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ABSTRACT

Reinforcement learning has enabled agents to solve challenging control tasks
from raw image inputs. However, manually crafting reward functions can be time
consuming, expensive, and prone to human error. Competing objectives have
been proposed for agents to learn without external supervision, such as artificial
input entropy, information gain, and empowerment. Estimating these objectives
can be challenging and it remains unclear how well they reflect task rewards or
human behavior. We study these objectives across seven agents and three Atari
games. Retrospectively computing the objectives from the agent’s lifetime of
experience simplifies accurate estimation. We find that all three objectives correlate
more strongly with a human behavior similarity metric than with task reward.
Moreover, input entropy and information gain both correlate more strongly with
human similarity than task reward does.

1 INTRODUCTION

Metric Reward Correlation

Task Reward 1.00

Human Similarity 0.67

Input Entropy 0.54

Information Gain 0.49

Empowerment 0.41

Metric Human Correlation

Human Similarity 1.00

Input Entropy 0.89

Information Gain 0.79

Task Reward 0.67

Empowerment 0.66

Table 1: Correlation coefficients
between each metric and task re-
ward or human similarity. The
3 task-agnostic metrics correlate
more strongly with human simi-
larity than with task reward. This
suggests that typical RL tasks
may not be a sufficient proxy for
intelligent behavior seen in hu-
mans playing the same games.

Deep reinforcement learning (RL) has enabled agents to solve
complex tasks directly from high-dimensional image inputs, such
as locomotion (Heess et al., 2017), robotic manipulation (Akkaya
et al., 2019), and game playing (Mnih et al., 2015; Silver et al.,
2017). However, many of these successes are built upon rich
supervision in the form of manually defined reward functions.
Unfortunately, designing informative reward functions is often
expensive, time-consuming, and prone to human error (Krakovna
et al., 2020). Furthermore, these difficulties increase with the
complexity of the task of interest.

In contrast to many RL agents, natural agents generally learn
without externally provided tasks, through intrinsic objectives.
For example, children explore the world by crawling around and
playing with objects they find. Inspired by this, the field of intrin-
sic motivation (Schmidhuber, 1991; Oudeyer et al., 2007) seeks
mathematical objectives for RL agents that do not depend on a
specific task and can be applicable to any unknown environment.
We study three common types of intrinsic motivation:

• Input entropy encourages encountering rare sensory inputs,
measured by a learned density model (Schmidhuber, 1990;
Bellemare et al., 2016b; Pathak et al., 2017; Burda et al.,
2018b).

• Information gain, or infogain for short, rewards the agent for
discovering the rules of its environment (Lindley et al., 1956;
Houthooft et al., 2016; Shyam et al., 2018; Sekar et al., 2020).

• Empowerment measures the agent’s influence it has over its
sensory inputs or environment (Klyubin et al., 2005; Mo-
hamed and Rezende, 2015; Karl et al., 2017).

Despite the empirical success of intrinsic motivation for facilitating exploration (Bellemare et al.,
2016b; Burda et al., 2018b), it remains unclear which family of intrinsic objectives is best for a
given scenario, for example when task rewards are sparse or unavailable, or when the goal is to
behave similarly to human actors. Moreover, it is not clear whether different intrinsic objectives offer
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similar benefits in practice or are orthogonal and should be combined. To spur progress toward better
understanding of intrinsic objectives, we empirically compare the three objective families in terms of
their correlation with human behavior and with the task rewards of three Atari games and Minecraft
Treechop.

The goal of this paper is to gain understanding rather than to propose a new intrinsic objective or
exploration agent. Therefore, there is no need to estimate intrinsic objectives while the agents are
learning, which often requires complicated approximations. Instead, we train several well-known RL
agents on three Atari games and Minecraft and store their lifetime datasets of experience, resulting in
a total of 2.1 billion time steps and about 9 terabytes of agent experience. From the dataset of each
agent, we compute the human similarity, input entropy, empowerment, and infogain using simple
estimators with clearly stated assumptions. We then analyze the correlations between these metrics to
understand how they relate to another and how well they reflect task reward and human similarity.

The key findings of this paper are summarized as follows:

• Input entropy and information gain both correlate better with human similarity than task reward
does. This implies that to measure how similar an agent’s behavior is to human behavior, input
entropy is a better approximation than task reward.

