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Abstract

Motivation: Identifying therapeutically tractable targets remains difficult, partly because disease
biology is distributed across multiple molecular layers and relation types, while labeled data are scarce.
Results: We present MORGaN, a self-supervised framework for node classification on multi-omic,
multi-relation gene networks that learns structure-aware embeddings and outputs calibrated scores
to prioritize therapeutic targets. On a pan-cancer graph integrating TCGA multi-omics and diverse
biological relation types, MORGaN outperforms state-of-the-art biological node classification models
across metrics (AUPR: 0.815 — 0.888; +9%). Ablation studies highlight that both relation diversity
and the in-layer fusion architecture are necessary for these gains. Prioritized targets are biologically
coherent: high-confidence hits are enriched for pharmaceutically tractable families and ligand—receptor
signaling cascades. Post hoc explainability analyses recover compact, pathway-consistent motifs
around both known and putative novel targets, and concordance with external resources further
supports plausibility. MORGaN thus delivers label-efficient, interpretable node classification for target
discovery and can be readily adapted to other diseases, species, and node classification tasks.

Availability and Implementation: Source code and documentation are available at this link.

1 Introduction

Drug discovery is complex and time-consuming: bringing a new drug to market can take over a decade
and cost upwards of 2.6 billion USD, with failure rates remaining high across all stages of development
[113]]. Drug target identification is a crucial bottleneck: selecting targets whose modulation translates into
clinical benefit determines downstream efficacy, attrition, and cost [2-4]. Notably, putative targets with human
genetic support are more likely to lead to clinical success, underscoring the value of methods that integrate
disease-relevant molecular evidence [5,16]. In oncology, the challenge is magnified by tumor heterogeneity
and context-dependent interactions across genetic, epigenetic, and proteomic layers [[7H12].

Conventional methods for drug target discovery often rely on single modalities or curated pathways, risking
the loss of cross-layer dependencies and disease-context specificity. Network-based approaches address this in
part by modeling protein—protein interactions (PPIs), yet most rely on this single relation type and overlook
complementary links such as co-expression, pathway co-occurrence, sequence or domain similarity [9-14].
Capturing systems-level context therefore requires models that integrate diverse molecular evidence and the
multiple ways genes relate to one another.

Graph neural networks (GNNs) are well suited to this setting: they combine node features with network
topology via message passing to learn context-aware representations [15H17]. Relational Graph Convolutional
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Networks (RGCNs) extend GNNs to heterogeneous graphs with multiple edge types, aligning with the reality
that genes are linked by distinct biological relations [[18] [19]. Two practical barriers, however, limit their
impact on drug target identification: the scarcity and bias of labeled targets, and the computational cost of
naive multi-relation message passing on large, dense graphs [[11} [14].

To address these challenges, we present MORGaN, a self-supervised, multi-relational graph learning frame-
work for drug target identification (Fig. [[). MORGaN integrates multi-omic features with six biologically
meaningful relation types in a single model. Critically, node features confer disease specificity: cancer-
type—resolved multi-omic profiles anchor each gene in its disease context, while the relations provide reusable
wiring priors that capture general biological connectivity. During pre-training, a masked autoencoder extends
feature-reconstruction objectives [20] to multi-omic, multi-relation gene graphs, enabling representation
learning from all genes — not only from the small labeled subset — while preserving relation semantics. For
scalability, a lightweight relational kernel vertically stacks sparse adjacency matrices and employs basis
decomposition to collapse relation-specific message passing into a single sparse—dense operation, substantially
reducing per-epoch time (by approximately 80% in our benchmarks) without sacrificing accuracy. Importantly,
MORGaN yields mechanistically interpretable outputs: subgraph explanations highlight the minimal gene
modules and relation types that support each prediction, situating candidates within pathways and complexes
and providing falsifiable hypotheses for experimental follow-up.

MORGaN builds on and unifies threads of prior work. SMG applies masked reconstruction to PPIs for cancer
and essential-gene prediction under scarce labels [14]]; MODIG [21] and MDMNI-DGD [22] extend from
single PPIs to five- and six-edge-type multiplex graphs but train relations separately. In contrast, MORGaN
incorporates six relation types within an efficient relational encoder and uses self-supervised pre-training
to exploit unlabeled biology at scale. Moreover, MORGaN remains disease-agnostic: re-targeting to new
contexts requires only substituting features and labels.

