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Abstract

Accurate identification of druggable targets remains a critical challenge in drug
discovery due to the inherent complexity of biology and the scarcity of labeled
data. We present MORGaN, the first masked auto-encoder that natively oper-
ates on heterogeneous multi-omic gene networks with diverse biological relation
types. MORGaN learns structure-aware node embeddings without supervision,
leveraging multi-relation topology through a cross-relation message-passing ar-
chitecture. We deploy MORGaN for druggable gene discovery, using its repre-
sentations to identify candidate therapeutic targets. Despite using no additional
labels, MORGaN outperforms state-of-the-art models across all metrics (AUPR:
0.815 — 0.888; +9%). Ablation studies highlight the importance of both relation
diversity and architectural design in achieving these gains. Post-hoc analyses
uncover pathway-coherent subgraphs that help explain predictions, supporting
biological interpretability. MORGaN enables label-efficient, interpretable, and fast
graph learning for drug discovery and other data-scarce biomedical tasks. Code
and documentation are available at this link.

1 Introduction

Drug discovery is complex and time-consuming, marked by costly financial investments and a high
risk of failure [32]]. Bringing a new drug to market can take over a decade and cost upwards of 2.6
billion USD, with failure rates remaining high across all stages of development [[16} 32| [39]. A major
contributor to this attrition is the inherent complexity in correctly identifying molecular targets whose
modulation translates into clinical benefit [10]. Improving target selection is therefore critical to
accelerating therapeutic development and reducing the associated costs [32,[39].

Cancer exemplifies this challenge, as tumorigenesis results from intricate, context-dependent interac-
tions across genetic, epigenetic, and proteomic layers [4} 15, [7}[15, 137, 147]]. Yet, conventional methods
for identifying druggable genes — genes whose products can be therapeutically targeted — often rely
on single data modalities or predefined pathways, overlooking crucial cross-layer interactions and
tumor heterogeneity [[7, (15137, 147]]. Even network-based methods often use PPIs alone, overlooking
diverse gene—gene relationships; models that jointly capture multiple biological relation types to
provide a systems-level view are required [8, [36].

Graph neural networks (GNNs) naturally model such structure via message passing, merging network
topology and features into context-aware embeddings [[14}[22] 36} 41, 45]]. Particularly, Relational
Graph Convolutional Networks (RGCNs) extend GNNs to handle heterogeneous graphs with multiple
edge types, making them ideally suited for multi-relational biological networks [34,42]]. However,
applying these methods to druggable gene prediction remains challenging due to the scarcity and bias
of labeled datasets [8]].
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To address these challenges, we propose MORGaN, a self-supervised multi-relational graph learn-
ing framework that integrates multi-omic features with diverse biological relationships for robust
druggable gene discovery (Figure[I). By leveraging masked feature reconstruction [8, [17], MOR-
GaN captures underlying biological structures, exploiting both labeled and unlabeled information to
produce generalizable gene embeddings. Consequently, MORGaN significantly enhances predictive
accuracy, scalability, and biological interpretability compared to existing methods.

(W ~\
SELF-SUPERVISED PRE-TRAINING FINE-TUNING
~N " 777777777777777777777777777777777777777 [ '
] I
Graph structure Node feature maskin, Self-supervised masked 0 ificati |
p! : g ‘graph reconstruction | : Identification of druggable genes ]
Genes as nodes, iy !
associations as edges. i [ I
Mult-relation gene (R - '
association network i e I
with 6 relation types GraphMAE - |
BlocsSatures and multi-omic node ] 3 |
@ LU | : £ !
| " E

[Cn e - H s !
[ B8 5 8wl i s J
O | a z vl |
| g Eu B ] : 08 8 o |
— —=] 2 z : ] |
v 2 o I
o e, e i o 2 | | MLPclassifier  Node level classification |
mtation frequency) from g 8 . !
TCGA as feature vector & 5 o ]
[ 1
Relation types [ v 74 |
#nodes: 13627 ' ] ‘ J

—— PPI " ~ ! Druggable gene
L pormain simiarit # edges: 557,288 i ("Node embeddings ) o b ]

y | Ll Non-druggable gene v
—— Sequence similarity YU ISP L |
Semantic similarity | | | Score :
Pathway co-occurrence ! Pl ]
1 Evaluation
—— Co-expression _J | : L AUPR, AUC, accuracy, F1 and biological soundness !
)
\ i I U I SIS SIS TICICUIET. S S J

Figure 1: MORGaN overview. Graph construction and data integration: build a six-relation, multi-
omic gene network. Self-supervised pre-training: a RGCN-based masked autoencoder (GraphMAE)
reconstructs the missing features and generates node embeddings. Fine-tuning: an MLP uses these
embeddings to classify druggable genes, evaluated with AUPR, AUROC, accuracy and F1.

1.1 Contributions

1. Masked auto-encoding for heterogeneous graphs. To our knowledge, MORGaN in-
troduces the first MAE that operates on multi-relation, multi-omics graphs, unifying six
biological edge types in a single self-supervised objective.

2. State-of-the-art performance. MORGaN surpasses current SOTA across key metrics
(AUPR +9%, AUROC +3%, Accuracy +15% and F1 +13%).

3. Ultra-lightweight kernel. A vertically-stacked sparse matrix [42] and basis decomposition
[34] collapse R separate message-passing steps into one sparse-dense matrix multiplication,
cutting per-epoch time by ~ 80%.

4. Plug-and-play extensibility. The model is disease-agnostic; re-targeting only requires new
node features and labels. We validate disease- and task-level transfer in out-of-distribution
studies; see Appendix [I}

5. Out-of-the-box interpretability. GNNExplainer sub-graphs translate each prediction into a
minimal set of genes — providing falsifiable hypotheses for experimental validation.

2 Related work

Multi-omic GNNs for cancer biology. Early work showed that fusing several omics layers with
network structure helps uncover oncogenic mechanisms. Schulte-Sasse et al. [35] integrated mu-
tation, expression and copy-number profiles with a GCN to pinpoint novel cancer genes and their
pathways. More recently, MOGAT used graph attention over concatenated omics views to refine
cancer-subtype labels, confirming that attention can weight modalities adaptively [41]. SMG added
self-supervised masking to a PPI graph, improving essential- and cancer-gene recall under scarce
labels [8]]. IMI-driver extended this idea by stacking distinct functional networks (PPI, co-expression,
co-methylation, etc.) and training a multi-graph GCN to prioritize tumor drivers across 33 TCGA
cohorts, outperforming feature-only baselines by 15-20% AUROC [37]. MODIG [49] and the
follow-up MDMNI-DGD [23]] generalized from single PPIs to five- and six-edge-type multiplex
graphs; per-layer attention and view-level fusion lifted driver- and druggable-gene AUPR by 6-10%
over PPI-only models. Yet, all of these models train each edge type in isolation or require heavy
message-passing loops, limiting scalability.
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Self-supervised and masked graph learning. Generic graph SSL replaces expensive node labels
with pretext tasks. Masked autoencoders such as GraphMAE reconstruct hidden node attributes and
beat contrastive objectives on 21 benchmarks [17]]; SMG applies the same principle to cancer PPIs
[8]. Orthogonal work explores contrastive signals: HeCo co-contrasts schema- and meta-path views
on heterogeneous graphs to lift performance without labels [25], while SpaMask couples masking
and contrastive heads for spatial-omics clustering [27].

3 MORGaN

MORGaN combines heterogeneous biological knowledge with graph representation learning to
predict druggable genes in three stages (Fig.[I):

1. Graph construction and data integration — we construct a heterogeneous, multi-relational
gene graph that fuses six biological interaction types with multi-omic node features;

2. Self-supervised representation learning — a relational graph convolution masked autoen-
coder distills structure-aware embeddings from the unlabeled graph;

3. Task-specific fine-tuning and interpretation — the embeddings are fine-tuned to identify
druggable genes, and post-hoc explainers expose the components that drive each prediction.

This design unites broad biological priors with graph deep learning to deliver accurate, transparent,
and computationally efficient predictions.

3.1 Graph construction and data integration

We represent the gene interaction landscape as a heterogeneous, multi-relational graph G = (V, £, R),
where each node v; € V represents a gene. For each biological relationship type r € R, we define
a relation-specific edge set £, C V x V and we define the full graph as the union over all relations
& = U, er & The pan-cancer graph contains 13 627 genes and 557 288 edges across six relation
types. For further details, see Appendix [A]

Relations. Following MDMNI-DGD [23]], we incorporate six biologically grounded relation types,
based on protein-protein interaction networks (PPI), gene co-expression, pathway co-occurrence,
gene ontology semantic similarity, and sequence similarity. Self-loops are added to preserve each
gene’s own features during message passing. For further details, see Appendix

Node features. Each gene node v; is associated with a multi-omic feature vector x;, obtained
by concatenating log10-transformed somatic mutation frequencies, copy number alteration (CNA)
z-scores, DNA methylation 3-values, and log-normalized gene expression values. All features are
extracted from The Cancer Genome Atlas (TCGA) pan-cancer dataset [8, 43]], spanning 29,446 tumor
samples across 16 cancer types, as in SMG [8]]. For further details, see Appendix [A.2.2]

Labels. Positive druggability labels correspond to Tier 1 targets defined by Finan et al. [10], i.e.
proteins with approved drugs or clinical candidates; an equal number of negatives is randomly
sampled from the remaining non-target genes to balance class distributions. See Appendix [A.2.3]

3.2 Model architecture

We adopt the relational graph convolutional network (RGCN) of Schlichtkrull et al. [34] and convert
it into a graph masked autoencoder (GraphMAE) [17].

Message passing formulation. For layer [ the hidden state of node v; is updated via:

1
M=o (303 —wOrP s Wl |, e
reRjeENT T

where hl(-l) represents the hidden state of node v; at layer I, N is the set of ’s neighbors under

relation r, WT(Z) and Wo(l) are trainable relation-specific and self-loop weight matrices, respectively,
and ¢; , is a normalization constant to ensure numerical stability.
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Vertical stacking for sparse message passing. To exploit the fast sparse—dense multiplication
(spmm) available in PyTorch while still updating all relation types at once, we concatenate the R
relation-specific adjacency matrices {A, } 2, vertically into a single sparse block matrix A, €
RUEN)XN "ag introduced by Thanapalasingam et al. [42]]. During each RGCN layer, we first mix
topological and feature information with one call to spmm(A,,, X ), producing a relation-expanded
feature matrix of shape (RN) X d;,,. This matrix is then reshaped back to N x (R d;;,) and multiplied
by a stacked weight matrix to yield the next-layer embeddings. Because the projection to higher
dimensions happens after the sparse multiplication, vertical stacking keeps memory usage low and
scales well to large graphs with modest input dimensionality.

