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Abstract. Creative processes such as painting often involve creating differ-
ent components of an image one by one. Can we build a computational model
to perform this task? Prior works often fail by making global changes to the
image, inserting objects in unrealistic spatial locations, and generating inac-
curate lighting details. We observe that while state-of-the-art models perform
poorly on object insertion, they can remove objects and erase the background
in natural images very well. Inverting the direction of object removal, we obtain
high-quality data for learning to insert objects that are spatially, physically, and
optically consistent with the surroundings. With this scalable automatic data
generation pipeline, we can create a dataset for learning object insertion, which
is used to train our proposed text-conditioned diffusion model. Qualitative and
quantitative experiments have shown that our model achieves state-of-the-art
results in object insertion, particularly for in-the-wild images. We show com-
pelling results on diverse insertion prompts and images across various domains.
In addition, we automate iterative insertion by combining our insertion model

with beam search guided by CLIP.
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1 Introduction

Inserting objects into an image based on a language prompt is a challenging task but
has many applications in image editing and content creation in general. There are
many fundamental challenges in solving this task. Inserted objects need to appear at
physically plausible spatial locations that respect the natural distribution of images.
Existing objects in the scene must be preserved. The appearance of the inserted objects
needs to be consistent with that of the context. The lighting details should match the
environmental lighting. Any one of these is traditionally challenging in computer vision,
let alone combined.

Prior works represented by InstructPix2Pix [61] approached this task by generating
pairs of images from pairs of prompts using Prompt2Prompt [17], which is subsequently
used to train a model for language-conditioned image editing tasks. While achieving
impressive results on image editing tasks such as changing styles or settings, these
methods often fail on the tasks of object insertion by making global edits to the image,
replacing an existing object when inserting new ones, and struggling to spatially reason
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Fig.1: EraseDraw We leverage advancements in image understanding and inpainting to
train a model that can insert an object given a language instruction.

(see Figure 2). Another line of work attempts to create the training data by render-
ing from a simulation environment and synthetic objects [69]. However, a significant
sim2real gap exists, preventing it from generalizing well to in-the-wild images.

In this paper, we propose EraseDraw, a scalable system for learning the task of
language-conditioned object insertion into images. We observe that with modern seg-
mentation, captioning and inpainting models, we can perform the task of object removal
with much higher photo and physical realism than object insertion. With this observa-
tion, we propose an autonomous data generation pipeline for generating input-output
pairs for the task of instruction-guided object insertion. We modify a wide distribution
of images from the internet by erasing objects from them using inpainting models and
describing the attributes and locations of the erased objects using vision language mod-
els. As a result, we created a large-scale dataset of paired images as well as language
prompts describing the object insertion.

With this dataset, we train a language-conditioned diffusion model to perform the
task of object insertion. Experiments show that our model achieves state-of-the-art
results, outperforming baselines trained with orders of magnitude more computing
resources. Due to our autonomous data generation pipeline, we are able to create
training data directly from in-the-wild images, resulting in high-quality object insertion
data.

The primary contribution of this paper is a system for learning to insert objects
in images and a scalable pipeline for generating the training data for this task from
natural images. Insertion furthermore equips us with the ability to plan the iterative
generation of novel images in a “step-by-step” manner. We believe the ability to insert
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objects into natural images will have a significant impact on content creation, as well
as other related areas, including computer graphics, AR/VR, and robotics.

2 Related Work

2.1 Image Editing

Generative models such as GANs [16, 23, 24] and diffusion models [19, 37, 73] have
enabled various image editing tasks such as style transfer [20], image-to-image trans-
lation [22, 57|, and latent space manipulation [46, 50]. More recently, text-guided dif-
fusion models [70, 72, 73, 74] have allowed intuitive editing of images based on textual
prompts.

Several methods have been proposed to enhance the controllability and precision
of text-based image editing, however none of them have data neccesary to perform
object insertion. SDEdit [68] employs a stochastic differential equation for iterative
denoising to increase the realism of user-provided pixel edits. Prompt2Prompt [18] and
Null Text Inversion [35] modify cross-attention maps to enable both local and global
editing. Imagic [64], EDICT [77] and Plug-and-Play [51] optimize text embeddings for
better alignment between the input image and target description. Text2LIVE [5] and
Blended Diffusion [59] train models to add edit layers or blend edited regions along
the diffusion process. Imagen Editor [25] finetunes the diffusion model by inpainting
masked objects.