• Simple implementations of input entropy, information gain, and empowerment correlate well
with human similarity. This suggests that they can be used as task-agnostic evaluation metrics
when human data and task rewards are unavailable.

• As a consequence of the these two findings, task-agnostic metrics can be used to measure a
different component of agent behavior than is measured by the task rewards of the reinforcement
learning environments considered in our study.

• Input entropy and information gain correlate strongly with each other, but to a lesser degree with
empowerment. This suggests that optimizing input entropy together with either of the two other
metrics could be beneficial for designing exploration methods.

This paper is structured as follows. Section 2 describes the games and agents used for the study. Sec-
tion 3 details the experimental setup and estimators used to implement the metrics. Section 4 discusses
quantitative and qualitative results. Section 5 summarizes key take-aways and recommendations.

2 BACKGROUND

To validate the effectiveness of our metrics for task-agnostic evaluation across a wide spectrum of
agent behavior, we retrospectively computed our metrics on the lifetime experience of well-known
RL agents. Thus, we first collected datasets of a variety of agent behavior on which to compute and
evaluate our metrics.

Environments We evaluated our agents in three different Atari environments provided by Arcade
Learning Environment (Bellemare et al., 2013): Breakout, Seaquest, and Montezuma’s Revenge,
and additionally in the Minecraft Treechop environment provided in MineRL (Guss et al., 2019).
Breakout and Seaquest are relatively simple reactive environments, while Montezuma’s Revenge
is a challenging platformer requiring long-term planning. Treechop is a 3D environment in which
the agent receives reward for breaking and collecting wood blocks, but has considerable freedom
to explore the world. We chose these four environments because they span a range of complexity,
freedom, and difficulty, as detailed in Appendix E.

Agents The seven agent configurations represented in our dataset include three RL algorithms and
two trivial agents for comparison. We selected RL agents spanning the range from extrinsic task
reward only to intrinsic motivation reward only. Additionally, we included random and no-op agents,
two opposite extremes of trivial behavior. Our goal was to represent a wide range of behaviors:
playing to achieve a high score, playing to explore the environment, and taking actions without regard
to the environment. Specifically, we used the PPO agent (Schulman et al., 2017) trained to optimize
task reward, and the RND (Burda et al., 2018b) and ICM (Pathak et al., 2017) exploration agents
using PPO as an optimizer, which can incorporate both an intrinsic reward signal, and an extrinsic
reward signal which can be enabled for task-specific behavior, or disabled for task-agnostic behavior.
We evaluate RND and ICM in both of these configurations. Each agent is summarized in Appendix F.
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(a) Breakout (b) Seaquest

(c) Montezuma
(d) Minecraft

Figure 1: Preprocessing used to assign input images to buckets. Similar to Go-Explore (Ecoffet et al.,
2019), we resize the images to 8× 8 pixels and discretize each of the resulting cells to one of 4 values.
The examples show that this procedure preserves positions of objects in the game, such as the player,
ball, fish, and skull. We enumerate the compactified images to represent each unique frame by an
integer index to compute discrete probability tensors for the environments.

3 METHOD

The goal of this paper is to evaluate agents using metrics other than task reward. For this, we collected
100 million frames on each of the three Atari environments with each of seven agents: random, no-op,
PPO, and RND and ICM with and without task reward. Minecraft was evaluated for 12 million
frames per agent because the simulation is slower than the Atari games, and five agents rather than
seven were used, excluding both configurations of ICM.

To evaluate the agents, we first preprocessed the data and then computed our metrics in aggregate over
the entire lifetime of each agent/environment configuration (yielding one number per metric-agent-
environment). In this section, we describe our preprocessing method and introduce our estimators for
the five considered metrics.

3.1 PREPROCESSING

To efficiently compute the metrics in a robust manner, we discretize the agent’s input images so that
they can be represented by integer indices. This allows us to summarize each collected datasets as a
probability tensor that holds the probability of each transition. Figure 1 visualizes the preprocessing
for the three environments.

Discretization We first convert the RGB images to grayscale as they were seen by the agents. After
that, we bilinearly resize them to 8 × 8 pixels. We discretize these low-resolution images to four
possible values per pixel, with thresholds chosen as the brightness percentiles 25, 50, and 75 across
all unique values of the corresponding pixel in the environment across all agents.