Weight decomposition. To manage parameter complexity with multiple relation types, we imple-
ment basis decomposition [34]. Each relation-specific matrix is expressed as a linear combination of
a shared set of B basis matrices {V;}Z_:

B
Wr = Z a”r'b‘/bv (2)
b=1

where V}, € R%inXdout gre global basis matrices shared across all relations, and a,, € R are relation-
specific learnable coefficients. This formulation significantly reduces parameter count compared to
using unique weights per relation, while preserving expressiveness through learned compositions. In
our implementation, we set B = 2 to strike a balance between model flexibility and generalization
capacity.

Normalization and dropout. Each layer applies layer normalization to the concatenated relation
outputs, adds a residual connection, and then dropout (p = 0.2).

Implementation details. All models are implemented in PyTorch 2.6.0 [31]] and PyTorch-
Geometric 2.6.1 [9]]. Relation weights W,., bases V4, and coefficients a,; use Xavier uniform

(gain = \/i for PReLU) initialization; the self-loop matrix Wy uses Kaiming initialization. We fix
random seeds (Python, NumPy, PyTorch, PyG) to 0 and 1 and report mean =+ std over 3 runs per seed.

3.3 Training

We adopt a two-phase training strategy with Adam [21]].

Self-supervised pre-training. Following GraphMAE [17]], we randomly mask 50% of node features
and reconstruct them using a scaled cosine loss:

1 273, 1\
»Crcc - = 1- L AZ ) Z ]-7 3
7 2 ( xi|xi|> v @

meﬁ

where z; and Z; denote the original and reconstructed feature vectors, respectively, and v controls
the loss sharpness. Pre-training runs for 100 epochs with an initial learning rate 10~2, weight decay
103, cosine decay 1076, v = 3, and early stopping (patience 10). Hyper-parameters were selected
via a grid sweep (see Appendix [C)); the best configuration is used throughout the paper. Through this
pre-training stage, the model learns compressed embeddings that encode both multi-omic profiles
and relational context, serving as a robust foundation for downstream classification.

Fine-tuning (supervised). The frozen embeddings feed an MLP classifier optimized with weighted
binary cross-entropy:

‘Cclass = —w [y IOgJ(p) + (1 - y) lOg(l - U(p))] ) (4)

with label-dependent weights w to handle class imbalance. We train for up to 200 epochs (learning
rate 5 x 1072, weight decay 104, gradient-clip 1.0) with early stopping (patience 20) on validation
AUPR. Hyper-parameters were selected in the same sweep used for pre-training (see Appendix [C).
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3.4 Experimental setup and evaluation

Repeated shuffle-split validation. We generate two independent, stratified train/validation/test
splits (80% / 10% / 10% of nodes) using different random seeds. Each split is trained three times with
different weight initializations, giving six runs in total. We report mean =+ s.d. of AUPR, AUROC,
Accuracy, and F1 across these runs.

Baseline models. We benchmark MORGaN against eight alternatives that span feature-only,
homogeneous-graph and heterogeneous-graph approaches:

. Logistic Regression — feature-only

. Multilayer Perceptron (MLP) — feature-only)

GCN - vanilla graph convolution on a 1-dimensional PPI graph

. GAT - graph attention network on the PPI graph

. SMG-GCN [8]] — GCN with self-supervised pre-training on the PPI graph
. SMG-GAT [8] — GAT with self-supervised pre-training on the PPI graph
. MODIG [49] - heterogeneous graph model without pre-training

. MDMNI-DGD [23]] — heterogeneous graph model without pre-training

The two feature-only models use the concatenated multi-omic vectors. The four homogeneous
baselines (3-6) operate on a single-relation PPI graph and therefore lack the multi-relational context
exploited by MORGaN. The two heterogeneous baselines (7-8) share the full multi-relational topology
with MORGaN but do not include its self-supervised pre-training stage. All models receive identical
node features and use the same train/validation/test splits; hyper-parameters are selected by grid
search on the validation fold. See Appendix [B]for further details.

This design cleanly isolates MORGaN’s architectural and training contributions while ensuring a fair,
rigorously repeated comparison to both feature-based and graph-based alternatives.

Interpretability. For high-confidence predictions (p > 0.9), we use GNNExplainer [48] to high-
light the network edges and gene features that most drive each call. We then use Enrichr to run
pathway enrichment analysis — a simple check of whether those highlighted genes occur together in
well-known biological pathways more often than expected by chance — reporting pathways that pass
a false discovery rate (FDR) threshold of < 0.05.

4 Results

4.1 Overall predictive performance

Table [T] summarizes mean performance + s.d. over six stratified shuffle—split runs (see §3.4) of
MORGaN against eight alternative approaches. MORGaN tops every metric, pushing the state of the
art into the 0.9-range on almost every curve—based measure:

* Precision-recall. MORGaN achieves 0.888 £ 0.004, an absolute gain of +0.073 (+9.0 %)
over the strongest competitor (MDMNI-DGD, 0.815 £ 0.019). The gap exceeds the largest
baseline standard deviation (0.052 for MLP) by more than 40 %, underscoring significance.

* Discrimination ability (AUROC). Our framework reaches 0.907 £ 0.005, outperforming
the next best model by 4+-0.030 (+3.4 %). Even methods that exploit the same multi-relational
graph but skip self-supervised pre-training (MODIG, MDMNI-DGD) lag behind.

¢ Balanced classification (F1 and accuracy). MORGaN’s F1= 0.917 and Acc= 0.915
translate to absolute gains of 10 — 12 percentage points (pp) over the closest challengers,
reflecting superior recall without sacrificing precision.
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Table 1: Test-set performance of MORGaN versus eight baselines on the druggable-gene prediction
task (mean + s.d.). Bold numbers indicate the best score per column; italic numbers mark the second
best. All models receive the same multi-omic node features; heterogeneous methods (bottom block)
also share the identical six-relation graph.

Model AUPR AUROC Accuracy F1 Score

Logistic regression 0.749 £ 0.045 0.682 £ 0.055 0.620 £ 0.944 0.577 £ 0.096
MLP 0.675 £+ 0.052 0.722 £ 0.045 0.722 +0.045 0.701 £ 0.035
GCN 0.721 £ 0.020 0.766 £+ 0.005 0.715 £ 0.025 0.722 +0.037
GAT 0.699 £ 0.005 0.764 £+ 0.009 0.724 £0.015 0.742 £+ 0.005
SMG-GCN [8]] 0.714 £+ 0.009 0.763 £ 0.011 0.729 £+ 0.029 0.724 +£0.014
SMG-GAT [8]] 0.708 £+ 0.005 0.776 £+ 0.005 0.732 £ 0.027 0.751 +£0.014
MODIG [49] 0.764 £ 0.017 0.837 £ 0.015 0.794 £+ 0.009 0.810 £+ 0.007
MDMNI-DGD [23]] 0.815 +0.019 0.877 +0.003 0.664 + 0.038 0.741 £ 0.022
MORGaN (no pre-training) 0.879 £ 0.006 0.900 £ 0.006 0.898 £ 0.006 0.902 £ 0.006
MORGaN (with pre-training) 0.888 £0.004 0.907 +0.005 0.915+0.005 0.917 £ 0.004

Why does MORGaN win? A head-to-head inside each baseline family points to two factors:

1. Heterogeneous edges matter. Substituting the single-edge view of GAT with the full six-
relation interactome already yields a strong lift (AUPR +0.065 from GAT to MODIG). This
gain confirms that druggability signals are not confined to one molecular relationship but
are dispersed across many.

2. Architecture matters more. MORGaN does not just stack relation-specific layers; its encoder
processes every edge type in one coherent pass, allowing information to flow between
relations inside each layer. This cross-relation coupling unlocks another sizable margin over
the best heterogeneous competitor (AUPR +0.073 versus MDMNI-DGD) and leaves even
the ablated MORGaN (no pre-training) far ahead.

Together, these observations show that (i) embracing the full diversity of biological interactions
and (ii) employing an architecture specifically designed to fuse those interactions in-layer are both
necessary — and mutually reinforcing — for state-of-the-art druggable-gene discovery.

We further test robustness under both distribution and task shift: (i) disease shift by re-training
MORGaN on an Alzheimer’s disease (AD) graph built analogously to the cancer setting; and (ii)
task shift, by applying the framework to essential-gene ranking. We observe qualitatively consistent
trends under both types of shift; see Appendix [[] for full protocols and results.

4.2 Ablation on biological relations and omics features

We next asked which inputs matter most to MORGaN’s performance on the cancer dataset. Three
complementary ablations were performed (full tables in Appendix [E).

Edge-type “drop-one” study. Starting from the six-relation graph, we removed one edge type at a
time and re-trained the full pipeline. Figure [2] (blue boxes) plots the resulting AUPR distributions; the
line at n = 6 is the unablated model. Removing GO semantic similarity produces the largest drop
(0.888 — 0.878, —1.0 pp). PPI and pathway co-occurrence are nearly as important (—0.9 pp each),
whereas sequence similarity and co-expression are slightly noisy: cutting them improves AUPR to
0.900 and 0.899. Notably, every five-relation variant still beats the best single-relation model (GO
only, 0.883), confirming the benefit of diverse biological context. Robustness checks across five
popular PPI databases (Appendix Table ) show that STRING-db gives the strongest lift (AUPR
= 0.971), but MORGaN consistently outperforms baselines regardless of the underlying interactome.

Randomized edge controls. To verify that gains arise from genuine biology rather than extra
parameters, we degree-preserved-shuffled each edge type and repeated the experiment (grey boxes in
Fig.[2). AUPR collapsed to ~ 0.5 — close to random guessing — for every configuration, demonstrating
that MORGaN relies on meaningful topology, not mere edge density.
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Figure 2: For every subset size n we plot AUPR over all combinations of real edges (blue) and
their randomized counterparts (grey). The “box” at n = 6 reduces to a thin line because only one
configuration — the full graph — exists.

Omics feature ablation. A similar “leave-one-modality-out” analysis suggests that copy-number
alterations (CNA) are the most informative modality: achieving the highest performance when used
in isolation. Gene expression, by contrast, was the noisiest — its removal increased AUPR by +0.009,
consistent with evidence that bulk transcriptomics yields limited signal strength, given the many
measured features but relatively few samples [[1]. Nevertheless, the full four-omics model offered
the best overall trade-off, achieving the highest AUROC (0.907) and second-highest AUPR (see

Appendix [E.2).