Image Sculpting [75] presents a novel framework for editing 2D images by converting
objects into 3D, allowing direct manipulation of their geometry, and re-rendering them
back into the 2D image. Emu Edit [3] introduces a multi-task image editing model that
achieves state-of-the-art results in instruction-based editing by training on a wide range
of tasks and utilizing learned task embeddings. MagicBrush [78] improves instruction-
based editing by finetuning InstructPix2Pix on a manually-annotated dataset collected
using an online editing tool.

To provide more intuitive editing interfaces, InstructPix2Pix [61] introduced an
instruction-based editing model trained on a synthetic dataset. MagicBrush [78] further
improved it by finetuning on a manually-annotated dataset. However, these methods
still struggle with accurately interpreting and precisely executing editing instructions,
especially for object insertions. In contrast, our approach leverages the strength of
inpainting models to automatically generate high-quality training data for learning
object insertion.

2.2 Object Insertion

Determining where to place objects in images is a key problem for many editing tasks.
Traditional approaches in computer graphics rely on manual specification [55] or syn-
thetic data-driven methods [14]. In computer vision, early work used contextual infor-
mation to predict likely object locations [11, 30, 56].

More recently, deep generative models have been used to learn object placements
from data. Compositing GAN [60] generates realistic object composites by predicting
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add a tennis ball in front of the net  put a dalmatian next to the fire hydrant add a wild coyote in the background

Fig. 2: State-of-the-art image editing methods fail to correctly insert objects into visual scenes.
They perform global edits that don’t preserve scene context (left)[61], replace existing objects
(middle)[78], and struggle to spatially reason (right) [71]. You may see how we did on these
examples in Figure 17 of the Appendix.

geometric and appearance adjustments. RelaxedPlacement [66] optimizes for object po-
sitions and sizes to satisfy inter-object relationships described in scene graphs. OBJect-
3DIT [69] studies 3D-aware object insertion using language instructions on synthetic
data.

However, existing methods are often limited in their ability to handle complex, real-
world object placements. Our key insight is that inpainting models can be used to erase
objects from real images, providing valuable training data to learn meaningful object
placements. By inverting this process, we show that we can train models to realistically
insert diverse objects into images based on language instructions.

2.3 Diffusion Models

Denoising Diffusion Probabilistic Models (DDPM) [19] have marked their place in
computer vision as a preferred generative architecture, thanks to their adeptness in
handling multi-modal distributions, ensuring training stability, and offering scalability.
First, diffusion models were shown to outperform GANSs [16] in image generation [13],
followed by Stable Diffusion (SD) demonstrating the efficient scalability of the approach
[73]. SD achieved this through training on the internet-scale LAION-5B dataset [45],
while employing diffusion in the latent space of a Variational Autoencoder (VAE) [27].
More recently, DDPMs were shown to be effective in video generation too, notably by
Stable Video Diffusion [6] and Sora [9].

With the rise of internet-scale diffusion models, multiple works have studied their
excellent ability to represent the natural image manifold, enabling zero-shot generaliza-
tion in tasks such as 3D-reconstruction [12, 31, 32, 44, 52], segmentation [1, 53], amodal
perception [38, 54], recognition [10, 29|, as well as image editing [8, 15, 41]. However,
these image-editing methods (2.1) significantly struggle in performing object-insertion.
In this work, we leverage the ability of pre-trained diffusion models to represent the
natural and multi-modal distribution of people and objects in visual scenes, thereby
allowing us to perform object removal first (3.1), which by inversion enables insertion
(3.2).
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Fig. 3: EraseDraw Data Generation Pipeline (i) An unlabeled image is sampled taken
from a dataset (ii) The images are given to a captioning model, which describes the objects in
the image (iii) Objects are detected using the coarse caption from the captioning model, and
the objects that are confidently detected are (iv) segmented, (v) and erased. The final images
are added to the dataset along with the captions corresponding to them.