Aggregation The unique compactified images are enumerated and summarized into a tensor of
counts for each agent and environment combination. For an image index 1 ≤ i ≤ |X|, and action
index 1 ≤ j ≤ |A|, and a successor image index 1 ≤ k ≤ |X|, where X is the set of inputs and A
the set of actions, the count tensor is defined as,

Nijk
.
= number of transitions from image bucket i and action j to image bucket k. (1)

3



Under review as a conference paper at ICLR 2021

Normalizing the count tensor N yields a probability tensor P that stores the probability of each
transition in the agent’s dataset. Under the assumption of a Markovian environment and agent, the
probability tensor fully describes the statistics of the preprocessed dataset,

P
.
=

1∑
ijkNijk

N, so that
∑
ijk

Pijk = 1. (2)

The probability tensor P describes the joint probability of transitions for each agent and environment
and thus allows us to compute any marginals and conditionals needed to compute the metrics.

3.2 METRICS

We compare two task specific metrics, task reward and human similarity, as well as three task-agnostic
metrics: input entropy, information gain, and empowerment. The task-agnostic metrics cover the
different types of objectives identified by Hafner et al. (2020). We compute a single value of each of
these metrics on each agent-environment dataset.

Task Reward The reward provided by reinforcement learning environments measures success at a
specific task. The environments we use have only one predefined task each, despite the wide range of
conceivable objectives in Montezuma’s Revenge and Minecraft in particular. This is true of many RL
environments, and limits one’s ability to analyze the behavior of an agent in a general sense within
one environment. While there are multi-task benchmarks, they often include a distinct environment
for each task rather than multiple tasks in the same environment (Yu et al., 2019). This would make it
difficult to evaluate the agent’s ability to globally explore its environment independent of the task.

Human Similarity Task reward captures only the agent’s success at the specific task defined via
the reward function. This may not match up with a human observer’s definition of intelligence. We
suggest that a more general measure of intelligence may relate to similarity between the agent’s
behavior and human behavior in the same environment, i.e. using human behavior as a “ground
truth”. Hence, we propose a human similarity metric that approximates the overlap between the
inputs observed by a human player and an RL agent. To compute this, we used the Atari-HEAD
dataset (Zhang et al., 2019) and preprocessed the data as described in Section 3.1.

We compute human similarity as the Jaccard index, or intersection over union, between input images
encountered in the human dataset and those encountered by the artificial agent. It is simpler than
but related to inverse reinforcement learning objectives in the vein of Ziebart et al. (2008); Klein
et al. (2012). For this, we first compute the empirical visitation probabilities of inputs from the
probability tensors P agent and P human of the artificial agent and the human player, respectively. The
human similarity is then computed as the fraction of non-zero entries,

S
.
=

∣∣{i : p(i) > 0 ∧ q(i) > 0
}∣∣∣∣{i : p(i) > 0 ∨ q(i) > 0
}∣∣ , where p(i)

.
=
∑
jk

P agent
ijk , q(i)

.
=
∑
jk

P human
ijk . (3)

Note that while we use input images from recorded human behavior to compute human similarity,
we are not able to compare the human and agent behavior directly, as the RL agents play in an
environment with sticky actions, while the humans did not. More generally, human similarity would
be challenging to compute in some environments, such as high-dimensional continuous control. Even
where it is possible, large human datasets are expensive to collect. Thus, we consider three task-
agnostic metrics, which do not require environment-specific engineering or human demonstrators.

Input entropy Input entropy measures how improbable the agent’s inputs are under a trained
density model (Schmidhuber, 1991). It has been used in RL to model an agent’s success at exploring
its environment, where a higher input entropy score implies a wider variety of states observed, for
instance by Oudeyer et al. (2007); Bellemare et al. (2016a); Burda et al. (2018b).

In general, input entropy is the cross entropy of future inputs under a density model trained alongside
the agent, but as we retrospectively compute the metric over the agent’s lifetime, we only need to
compute the probability vector over inputs once. Specifically, we use the marginal entropy over
individual inputs, computed by summing the probability tensor over the second and third axes as,

C
.
= −

∑
i

p(i) log p(i), where p(i)
.
=
∑
jk

P agent
ijk . (4)
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Empowerment Empowerment measures the agent’s influence over its environment (Klyubin et al.,
2005), which has been applied to reinforcement learning by Mohamed and Rezende (2015); Karl
et al. (2017). We use the interpretation of empowerment that measures the agent’s realized influence
on the world, rather than its potential influence, formalized as the mutual information between actions
and sensory inputs (Salge et al., 2014; Hafner et al., 2020).