Takeaways. (1) Semantic proximity in Gene Ontology terms supplies critical long-range cues
that cannot be captured by PPI edges alone. (2) Multi-relation structure is genuinely informative —
performance falls to chance once biology is scrambled. (3) Results are stable across alternative PPI
layers, with STRING-db performing best but all sources sustaining MORGaN’s edge. (4) While
CNA dominates in isolation, combining complementary omics restores false negatives that CNA
alone misses, yielding the best F1. These findings validate the design choices behind MORGaN.

4.3 Biological interpretability and case studies

MORGaN rediscovers established targets and proposes novel candidates. MORGaN correctly
retrieves hallmark cancer-druggable genes such as EGFR, HER2, BRAF, ALK, MET, and RET.
Beyond these, the model flags 954 additional genes with posterior probability p > 0.9. Many
prioritized genes substantially overlap with independent resources (see Appendix [H), supporting the
reliability of MORGaN’s predictions. Furthermore, pathway enrichment, literature mining, and local
explanations (below) indicate that many of these are, in fact, promising putative targets.

Latent structure mirrors biology. In the learned embedding space, positives cluster distinctly
from non-targets (Fig. [3). This separation indicates that the self-supervised pre-training has distilled
a biologically meaningful representation in which druggable genes occupy a distinct region of latent
space.

Pathway-level evidence and mechanistic explanations support predictions. Predicted positives
are enriched for receptor-mediated signaling and canonical cancer hallmarks (FDR< 0.05; see
Appendix [F). GNNExplainer recovers pathway-coherent subgraphs that support these predictions

(see Appendix [G).
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Figure 3: t-SNE visualization of MORGaN embeddings. Each point is a gene, colored by ground-
truth class (left) or model prediction (right). The learned latent space clearly separates druggable
(dark blue) from non-druggable (light blue) genes.

Combining global evidence (hallmark-pathway enrichment) with local mechanistic explanations
shows that MORGaN both rediscovers established targets and delivers a set of 954 high-confidence,
biologically coherent putative targets for experimental validation.

4.4 Computational efficiency

Thanks to vertically stacked sparse message passing and basis-matrix weight decomposition (§3.2),
MORGaN trains in 24.3 & 2.9 s end-to-end — about 65 x and 23X faster than MODIG and MDMNI-
DGD, respectively; full hardware and per-stage breakdown are in Appendix

5 Limitations and future work

This study relies on a static interaction graph that merges data across tissues and time; it therefore
misses the dynamic rewiring that accompanies disease progression. Moreover, our data is derived
from public resources that may over-represent well-studied genes and common cancers, which can
introduce dataset bias and obscure disease-driven network rewiring. However, we choose TCGA
because it provides breadth, standardization, and reproducibility. In addition, we treat druggability as
a binary label, whereas in practice it lies on a spectrum shaped by modality, structure, and clinical
tractability; future versions could adopt multi-label or continuous endpoints. Nonetheless, binary
labels mirror industrial practice — at a given point in time, for a specific therapeutic class (here,
small-molecule drugs), targets are operationally treated as either druggable or not.

6 Conclusion

This work introduces MORGAN, a self-supervised multi-relational graph framework that integrates
six biological edge types with four omics modalities to prioritize druggable genes in cancer. By
combining relational structure with masked feature reconstruction, MORGaN bridges two gaps in
target discovery: (i) the siloing of heterogeneous interaction data and (ii) the scarcity of high-quality
labels. On a pan-cancer benchmark, MORGaN beats eight strong baselines and re-discovers hallmark
pathways, without sacrificing efficiency. Masked pre-training cuts label dependence, efficiency
enables large graph sweeps, and explainer subgraphs provide falsifiable mechanisms. Being disease-
agnostic, MORGAN transfers to other pipelines with minimal changes (Appendix [[). Code and
configs are available on GitHub|
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Appendix

A Graph construction and data integration

A.1 Graph summary and descriptive statistics

Table [2]lists the edge count and filtering threshold used for each of the six relation types that form
the heterogeneous gene network. The graph is moderately sparse (overall density < 0.004), with a
heavy-tailed degree distribution typical of biological interaction maps (details in the supplied Jupyter
notebook). All subsequent experiments use this exact graph unless stated otherwise.

Table 2: Edge statistics for the heterogeneous gene graph.

Relation type Threshold #Edges
CPDB PPI score > 0.50 504 378
Co-expression |r| > 0.80 34982

Pathway co-occurrence  Jaccard > 0.60 8964
GO semantic similarity =~ Wang > 0.80 8606
Sequence similarity top 5 % bitscore 150
Domain similarity Jaccard > 0.30 208

A.2 Components
A.2.1 Relations

The heterogeneous MORGaN graph contains six complementary edge types. Each captures a different
notion of functional similarity; combining them lets the model reconcile noisy, partially overlapping
evidence rather than over-focusing on any single assay. We consider the following relation types:

* Protein—protein interaction (PPI). Proteins are large biomolecules composed of amino-
acid chains encoded by genes. A PPI edge is added when two proteins form a physical
complex — e.g. an enzyme binds its substrate or two receptors dimerize — detected by assays
such as yeast-two-hybrid or affinity purification. We connect the genes that encode the
interacting proteins with an undirected edge. Because small molecule drugs also act at
this physical level, PPI edges supply high-resolution mechanistic context. High-confidence
protein-protein interactions are obtained from one of STRING-db [40] (score > 0.8), CPDB
[26] (score > 0.5), IRefIndex v.1 and v.4 [33] (score > 0.8), and PCNet [18]] (default
threshold). CPDB is used as a default.

» Co-expression. RNA-seq quantifies how often each gene is transcribed across thousands of
samples; higher counts mean the gene is more active. If two genes’ expression profiles are
consistently correlated, we add an edge, reflecting shared regulation by common transcription
factors or signaling programs — even when their proteins never touch. Co-expression
therefore contributes regulatory information that PPI alone cannot provide. An edge is
added between genes with an absolute Pearson correlation > 0.7 across 79 healthy human
tissues, based on GSE1133 [38]].

» Pathway co-occurrence. KEGG [19, 20] curate step-by-step biochemical pathways (e.g.
“MAPK signaling”). Genes that appear in the same pathways are linked because they
participate in a shared biological process. This injects human knowledge and adds a loose
sense of up-/down-stream directionality without exploding the number of edge types. We
compute the Jaccard similarity of KEGG [19} 20] pathway memberships:

_ [P, N P, |
|PG1 UPG2|

and include an edge where similarity > 0.60.

Jp(G1,G2) &)

* GO semantic similarity. The Gene Ontology (GO) is a controlled vocabulary with three
name-spaces: Biological Process (what the gene does), Molecular Function (how), and
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Cellular Component (where) [2,!44]. Terms are assigned by curators and automated pipelines.
GO edges generalize “same pathway” and cover genes that lack rich KEGG annotations.
We compute the geometric mean of best-match-average (BMA) Wang scores [46] across
the GO Biological Process (BP), Molecular Function (MF), and Cellular Component (CC)
ontologies [2, 44]:

Rgo(G1,G2) = (Simpya (G, G2) x Simgyia (G, Ga) x Simga (Gr, Gz))
and add an edge where Rgo(G1, G2) > 0.80.

* Sequence similarity. A sequence similarity edge joins proteins whose sequences align with
high statistical confidence. Such homology implies a common ancestor and often a shared
3-D fold or catalytic pocket, allowing MORGaN to transfer knowledge from well-studied
family members to poorly characterized relatives. We add an edge to the top 5% BLAST
bit-scores (normalized for sequence length) between non-identical gene pairs.

ol

(6)

* Domain similarity. Pfam domains are recurrent, modular sequence blocks that fold into
functional units (e.g. SH2, zinc-finger). We connect two proteins if the Jaccard similarity
between their Pfam domain sets exceeds 0.30 [11]. Whereas full-length sequence similarity
is global, domain similarity edges focus on the local pockets — pinpointing druggable pockets
that recur across otherwise dissimilar proteins, which has proved useful for scaffold hopping
in medicinal chemistry.

Why multiple relations? Biology is inherently multi-scale: genes can be co-expressed yet never
touch, or interact directly yet be regulated in opposite ways. Integrating multiple edge types allows
the model to draw from these multiple relation types.

A.2.2 Node features

Each gene is associated with a four-view multi-omic vector that aggregates evidence about how the
gene is altered or active in sixteen different cancer types: KIRC (kidney renal clear cell carcinoma),
BRCA (breast invasive carcinoma), READ (rectum adenocarcinoma), PRAD (prostate adenocarci-
noma), STAD (stomach adenocarcinoma), HNSC (head and neck squamous cell carcinoma), LUAD
(lung adenocarcinoma), THCA (thyroid carcinoma), BLCA (bladder urothelial carcinoma), ESCA
(esophageal carcinoma), LIHC (liver hepatocellular carcinoma), UCEC (uterine corpus endometrial
carcinoma), COAD (colon adenocarcinoma), LUSC (lung squamous cell carcinoma), CESC (cervical
squamous cell carcinoma and endocervical adenocarcinoma), and KIRP (kidney renal papillary
cell carcinoma). This representation allows the model to exploit both pan-cancer regularities and
tissue-specific idiosyncrasies in a unified space. The following omics types are included:

* Copy-number alteration (CNA). Chromosomal instability can duplicate or delete large
DNA segments. We encode the resulting log, copy-ratio for each gene. Amplifications drive
oncogenes via dosage; deletions can inactivate tumour suppressors; either type of alteration
increases the gene’s potential therapeutic relevance by changing pathway dynamics and
dependencies.

* Gene expression. TPM-normalised RNA-seq counts serve as a proxy for transcriptional
activity along the canoncial DNA — mRNA — protein axis. High expression marks pathway
engagement and potential vulnerability; zero or strongly tissue-specific expression highlights
candidates for of potential on-target toxicity.

* Mutation frequency. A non-synonymous variant changes an amino-acid and can alter
protein function. We supply the fraction of tumours (TCGA) carrying at least one non-
synonymous hit in each gene. Recurrent hits point to cancer drivers; high frequency therefore
raises the prior that a gene is causally important—and druggable.

* Methylation. CpG methylation at a promoter recruits proteins that compact chromatin and
block transcription — known as epigenetic silencing. The 3 value (where 0 = unmethylated,
1 = fully methylated) distinguishes permanently “switched-off” genes from merely low-copy
ones, helping the model avoid nominating silent targets.

Rationale and complementarity. Taken together, these four views cover structural (CNA), regu-
latory (expression, methylation), and genetic (mutation) evidence. This complementarity provides
orthogonal signals that no single modality alone can provide, and enables the encoder to disambiguate
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mechanisms (e.g., high expression due to amplification versus loss of expression due to promoter
hypermethylation).