By coupling multi-omics integration, relation-aware message passing, and self-supervised learning in a single
framework, MORGaN advances graph-based methodology while delivering biologically interpretable results
that are directly actionable for systems-level target discovery.
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Figure 1: MORGaN overview. Graph construction and data integration: build a six-relation, multi-omic gene network.
Self-supervised pre-training: a RGCN-based masked autoencoder (GraphMAE) reconstructs the missing features and
generates node embeddings. Fine-tuning: an MLP uses these embeddings to rank drug targets, evaluated with AUPR,
AUROC, accuracy and F1.

2 Methods

2.1 Graph construction and data integration

We represent the gene interaction landscape as a heterogeneous, multi-relational graph G = (V, £, R), where
each node v; € V represents a gene. For each biological relationship type » € R, we define a relation-specific
edge set & C V x V and we define the full graph as the union over all relations £ = J, . & The pan-cancer
graph contains 13 627 genes and 557 288 edges across six relation types. For further details, see Appendix [A]



Relations. Following MDMNI-DGD [22]], we incorporate six biologically grounded relation types, based
on protein-protein interaction networks (PPI), gene co-expression, pathway co-occurrence, gene ontology
semantic similarity, and sequence similarity. Self-loops are added to preserve each gene’s own features during
message passing. For further details, see Appendix[A.2.1]

Node features. Each gene node v; is associated with a multi-omic feature vector z;, obtained by con-
catenating log10-transformed somatic mutation frequencies, copy number alteration (CNA) z-scores, DNA
methylation 3-values, and log-normalized gene expression values. All features are extracted from The Cancer
Genome Atlas (TCGA) pan-cancer dataset [14} 23], spanning 29,446 tumor samples across 16 cancer types, as
in SMG [[14]. For further details, see Appendix[A.2.2]

Labels. Positive labels correspond to Tier 1 targets defined by Finan et al. [4], i.e. proteins with approved
drugs or clinical candidates; an equal number of negatives is randomly sampled from the remaining non-target
genes to balance class distributions. See Appendix [A.2.3]

2.2 Model architecture

We adopt the relational graph convolutional network (RGCN) of Schlichtkrull et al. [[18] and convert it into a
graph masked autoencoder (GraphMAE) [20].

Message passing formulation. For layer [ the hidden state of node v; is updated via:
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where h,El) represents the hidden state of node v; at layer I, NV is the set of 4’s neighbors under relation r, Wr(l)

and VV(EZ) are trainable relation-specific and self-loop weight matrices, respectively, and c; ;- is a normalization
constant to ensure numerical stability.

To scale multi-relation message passing, we use stacked sparse propagation with basis-decomposed relation
weights (details in Appendix |A.3)).

Implementation details. All models are implemented in PyTorch 2.6.0 [24] and PyTorch-Geometric 2.6.1
[25]. Relation weights W,., bases V},, and coefficients a,; use Xavier uniform (gain = V2 for PReLU)
initialization; the self-loop matrix W uses Kaiming initialization. We fix random seeds (Python, NumPy,
PyTorch, PyG) to 0 and 1 and report mean =+ std over 3 runs per seed.

2.3 Training

We adopt a two-phase training strategy with Adam [26]]. (1) Self-supervised pre-training. Following
GraphMAE [20], we randomly mask a variable percentage of node features and reconstruct them using a
scaled cosine loss. Hyper-parameters are selected via a grid sweep; the best configuration is used throughout the
paper. Through this pre-training stage, the model learns compressed embeddings that encode both multi-omic
profiles and relational context, serving as a robust foundation for downstream classification. (2) Fine-tuning
(supervised). The frozen embeddings feed an MLP classifier optimized with weighted binary cross-entropy.
See Appendix [A.4]for further details.

2.4 Experimental setup and evaluation

Repeated shuffle-split validation. We generate two independent, stratified train/validation/test splits (80%
/10% / 10% of nodes) using different random seeds. Each split is trained three times with different weight
initializations, giving six runs in total. We report mean + s.d. of AUPR, AUROC, Accuracy, and F1 across
these runs.

Baseline models. We benchmark MORGaN against eight alternatives that span feature-only, homogeneous-
graph and heterogeneous-graph approaches:

1. Logistic Regression — feature-only



. Multilayer Perceptron (MLP) — feature-only)

. GCN — vanilla graph convolution on a 1-dimensional PPI graph

. GAT - graph attention network on the PPI graph

. SMG-GCN [14] — GCN with self-supervised pre-training on the PPI graph
. SMG-GAT — GAT with self-supervised pre-training on the PPI graph
. MODIG — heterogeneous graph model without pre-training

. MDMNI-DGD — heterogeneous graph model without pre-training
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The two feature-only models use the concatenated multi-omic vectors. The four homogeneous baselines (3-6)
operate on a single-relation PPI graph and therefore lack the multi-relational context exploited by MORGaN.
The two heterogeneous baselines (7-8) share the full multi-relational topology with MORGaN but do not
include its self-supervised pre-training stage. All models receive identical node features and use the same
train/validation/test splits; hyper-parameters are selected by grid search on the validation fold. See Appendix[B]
for further details.