We compute empowerment mutual information as the difference between the entropy of actions given
the preceding input, before and after observing the following input,

E
.
=

(∑
ijk

p(i, j, k) log p(i, j, k)

)
−
(∑

ij

q(i, j) log q(i, j)

)
,

where p(i, j, k)
.
=

Pijk∑
j′ Pij′k

, q(i, j)
.
=

∑
k Pijk∑

j′k Pij′k
.

(5)

Information gain Information gain is a measure of how much the agent learns from its observations
Lindley et al. (1956). It is the mutual information between observations and the agent’s representation
of the environment. Information gain has led to successful exploration in reinforcement learning (Sun
et al., 2011; Houthooft et al., 2016; Shyam et al., 2018).

To measure the amount of information gained, we need a way to represent the agent’s knowledge
about its environment. Preprocessing the agent’s inputs into discrete classes enables us to represent
its knowledge as a belief over the transition matrix M . The total information gain of over agent’s
lifetime is the entropy difference of its beliefs at the beginning and end of the dataset,

I
.
= H

[
M
]
−H

[
M | dataset

]
= E

[
log p(M | dataset)− log p(M)

]
. (6)

We choose the belief to be a vector of Dirichlet distributions as in (Sun et al., 2011; Friston et al.,
2017), each of which has one concentration parameter, initialized at 1, for each possible subsequent
input. For each transition that occurs in the dataset, the corresponding concentration parameter is
set to 2, which we empirically found to be more effective than varying the parameter based on the
number of occurrences. This is explained by the limited amount of stochasticity in the environments
even after pre-processing; more than 80% of all state/action pairs transition to only one unique state
in Breakout, Seaquest, and Minecraft, so that seeing a transition once establishes that the transition is
possible, and seeing it multiple times should not increase the model’s confidence by very much.

The entropy of a Dirichlet distribution is given by,

H
[
D
]
= logB(α) +

( |X|∑
k=1

α− |X|

)
ψ

( |X|∑
k=1

α

)
−
|X|∑
k=1

(αk − 1)ψ(αk), (7)

where α is the vector of concentration parameters, ψ is the digamma function, and B is the incomplete
beta function (Lin, 2016). The entropy of the distribution over M is then given by adding up the
entropy of each of the Dirichlet distributions.

4 ANALYSIS

We conduct a wide range of analyses to understand how the three task-agnostic metrics relate to
another and to the supervised metrics of task reward and human similarity. We first compare the agents
included in our RL datasets based on their values of the two supervised and three task-agnostic metrics
we consider. Next, we analyze correlations between our task-agnostic and supervised metrics. Finally,
we discuss correlations between the three task-agnostic metrics themselves. Figure 3 shows correlation
matrices of the five metrics, Table 2 contains the tables of all computed metric values, and further
visualizations can be found in the supplementary material. We use the OpenAI implementations of
ICM (Burda et al., 2018a) and RND (Burda et al., 2018b) and the Stable Baselines implementation of
PPO (Hill et al., 2018). We will release the source code for replicating our analyses and the collected
datasets and metrics upon publication to spur further work on unsupervised evaluation of RL agents.
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Figure 2: Overview of agent performance under the five metrics. Task Reward (R) and Human
Similarity (S) are supervised metrics. Input Entropy (C), Empowerment (E), and Information Gain
(I) are task-agnostic metrics. The two task-specific exploration agents achieve the highest task
reward and human similarity on average across Atari environments, and RND without reward in
Minecraft. ICM or RND each achieve the highest input entropy and infogain value in three out of
four environments according to our metrics. More unexpectedly, we find that PPO and task-agnostic
ICM achieve high empowerment, even in Montezuma where they achieve low task reward. The no-op
agent achieves the lowest scores in all metrics does not show up in the normalized coordinates.

4.1 EVALUATION OF AGENTS

Task reward Comparing the mean episode score of task-specific RND and ICM in our agent
datasets (Appendix D) with Taïga et al. (2020), we find similar performance of the two agents. Our
agents perform better in Breakout, ICM has higher reward than RND in Seaquest which is the reverse
in Taïga et al. (2020). We observe in Table 2 that task-specific RND or ICM achieves the highest
task reward per time step in all environments, showing that agents benefit from explicit exploration
objectives in all three environments.