Data source and reproducibility. We derive these features from TCGA, a widely used and rig-
orously curated resource for cancer genomics [43]]. Its breadth, depth, and transparent processing
pipelines enable reproducible comparisons across studies and typically provide stronger statistical
power than smaller proprietary cohorts. While under-representation of rare histologies and understud-
ied genes remains a limitation of any centralized resource, TCGA'’s standardization and multi-omic
scope make it an appropriate foundation for building generalizable target representations at scale.

Extensibility to additional modalities. MORGaN is feature-agnostic: any per-gene descriptor
can be appended to the node feature vector without architectural changes. In particular, structural
and chemoinformatics descriptors — such as binding-site fingerprints, pocket hydrophobicity, or
docking-derived scores — are natural complements to biological priors. Embedding these signals
would involve augmenting the node features with quantities derived from 3D structures or in silico
screening. Because the present work focuses on upstream target prioritization from multi-omic and
network context, a full end-to-end fusion with chemoinformatics is left for future work; we view this
as an exciting extension toward unifying biological and chemical modalities in a single graph-learning
pipeline.

A.2.3 Labels

Positive—unlabeled formulation. We frame the task as positive—unlabeled (PU) learning. High-
confidence positives — FDA-approved or clinically validated drug targets — are known. However, true
negatives do not exist: a gene without clinical evidence is not necessarily undruggable. To reflect this
epistemic asymmetry, we treat the remaining genes as unlabeled and, for each train/validation/test
split, sample negatives uniformly at random from this pool. This approach (i) avoids penalizing
understudied genes, (ii) allows estimation of class-conditional risk without inventing a questionable
“non-druggable” set, and (iii) yields conservative evaluations because improvements must persist
across independent negative samplings.

Moreover, druggability labels are intrinsically skewed (on the order of ~150 Tier-1 positives versus
~16,000 unlabeled genes). There is no authoritative set of genes that are provably undruggable, and
previously intractable targets continue to become amenable with new modalities (e.g., PROTACs,
molecular glues, mRNA therapeutics). We therefore create negatives by resampling a subset of
unlabeled genes for every split:

* Bias dilution. Because the negative pool changes with each split, the classifier cannot
overfit to idiosyncrasies of any single hand-curated list. Despite resampling, metric standard
deviations remain low, indicating stable performance.

* Graph neutrality. Resampled negatives retain their full connectivity and multi-omic
features, preserving the structural context established during pre-training. The model
continues to learn from each gene’s neighbourhood and attributes even when a given gene is
temporarily treated as negative, thereby avoiding topological artefacts that would arise from
pruning or rewiring nodes.

* Forward compatibility. If a gene is later reclassified as druggable (e.g., due to a new
modality), past experiments remain valid because that gene was never canonically fixed as
negative. Benchmarks can be rerun with an updated label file without invalidating prior
protocols.

These design choices mitigate pathway memorization, manage extreme class imbalance, and keep the
evaluation protocol adaptable to methodological and pharmacological advances.

Why binary labels in practice. In principle, “druggability” spans a continuum of chemical
tractability that evolves with technology. In practice, however, industrial target pipelines employ
discrete gates (e.g., evidence of a small-molecule binder, a clinical candidate, or regulatory approval).
We therefore label Tier-1 targets (approved or clinical candidates) as positives and sample negatives
uniformly from unlabeled genes, mirroring how pipelines prioritize targets. This operational definition
enables fair, reproducible benchmarking and aligns with prior work [10], while remaining compatible
with future re-labeling as the field progresses.
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B Baselines

We keep the node features (§3.1) and the stratified 80/10/10 train—validation—test splits described in
§3.4]the same across all baselines. Hyper-parameters are selected by grid search on the validation
fold and seeds are fixed to 0, 1 for full reproducibility. Mean * s.d. over six runs are reported
in Table [T] of the main paper. The eight baselines fall into three tiers: feature-only, homogeneous
(single-relation) graph and heterogeneous (multi-relation) graph.

B.1 Feature-only baselines

Logistic regression. A linear classifier with Lo regularization trained on the node features, with no
graph structure We use scikit-learn’s LogisticRegression(max_iter = 1000, penalty
= "12", solver = "lbfgs") and optimize the inverse regularization strength C' over {0.01, 0.1,
1, 10}. Class weights are set inverse-frequency to counter the 1:1 positive/unlabeled sampling.
This baseline tests whether a strictly linear decision boundary in feature space can already separate
druggable from non-druggable genes.

Multilayer perceptron (MLP). Identical input as above, but with two hidden layers to capture
non-linear feature interactions. Architecture: [in — 64 — 32 — 2] with ReL.U, dropout 0.2
after each hidden layer, and softmax output. Optimiser: Adam (Ir = 1 x 1073, weight-decay 5 x
10—%), batch size 256, 100 epochs, early stopping (patience 20). Validation tuning sweeps hidden
size {32, 64, 128} and learning rate {1 x 1074, 1x 1073, 5x 1073}, Serves as a capacity-matched
non-graph baseline.

B.2 Homogeneous-graph baselines

Graph convolutional network (GCN). The vanilla spectral GCN operating on the single PPI
edge set. Best configuration from the grid: two layers, hidden 128, PReLLU activation, dropout 0.2,
weight-decay 1 x 10~%. Input is a graph where nodes represent genes, node features are the same as
above, and edges are derived from PPIs.

Graph attention network (GAT). Multi-head attention on the same PPI graph. We use three layers
with hidden 64 per head, LeakyReLU(0.2), feat-drop 0.2 and attn-drop 0.2. Heads are concatenated
inside the network and averaged in the output layer. Edge-specific attention weights let the model
down-weight noisy PPI links, providing a stronger yet still homogeneous comparator.

SMG-based (self-supervised masking) Following Cui et al. [8] we add a masked-feature recon-
struction pre-text stage to the GCN and GAT backbones. Mask ratio 0.5, 100 pre-training epochs (Ir 1
x 1072, weight-decay 1 x 1073, cosine decay), then fine-tune as above for at most 200 epochs (Ir 5
x 1073). This pair isolates the effect of self-supervision while holding the single-relation topology
constant.

B.3 Heterogeneous-graph baselines

MODIG. The multi-omics, multi-relation GAT of Zhao et al. [49] trained on our six-edge-type
graph. Each relation is processed by its own two-layer GAT; relation-specific embeddings are fused
with learned view-level attention before a final MLP classifier. We keep the authors’ recommended
settings (hidden 128, 8 heads, dropout 0.3) and tune only the learning rate. MODIG gauges the
benefit of heterogeneous edges without any self-supervised pre-training.

MDMNI-DGD. The meta-path DNN of Li et al. [23] — a six-view extension of MODIG that
stacks dense layers on hand-crafted meta-path incidence vectors. We train the model on our dataset,
following the original paper — we use three hidden layers (256—128-64, dropout 0.3) and Adam (Ir
1 x 10~3). This baseline retains heterogeneous information but replaces GNN message passing with
fully-connected fusion, testing whether explicit relational reasoning is needed.

Together, these baselines allus us to disentangle the contributions of (i) multi-omic feature depth,
(i1) homogeneous versus heterogeneous topology, and (iii) self-supervised pre-training, ultimately
demonstrating the incremental value added by each MORGaN component.
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C Self-supervised masked pre-training

Pre-training dynamics. Figure[4|shows that the scaled-cosine reconstruction loss drops sharply
during the first ten epochs, then converges smoothly, indicating that the model quickly captures
first-order correlations and subsequently refines higher-order structure. The frozen embeddings
obtained after 100 epochs serve as initialization for the downstream druggability classifier.

loss

0.6
0.5

0.4

0.3
N~ ___Step

0 20 40 60 80 100

Figure 4: Scaled-cosine reconstruction loss during masked pre-training (mean = s.d. over six splits).

Hyper-parameter search in brief. A grid of 192 runs varied mask ratio (0.1-0.8), depth (14
RGCN layers), learning rate, weight decay and activation. The best AUPR clustered around a mask
ratio of 0.5, two or three layers, PReL.U activation, learning rate 10~2 for pre-training and 5x 10~23 for
fine-tuning, and weight decay 1072 / 10~* respectively (Fig. . These values constitute the default
configuration shipped in the supplementary config.yaml; all reported results use that setting.

prelu . 2 0.10~

Figure 5: Parallel-coordinates view of the 192-run hyper-parameter sweep; colour encodes test AUPR.
Orange lines highlight the high-performing region described in the text.

Sensitivity to masking ratio. Masking ratio (feature corruption). Raising the fraction of masked
features from 5% to 50% consistently improves downstream metrics, with AUPR rising by ~ 4 pp
and AUROC by ~ 3 pp. A higher mask rate forces the encoder to rely more heavily on relational
context instead of relying on raw features, leading to richer, more transferable embeddings. Beyond
that, performance eventually degrades.

Sensitivity to loss exponent. Increasing the loss exponent y (the error curvature) in the SCE
reconstruction loss steepens the penalty on large reconstruction errors. This gradually lifts AUPR
from 0.907 (v = 0.5) to 0.926 (y = 5.0), but the gains are modest (< 2 pp AUPR over a ten-fold
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change) and all standard deviations overlap, indicating that the model remains broadly insensitive to
the precise curvature of the loss.

Hence, performance improves with stronger feature corruption and a steeper loss, but the increments
are small. Why such robustness? We believe that it can be traced back to two things:

1. Aggregated objective. The MAE sums residuals over six relation types and multidimen-
sional features, so changing the weight on any individual error, via masking or +y, has a
diluted global effect.

2. Masking as a regulariser. Even relatively moderate corruption (> 30%) regularises the
model; once in this regime, additional changes are unlikely to reshape the learned space.

Practically, this means MORGaN can be deployed with default settings (e.g. 50% masking, v = 3),
still achieving within 1 — 2 pp of the best scores - greatly simplifying hyper-parameter tuning while
underscoring the model’s inherent robustness.

C.1 Defaults

* Default hyperparameters: mask ratio = 0.5, y=3, 2-3 relation layers (PReLU), LR
1x1072 (pre-train), 5x 103 (fine-tune).

» Early stopping: monitor validation AUPR with patience 20 epochs.
* Splits: report mean =+ s.d. over k seeds; use consistent positive fractions across splits.

* Compute: single spmm per layer via basis decomposition for efficiency; training-time wall
clock improvements observed vs. per-relation updates.
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76 D Computational requirements and efficiency
747 All timings were obtained on a MacBook Pro (Apple M3, 8-core CPU, 16 GB RAM, macOS

748 15.4.1) with no GPU acceleration. Table [3|compares MORGaN to the two strongest heterogeneous
749  baselines.