This design cleanly isolates MORGaN’s architectural and training contributions while ensuring a fair, rigorously
repeated comparison to both feature-based and graph-based alternatives.

3 Results

We evaluate MORGaN on a pan-cancer gene network that couples TCGA multi-omic features (copy-number,
expression, mutation, methylation) with six complementary relation types (PPI, co-expression, GO semantic
similarity, pathway co-occurrence, sequence, and domain similarity). The model is pre-trained via masked
feature reconstruction and then fine-tuned to predict drug targets using stratified train/validation/test splits. We
first establish predictive performance and efficiency, and then examine what MORGaN learns biologically —
how genes are organized in the latent space, which families and pathways are prioritized, and how predictions
sit in the context of the network.

3.1 MORGaN consistently outperforms current state-of-the-art

Across six stratified shuffle—split runs, MORGaN delivers the best node classification performance on every
metric (Fig. 2} Supplementary Table [3).MORGaN reaches AUPR 0.888 =+ 0.004, exceeding the strongest
published heterogeneous models (MDMNI-DGD) by +0.073 absolute (+9%). Discrimination likewise
improves: AUROC 0.907 &+ 0.005 versus 0.877 for MDMNI-DGD (40.030), and balanced classification
follows suit with F1 0.917 £ 0.004 and Accuracy 0.915 4= 0.005. Variability is small across repeats, indicating
stable gains rather than favorable splits. All models are evaluated on identical train/validation/test splits with

1.0 AUPR, AUROC, Accuracy, F1 scores per model

MORGaN MDMNI-DGD MODIG Log. reg. GCN SMG-GCN SMG-GAT GAT MLP
Model

I AUPR I AUROC I Accuracy N Fl

Figure 2: Grouped bars show mean test set performance (AUPR, AUROC, accuracy and F1 score) across the same six
stratified shuffle—split runs; error bars denote standard deviation. All models receive the same multi-omic node features;
heterogeneous methods (MDMNI-DGD, MODIG) also share the identical six-relation graph. A full description of the
models is provided in Appendix



the same node features; heterogeneous models also use the same six-relation graph, isolating the contribution
of MORGaN’s architecture and training.

A head-to-head comparison within each model family suggests that heterogeneous edges matter, but architec-
ture matters more. Indeed, substituting the single-edge view of GAT with the full six-relation interactome
already yields a strong lift (AUPR +0.065 from GAT to MODIG). This gain confirms that signals are not
confined to one molecular relationship but are dispersed across many. MORGaN goes further by fusing
relations within each message-passing layer, allowing information to flow between relations as representations
are updated. This in-layer cross-talk yields an additional +-0.073 AUPR over the strongest heterogeneous
baseline (MDMNI-DGD) and leaves even the ablated MORGaN (no pre-training) far ahead. Notably, these
performance gains do not come at the expense of efficiency: a full training cycle completes in ~ 25 seconds,
yielding a large wall-clock speedup relative to prior heterogeneous baselines (see Appendix [C).

Together, these results suggest that MORGaN captures the complexity of biological systems in a way that
traditional models don’t — recovering pathway interplay and complementary cues that architectures processing
relations in isolation tend to miss.

We further test robustness under both distribution and task shift: (i) disease shift by re-training MORGaN on
a graph with the same relations and Alzheimer’s disease (AD)-specific node features; and (ii) task shift, by
applying the framework to essential-gene prediction. We observe qualitatively consistent trends under both
types of shift; see Appendix [Ffor full protocols and results.

