://www.cell.com/neuron/abstract/S0896-6273(24)00279-4
https://dl.acm.org/doi/10.1145/2733373.2806390

Under review as a conference paper at ICLR 2026

Xinyu Qian, Amir Ozhan Dehghani, Asa Borzabadi Farahani, and Pouya Bashivan. Local lateral
connectivity is sufficient for replicating cortex-like topographical organization in deep neural net-
works. bioRxiv, pp. 2024-08, 2024.

N Apurva Ratan Murty, Pouya Bashivan, Alex Abate, James J DiCarlo, and Nancy Kanwisher. Com-
putational models of category-selective brain regions enable high-throughput tests of selectivity.
Nature communications, 12(1):5540, 2021.

Neil Rathi, Johannes Mehrer, Badr AlIKhamissi, Taha Binhuraib, Nicholas M Blauch, and Martin
Schrimpf. Topolm: brain-like spatio-functional organization in a topographic language model.
arXiv preprint arXiv:2410.11516, 2024.

Neil Rathi, Johannes Mehrer, Badr AlKhamissi, Taha Binhuraib, Nicholas M. Blauch, and Martin
Schrimpf. Topolm: brain-like spatio-functional organization in a topographic language model,
2025. URL https://arxiv.org/abs/2410.11516.

Heather L Read, Jeffery A Winer, and Christoph E Schreiner. Functional architecture of auditory
cortex. Current opinion in neurobiology, 12(4):433-440, 2002.

Richard A Reale and Thomas J Imig. Tonotopic organization in auditory cortex of the cat. Journal
of Comparative Neurology, 192(2):265-291, 1980.

Kyle M Rupp, Jasmine L Hect, Emily E Harford, Lori L Holt, Avniel Singh Ghuman, and Taylor J
Abel. A hierarchy of processing complexity and timescales for natural sounds in the human
auditory cortex. Proceedings of the National Academy of Sciences, 122(18):e2412243122, 2025.

Mark R Saddler and Josh H McDermott. Models optimized for real-world tasks reveal the task-

dependent necessity of precise temporal coding in hearing. Nature Communications, 15(1):1-29,
2024.

Mark R Saddler, Andrew Francl, Jenelle Feather, Kaizhi Qian, Yang Zhang, and Josh H McDermott.
Speech denoising with auditory models. arXiv preprint arXiv:2011.10706, 2020.

Mark R Saddler, Ray Gonzalez, and Josh H McDermott. Deep neural network models reveal inter-
play of peripheral coding and stimulus statistics in pitch perception. Nature communications, 12
(1):7278, 2021.

Henning Scheich. Auditory cortex: comparative aspects of maps and plasticity. Current opinion in
neurobiology, 1(2):236-247, 1991.

Christoph E Schreiner and Jeffery A Winer. Auditory cortex mapmaking: principles, projections,
and plasticity. Neuron, 56(2):356-365, 2007.

Malcolm Slaney. Auditory toolbox. Interval Research Corporation, Tech. Rep, 10(1998):1194,
1998.

Greta Tuckute, Jenelle Feather, Dana Boebinger, and Josh H. McDermott. Many but not all
deep neural network audio models capture brain responses and exhibit correspondence between
model stages and brain regions. PLOS Biology, 21(12):e3002366, December 2023. ISSN
1545-7885. doi: 10.1371/journal.pbio.3002366. URL https://journals.plos.org/
plosbiology/article?id=10.1371/journal.pbio.3002366. Publisher: Public
Library of Science.

Aditya R Vaidya, Shailee Jain, and Alexander G Huth. Self-supervised models of audio effectively
explain human cortical responses to speech. arXiv preprint arXiv:2205.14252, 2022.

Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition, 2018. URL
https://arxiv.org/abs/1804.032009.

C Mark Wessinger, Michael H Buonocore, Clif L Kussmaul, and George R Mangun. Tonotopy

in human auditory cortex examined with functional magnetic resonance imaging. Human brain
mapping, 5(1):18-25, 1997.

14


https://arxiv.org/abs/2410.11516
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3002366
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3002366
https://arxiv.org/abs/1804.03209

Under review as a conference paper at ICLR 2026

Jamal A Williams, Elizabeth H Margulis, Samuel A Nastase, Janice Chen, Uri Hasson, Kenneth A
Norman, and Christopher Baldassano. High-order areas and auditory cortex both represent the
high-level event structure of music. Journal of cognitive neuroscience, 34(4):699-714, 2022.