Table 3: Runtime on the six-relation graph (mean + s.d. over six runs).

Model CPU time / epoch (s) End-to-end time (s)
MODIG 18.60 £ 1.18 1582+ 116
MDMNI-DGD 5.69 + 0.82 566 + 16
MORGaN 0.23 +£0.07 24.3 +2.9

750 Key numbers. MORGaN trains ~ 80x faster per epoch than MODIG and completes the full
751 pre-train + fine-tune pipeline ~ 65x faster. Put differently, a hyper-parameter sweep that takes one
752 day with MODIG finishes in under 30 minutes with MORGaN on a traditional laptop.
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E Ablation studies

The main paper shows that MORGaN outperforms eight strong baselines; the natural follow-up
question is why. We therefore conduct six systematic ablation experiments, which all run on the same
train—validation—test splits and are evaluated with the same metrics as the main results (AUPR is the
headline score).

1. PPI-source comparisons (Table4) swap the base PPI layer among five popular databases
(STRING-db, PCNet, CPDB, IRefIndex 2015, IRefIndex 2009) while holding all other
relations and features constant. CPDB is used in all main-paper experiments.

2. Feature ablations (Table [3) isolate the importance of the four node-feature modalities
(CNA, gene expression, methylation, mutation frequency) by training MORGaN on every
single, pairwise, triple, and full combination.

3. Edge-type ablations (Tables repeat the experiment for the six biological relation types.

4. Randomized-edge control ablations (Tables replace each real edge set with a degree-
preserved shuffle keeping node features unchanged. Performance dropping to chance under
this perturbation demonstrates that the improvements arise from genuine biology rather than
increased edge density or model capacity.

5. Domain-restricted (organ-system) training (Table tests whether pan-cancer gains
arise from cross-tumour transfer or from a few dominant entities. We retrain MORGaN on
organ-specific feature and label subsets while holding graph topology fixed.

6. Model ablations. We swap the basis-decomposed RGCN encoder for a relational GIN
(RGIN) with matched depth/width/parameters and identical pre-training task, decoder, and
schedule to probe whether gains are operator-specific or persist across encoder families
(Table[TT). In addition, we ablate the efficiency components — vertical stacking and weight
decomposition — showing that stacking provides the dominant speedup while decomposition
preserves this throughput, reduces parameters via sharing, and acts as a mild regularizer

(Table[12).

All ablation results are averaged over the six stratified shuffle—split runs described in §3.4} one
standard deviation is shown for completeness. The next subsections present the detailed numbers and
summarize the key observations.

E.1 Comparison between PPI datasets

Table 4: PPI-source comparison. Performance of MORGaN when the PPI layer is sourced from
five popular interaction databases. All other edge types and node features are kept identical. Bold
numbers highlight the best score within each column. STRING-db provides the most informative
PPI set, pushing AUPR to 0.971, whereas the older IRefIndex releases yield lower accuracy despite
comparable AUPR/AUROC figures.

Features AUPR AUROC Accuracy F1

CPDB 0.888 £0.004 0.906 £0.004 0.917 £0.004 0.919 +0.004
IRefIndex 2015  0.949 £ 0.008 0.944 £0.004 0.866 +0.011 0.869 +0.010
IRefIndex 0.949 £0.008 0.944 £0.004 0.866 +0.011 0.869 +0.010
PCNet 0.950 £0.008 0.941 £0.007 0.893 +0.004 0.888 +0.004
STRINGdb 0.971+0.002 0.970 £0.001 0.927 £ 0.007  0.927 + 0.007
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E.2 Feature ablations

Table 5: Ablation of the four input omics modalities. Blocks separated by lines correspond to (top
to bottom) single-, pair-, triple- and four-modality configurations. Bold numbers highlight the best
score within each column, and italics highlight the second-best. Copy-number alterations (CNA) are
the most informative modality on their own, whereas combining CNA with gene expression (GE) or
mutation frequency (MF) restores accuracy and F1 to the highest levels. Using all four modalities
yields a balanced performance but does not surpass the best CNA-based subsets on AUPR.

Features AUPR AUROC Accuracy F1

Copy Number Alterations (CNA)  0.908 £ 0.002 0.927 + 0.001 0.907 £0.005  0.909 + 0.005
Gene Expression (GE) 0.859 £0.007 0.919+£0.002 0.917+£0.004 0.919 £0.004
Methylation (METH) 0.884 £0.003 0.907£0.002 0913 +0.004 0.914 +£0.004
Mutation Frequency (MF) 0.866 £0.002  0.909 £0.002 0.900 £0.008 0.902 +0.007
CNA + GE 0.874 £0.011  0.920+£0.007  0.919 £ 0.000  0.921 + 0.000
CNA + METH 0.893£0.005 0.910+0.007 0.909 +£0.004 0.911 £0.004
CNA + MF 0.908 £ 0.004 0.929£0.003 0.911+£0.000 0.913 +0.000
GE + METH 0.891 £0.018 0.907 £0.002 0.909 £ 0.008 0.911 £0.007
GE + MF 0.881 £0.005 0.920+0.002 0917 £0.004 0.918 £ 0.004
METH + MF 0.890 £0.004 0.909 £0.001 0.915+0.005 0.917 £0.005
CNA + GE + METH 0.891 £0.002 0.912+£0.002 0.917+£0.004 0.919 +£0.004
CNA + GE + MF 0.886 £0.006 0.918 £0.004 0.919 £ 0.000 0.921 £ 0.000
CNA + METH + MF 0.897 £0.005 0.916+£0.006 0.911+£0.007 0.913 +0.006
GE + METH + MF 0.908 £ 0.006 0.913+0.007 0.896+0.008 0.901 +0.007
CNA + GE + METH + MF 0.888 £0.005 0.906 £0.004 0.917 £0.004 0.919 £ 0.004

22



784 E.3 Edge ablations

Table 6: Edge-type ablation, part I (up to four relation types). Each row shows test performance
when the heterogeneous graph is restricted to the specified subset of biological relations. Values
are mean + s.d. over the six splits described in §3.4] The full six-relation result (AUPR = 0.888,
cf. Table[l)) is given for reference in Table[7] The horizontal rules separate 1-, 2-, 3- and 4-relation
configurations. Bold numbers mark the best score within each block.

Relations AUPR AUROC Accuracy F1

Co-expression (Coexpr.) 0.788 £0.006 0.788 £0.003  0.805+0.000 0.782 £ 0.000
Domain Similarity (DomSim) 0.764 +£0.000  0.533 £0.000 0.537 +0.000 0.123 +0.000
GO Semantic Similarity (GO) 0.883+0.002 0.819+0.001 0.805+0.000 0.778 = 0.000
Pathway Co-occurrence (Path) 0.863 +£0.008 0.847 £ 0.004 0.843 +0.004 0.832 + 0.005
Sequence Similarity (SeqSim) 0.752£0.000 0.508 £0.000 0.512+0.000 0.032 £ 0.000
Coexpr. + DomSim 0.809 £0.007 0.798 £0.002 0.813+0.000 0.793 £ 0.000
Coexpr. + GO 0.882+0.015 0.892+0.003 0.878 £0.000 0.878 +0.001
Coexpr. + PPI 0.827+0.021 0.881+0.001 0.835+0.015 0.825+0.013
Coexpr. + Path. 0.878 £0.007  0.904 £ 0.003 0.894 +0.011 0.894 + 0.013
Coexpr. + SeqSim 0.783+0.001 0.790+0.001 0.805+0.000 0.782 + 0.000
DomSim + GO 0.887+£0.008 0.825+0.015 0.805+0.000 0.778 £0.000
DomSim + PPI 0.756 £0.007 0.804+£0.004 0.738£0.041 0.740 £ 0.068
DomSim + Path. 0.878 £0.003 0.855+0.007 0.841 £0.008 0.830+0.010
DomSim + SeqSim 0.769 £0.000 0.541+£0.000 0.545+0.000 0.152 +0.000
GO + PPI 0.849+0.030 0.789£0.074 0.813+0.016 0.792 £ 0.028
GO + Path. 0.904 +0.003 0.901 £0.001 0.894 +0.000 0.894 + 0.001
GO + SeqSim 0.880+0.004 0.812+0.002 0.805+0.000 0.778 £ 0.000
PPI + Path. 0.869 +0.007  0.904 £ 0.002 0.843 +0.004 0.835+0.006
PPI + SeqSim 0.740£0.014 0.789 £0.014 0.726 £0.043  0.729 £ 0.059
Path. + SeqSim 0.853 +0.004 0.839+0.008 0.835+0.004 0.822 +0.005
Coexpr. + DomSim + GO 0.897+0.010 0.895+0.002 0.878 +£0.007 0.877 £0.008
Coexpr. + DomSim + PPI 0.856+0.015 0.895+0.002 0.833+0.019 0.826 +£0.018
Coexpr. + DomSim + Path. 0.861 £0.023  0.902+£0.004 0.909 +0.004 0.910 £ 0.004
Coexpr. + DomSim + SeqSim 0.811+0.004 0.802+0.003 0.813+0.000 0.793 £+ 0.000
Coexpr. + GO + PPI 0.903 +£0.018 0.909 £0.033 0.876 +£0.004 0.876 + 0.005
Coexpr. + GO + Path. 0.891+0.001 0918 +0.001 0.917 +0.004 0.918 + 0.004
Coexpr. + GO + SeqSim 0.890+0.025 0.881 £0.009 0.872+0.004 0.870 +0.004
Coexpr. + PPI + Path. 0.878 £0.005 0.917+0.003 0.909 £0.004 0.910 = 0.004
Coexpr. + PPI + SeqSim 0.827+0.015 0.874+£0.004 0.819+0.010 0.810+0.021
Coexpr. + Path. + SeqSim 0.866 +0.032  0.900+0.003 0.909 £0.004 0.910 = 0.004
DomSim + GO + PPI 0.861 £0.031 0.800+£0.068 0.807 +0.004 0.782 +0.008
DomSim + GO + Path. 0.910 +0.001 0.910+0.000 0.902+0.000 0.903 +0.000
DomSim + GO + SeqSim 0.892+0.004 0.835+0.009 0.811+0.004 0.786 +0.006
DomSim + PPI + Path. 0.886+0.007 0.914+0.008 0.860+0.012 0.852 +0.015
DomSim + PPI + SeqSim 0.778 £0.006  0.810 £0.006 0.754 +0.008 0.766 + 0.009
DomSim + Path. + SeqSim 0.875+0.005 0.856+0.007 0.848 £0.008 0.837 +£0.010
GO + PPI + Path. 0.895+0.005 0.889+£0.014 0.894 +0.000 0.894 +0.000
GO + PPI + SeqSim 0.872+0.029 0.850+0.066 0.797 £0.022  0.779 £ 0.007
GO + Path. + SeqSim 0.902 +£0.002 0.901 £0.001 0.894 +0.000 0.894 +0.000
PPI + Path. + SeqSim 0.878 £0.009 0.905+0.007 0.850+0.008 0.840 +0.010
Coexpr. + DomSim + GO + PPI 0.905+0.018 0.907£0.031 0.882+0.008 0.882 +0.007
Coexpr. + DomSim + GO + Path 0.899 £0.001  0.920 £0.001  0.919 +0.000 0.921 + 0.000
Coexpr. + DomSim + GO + SeqSim 0.898 +0.010 0.878+0.013 0.870+0.015 0.868 £0.016
Coexpr. + DomSim + PPI + Path. 0.870+0.030 0.905+0.016 0.909 £0.004 0.910 = 0.004
Coexpr. + DomSim + PPI + SeqSim 0.844+0.026 0.885+0.010 0.833+0.010 0.837 £0.007
Coexpr. + DomSim + Path. + SeqSim  0.863 +£0.022  0.902 +£0.005 0.909 +0.004 0.910 + 0.004
Coexpr. + GO + PPI + Path. 0.896 +£0.003 0.915+0.003 0.915+0.008 0.917 +0.008
Coexpr. + GO + PPI + SeqSim 0.876 £0.002 0.861 £0.001 0.880+0.010 0.879 +£0.010
Coexpr. + GO + Path. + SeqSim 0.884+0.003 0.915+£0.000 0.919 +0.000 0.921 + 0.000
Coexpr. + PPI + Path. + SeqSim 0.866 £0.022 0.900+0.004 0.904 +£0.012 0.906 +0.012
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Table 7: Edge-type ablation, part II (four to six relation types, continued). This table completes the
sweep by listing the remaining four- and five-relation subsets followed by the full six-relation graph