3.2 MORGaN prioritizes biologically coherent candidate targets

MORGaN retrieves hallmark cancer drug targets (e.g., EGFR, HER2, BRAF, ALK, MET, RET) and assigns
calibrated probabilities genome-wide. We summarize confidence using a consensus score score_mean
(mean predicted probability across seeds/splits) and define tiers: below (< 0.60), exploratory ((0.60, 0.75]),
medium ((0.75,0.90]), high ((0.90, 1.00]), and top for score_mean= 1.0. Under this scheme, MORGaN
nominates 312 top hits, including 163 previously unlabeled candidates. These candidates are not diffuse:
they co-localize with known targets in embedding space (Fig. [3), and high-confidence tiers are enriched for
pharmaceutically tractable families and signaling programs, particularly GPCR/receptor modalities (Fig. {a)
and RTK-PI3K/ERK-related pathways (Fig.[db). External concordance analyses further indicate that most
high-confidence predictions are independently supported by DGIdb and/or the Finan druggable-genome atlas

(Appendix %ble [I6); extended clustering (§D.2.2)), enrichment (§D.8), network-centrality (§D.2.3),

explainability (§D.9)and DepMap analyses (§D.2.7) are provided in the Appendix.
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(a) Probability landscape. (b) Predicted classes and novel positives.

Figure 3: (a) 2-D UMAP of MORGaN embeddings (cosine, nneighbors = 30); each point is a gene colored by predicted
probability p(positive). Probabilities vary smoothly along a crescent-shaped manifold; a separate island concentrates
predicted negatives. (b) Same UMAP with layers: background predicted negatives (light), known targets (true positives,
small orange points), and novel putative targets (“previously unlabeled — predicted positive” genes, blue). Novel positives
co-localize with known positives rather than the negative island, consistent with pathway-coherent prioritization.
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Figure 4: (a) Stacked bars show the fraction of genes in pharmaceutically privileged families — GPCRs, ion channels,
kinases, nuclear receptors — versus “other” for each prediction tier. The proportion of tractable classes increases from
Below/Exploratory to High/Top, while the “other” fraction shrinks, indicating that higher model confidence concentrates
in druggable modalities. (b) Bubble plot of over-representation analysis for the High tier (Fisher’s exact test versus
genome-wide background; Benjamini—-Hochberg FDR). Bubble size encodes the number of overlapping genes; color
encodes — log,,(FDR); dashed line marks odds ratio = 1.

3.3 Ablations confirm MORGaN’s dependence on real biology

To dissect which inputs and design choices drive performance, we ran three ablations on the cancer graph,
each repeated over the same six stratified shuffle—split runs (reporting mean +s.d.). We quantify changes as
AAUPR relative to the full six-relation, four-omics model (details in Appendix [D.3).

Drop-one edge type. Starting from the full six-relation graph (PPI, pathway co-occurrence, GO semantic
similarity, co-expression, sequence similarity, domain similarity), we removed one relation at a time and
re-trained the pipeline. Fig. [5](blue) shows the resulting AUPR distributions; the line at n = 6 is the unablated
reference. The largest loss arises when removing GO semantic similarity (AAUPR = —0.010; 0.888 — 0.878),
with PPI and pathway co-occurrence nearly as impactful (each =~ —0.009). Biologically, this pattern is intuitive:
GO similarity encodes functional proximity across processes and cellular components, capturing long-range
dependencies (e.g., genes that never touch but act in the same complex program); PPI edges represent physical
wiring within complexes; and pathway co-occurrence reflects coordinated participation in signaling cascades.
Together, these relations describe complementary aspects of the same system. By contrast, dropping sequence
similarity or co-expression slightly improves AUPR (to 0.900 and 0.899), suggesting redundancy/noise in
those layers. Importantly, every five-relation variant still outperforms the best single-relation baseline (GO-
only, 0.883), indicating that the signal is distributed across heterogeneous biological relationships rather than
concentrated in any one layer. Consistent with the edge ablations, averaging over all n-relation subsets shows
monotonic gains that saturate by n = 5-6 (Supplementary Fig.[T3)), reinforcing the biological premise that
drug-relevant mechanisms are multiplex and that MORGaN’s in-layer fusion captures that reality.

Degree-preserving randomized controls. To test whether gains reflect genuine biology rather than ad-
ditional parameters or edge density, we degree-preserving—shuffled each relation and repeated the analysis
(grey boxes in Fig.[5). AUPR collapsed toward chance (~ 0.5) across all subset sizes, demonstrating that
MORGaN’s accuracy depends on real network topology and cross-relation organization, not mere edge density.

Leave-one-omics-out. A similar analysis on node features shows that copy-number alterations (CNA)
carry the strongest standalone signal (highest single-modality AUPR), whereas bulk gene expression is
the noisiest—its removal increases AUPR by +0.009, aligning with prior evidence that high-dimensional
expression with limited samples can dilute signal. Nonetheless, the full four-omics model yields the best
overall trade-off, achieving the top AUROC (0.907) and near-top AUPR by recovering false negatives missed

by CNA alone (Appendix [D.5.2).