Human similarity Human similarity is the highest for task-specific ICM and RND in Seaquest and
Montezuma respectively, but for task-agnostic ICM in Breakout and task-agnostic RND in Minecraft.
We find that exploration agents achieve the highest human similarity in all three environments, as
expected.

Input entropy We find that task-agnostic ICM and RND obtain the highest input entropy in all
environments, except in Minecraft where the random agent achieves highest input entropy. These
results may be related to the fact that ICM and RND maximize input entropy (Appendix F), and would
suggest that using extrinsic reward “distracts” the task-specific agents from maximizing input entropy.
Minecraft is an outlier among our environments in that random actions can explore a wide range of
states by looking around. The no-op agent is always the lowest, and in Breakout and Seaquest all RL
agents achieve higher input entropy than the random agent.

Information gain Information gain is highest for the random agent in Breakout, for PPO in
Seaquest, for the two configurations of RND in Montezuma, and for the random agent in Minecraft.
In all four environments, the agent achieving the highest input entropy also achieves the highest
infogain, confirming our observation that input entropy and infogain are related objectives.

Empowerment The agents exhibiting high and low empowerment vary more between environments
than for input entropy. We observe that in all three Atari environments, the random agent has relatively
high empowerment; higher than all of the RL agents in Breakout (Table 2). This may be related to the
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Figure 3: Pearson correlation coefficients between the five lifetime metrics considered in this
study: Task Reward (R), Human Similarity (S), Input Entropy (C), Empowerment (E), Information
Gain (I). The metrics were computed for the lifetime of each agent and the correlation is taken
across agents. Aggregated across environments, all metrics correlate positively. Human similarity
correlates substantially with both task reward (0.67) and the task-agnostic metrics (0.89, 0.79, 0.66).
Reward only correlates weakly with the task-agnostic metrics (0.54, 0.49, 0.41). As per-environment
correlations are over 7 data points in Atari environments and 5 in Minecraft, we do not report them as
statistically significant results.

fact that our simple preprocessing method is not semantically meaningful, i.e. it does not provide for
generalization across similar but non-identical images. Thus, empowerment may not distinguish well
between behavior in which the agent learns over time, and random behavior resulting in many subtly
different episodes. This suggests that learning good input representations may key to exploration.

4.2 EVALUATION OF TASK-AGNOSTIC METRICS

Correlation with task reward We find that task reward correlates relatively well (0.67) with
human similarity. None of the task-agnostic metrics correlate strongly with reward, the highest being
input entropy at 0.54. Considering that human similarity itself correlates well with reward, this
suggests that input entropy and task reward capture different “components” of agent behavior.

Correlation with human similarity Multiple metrics correlate well with human similarity, the
strongest once again being input entropy at 0.89. Human similarity exhibits stronger correlations
with the task-agnostic metrics we consider than does task reward. It is worth noting that input entropy
correlates the most strongly with both task-specific metrics, as is visually evident in Figure 4. It would
be worth considering correlations with human similarity on more open-ended environments in the
future, where human players are not necessarily optimizing task reward. This would help determine
whether the strong correlations observed with human similarity are a property of the task-agnostic
metrics in general, or of the human behavior on Atari games specifically.

Comparison between environments In 23 out of 24 cases in Figure 3, we find that the three
task-agnostic metrics correlate positively with task reward and human similarity. The correlations
are especially strong in Breakout and Seaquest. Input entropy correlates strongly with reward in
Breakout (0.85). Similarly, empowerment is correlated with reward in Seaquest (0.61). We attribute
this to the fact that Breakout and Seaquest are reactive games that require fast paced action choices
to achieve high task rewards. In Montezuma, the task-agnostic metrics correlate less strongly with
reward; in fact, empowerment does not correlate at all (0.00). We suggest this may be related to
the very difficult exploration in the game, where the agent is free to take many different courses of
action, some of which result in high empowerment, without obtaining any task reward. Minecraft is
an open-world environment, but the Treechop task limits the agent to breaking rather than placing
blocks, so this specific task is less open-ended. We find that input entropy and infogain correlate
very strongly with task reward (0.98, 0.91) and all three task-agnostic metrics correlate with human
similarity (0.89, 0.78, 0.74) in Minecraft.