Robert J Zatorre, Pascal Belin, and Virginia B Penhune. Structure and function of auditory cortex:
music and speech. Trends in cognitive sciences, 6(1):37-46, 2002.

15



Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ToPOAUDIO PERFORMANCE

Table [T] reports classification accuracy and representational smoothness for both baseline and topo-
graphic variants of Transformer-B/32 and ResNet-50 backbones. Across datasets (ESC50, NSynth,
and Speech Commands), accuracy remains nearly unchanged when introducing topographic con-
straints (7), with performance differences typically within < 1% of baseline. In contrast, smooth-
ness values increase substantially, confirming that topographic regularization induces more spatially
coherent representations. These results demonstrate that TopoAudio models preserve strong classifi-
cation performance while simultaneously improving internal topographic structure, supporting their
utility as both effective and interpretable auditory models.

Table 1: Topographic auditory models maintain high classification performance across
evaluations. Accuracy is reported for ESC50, NSynth, and Speech Command datasets using
Transformer-B/32 and ResNet-50 backbones. While baseline models achieve slightly higher accu-
racy, introducing topographic constraints (7) substantially increases representational smoothness
with only modest changes in classification performance. Topographic Avg. indicates the mean
performance across all non-baseline 7 values.

Topography (7) Accuracy Smoothness
ESC50 NSynth SpeechCmd
Transformer-B/32
Baseline 82.10 08.25 92.94 0.31
5 81.94 98.13 92.63 0.46
25 82.01 98.13 92.80 0.50
50 81.66 97.99 92.42 0.57
100 81.88 97.91 92.38 0.56
Topographic Avg.  81.87 98.04 92.56 0.52
ResNet-50
Baseline 81.69 98.29 86.68 0.34
5 81.46 98.50 86.88 1.10
25 80.62 98.39 87.89 0.87
50 80.84 98.36 87.57 1.04
100 80.32 98.72 86.85 1.09
200 80.70 08.48 87.47 0.93
Topographic Avg.  80.79 98.49 87.33 1.01

B COMPUTATION OF MORAN’S I SPATIAL AUTOCORRELATION

Moran’s I is a metric of global spatial autocorrelation that quantifies the degree to which values
defined over a spatial domain exhibit smooth clustering or random dispersion (Rathi et al.l [2024).
Formally, for a set of values x; arranged over N spatial units, Moran’s I is defined as:

I

N 22> wij(z — 2) (2 — T)

W Yo — ) ' ™
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where 7 is the global mean, w;; are entries of a sparse adjacency matrix encoding the neighborhood
relationships among vertices or units, and W = " ; Wij 1s the total connection weight. Values of
Moran’s I range from —1 to 1, with positive values reflecting spatially smooth and contiguous orga-
nization, values near zero indicating spatial randomness, and negative values indicating systematic
spatial dispersion.

B.1 MORAN’S I FOR BRAIN MAPS

To compute Moran’s I for human auditory cortex, we generated several cortical maps derived from
fMRI responses, including music-selective and speech-selective contrast maps. We constructed a
binary vertex adjacency matrix in which each vertex is connected to its immediate geometric neigh-
bors in the surface tessellation (typically six per vertex). Prior to computing Moran’s I, vertices
failing to meet a statistical significance threshold (e.g., FDR-corrected p < 0.05) were zero-masked
to remove noise-driven fluctuations. Moran’s I was then evaluated directly on these spatial contrast
maps, yielding a quantitative estimate of the smoothness of the underlying functional organization
on category-selective gradients.

B.2 MORAN’S I FOR COMPUTATIONAL MODELS

For neural network models, we applied an analogous spatial autocorrelation procedure by imposing
a fixed two-dimensional topographic layout over the units of each layer. Specifically, units within
each MLP block (or convolutional feature map) were assigned to positions on a 2D grid, and a binary
adjacency matrix was constructed based on local grid connectivity. Using this spatial structure, we
computed selectivity maps for each model, including frequency tonotopy maps, modulation-rate
maps, and music- vs.-other and speech- vs.-other contrast maps derived from model activations.
Moran’s 1 was computed for each layer individually and then averaged across relevant layers to
obtain a model-level smoothness estimate for each topographic strength 7. This procedure mirrors
the approach used for fMRI maps, enabling direct comparison between cortical organization and
the representational smoothness learned by neural networks trained with and without topographic
constraints.