Together, these ablations show that (i) long-range functional context captured by GO terms, alongside PPI
and pathway co-occurrence, is essential; (ii) the multi-relation structure is informative — scrambling biology
erases the gains; and (iii) complementary omics improve discrimination despite noisy modalities. Robustness
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Figure 5: For every subset size n we plot AUPR over all combinations of real edges (blue) and their randomized
counterparts (grey). The “box” at n = 6 reduces to a thin line because only one configuration — the full graph — exists.

to alternative PPI sources holds (STRING performs best, but MORGaN remains superior across interactomes;
Appendix Table d).

4 Conclusions

We introduce MORGaN, a self-supervised framework for node classification on multi-omic, multi-relation
gene networks. MORGaN (i) learns structure-aware embeddings via masked autoencoding on unlabeled data,
(i1) fuses relation types within each layer - allowing information to flow between PPIs, pathway co-occurrence,
semantic similarity, etc. during message passing - and (iii) outputs calibrated scores to prioritize targets.
Disease specificity comes from node features, relations provide reusable wiring priors, and labels define the
task, making the framework fast, accurate, and easy to retarget to new indications or other node-level tasks. In
practice, MORGaN provides a direct route from heterogeneous molecular data to mechanistically grounded
target hypotheses, and a reusable scaffold the research community can adapt across contexts.

Limitations. However, some limitations remain. Labels for drug targets are incomplete and potentially
biased toward well-studied families, and our bulk multi-omic features may dilute context-specific signals
present at single-cell resolution. The interactome is also incomplete and uneven across sources; although
results are robust across alternative PPI layers, any fixed graph can miss disease-specific wiring. Finally, we do
not address downstream concerns such as modality safety or on-target toxicity; prioritization as a therapeutic
target based on its mechanistic role in pathways is necessary but not sufficient for “clinically actionable”.

Future work. We see three immediate avenues to increase translational value. (i) Context specificity:
MORGaN already surfaces lineage-preferential dependencies; focusing training and evaluation within a
cancer type (or molecular subtype) should sharpen this signal and enable biomarker-guided stratification.
Incorporating cell-type-resolved and perturbational readouts (e.g., CRISPR/perturb-seq) could further refine
context. (ii) Safety and tractability priors: penalizing network centrality or integrating orthogonal toxicity
proxies (e.g., intolerance metrics, essentiality screens, or tissue expression breadth) would convert MORGaN’s
single-objective ranker into a multi-objective optimizer over efficacy and risk. (iii) Chemistry and structure:
adding ligandability features (pocket descriptors, AlphaFold-derived site annotations, docking/electrostatics
summaries) would connect biological coherence to physical plausibility.

Data and code availability

The code for MORGaN, including data preprocessing, model training, and evaluation scripts, is available on
GitHub. The processed multi-omic feature matrices and relational network adjacency matrices are obtained
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from publicly accessible resources, including TCGA [23]], STRING [27], CPDB [28]], IRefIndex [29]], MultiNet
[30], and PCNet [31]]. Instructions for data reconstruction and full reproducibility are available in the repository.
The full predictions and the list of novel putative targets is available as supplementary material.
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Appendix

A Supplementary methods

A.1 Graph summary and descriptive statistics

Table (1] lists the edge count and filtering threshold used for each of the six relation types that form the
heterogeneous gene network. The graph is moderately sparse (overall density < 0.004), with a heavy-tailed
degree distribution typical of biological interaction maps (details in the supplied Jupyter notebook). All
subsequent experiments use this exact graph unless stated otherwise.

Table 1: Edge statistics for the heterogeneous gene graph.

Relation type Threshold #Edges
CPDB PPI score > 0.50 504 378
Co-expression |r| > 0.80 34982

Pathway co-occurrence  Jaccard > 0.60 8964
GO semantic similarity =~ Wang > 0.80 8606
Sequence similarity top 5 % bitscore 150
Domain similarity Jaccard > 0.30 208

A.2 Components
A.2.1 Relations

The heterogeneous MORGaN graph contains six complementary edge types. Each captures a different notion
of functional similarity; combining them lets the model reconcile noisy, partially overlapping evidence rather
than over-focusing on any single assay. We consider the following relation types:

* Protein—protein interaction (PPI). Proteins are large biomolecules composed of amino-acid chains
encoded by genes. A PPI edge is added when two proteins form a physical complex — e.g. an
enzyme binds its substrate or two receptors dimerize — detected by assays such as yeast-two-hybrid
or affinity purification. We connect the genes that encode the interacting proteins with an undirected
edge. Because small molecule drugs also act at this physical level, PPI edges supply high-resolution
mechanistic context. High-confidence protein-protein interactions are obtained from one of STRING-
db [27] (score > 0.8), CPDB [28]] (score > 0.5), IRefIndex v.1 and v.4 [29] (score > 0.8), and PCNet
[31] (default threshold). CPDB is used as a default.