Combining metrics To analyze whether a combination of task-agnostic metrics accounts better
for task reward or human similarity than any individual metric, we sum up different task-agnostic
metrics. No summation of two or three task-agnostic metrics correlates more strongly with human
similarity or task reward than input entropy alone. Additionally, we find that a linear model of input
entropy, infogain, and empowerment can predict task reward and human similarity with correlations
of 0.55 and 0.91 respectively. This is only slightly better than the correlation with input entropy in
the human similarity case (0.89).
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Figure 4: Scatter plots showing correlations between the three task-agnostic metrics (X axis) and the
two task-specific metrics (Y axis), normalized for each environment separately. It is visually evident
that the task-agnostic metrics show significant correlations with human similarity but are only weakly
correlated with task reward. Additionally, note that the no-op configurations are clearly distinguished
from the other agents along the input entropy, empowerment, infogain, and human similarity axes,
while yielding similar task reward to the random agent and some RL agent configurations. This
shows that input entropy, empowerment, and infogain capture aspects of behavior not captured by
task reward, in particular distinguishing between the random and no-op agents that behave very
qualitatively differently despite achieving similar task reward.

4.3 COMPARISON AMONG TASK-AGNOSTIC METRICS

Correlation among metrics In Figure 3, input entropy and information gain are shown to correlate
strongly with one another (0.95). Input entropy also correlates positively with both of them, though
less so (0.66 with input entropy and 0.55 with information gain). This suggests that empowerment
explores in a different manner than input entropy and information gain. This finding could guide the
design of future exploration methods by suggesting that, while combining metrics does not seem
to be beneficial in our environments, empowerment and input entropy/information gain are distinct
objectives and so combination of task-agnostic metrics could be applicable in other cases.

5 DISCUSSION

In this paper, we have collected large and diverse datasets of agent behavior, computed three task-
agnostic metrics on each dataset, and analyzed the correlations of the task-agnostic objectives with
task reward and with a human similarity metric. We have found that a simple probability tensor
implementation of input entropy shows promise as a task-agnostic objective for RL agent evaluation,
and that input entropy and information gain correlate more strongly with human similarity than task
reward does.

Reliability of results We are confident in proposing input entropy as a task-agnostic exploration
metric, given that it correlates the most with task reward and human similarity. We are also confident
in our human similarity metric as a supervised baseline. As the human data does not use sticky
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actions, we are limited to using a heuristic that does not rely on the action dynamics. Despite this,
human similarity correlates strongly with task reward as expected.

Limitations and future work

• Our downscaling and discretization method is a simple and transparent preprocessing method, but
may not be optimal. More semantically meaningful representations, potentially including deep
learning embeddings, may have the potential to uncover additional correlations and/or increase
the low overlap observed for our human similarity metric.

• The human dataset we used is limited in quantity compared to agent data (roughly 250K frames
per environment, versus 100M frames of agent data in the Atari games). This is a possible reason
that our human similarity metric, overlap between agents and human inputs, is low; see Table 2.
Access to more human data would be helpful for future work.

• When RL agents are trained to optimize extrinsic task reward, it is clear what task the agent
is trying to accomplish. The same is not necessarily true of human data, especially in more
open-ended games like Montezuma’s Revenge, where players may choose to explore or pursue
an objective other than that defined by the reward function. Use of a human similarity metric
with respect to distinct human datasets with different tasks for the players could yield some
insight on how closely the human concept of exploration aligns with the task in commonly used
environments. An example of such a dataset is is the MineRL human dataset (Guss et al., 2019).

Summary of insights Task reward, while a useful measure of agent intelligence, may not be
complete. We propose input entropy as a promising task-agnostic metric for agent evaluation, finding
that it correlates more strongly with human similarity than does task reward. We also find that
input entropy and information gain correlate strongly with each other but to a lesser degree with
empowerment, and thus recommend future research into combining empowerment with input entropy
or information gain, in a variety of environments.
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A LIFETIME METRICS