(bottom row). Metrics are reported as mean + s.d. over six runs.

Relations AUPR AUROC Accuracy F1

DomSim + GO + PPI + Path. 0.899£0.008 0.893+0.018 0.902 +0.000 0.903 +0.000
DomSim + GO + PPI + SeqSim 0.888£0.010 0.889+0.006 0.801 £0.024 0.786 + 0.005
DomSim + GO + Path. + SeqSim 0.908 £ 0.001  0.909 £0.001  0.900 +0.004 0.901 +0.004
DomSim + PPI + Path. + SeqSim 0.874 £0.005 0.899 £0.009 0.837+0.018 0.829 £0.015
GO + PPI + Path. + SeqSim 0.883 £0.004 0.868 £0.006 0.890 +0.005 0.890 + 0.005
Coexpr. + DomSim + GO + PPI + Path. 0.900 £ 0.005 0.919 £0.002 0.917 +0.004 0.919 = 0.004
Coexpr. + DomSim + GO + PPI + SeqSim 0.891+0.014 0.880+0.031 0.884+0.010 0.885+0.007
Coexpr. + DomSim + GO + Path. + SeqSim 0.891 £0.002 0.918+0.001 0.917 +0.004 0.918 +0.004
Coexpr. + DomSim + PPI + Path. + SeqSim 0.878 £0.010 0.906 +£0.011 0.894+0.020 0.897 £0.018
Coexpr. + GO + PPI + Path. + SeqSim 0.886 £0.007 0.910+0.006 0.913+0.004 0.915+0.004
DomSim + GO + PPI + Path. + SeqSim 0.899 +£0.010 0.896+0.021 0.896+0.004 0.897 +0.004
Coexpr. + DomSim + GO + PPI + Path. + SeqSim  0.888 £0.004 0.907 £0.005 0.915+0.005 0.917 £ 0.004

E.4 Edge ablations (randomized)

Table 8: Randomized—edge ablation, part I (up to three relation types). For each subset of biological
relations we replace every edge with a degree-preserved shuffle, keeping node features unchanged.
Performance collapses to chance level (AUPR ~ 0.5, AUROC = 0.5), demonstrating that MORGaN’s
gains in Table [6]come from biologically meaningful topology rather than edge density or parameter
count. Horizontal rules separate 1-, 2- and 3-relation configurations; values are mean + s.d. over six

runs.

Relations AUPR AUROC Accuracy F1

Coexpr. 0.512+0.050 0.499 £0.060 0.503 +0.046 0.494 +0.072
DomSim 0.372+0.141  0.496£0.005 0.504 +0.000 0.349 + 0.367
GO 0.548 £0.036  0.531£0.039 0.520+0.045 0.482+0.112
Path. 0.530+£0.038  0.500£0.018 0.502+0.015 0.479 +0.157
SeqSim 0.498 £0.289 0.496 £0.005 0.498 +0.004 0.166 +0.332
Coexpr. + DomSim 0.480+0.040 0.494+0.053 0.488+0.018 0.491 +£0.059
Coexpr. + GO 0.504 £0.026  0.514£0.022 0.528 +£0.018 0.504 +0.078
Coexpr. + PPI 0.622£0.148 0.494+0.025 0.504 +0.007 0.141 £0.164
Coexpr. + Path. 0.583+0.030 0.579+0.019 0.553+0.015 0.575+0.027
Coexpr. + SeqSim 0.469 £0.044  0.460 £ 0.071 0.480+0.043 0.482 +0.060
DomSim + GO 0.538 £0.054 0.515+0.040 0.520+0.015 0.494 +0.151
DomSim + PPI 0.582+0.119 0.520+0.047 0.512+0.033 0.396 +0.287
DomSim + Path. 0.491+£0.013 0473 +£0.018 0.492+0.005 0.341 +0.168
DomSim + SeqSim 0.628 £0.145 0.512+0.014 0.508 £0.014 0.669 + 0.006
GO + PPI 0.619+0.149 0.495+0.014 0.508 +0.008 0.166 + 0.261
GO + Path. 0.503 £0.042 0.474+0.052 0.484 +0.024 0.478 £0.094
GO + SeqSim 0.483+0.042 0.476+0.027 0.496+0.034 0.358 +0.159
PPI + Path. 0.640 £0.134 0497 £0.047 0.502+0.040 0.359+0.311
PPI + SeqSim 0.634+0.132  0.525+0.040 0.512+0.022 0.337+0.371
Path. + SeqSim 0.488 £0.025 0.485+0.037 0.494+0.023 0.473+0.172
Coexpr. + DomSim + GO 0.539+0.023 0.524£0.032 0.514+0.012 0.496 + 0.026
Coexpr. + DomSim + PPI 0.492+0.012 0.487+0.009 0.498+0.004 0.479+0.071
Coexpr. + DomSim + Path. 0.507 £0.018 0.501£0.028 0.520+0.015 0.519 +0.023
Coexpr. + DomSim + SeqSim  0.494 £0.015 0.478 £0.034 0.482+0.032 0.463 +0.078
Coexpr. + GO + PPI 0.617+£0.066 0.590£0.067 0.549 +0.062 0.561 +0.053
Coexpr. + GO + Path. 0.465+0.045 0.463+£0.082 0.480+0.072 0.438 +£0.081
Coexpr. + GO + SeqSim 0.566 £0.048  0.549 £0.055 0.551+£0.033 0.564 +0.030
Coexpr. + PPI + Path. 0.480+0.022 0.485+0.031 0.472+0.027 0.468+0.177
Coexpr. + PPI + SeqSim 0.465+0.030 0.447£0.051 0.467+0.060 0.395+0.113
Coexpr. + Path. + SeqSim 0.487+0.036 0.493+0.037 0.504 +0.016 0.541 +0.087
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Table 9: Randomized—edge ablation, part II (three to six relation types). Continuation of Table
covering the remaining three-, four-, five- and full six-relation shuffles. Even with all six relation
layers present but randomized, MORGaN remains close to random guessing, reinforcing that the real
multi-relation structure (Table[7) is essential for predictive power.

Relations AUPR AUROC Accuracy F1

DomSim + GO + PPI 0.503 £0.051 0.522+0.061 0.490 £0.029 0.467 £0.152
DomSim + GO + Path. 0.503 £0.048 0.531 £0.057 0.537+0.040 0.546 +0.079
DomSim + GO + SeqSim 0.532+£0.026 0.509 £0.020 0.498 +£0.017 0.552+0.115
DomSim + PPI + Path. 0.582+0.131 0.518%0.063 0.510+0.028 0.420 +0.316
DomSim + PPI + SeqSim 0.532+£0.008 0.537+£0.022 0.533+£0.041 0.432+0.224
DomSim + Path. + SeqSim 0.498 £0.050 0.523 £0.047 0.524 +0.037 0.489+0.132
GO + PPI + Path. 0.491 £0.063 0.470+0.075 0.480+0.060 0.471+0.176
GO + PPI + SeqSim 0.506 £0.049 0.481+0.034 0.486+0.026 0.472+0.114
GO + Path. + SeqSim 0.504 £0.028 0.524+£0.052 0.533+£0.030 0.535+0.074
PPI + Path. + SeqSim 0.552+£0.040 0.555+£0.023 0.539+0.046 0.504 +0.127
Coexpr. + DomSim + GO + PPI 0.529£0.070  0.494 £0.064 0.504 £0.083 0.522 £0.079
Coexpr. + DomSim + GO + Path. 0.532+0.079 0.549+0.102 0.541 £0.060 0.550 + 0.054
Coexpr. + DomSim + GO + SeqSim 0.486+£0.045 0.489+0.046 0.502+0.031 0.465 +0.081
Coexpr. + DomSim + PPI + Path. 0.549+0.053 0.551+0.019 0.549 £0.037 0.460 £ 0.288
Coexpr. + DomSim + PPI + SeqSim 0.477+£0.018 0.443+0.023 0.470+0.022 0.488+0.163
Coexpr. + DomSim + Path. + SeqSim 0.520+£0.053 0.461£0.029 0.490+0.014 0.449 +0.041
Coexpr. + GO + PPI + Path. 0.526 £0.021  0.504 £0.047 0.496 +0.026 0.271 £0.076
Coexpr. + GO + PPI + SeqSim 0.496 +£0.081 0.475+0.087 0.470+0.027 0.509 +0.227
Coexpr. + GO + Path. + SeqSim 0.516 £0.040 0.507 £0.048 0.520+0.030 0.486 +0.049
Coexpr. + PPI + Path. + SeqSim 0.538+£0.036 0.554+£0.026 0.541+0.017 0.467+0.172
DomSim + GO + PPI + Path. 0.519+£0.050 0.507 £0.040 0.512+0.037 0.539 £ 0.094
DomSim + GO + PPI + SeqSim 0.529+£0.039 0.531£0.026 0.533+0.014 0.524 +0.093
DomSim + GO + Path. + SeqSim 0.585+£0.067 0.582+0.061 0.561+0.049 0.547 +0.037
DomSim + PPI + Path. + SeqSim 0.537+£0.066 0.536 £0.057 0.518 +£0.017 0.524 +0.086
GO + PPI + Path. + SeqSim 0.481 £0.049 0468 +0.055 0.492+0.045 0.462+0.151
Coexpr. + DomSim + GO + PPI + Path. 0.506 £0.019 0.536+0.014 0.520+0.040 0.493 +0.236
Coexpr. + DomSim + GO + PPI + SeqSim 0.511+£0.048 0.507£0.038 0.496 +0.000 0.463 +0.095
Coexpr. + DomSim + GO + Path. + SeqSim 0.503+0.011 0.491+0.011 0.504 £0.018 0.525 £ 0.087
Coexpr. + DomSim + PPI + Path. + SeqSim 0.460 £0.031 0.449+0.039 0.472+0.040 0.405+0.092
Coexpr. + GO + PPI + Path. + SeqSim 0.515+£0.051 0.507 £0.052 0.506 +0.054 0.341 £0.262
DomSim + GO + PPI + Path. + SeqSim 0.477+0.012 0469 +0.016 0.484+0.019 0.419+0.221
Coexpr. + DomSim + GO + PPI + Path. + SeqSim  0.505£0.022  0.479+£0.036 0.480+0.038 0.472+0.122