B.3 MORAN’S I RESULTS

Table [2] summarizes the Moran’s I values for the two model classes considered—ResNet-50 and
AST-Base—across varying topographic strengths 7. Several clear patterns emerge from this com-
parison. First, the baseline condition (7 = 0) produces Moran’s I values at or near zero across
all four map types (tonotopy, amplitude modulation, music, and speech), confirming that without
explicit spatial regularization neither architecture develops meaningful topographic structure. This
reinforces that standard convolutional or transformer-based audio models do not spontaneously ac-
quire spatial contiguity in their feature maps.

Introducing topographic regularization (7 > 0), however, yields large and systematic increases in
spatial autocorrelation for both architectures. In AST-Base, smoothness increases consistently from
7 = 5 to 7 = 50, with only a slight saturation at 7 = 100, indicating that moderate levels of
spatial pressure are sufficient to induce stable and biologically interpretable organization. Similar
improvements appear in ResNet-50, where 7 = 50 and 7 = 100 produce substantial topographic
structure across all selectivity types. Notably, music- and speech-selective maps in ResNet-50 reach
Moran’s I values in the 0.80-0.83 range, approaching the upper-bound smoothness observed in
human auditory cortex.

Finally, the brain exhibits near-ceiling spatial autocorrelation (0.99 for both music and speech),
serving as a reference for the maximum smoothness achievable in biological systems. The fact
that topographically constrained models—particularly at higher 7 levels—approach these values
demonstrates that imposing spatial continuity enables artificial networks to replicate key hallmarks
of cortical organization. This alignment between model- and brain-derived maps highlights the util-
ity of topographic constraints as a principled mechanism for shaping neural network representations
toward neurobiological structure.
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Table 2: Topographic smoothness of music-, speech-, tonotopic-, and AM-selective maps.
Moran’s I spatial autocorrelation for ResNet-50, AST-Base, and human brain fMRI.

S . ResNet-50 AST-Base Brain

electivity (NH2015)
7=0 71=5 7=25 71=50 7=100 7=0 7=5 71=25 71=50 7=100

Tonotopy -0.01 054 059  0.67 0.67 0.00 043 050 052 0.49 -

Amplitude Modulation -0.01 0.55 056 0.34 046 000 0.33 0.38 0.45 0.44 -

Music 0.01 079 078 0.83 0.80 0.00 0.62 0.71 0.73 0.73 0.99

Speech -0.01 075 0.78 0.79 082 0.00 0.61 0.69 071 0.72 0.99

C FMRI DATASETS

C.1 NH2015

The fMRI data used in this study are a subset of those originally reported in (Norman-Haignere
et al.,[2015)), with procedures summarized below.

Participants and Experimental Design. Eight right-handed, native English-speaking participants
(4 female; mean age 22 years, range 19-25) with normal hearing and no formal musical training
participated in the study. Each participant completed three fMRI sessions ("2 hours each). Five
additional participants were excluded due to either incomplete scanning sessions or excessive head
motion and task non-compliance. All participants gave informed consent under protocols approved
by the MIT Committee on the Use of Humans as Experimental Subjects (protocol 2105000382).

Stimuli. A total of 165 two-second natural sounds were selected to span a wide range of real-world
auditory categories. Each sound was validated using a 10-way forced-choice classification task on
Amazon Mechanical Turk and included only if recognized with at least 80% accuracy. Stimulus
names and categories are available in the supplementary materials of (Tuckute et al.| 2023), and the
full stimulus set can be downloaded from: http://mcdermottlab.mit.edu/downloads.
htmll

fMRI Procedure. Stimuli were presented in a blocked design, with each block consisting of five
repetitions of the same 2-second sound, interleaved with 200 ms of silence to minimize scanner
noise. Each block lasted 17 s (TR = 3.4 s), and silence blocks of equal duration were interspersed
to estimate baseline responses. To ensure attentiveness, participants performed an intensity discrim-
ination task in each block, identifying the quietest sound (7 dB lower than the others) via button
press.