Breakout
Symbol Metric No-op Random ICMn RNDn PPO ICMr RNDr

R Task Reward 0.0000 0.0071 0.0695 0.0786 0.0576 0.1302 0.0743

S Human Sim. 0.0000 0.0247 0.0346 0.0346 0.0317 0.0346 0.0263

C Input Entropy 0.0000 7.9303 16.2240 15.9964 15.0695 16.6389 14.9995

I Infogain 0.0000 0.0203 0.3458 0.3213 0.2770 0.3533 0.2596

E Empowerment 0.0000 0.4039 0.4028 0.3907 0.3479 0.3548 0.2770

Seaquest
Symbol Metric No-op Random ICMn RNDn PPO ICMr RNDr

R Task Reward 0.0000 0.1546 0.1789 0.1424 0.7638 1.7379 1.0993

S Human Sim. 0.0001 0.0031 0.0034 0.0035 0.0015 0.0037 0.0032

C Input Entropy 6.7031 12.4245 16.6600 17.0014 12.6777 14.6161 15.7433

I Infogain 0.0000 0.2209 0.3700 0.3835 0.1941 0.2779 0.3319

E Empowerment 0.0000 0.6110 0.4013 0.4008 0.8661 0.6806 0.5975

Montezuma
Symbol Metric No-op Random ICMn RNDn PPO ICMr RNDr

R Task Reward 0.0000 0.0003 0.0000 0.2163 0.0003 1.0620 4.2374

S Human Sim. 0.0001 0.0069 0.0063 0.0081 0.0070 0.0075 0.0120

C Input Entropy 1.9008 7.1812 7.9123 8.4405 7.1757 7.1073 7.4942

I Infogain 0.0000 0.0120 0.0165 0.0229 0.0113 0.0126 0.0125

E Empowerment 0.0000 0.1326 0.2629 0.1743 0.1436 0.1869 0.1373

Minecraft
Symbol Metric No-op Random RNDn PPO RNDr

R Task Reward 0.0000 0.0012 0.0013 0.0012 0.0011

S Human Sim. 2.2× 10−6 2.8× 10−5 4.0× 10−5 3.2× 10−5 3.2× 10−5

C Input Entropy 9.4112 16.2270 14.8039 15.3758 15.0612

I Infogain 0.0004 0.0583 0.0345 0.0502 0.0477

E Empowerment 0.0000 0.0770 0.2885 0.1077 0.3444

Table 2: Lifetime values of each metric for all agents and environments, with the highest value of
each row in bold. In all three environments, the highest task reward is achieved by task-specific RND
or ICM, which maximize both task reward and different implementations of input entropy; and the
highest input entropy is achieved by task-agnostic RND or ICM, which is to be expected as these
agents maximize input entropy alone. Agents with the highest human similarity, empowerment, and
information gain vary by environment. Note that the random agent achieves high reward in Minecraft;
this may be related to the shorter run-time of 12 million frames, which was necessary because the
Minecraft environment is slower than the Atari games. Nonetheless, the random agent in Minecraft
has high input entropy and infogain, as expected due to the correlation of those metrics with reward.
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B INFORMATION GAIN VARIANT CORRELATIONS

Shared Discretizations Unshared Discretizations
Information Gain Implementation Task Reward Human Sim. Task Reward Human Sim.

Dirichlet of transition counts −0.44 −0.36 0.05 0.40

Dirichlet of unique transitions 0.49 0.79 0.35 0.71

Logarithm of transition counts 0.55 0.84 0.37 0.78

Square root of transition counts 0.52 0.84 0.38 0.78

Table 3: Correlations of four information gain implementations with task reward and human similarity.
We compare the implementations for two forms of preprocessing, which use the same discretization
across agents or use a different discretization for each agent based on its data only. We find that the
Dirichlet distribution of unique transitions and logarithm and square root of transition counts exhibit
greater correlations when using shared discretizations, and that all of the said three methods correlate
strongly with human similarity and more weakly with task reward.

C HUMAN SIMILARITY VARIANT CORRELATIONS

Human Sim. Implementation Task Reward Input Entropy Information Gain Empowerment

Jaccard Similarity 0.67 0.89 0.79 0.66

Jensen-Shannon Divergence 0.26 0.77 0.67 0.66

Table 4: Correlations of two human similarity implementations with task reward and the three
task-agnostic metrics. We compare the Jaccard similarity (intersection over union) of the set of states
visited by the human player and those visited by the RL agent, with the Jensen-Shannon divergence
between the two sets. We find that Jaccard similarity correlates much more strongly with task reward,
slightly more strongly with input entropy and information gain, and near-equally with empowerment,
as compared to Jensen-Shannon divergence. The two implementations have a correlation of 0.78 with
each other.