E.5 Domain-restricted (organ-system) training

To determine whether MORGaN’s accuracy is driven by a handful of tumor entities or is truly pan-
cancer, we trained six separate models, each restricted to one “organ-system” (omics features retained
only for the cancer types listed in brackets), based on those already included in the pan-cancer feature

set used to train our original model:

¢ Head and Neck [HNSC]

* Gastro-intestinal [ESCA, STAD, LIHC, COAD, READ]

* Respiratory [LUAD, LUSC]

* Genitourinary [KIRC, KIRP, BLCA, PRAD]

* Reproductive [UCEC, CESC, BRCA]

¢ Endocrine [THCA]

The table below reports mean =+ s.d. over three random splits (70/15/15%).

Across the profiled organ systems, performance is uniformly strong (AUPR = 0.892 — 0.919;
AUROC = 0.891 — 0.927; Acc = 0.874 — 0.905; F1 = 0.877 — 0.908), indicating that MORGaN’s
accuracy is not driven by a single tissue context. Variation is modest (absolute AUPR spread < 0.027
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Table 10: Performance by tissue group (mean =+ s.d.).

Tissue group AUPR AUROC Accuracy F1

Gastrointestinal  0.898 £0.003 0.913 £0.005 0.892 £0.004 0.896 &£ 0.004
Respiratory 0.919+£0.003 0.927£0.002 0.890+0.004 0.896 £ 0.005
Head and neck  0.893 £0.008 0.901 £0.003 0.874+0.012 0.877£0.016
Genitourinary 0.910£0.009 0.922+£0.010 0.905+0.004 0.908 &£ 0.005
Reproductive 0.892 £0.007 0.891 £0.007 0.874+0.009 0.877+£0.010

with s.d. < 0.016), and tracks data availability: the Respiratory group achieves the highest scores
(AUPR 0.919 +£ 0.003, AUROC 0.927 £ 0.002), while Head & Neck and Reproductive, which
have fewer established positives, are slightly lower but remain well within the high-performing
regime (AUPR ~ 0.892 — 0.893, AUROC ~ 0.891 — 0.901). Gastrointestinal and Genitourinary are
consistently competitive (e.g., AUPR 0.898 and 0.910; AUROC 0.913 and 0.922, respectively). In
short, MORGaN generalizes across cancer types; although joint pan-cancer training yields the single
best overall model, the per-tissue experiments show that it retains high fidelity even when feature sets
are restricted to smaller, system-specific vectors.

E.6 Model ablations

E.6.1 Encoder-family

To test whether MORGaN’s gains depend on the specific relational operator, we replace the basis-
decomposed RGCN encoder/decoder with a Relational GIN (RGIN) backbone while keeping the
pre-training objective, decoder head, data splits, optimization schedule, and regularization unchanged.
We match depth/width to keep parameter count and per-epoch compute comparable.

Table[I[T]reports mean = s.d. across the same splits used elsewhere. RGIN performance is comparable
with that achieved by our RGCN configuration, indicating that MORGaN’s gains primarily arise from
the multi-relation masking objective and the information in the heterogeneous graph rather than from
a particular choice of message-passing operator.

Table 11: Encoder-family ablation: replacing RGCN with RGIN inside MORGaN (mean =+ s.d.
across identical splits).

AUPR AUROC Accuracy F1

RGCN 0.888£0.004 0.907 £0.005 0.915£0.005 0.917 £ 0.004
RGIN  0.908 £0.005 0.913£0.011 0.898 £0.007 0.902 £ 0.007

Takeaway. Comparable results with RGIN suggest the framework is robust to encoder choice; the
core driver is the self-supervised multi-relation formulation combined with rich graph context.

E.6.2 Weight decomposition and vertical stacking

We assessed the effect of weight decomposition (basis sharing across relations) and vertical stacking
(single spmm over a stacked relation matrix) on both efficiency and accuracy. Runtime was measured
on the same data and training schedule.

Efficiency. Vertical stacking accounts for the dominant speedup versus a naive per-relation pass.
Adding weight decomposition maintains this fast regime while reducing parameter count via shar-
ing. Without employing vertical stacking and weight decomposition, MORGaN training exhibits a
substantially higher runtime (~ seconds per iteration compared to 0.23 seconds per iteration). With
vertical stacking but without weight decomposition, the runtime was approximately 4.26iterations
per second.

Accuracy. With vertical stacking but without weight decomposition, we observed slightly higher

metrics; however, given the large efficiency/parameter benefits of decomposition and its regularizing
effect, we retain it as the default. Reported means = s.d. over the same splits:
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Table 12: Performance with vertical stacking but without weight decomposition.
AUPR AUROC Accuracy F1

Vertical stacking and decomposition 0.888 £0.004 0.907 £0.005 0.915£0.005 0.917 + 0.004
Vertical stacking and no decomposition  0.912+0.010 0.913 £0.004 0.894 £0.010 0.897 £ 0.012

Takeaway. Vertical stacking delivers the primary runtime gain, while weight decomposition preserves
that efficiency, reduces parameters through sharing, and serves as an implicit regulariser; we therefore
keep decomposition in MORGaN’s default encoder.
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F Pathway enrichment analysis

Rationale. Given a ranked list of genes from MORGaN (high score = predicted druggable), pathway
enrichment asks: “Do the top-ranked genes cluster in curated biological pathways more than we
would expect by chance?” If so, that provides external validity: the model is concentrating probability
mass on coherent processes (e.g., cell cycle, receptor signaling) rather than on idiosyncratic single
genes.

Pipeline in brief. We use GSEA (Gene Set Enrichment Analysis) in the “pre-ranked” mode:

1. Rank genes. Sort all genes by MORGaN’s prediction score.

2. Choose gene sets. Use curated pathway collections (e.g., KEGG, GO). Each set is simply a
list of genes that participate in a process.

3. Enrichment statistic. For each pathway, GSEA computes a running-sum statistic that
increases when a pathway gene is encountered high in the ranking and decreases otherwise.
The maximum deviation of this walk is the raw enrichment score.

4. Normalization and significance. Scores are normalized by gene-set size, yielding the
NES (Normalized Enrichment Score), which lets large and small pathways be compared.
Significance is assessed by permutation to form a null distribution; we report nominal
p-values (NOM p) and multiple-testing—corrected FDR g-values.

Analyzed gene sets. We run GSEA on two sets of predictions: (A) all genes predicted as positive
by MORGaN, and (N) the subset of novel positives with no prior druggability annotation. Tables
14]and Fig. [ summarize the most significant results (FDR < 0.05).

NES measures how strongly a pathway is enriched at the top of the ranking after accounting for
set size. FDR ¢ controls for testing many pathways at once (analogous to a false discovery rate in
multiple-hypothesis testing). The bar plots in Fig. [f|compare NES across pathway categories; darker
bars refer to results on set (A) and lighter bars refer to set (N).

Cancer hallmarks. Both sets recover core oncogenic programs — cell cycle, p53, PI3K-Akt, and
composite pathways in cancer — indicating that high-scoring genes cluster in well-established cancer

biology (Table[T3).

Therapeutically actionable signalling. The strongest signals are receptor-mediated pathways, led
by neuroactive ligand—receptor interaction and several GPCR cascades (Table[I4). GPCRs and
related receptors are classic drug targets because they are membrane-exposed, ligandable, and already
richly represented in approved medicines. Enrichment here suggests MORGaN’s scores align with
historically “druggable” target classes rather than random gene families.

Immune and metabolism niches. In the novel set (N), we observe cytokine—cytokine receptor
interaction, hematopoietic cell lineage, and xenobiotic/retinol metabolism. These point to immuno-
modulatory mechanisms (e.g., tuning tumor—immune interactions) and to metabolic processes associ-
ated with drug processing and resistance — fertile ground for new targets.

Pathways overlap and are correlated; FDR addresses multiple testing, and NES mitigates gene-set size
effects, but some redundancy is expected. Because MORGaN is trained with multi-omic and network
context, we consider pathway-level enrichment a complementary sanity check that the model’s global
ranking is biologically coherent.

Taken together, the enrichment profile shows that MORGaN both rediscovers canonical drug classes
(external validity) and highlights plausible novel targets for follow-up (novel set N).
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Enrichment of cancer-related pathways among MORGaN predictions

Normalized Enrichment Score (NES)

Cell cycle P53 signalling PI3KAKt signalling  Pathways in cancer  Chemical car

Top 10 enriched pathways among MORGaN predictions

Figure 6: Visual summary of pathway enrichment analysis results. Left: Normalized enrichment
score (NES) for five hallmark cancer pathways. Right: Ten most significant pathways overall. Dark
bars = all predicted positives; light bars = novel predictions only.