3 Method

Our main contribution is a framework for learning object insertion from natural im-
ages. This framework brings together the best aspects of existing pre-trained models:
combining the powerful descriptive capabilities of multimodal LLMs, complementing
it with attribute bound detection abilities of Grounding VLMs, and modifying images
with precise segmentation and erasing models. After generating a synthetically anno-
tated dataset of 65,000 images, we fine-tune a large pre-trained diffusion model on our
dataset, the procedure for which we outline in Sec. 3.2.

3.1 Automatic Dataset Generation

For training a language-conditioned object insertion model in a supervised manner,
one needs triplets in the form of (cy, ¢, ), where ¢y represents the source image, cr
describes the identity and location of the object to be inserted, and « is modified
version of ¢y, which includes the object described in c¢p. Our key insight is that we can
let natural images from the internet be the target images x, and we can autonomously
derive the context ¢y and c¢; by detecting and erasing objects from these images. We
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Fig. 4: We show examples from our EraseDraw Dataset.

illustrate the data generation framework in the following subsections, and we precisely
describe our algorithm in the appendix.

Coarse & Fine Captioning To enhance object identification in images, a powerful
Vision-Language Model (VLM), which is GPT-4 [58] in our implementation, is used
to generate both coarse and fine captions for each object. Coarse captions provide a
simple, yet unique description focusing on basic attributes like shape and color, aiding
in the detection phase. Fine captions offer complex, detailed descriptions, enriching
the object’s representation. This approach leverages the strength of grounding VLMs,
such as CogVLM [80], in detecting objects using straightforward descriptions, while at
training time, objects identified through coarse captions can be associated with any of
their detailed fine captions. For example, a "red bowl" might be simply identified, but
further described in detail as "a dark red bowl on top of the shelf." This methodol-
ogy ensures efficient object detection while enabling rich, descriptive training data for
VLMs.

Detection with Grounding VLM & Segmentation Standard open-vocabulary
object detectors struggle with accurately identifying colors, sizes, or spatial relation-
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ships, leading to inaccuracies in datasets with multiple instances of the same object
type. To address this, we utilize CogVLM’s attribute-binding capabilities, which excel
in recognizing these features, as demonstrated in Fig. 3 and 4. By inputting coarse
captions into CogVLM, we generate bounding boxes for objects, though errors can
still arise from VLM hallucinating objects or difficulty in identification (e.g., bushes
scenario in Fig 3).

To mitigate these issues, we employ rejection sampling based on CogVLM’s uncer-
tainty, using it as a transformer-based probabilistic model. By sampling three bounding
boxes at a temperature of 0.2 and accepting those with an Intersection over Union (IoU)
exceeding 80%, we ensure the object’s presence and identifiability by the consistency
of bounding box locations. Objects with scattered bounding boxes are excluded from
the dataset. Identified objects are then segmented using SAM [65] and prepared for the
erasing stage, refining the dataset’s accuracy for training purposes.

Erasing We employ the LaMa inpainting model [79] for erasing objects using segmen-
tation masks. Although LaMa is less versatile compared to advanced models like Stable
Diffusion for inpainting, it is effective in consistently erasing objects. A minor issue with
LaMa is artifact creation when erasing large objects, but this does not greatly impact
our process due to two main reasons: firstly, images with artifacts serve as conditional
inputs rather than direct supervision; secondly, artifacts often diminish after processing
through the VAE for latent diffusion, mitigating their presence.

3.2 Diffusion Model

Our goal is to sample from p(x|cr,cr), the distribution of target images conditioned
on a source image and a text instruction. To this end, we train a latent conditional
diffusion model €4(+), which estimates the score function of p(x|cr,cr) by optimizing
for the simplified variational lower bound objective

mein ]Eg(m)’g(cl)’cT’ENN(0,1)7t[Hee(zta t,E(cr) er) — 6”%]

where x is an image sampled from the dataset, £(-) is a VAE, and z; = £(x) is a noisy
latent embedding of & where the noise level increases with ¢t € T'.

In essence, the diffusion model learns to predict the noise € added to a ground-
truth latent image zy. To sample from the model, we start with pure Gaussian noise
tensor and repeatedly invoke the diffusion model to predict and subtract noise, which
iteratively denoises the pure noise tensor into a latent image. Finally, we invoke the
decoder D to obtain a full-resolution image from the latent image.