D EPISODE RETURNS

Naive Task-Agnostic Task-Specific
No-op Random ICM RND PPO ICM RND

Breakout 0.0000 1.6513 92.9397 132.7004 105.6570 240.3896 147.6850

Seaquest 0.0000 98.9152 330.5743 349.1177 1713.8523 4493.0141 2700.6128

Montezuma 0.0000 0.6422 0.0130 489.0153 0.7339 238.7989 5186.5680

Table 5: For our analysis we normalized all metrics by the number of time steps in the agent’s dataset.
For comparison with prior work, this table shows the unnormalized episode returns of all agents.
These verify that the agents were trained correctly. Note that they each correspond to only one
random seed.
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E ENVIRONMENTS

We consider three Atari environments: Breakout, Seaquest, and Montezuma’s Revenge. All three
games are 2D environments with backgrounds fixed relative to the screen. The player is free to move
around within the screen on one axis in Breakout, and two axes in the Seaquest and Montezuma. In
Montezuma, the player can additionally navigate from one room into another.

Breakout Breakout is a game in which the agent controls a paddle at the bottom of the screen with
the objective of bouncing a ball between the paddle and the blocks above, which disappear upon
contact with the ball. The game is nearly deterministic: the only source of randomness other than
sticky actions is the initial direction of the ball after starting the game or losing a life. Breakout is the
simplest of our three environments, the player only being free to move a paddle in one dimension.

Seaquest Seaquest is a game in which the player controls a submarine, with the objective of
defending oneself against sharks and other submarines which appear frequently and randomly at both
sides of the screen. Additionally, the agent is tasked with picking up divers, which also appear at
random, and bringing them to the top of the screen. Because of the random appearance of sharks and
divers, the game can be difficult to predict, and made more so by sticky actions. It is more challenging
that Breakout, as the player moves along two dimensions and enemies appear at random; however,
the agent’s task is reactive, with no long-term planning required.

Montezuma Montezuma’s Revenge is a difficult platformer game with a large first level consisting
of many rooms, which necessitates long-term planning. The player must navigate ladders, ropes, and
various hazards such as moving skulls and lasers. Rewards are very sparse, and given only when the
player completes an objective such as finding a key or opening a door, which often require complex
and specific action sequences. For this reason, intrinsic rewards (Burda et al., 2018b) or human
demonstrations (Aytar et al., 2018) are important to succeed at the game.

Minecraft Treechop MineRL (Guss et al., 2019) is a set of environments in Minecraft, a block-
based 3D game in which the player can explore, build, and mine within a procedurally generated
world. The Treechop environment provides the player with an axe and restricts the action space
such that the player can walk around and break blocks, being given task reward for breaking and
collecting wood blocks from trees. Though the goal is clearly defined, there are a wide range of
possible activities the agent can pursue.

We follow the standard evaluation protocol (Machado et al., 2018). The Atari games yield 210 ×
160× 3 images, which are converted to grayscale and rescaled to 84× 84 before being input to the
agent; MineRL returns 64× 64 images which are input to the agent directly. The agent chooses one
of a set of discrete actions: 4 in Breakout, and 18 in Seaquest and Montezuma. While the effects of
the actions in the original games are deterministic, we use “sticky actions”, meaning that the agent’s
action is ignored with 25% chance and instead the previous action is repeated.
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F AGENTS

Random An agent that uniformly samples random actions from the available action space.

No-op The three environments we consider have a no-op action which does nothing, though the
environment still continues to update. We consider an agent which always takes this no-op action.

PPO Proximal Policy Optimization (Schulman et al., 2017) trained on extrinsic rewards only. PPO
is a commonly used policy gradient algorithm that optimizes the task reward on-policy. It optimizes
task reward while preventing the policy from changing too much on each training step, so that the
learning process is stable.

ICM Intrinsic Curiosity Module (Pathak et al., 2017) is an exploration agent that maximizes input
entropy in addition to the task reward signal. Image embeddings are created that incorporate only
those aspects of the image that can affect the agent, by training a network to predict the agent’s action
given the preceding and following input images. A second network is trained to predict an input
image embedding given the preceding input and action. Its error is used as an intrinsic objective.

RND Random Network Distillation (Burda et al., 2018b) is an agent based on PPO that maximizes
input entropy, implemented as the prediction error of a model trained to distill a random function. It
makes use of a randomly initialized and fixed neural network which predicts an embedding from the
agent’s input images. Another network is trained on the outputs of the random network, and its error,
which models the agent’s “familiarity” with the inputs in question, are used as an intrinsic objective.
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