Table 13: Enrichment of hallmark cancer pathways among MORGaN predictions. Normalized
enrichment score (NES), FDR ¢-value and nominal p-value (NOM p) are shown for both established
druggable genes (A) and newly predicted candidates (N). All listed pathways pass FDR < 0.05 and

NOM p < 0.01.
Pathway Group NES FDRgq NOMyp
Cell cycle (KEGG) A 295 0.00049 0.000
Cell cycle (KEGG) N 244  0.00610  0.0023
p53 signaling pathway (KEGG) A 298  0.00098 0.000
p53 signaling pathway (KEGG) N 271 0.00043 0.000
PI3K-Akt signaling pathway (KEGG) A 247 0.00112 0.000
PI3K-AKkt signaling pathway (KEGG) N 1.80  0.04700  0.0077
Pathways in cancer (KEGG) A 2.05 0.01580 0.0031
Pathways in cancer (KEGG) N 2.14 0.01050 0.0014
Chemical carcinogenesis (KEGG) A 1.96 0.02410  0.0050
Chemical carcinogenesis (KEGG) N 2.48  0.00057 0.000

Table 14: Top five pathways enriched among all (A) and novel (N) MORGaN-predicted druggable

genes. Metrics as in Table[T3]

Pathway Group NES FDRg NOMyp
Neuroactive ligand-receptor interaction (KEGG) A 7.31 0.000 0.000
G protein-coupled receptor signaling (GO) A 3.69  0.000 0.000
Adenylate cyclase-modulating GPCR signaling (GO) A 3.82  0.000 0.000
Chemical synaptic transmission (GO) A 4.00  0.000 0.000
Anterograde trans-synaptic signaling (GO) A 3.65  0.000 0.000
Neuroactive ligand-receptor interaction (KEGG) N 4.50  0.000 0.000
Cytokine—cytokine receptor interaction (KEGG) N 3.85  0.000 0.000
Xenobiotic metabolism by cytochrome P450 (KEGG) N 327  0.000 0.000
Hematopoietic cell lineage (KEGG) N 320  0.000 0.000
Retinol metabolism (KEGG) N 3.05 0.000 0.000
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G Local interpretability: case studies

Deep graph models often deliver accurate predictions while leaving the mechanistic “why” opaque. We
ask: “Which subgraph structure and which feature dimensions were most influential for MORGaN'’s
decision on a specific gene?” Local explanations help users assess faithfulness, spot failure modes,
and form testable hypotheses.

To examine MORGaN’s decision process we apply GNNExplainer [48]], which learns soft masks
over (i) edges (Mg € [0,1]/"]) and (ii) feature dimensions (M € [0, 1]%). The explainer optimizes
these masks to maximize the mutual information between the masked inputs and the model’s output
for the target node:

pnax I(Y; f(Ge Mg, X ® Mp)) M

where f is the frozen trained model, G is the graph (adjacency), X are node features, and ® denotes
element-wise masking. In practice, this is implemented with a differentiable surrogate objective (e.g.,
cross-entropy on the target logit), plus sparsity and entropy regularizers that encourage compact,
human-readable explanations. Thresholding M yields an explanation subgraph; the thicker the
edge, the higher its attribution weight.

Fig.[§]displays subgraphs with the top-20 edges by mask weight for four case genes (two established:
EGFR, NOTCHI; two high-confidence novel: LAMA3, IL4R). The focal node is enlarged; edge width
encodes importance. Fig. [7]aggregates the feature mask into a cancer-type x omic-layer heat-map,
so we can see whether structure vs. features, and which modality, drove the call.

G.1 Case studies

a) EGFR - validating known biology. The highest-weight edges connect EGFR to TP53, CDK2,
and CTNNBI. These neighbors sit on well-studied axes that link receptor tyrosine-kinase signaling to
proliferation control: CDK?2 is a core cell-cycle kinase (G1/S transition), TP53 constrains damaged
cells from cycling, and CTNNBI (B-catenin) mediates Wnt pathway transcriptional programs that
reinforce growth signals. The feature mask assigns large weights to copy-number and expression
channels in lung adenocarcinoma (LUAD) and lung squamous carcinoma (LUSC), indicating that
MORGaN’s per-gene score for EGFR is supported by both (i) a structural motif tying EGFR to
cell-cycle checkpoints and (ii) omics evidence of amplification/over-expression in the histologies
where EGFR inhibitors are first-line therapy.

b) NOTCH1 - pathway-centered evidence. Instead of a star around NOTCH 1, the mask empha-
sizes two tightly connected patterns: (i) a receptor—kinase crosstalk motif involving ERBB4 and
MAPK9 (JNK), and (ii) a transcriptional decision module with RBPJ, the canonical DNA-binding
partner for Notch intracellular domain. This says the model is using multi-hop pathway context — how
Notch signalling routes into MAPK and transcription — rather than just counting direct interactors.
Feature-wise, the importance is spread across expression and methylation channels, which is consis-
tent with NOTCH pathway activity being regulated by both ligand/receptor levels and downstream
transcriptional state. The selection of small, interconnected motifs implies the predictor relies on
substructures with function, not just local density or centrality.

¢) LAMAS3 - extracellular-matrix lead. For the unlabeled candidate LAMA3 (a laminin subunit in
basement membrane), salient neighbors include /TGA4 (integrin receptor) and SMAD1/2 (TGF-3
effectors). Together these mark ECM—integrin—TGF crosstalk: integrins sense matrix composition
and stiffness, transmit signals that modulate SMAD activity, and jointly regulate adhesion, migration,
and invasion. The feature mask concentrates in bladder and thyroid contexts, with expression
and methylation dimensions carrying the largest weights, suggesting tumor settings where ECM
remodeling is particularly informative for the model’s decision. For a novel prediction, a coherent
mechanistic neighborhood plus aligned feature evidence is stronger than either alone. The model is
not “hallucinating” from topology.

d) IL4R - immune-evasion angle. The subgraph highlights edges to AKT2 (PI3K/AKT survival
signaling), TP53BP1 (DNA-damage signaling), and RAC! (actin cytoskeleton and motility). This
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context is expected for IL4R, a cytokine receptor that modulates immune and survival pathways:
IL-4/1L-13 signaling can activate PI3K/AKT, reshape cytoskeletal dynamics via Rho GTPases, and
influence DNA-damage responses indirectly through cell-state changes. The feature mask is strongest
in colorectal and lung cancers, with expression and CNA dimensions dominating, again matching
settings in which cytokine-driven immune escape and microenvironmental interactions are prominent.
Receptor localization (membrane), a signal-integration neighborhood, and high-weight omic channels
together form a druggability-consistent explanation. Indeed, the explanation aligns with literature
linking IL-4/IL-13 signaling to macrophage polarization and immune escape, supporting IL4R as a
promising immuno-oncology target.

Overall, the explanations are compact, stable, and mechanistically plausible, letting us trace MOR-
GaN’s “YES” decisions back to specific relational motifs and "omic signals — useful both as a
faithfulness check and as a hypothesis generator for downstream experiments.
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Figure 7: Heat-map visualization of node-feature importance for the same four driver genes. Each
panel shows a cancer-type x omic-layer matrix; color intensity is proportional to the contribution
weight assigned by GNNEXxplainer (darker = higher importance).
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Figure 8: Sub-graphs with the 20 most influential edges (edge width o< contribution) for four driver
genes. The central node is enlarged and darkened.
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H External concordance

We compared MORGaN’s high-confidence positives (p > 0.9) with two external resources: DGIdb
(6] and the Finan et al. [10]] druggable-genome atlas. Table [I5]reports overlaps and proportions. The
substantial concordance — particularly the three-way intersection — supports MORGaN’s ability to
recover genes independently recognized as druggable.

Table 15: Overlap between MORGaN positives and external resources.

Resource Overlap (genes) % of MORGaN positives
DGIdb [6] 50 69.1%
Finan [10] 106 74.9%
DGIdb N Finan N MORGaN 609 63.8%

Overall, 80.2% (765/954) of MORGaN’s high-confidence predictions are supported by at least one
external resource (DGIdb or Finan), with 63.8% (609/954) shared by both.

Reproducibility note (MDMNI-DGD). We attempted to include MDMNI-DGD predictions for a
broader comparison; however, the supplementary gene list referenced in their paper was not accessible
(the downloadable file appeared corrupted across multiple attempts). We will add this comparison
if/when an updated file becomes available.
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I Out-of-distribution experiments

I.1 Alzheimer’s disease

Setup. To test disease-agnostic generalization, we built an Alzheimer’s disease (AD) network using
Alzheimer-specific multi-omic profiles (log, fold-change gene expression and chromatin accessibility)
and the same six biological relation types used in the pan-cancer graph (derived from [12]). We
re-trained MORGaN end-to-end with the identical pre-training and fine-tuning protocol and evaluated
on the same split strategy as in the cancer experiments.

Results. Performance remains strong under this domain shift, with a small drop relative to oncology
(Table[T6). This suggests that the self-supervised, multi-relation objective captures disease-general
structure that transfers beyond cancer.

Table 16: Alzheimer’s disease: mean =+ s.d. over splits.
AUPR AUROC Accuracy F1
MORGaN (AD) 0.8924+0.022 0.908 +0.009 0.840 £ 0.009 0.847 £ 0.008

Qualitative sanity checks. Among high-scoring predictions without prior druggability labels
(“false positives” under our operational binary label), MORGaN prioritizes genes with AD-relevant
evidence, including PDE4D (amyloid/tau pathology; cognitive decline) [28], HLA-DRA (upregulated,;
neuroinflammation) [3]], members of the HDAC family (pharmacological modulation ameliorates
cognitive deficits in AD models) [29,130], as well as NTRKI (nervous system development) and NRP1
(neuronal migration, angiogenesis; upregulated in AD models) [24]. These examples support that
out-of-distribution predictions remain biologically plausible.

I.2 Essential genes

Setup. To illustrate the task-agnostic utility of MORGaN embeddings, we evaluated a distinct
prediction task: gene essentiality. We used proxy labels derived from prior predictions [[13] (subset to
E (essential)) and applied the same training/evaluation protocol (architecture and schedule unchanged),
treating this as a separate downstream classification problem.

Results. Despite the weaker, prediction-derived labels, performance is competitive (Table [17),
indicating that MORGaN learns task-general representations that transfer to essentiality beyond the
original druggability objective.

Table 17: Essential gene prediction: mean =+ s.d. over splits.
AUPR AUROC Accuracy F1
MORGaN (essential) 0.765 £ 0.015 0.835+£0.008 0.772+0.009 0.797 4+ 0.008

Takeaway. Across both experiments, MORGaN’s multi-relation self-supervision yields embeddings
that generalize across diseases (AD) and tasks (essentiality), with only modest degradation under
distribution shift and competitive performance under weaker labels.
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