Data Acquisition. Data were acquired on a 3T Siemens Trio scanner with a 32-channel head coil
at the Athinoula A. Martinos Imaging Center (MIT). Each run consisted of 15 slices oriented parallel
to the superior temporal plane (TR = 3.4 s, TE = 30 ms, flip angle = 90°). The in-plane resolution
was 2.1 mm x 2.1 mm, with 4 mm thick slices and a 10% gap (voxel size: 2.1 x 2.1 x 4.4 mm).
The first 5 volumes of each run were discarded.

Preprocessing. Preprocessing was conducted using FSL, FreeSurfer, and custom MATLAB
scripts. Functional data were motion- and slice-time corrected, linearly detrended, skull-stripped,
and aligned to each participant’s anatomical scan using FLIRT and BBRegister. Volumes were pro-
jected to the reconstructed cortical surface using FreeSurfer and smoothed with a 3-mm FWHM
2D Gaussian kernel. Percent signal change was computed relative to silence blocks, and responses
were downsampled to a 2-mm isotropic grid on the FreeSurfer surface. All participants’ data were
registered to the fsaverage template.

Voxel Selection. Voxel selection followed the criteria in (Tuckute et al.,2023). We retained voxels
within a superior temporal and posterior parietal mask if they met two conditions: (1) significant
sound vs. silence response (p < 0.001, uncorrected), and (2) reliable responses to sounds across
scan sessions, quantified as:
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Here, v15 is the voxel’s response vector (averaged over the first two sessions) to all 165 sounds,
and v is the same voxel’s response from the third session. This measure captures the fraction of
variance in vio explained by v3. Voxels with » > 0.3 were retained. Across participants, this
yielded 7,694 voxels (mean per participant: 961.75; range: 637-1,221).

C.2 B2021

The B2021 fMRI dataset used in this study was originally collected and analyzed by (Boebinger
et al., [2021)) and reanalyzed in (Tuckute et al., [2023). We summarize the methodological details
below.

Participants and Experimental Design. Twenty right-handed participants (14 female; mean age:
25 years, range: 18-34) each completed three fMRI sessions ("2 hours per session). Half of the
participants (n = 10) were highly trained musicians, with an average of 16.3 years (SD = 2.5)
of formal training that began before age 7 and continued through the time of scanning. The other
half (n = 10) were non-musicians with fewer than 2 years of musical training, none of which
occurred before age 7 or within 5 years of scanning. All participants provided informed consent,
and the study was approved by the MIT Committee on the Use of Humans as Experimental Subjects
(protocol number 2105000382).

Stimuli. The stimulus set consisted of 192 natural sounds, including 165 from (Norman-Haignere
et al.l 2015) and 27 additional music and drumming clips representing diverse musical cultures. To
ensure comparability with NH2015, all analyses in this study were restricted to the shared subset of
165 sounds.

fMRI Procedure. The scanning procedure closely followed that of (Norman-Haignere et al.,
2015)), with some modifications. Each stimulus block consisted of three repetitions of a 2-second
sound, lasting 10.2 seconds total (TR = 3.4 s, 3 repetitions). Each participant completed 48 runs
across the 3 sessions (16 runs per session), with each run containing 24 stimulus blocks and 5 ran-
domly interleaved silent blocks. This design enabled each sound block to be repeated 6 times across
the experiment. Participants performed an intensity discrimination task, pressing a button upon
detecting the quietest of the three repetitions in a block (12 dB lower).

Data Acquisition. MRI data were collected using a 3T Siemens Prisma scanner with a 32-channel
head coil at the Athinoula A. Martinos Imaging Center at MIT. Functional volumes (48 slices per
volume) covered the superior temporal and parietal lobes, matching the anatomical mask used in
(Norman-Haignere et al., 2015). Imaging parameters were: TR = 3.4 s (TA =1 ), TE = 33 ms,
flip angle = 90°, in-plane resolution = 2.1 mm, slice thickness = 3 mm (10% gap), and voxel size =
2.1 x 2.1 x 3.3 mm. A multiband SMS factor of 4 was used to accelerate acquisition. Structural T1
images (1 mm isotropic) were also collected.

Preprocessing. Preprocessing matched the pipeline used in (Norman-Haignere et al., 2015), but
with a general linear model used to estimate voxel responses due to the shorter stimulus blocks
and increased overlap in BOLD responses. For each stimulus block, beta weights were computed
using a boxcar function convolved with a canonical hemodynamic response function, along with 6
motion regressors and a linear trend term. Resulting beta weights were downsampled to a 2-mm
isotropic grid on the FreeSurfer cortical surface. Each participant’s cortical surface was registered
to the fsaverage template.