Following [61], we initialize the weights of our network ey from Stable Diffusion
1.5, a text-to-image model pretrained on a large-scale dataset of images. Similarly, we
allow for conditioning on images by expanding the number of input channels of the
convolutional input layer. Initialization from a pretrained model allows our fine-tuned
model to generate objects from an open-vocabulary, well beyond the set of objects that
are in our fine-tuning dataset of 65,000 images.
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Fig. 5: Qualitative Results on EmuEdit Benchmark on inserting people and outdoor
objects.

3.3 Iterative Generation and Planning

Our model’s ability to precisely insert an object into an existing image allows the
composition of novel images in a "step-by-step" manner.

In particular, given a background image and a sequence of desired edits, one can
repeatedly invoke EraseDraw, sequentially prompting the model with each edit, and
feeding in the output image of the last step as the input to the next.

Automating Step-by-Step Composition To compose a complex image by its con-
stituents, a user needs to decide the order in which to insert each object. For each
inserted object, the user may also choose to review a multitude of samples from the
diffusion model to pick which edited image should be the input to the next step.

Alternatively, the decision-making and verification process can be offloaded to off-
the-shelf vision and language models. We instantiate such an application by imple-
menting beam search with a CLIP Score heuristic. Starting with an unmodified image
and a pre-specified sequence of edits, for each step, we sample N images for each of
the k 'beams’, resulting in Nk images. Then, we compute text-image CLIP alignment
between the Nk generated images and the editing instruction to rank images according
to their quality and continue onto the next step with the top k.

The goal of our experiments is to evaluate our model’s ability to make precise,
high-fidelity insertions that are faithful to the given prompt. To this end, we conduct
quantitative and qualitative comparisons with publicly available language-guided image
editing models on single-step object insertion (3.4). Then, we demonstrate our model’s
ability to iteratively compose scenes step-by-step (3.5). Finally, we present quantitative
ablations for our dataset recipe.
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Fig. 6: Qualitative Results on EmuEdit Benchmark on inserting animals and household
objects.

3.4 Single-Step Object Insertion

Setup Given an RGB image and a text prompt, the task of single-step object insertion
alms to generate a new image with the specified object inserted while faithfully pre-
serving the input scene. We compare the performance of EraseDraw with two similar-
architecture models: InstructPix2Pix [61], trained on 450,000 auto-labeled images, and
MagicBrush [78], a fine-tuned version of InstructPix2Pix with 5,000 human-generated
examples. We are not able to compare against EmuEdit [76] since the model is not
publicly available.

Metrics For evaluating object insertion, we use a part of EmuEdit’s [76] validation
set designed for "add" instructions, comprising tuples of captions and images before
and after edits. Models are judged by CLIP,,;, comparing output captions with gener-
ated images, and CLIP;,., evaluating the alignment between changes in captions and
images. Lastly, to confirm our autonomously evaluated results, ten participants per-
formed pairwise ranking tasks across 15 images and 4 models (90 pairwise comparisons
per user) on a random subset of the EmuEdit insertion tasks. We report the win rate
of each model.

Results Table 1 shows the effectiveness of our model on the EmuEdit object insertion
benchmark, as indicated by higher CLIP,,; and CLIP 4, scores, despite our model being
trained on one order of magnitude less data. In Fig. 5 and 6, we qualitatively contrast
our system with baselines, showcasing humans, animals, and indoor and outdoor scenes.
These illustrate the nuanced, realistic, and vibrant edits of EraseDraw compared to the
baseline models, which face numerous challenges as depicted in Fig. 2. In Fig. 7, we
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Method Dataset Size CLIPoyt T CLIP4;, T Win Rate (%)
Erasedraw 65,000 0.0930 0.1383 82.22
Magicbrush+-+ - 0.0896 0.1304 55.06
Magicbrush 455,000 0.0854 0.0930 48.64
InstructPix2Pix 450,000 0.0746 0.0976 12.56

Table 1: Comparison with language-guided editing baselines on the EmuEdit dataset

further showcase intricate edits like water flow simulation in a sink, object placement
behind existing items, human-object interaction predictions, and lighting adjustments.

Additionally, in Fig. 8, we display our model’s capability to accurately reflect the
natural spatial distribution of objects and people in a given scene. This capability
highlights the advantage of learning from natural images, as opposed to simulated
objects in prior work [69].

3.5 Iterative Generation

Setup In this section, we display qualitative results of the iterative object insertion
process in both human-guided and automated settings. We start with empty back-
ground images and iteratively invoke our model with a predetermined sequence of
instructions. To compare this process with the conventional one-shot text-to-image
method, we combine the set of edit instructions into a single prompt and generate an
image from Stable Diffusion 1.5.

Results According to Fig. 9, we notice that Stable Diffusion 1.5 fails to follow the
entire prompt precisely, confusing attribute bindings or omitting insertions that would
appear unnatural in the described context such as the ’giraffe in the office. In com-
parison, our method results in complex final images that accurately match the edit
instructions. This is a surprising result given that our base model is Stable Diffusion
1.5. Iteratively composing the image appears to have addressed important problems
of attribute binding and out-of-distribution robustness. We attribute this to the fact
that performing a single step of insertion is a much easier task than trying to satisfy
all constraints of one-shot text-to-image image generation.

3.6 Beam Search

Setup We instantiate the beam search procedure outlined in 3.3 with branching factor
N = 4, beam width of k = 3, for 3 iterations. For clarity, we only trace and display
the top beam and the top-3 generations from that beam at each step. As a baseline,
we sample TNk images from SD1.5 (our base model) using the combined prompt, and
present the image with the highest CLIP score.
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Fig. 7: Single-Step Generation. EraseDraw can perform complex object insertion tasks
such as inserting water flowing down a sink, placing objects behind occluders, predicting
hand-poses with correct affordance, and accounting for lighting effects.
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Fig. 8: Modeling the Multimodal Distribution of People and Objects. Sampling
from our model reveals where objects naturally appear in the world. This opens up applica-
tions where commonsense knowledge about object placements are required, such as embodied
agents.

Results We keep the inference setting consistent with Sec. 3.5. Fig.10 shows that CLIP
score successfully finds the best candidates for the next step of insertion, resulting in a
final image that composes an accurate image without human intervention. Meanwhile,
SD1.5 mixes up attributes to their respective objects. While we have shown only 3
steps of edits in these evaluations, the performance between one-shot and iterative
image generation increases sharply with additional steps. We include more results in
figures 11, 12, 13, 14, and 15.

3.7 Dataset Ablation

Setup Finally, we perform ablation studies on our dataset generation pipeline to evalu-
ate its contribution to the results. First, we use our end-to-end data generation pipeline
to annotate 15,000 images, which we call ’EraseDraw-15k’. This pipeline could easily
be scaled to orders of magnitude more images given enough compute. In addition, we
convert 50,000 images from GQA [62] with annotated scene graphs into edit instruc-
tions by segmentation and erasing. We train EraseDraw on a combination of these two
datasets.

Results Despite being autonomously generated and smaller size compared to GQA-
Insert, the model trained on EraseDraw-15k competes well with its GQA-Insert coun-
terpart, with the combination of both datasets yielding superior results (see Table
2). This performance differential can be attributed to the complementary qualities of
the datasets: GQA-Insert’s human-labeled accuracy versus EraseDraw-15k’s broader
diversity, albeit with more errors and limited volume.

4 Discussion

4.1 Conclusion and Limitations

We introduce EraseDraw, a framework for autonomously generating object insertion
data by leveraging the fact that erasing is an easier task than drawing. We train a
diffusion model using our data, and we show that it achieves state-of-the-art object
insertion results. Additionally, we introduce a new paradigm for iteratively composing
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Original Image

Low CLIP Score
High CLIP Score X X
+aboyinaredshirt +agirlinapurple dress +an elephant

Fig.10: Beam Search Given the original image on the left, we run beam search using CLIP
distance between the edit instruction and the output image as the score heuristic. In this
figure, we display the results from the top beam. To compare with one-shot diffusion using
SD1.5, we use the prompt "A boy in a red shirt, girl in a purple dress, and an elephant on a
grassy field."

an image using object insertion steps. We emphasize that our approach is model-
agnostic; all general-purpose image editing models can benefit from including object
insertion examples from EraseDraw in their training data. Besides image generation
and editing, EraseDraw can unlock downstream applications such as giving robots
a commonsense understanding of object placements and augmenting existing image
datasets with novel objects.