Voxel Selection. Voxels were selected using the same reliability-based procedure described in
(Tuckute et al., [2023). Reliability was computed from vectors of beta weights for the 165 shared
stimuli, estimated separately from two halves of the data (v; = runs 1-24, vy = runs 25-48):
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Voxels with > 0.3 and significant sound-evoked responses (p < 0.001, uncorrected) were retained.
This procedure yielded a total of 26,792 reliable voxels across 20 participants (mean: 1,340 per
participant; range: 1,020-1,828).

C.3 VOXELWISE RESPONSE MODELING

This procedure was repeated 10 times (once per train-test split), and the median corrected vari-
ance explained was reported for each voxel-layer pair. We evaluated all layers from each candidate
model on both datasets, yielding voxelwise explained variance values for 7,694 voxels (NH2015)
and 26,792 voxels (B2021).

Regularized linear regression and cross-validation. To model the relationship between model
unit activations and measured brain responses, we used voxelwise linear encoding models. For
each voxel, we predicted its time-averaged response to natural sounds as a linear combination of
time-averaged activations from a specific model layer. We randomly split the 165 sounds into 10
unique train-test partitions of 83 training and 82 test sounds. For each split, we fit a regularized
linear regression (ridge regression) model using the 83 training sounds and evaluated prediction
performance on the held-out 82 sounds.

Regression formulation. Lety € R”™ be the voxel’s mean response to n = 83 sounds, and let
X € R™*? be the matrix of d regressors (i.e., time-averaged activations from a model layer). The
ridge solution is:

w=X"X+n\) X"y

where A is the regularization parameter and w is the vector of regression weights. Both y and
the columns of X were demeaned (but not normalized) prior to regression. This allowed units with
greater magnitude variance to contribute more to the prediction under a non-isotropic Gaussian prior.
To avoid data leakage, all transformations were learned on the training set and applied to the test set.

We used leave-one-out cross-validation within the 83 training sounds to select A\. For each of 100
logarithmically spaced values (from 10759 to 10%?), we computed the mean squared error of the
predicted response for each left-out training sound. The A\ minimizing this error was used to retrain
the model on all 83 training sounds. The final model was then used to predict responses to the
82 held-out test sounds, and performance was quantified using the Pearson correlation between
predicted and actual voxel responses. Negative correlations or correlations with zero variance were
set to zero.

Correcting for reliability of predicted voxel responses. Because both training and test responses
are affected by measurement noise, we corrected for the reliability of both the predicted and mea-
sured voxel responses. This correction was essential to fairly compare model performance across
voxels and model layers. We defined the corrected variance explained using the attenuation-
corrected squared correlation:

S 2
2+ _ T(Vizs, V123)°
v ! 2!
Tvr'[)

where V123 is the voxel response to the 82 test sounds, V123 is the predicted response, and r?, rg are
the reliabilities of the measured and predicted responses, respectively. Reliability was estimated via
median Spearman—Brown corrected correlations across scan pairs. For stability, we excluded voxels
for which 7], or 7, was less than k£ = 0.182 and k = 0.183, respectively (corresponding to p < 0.05
thresholds for 83- and 82-dimensional Gaussian variables).
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Figure 6: A stronger topographic constraint yields more perpendicular gradients for tonotopy and
modulation frequency until 7 = 50, 25 for early and late layers respectively.

D ANALYSING PERPENDICULARITY OF GRADIENTS FOR TONOTOPY VERSUS
MODULATION RATE

It is known from [Baumann et al| (2011)) and [Baumann et al.| (2013) that the gradient of modulation

rate and tonotopy run perpendicularly to each other in the auditory cortex. To check for this property
in our topgraphic audio models, we adopted the method specified in the supplementary material of
[Baumann et al| (201T) which involves performing a planar regression on each 2D preference map,
extracting the direction of the steepest gradient from the fitted plane, and computing the relative
angle between the tonotopic and AM-rate gradients. For both early and late layers, we observe that
a stronger topographic constraint yields more perpendicular gradients — and hence a better match
with the actual data from the Inferior Colliculus (IC) (marked in green as IC mean and IC std in
Figure [§). We also observe that after a certain threshold, the angles between the gradients start
decreasing again.

LLM usage in work. LLMs were used for editing grammar, spelling, and suggesting revisions for
clarity in the writing.
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