Our work is limited by the relatively small created dataset and the base model. In
particular, we note that the quality of the inserted objects is limited by the capabilities
of the base model we finetune from, consequently our model is unable to generate
anatomically accurate hands or faces, and it has limited ability to follow instructions
involving precise object placements. Furthermore, while we our framework can be used
for processing arbitrary unlabeled images, our dataset is derived from Openlmages and
COCO, which may have biases for certain object categories.

Dataset Autonomously CLIP

Dataset Size Generated outT CLIPa T
GQA-Insert 50,000 No 0.0907  0.1279
EraseDraw-15k 15,000 Yes 0.0905  0.1254
Mixed 65,000 No 0.0930 0.1383

Table 2: EraseDraw Dataset Ablation Studies
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We believe scaling up our autonomous data pipeline and fine-tuning stronger base

models will yield superior performance.

4.2

Societal Impact

Image editing tools such EraseDraw could potentially be misused for creating mislead-
ing or harmful content. It is crucial for the research community to develop techniques
for mitigating misuse, and to promote responsible use of these technologies.

Acknowledgements: The authors would like to thank for Huy Ha, Samir Gadre, and

Zeyi Liu valuable feedback and discussions.
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EraseDraw: Learning to Insert Objects by Erasing
Them from Images

Supplementary Material

A Training

We train our model for 1000 steps on 2 x 48GB A6000 GPUs over 12 hours at 256 x 256
resolution. With the help of gradient accumulation, we train at an effective batch size
of 1536 images. We adopt all other model related training hyperparameters from [61].
We find that our model can generalize to non-square images and resolutions as high as
512 x 512

B Accelerating Inference

While the inference duration of diffusion models is prohibitive, we accelerate our model
using a pre-trained LCM-LoRA [67] for Stable Diffusion 1.5. Surprisingly, despite being
trained for the text-to-image task, the LCM-LoRA preserves the insertion abilities of
our model while cutting down the number of inference steps to as low as 4 to 16 steps
depending on the desired image quality.

All results in our paper except our quantitative evaluations and qualitative com-
parison figures have been generated using LCM LoRA with 16 steps using 512 x 512
resolution.

Our qualitative comparison figures are generated with 50 steps of Euler ancestral
sampling outlined in Karras et al. [63] with 512 x 512 resolution.

C Prompts

Extracting Captions from Images using Large Vision Language Model To
extract captions from an image using GPT-4 Vision, we use the following prompt

1. Describe the objects in this image along with their attributes
and their spatial relations with respect to the other objects.
2. For every individual object,
a) Come up with a "subject identification" for that object.
The subject identification should be a simple way to identify
the object in the image. Color and shape may be helpful to
include.
Examples:
If two fish are in the picture, one is red and the other
is blue, then you could identify their subject identificaitons
as "the red fish" and "the blue fish".
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If three men are in the picture, and they’re spread out
into a row, then you could identify their subject
identifications as "man on the left","man on the right",man in

the middle".

If only a single cat is in the picture, then the subject
identification "cat" is sufficient.

The subject identification MUST NOT include a noun other than
the subject.
b) Come up with simple captions of the form [adjective] [
subject] [prepositional phrase] that describe the location of
the object with respect to other objects or the image.
(e.g. a man with a blue shirt standing in front of the wall,
an elephant next to the tree, a bat held by a player, the dog
on the right of the image, etc.).
Make sure that all of the captions refer to exact the same
subject.

3. Exclude large background elements from your captions, such as
the sky, the ground, the walls, etc.

Finally, return your final response as a JSON in the form

s {

"[subject identification]":
[
"[caption 1]", "[caption 2]", "[captiomn 3]",
] 2
}

You may now begin!

Detecting Bounding Boxes To detect an object named [object] using CogVLM
[80], we prompt the model with

Where is [object]?

D Additional Examples of Beam Search

In figures 11, 12, 13, 14 15, 16, we showcase results from employing the EraseDraw
method combined with beam search for gradual image composition. The complete
image prompt, detailed in each figure’s caption, is divided into five sub-prompts, cor-
responding to five steps in the beam search process. At each step ¢, images are ranked
by their CLIP similarity to the combined sub-prompts from 0 through ¢.

Each figure’s top six rows display images with the highest and lowest four CLIP
scores. The last row shows a comparison with images generated by Stable Diffusion
1.5. To ensure fairness in terms of computation budget, we allow Stable Diffusion to
generate as many images as beam search at each step, and apply CLIP filtering to get
the best image. More specifically, for each step ¢ in the process, Stable Diffusion 1.5
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generates (beam width) x (branching factor) x ¢ images. These images are generated
using the cumulative prompt, which is the combination of sub-prompts from 0 through
t. We then select the image with the highest CLIP score relative to the cumulative
prompt for presentation.

We compute all CLIP scores using siglip-base-patch16-224 [82] model from
Huggingface.

E Dataset Generation Algorithm

We outline our precise dataset generation procedure below in Algorithm 1.

Algorithm 1 Autonomous Data Generation

Input: Input dataset D of unlabeled images
Output: Dataset D’ of (Crmage, CTest, ) tuples.
Initialize D' + {)

for each image « in D do

Use image captioner to propose objects o;, simple captions T; for each object, and a
set of complex captions {Tl(l) . ,TI(;)} for each object

6: b; = DetectBoundingBox(z, T;)

7 m; = BoundingBoxToSegmentation(x, b;)
8: for each complex caption Tj(i) do

9: Crmage = Erase(zx, m;)

10: append (Crmage, CTeat = ij,m) to D’

11: end for
12: end for
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Beam Search with EraseDraw

Original Image a yellow forklft metal barrels awarehouse worker another warehouse worker  stacked wooden pallts

Top 4 Images with Highest CLIP Score

Bottom 2 Images with Lowest CLIP Score

Fig. 11: Beam search with beam width £ = 3 and branching factor N = 4 on the prompt "a
yellow forklift, metal barrels, a warehouse worker, another warehouse worker, stacked wooden
pallets"
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Beam Search with EraseDraw

Original Image a bright green potted plant asofa a bookshelf an elegant rug on the floor a paining on the wall

Top 4 Images with Highest CLIP Score

Bottom 2 Images with Lowest CLIP Score

Stable Diffusion 1.5 with CLIP Filtering

=t

Fig. 12: Beam search with beam width k£ = 5 and branching factor N = 4 on the prompt "a
bright green potted plant, a sofa, a bookshelf, an elegant rug on the floor, a painting on the
wall"



26 A. Canberk et al.

Beam Search with EraseDraw

Original Image ared car an old wooden bench a treehouse a stone bridge over the road a deer near the trees

Top 4 Images with Highest CLIP Score

Bottom 2 Images with Lowest CLIP Score

t=0 t=1 t=2 t=3 t=4 t=5

Stable Diffusion 1.5 with CLIP Filtering
R

Fig. 13: Beam search with beam width k& = 3 and branching factor N = 4 on the prompt
"a red car, an old wooden bench, a tree house, a stone bridge over the road, a deer near the
trees"



Top 4 Images with Highest CLIP Score

Bottom 2 Images with Lowest CLIP Score
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Beam Search with EraseDraw

Original Image a cactus an oasis in the distance a2 white tent an old fashioned lantern a majestic camel

27

Fig. 14: Beam search with beam width k£ = 3 and branching factor N = 4 on the prompt "a

cactus, an oasis in the distance, a white ten, an old fashioned lantern, a majestic camel"
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Beam Search with EraseDraw

Original Image a cozy fireplace two leather armchairs a coffee table a clock a chandelier

| g

S

Top 4 Images with Highest CLIP Score

Bottom 2 Images with Lowest CLIP Score

Fig. 15: Beam search with beam width £ = 3 and branching factor N = 4 on the prompt "a
cozy fireplace, two leather armchairs, a coffee table, a clock, a chandelier"
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Beam Search with EraseDraw
Original Image an empty white plate a stack of pancakes maple syrup on the pancakes a small piece of butter a cup of coffee on the side

Top 4 Images with Highest CLIP Score
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Lml Rl m m o] e
e i o

Bottom 2 Images with Lowest CLIP Score

Fig. 16: Beam search with beam width k£ = 3 and branching factor N = 4 on the prompt "an
empty white plate, a stack of pancakes, maple syrup on the pancakes, a small piece of butter,
a cup of coffee on the side"
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add a tennis ball in front of the net  put a dalmatian next to the fire hydrant add a wild coyote in the background

Fig. 17: EraseDraw’s results on insertion tasks given in Figure 2 of the paper
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