* Co-expression. RNA-seq quantifies how often each gene is transcribed across thousands of samples;
higher counts mean the gene is more active. If two genes’ expression profiles are consistently
correlated, we add an edge, reflecting shared regulation by common transcription factors or signaling
programs — even when their proteins never touch. Co-expression therefore contributes regulatory
information that PPI alone cannot provide. An edge is added between genes with an absolute Pearson
correlation > 0.7 across 79 healthy human tissues, based on GSE1133 [32].

* Pathway co-occurrence. KEGG [33| 34]] curate step-by-step biochemical pathways (e.g. “MAPK
signaling”). Genes that appear in the same pathways are linked because they participate in a shared
biological process. This injects human knowledge and adds a loose sense of up-/down-stream
directionality without exploding the number of edge types. We compute the Jaccard similarity of
KEGG [33| 34] pathway memberships:

_ |PG10PG2|

G G2) = IR U

@)

and include an edge where similarity > 0.60.

* GO semantic similarity. The Gene Ontology (GO) is a controlled vocabulary with three name-
spaces: Biological Process (what the gene does), Molecular Function (how), and Cellular Component
(where) [135,136]. Terms are assigned by curators and automated pipelines. GO edges generalize
“same pathway” and cover genes that lack rich KEGG annotations. We compute the geometric mean
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of best-match-average (BMA) Wang scores [37] across the GO Biological Process (BP), Molecular
Function (MF), and Cellular Component (CC) ontologies [35}136]:

Rao(Gy,Ga) = (SmBEA (G, Ga) x SImME (G, Ga) x SImS$ A (G1,Ga))s (3)
and add an edge where Rgo(G1,G2) > 0.80.

* Sequence similarity. A sequence similarity edge joins proteins whose sequences align with high
statistical confidence. Such homology implies a common ancestor and often a shared 3-D fold or
catalytic pocket, allowing MORGaN to transfer knowledge from well-studied family members to
poorly characterized relatives. We add an edge to the top 5% BLAST bit-scores (normalized for
sequence length) between non-identical gene pairs.

* Domain similarity. Pfam domains are recurrent, modular sequence blocks that fold into functional
units (e.g. SH2, zinc-finger). We connect two proteins if the Jaccard similarity between their Pfam
domain sets exceeds 0.30 [38]. Whereas full-length sequence similarity is global, domain similarity
edges focus on the local pockets — pinpointing druggable pockets that recur across otherwise dissimilar
proteins, which has proved useful for scaffold hopping in medicinal chemistry.

Why multiple relations? Biology is inherently multi-scale: genes can be co-expressed yet never touch, or
interact directly yet be regulated in opposite ways. Integrating multiple edge types allows the model to draw
from these multiple relation types.

A.2.2 Node features

Each gene is associated with a four-view multi-omic vector that aggregates evidence about how the gene is
altered or active in sixteen different cancer types: KIRC (kidney renal clear cell carcinoma), BRCA (breast
invasive carcinoma), READ (rectum adenocarcinoma), PRAD (prostate adenocarcinoma), STAD (stomach
adenocarcinoma), HNSC (head and neck squamous cell carcinoma), LUAD (lung adenocarcinoma), THCA
(thyroid carcinoma), BLCA (bladder urothelial carcinoma), ESCA (esophageal carcinoma), LIHC (liver hepa-
tocellular carcinoma), UCEC (uterine corpus endometrial carcinoma), COAD (colon adenocarcinoma), LUSC
(lung squamous cell carcinoma), CESC (cervical squamous cell carcinoma and endocervical adenocarcinoma),
and KIRP (kidney renal papillary cell carcinoma). This representation allows the model to exploit both
pan-cancer regularities and tissue-specific idiosyncrasies in a unified space. The following omics types are
included:

* Copy-number alteration (CNA). Chromosomal instability can duplicate or delete large DNA
segments. We encode the resulting log, copy-ratio for each gene. Amplifications drive oncogenes via
dosage; deletions can inactivate tumour suppressors; either type of alteration increases the gene’s
potential therapeutic relevance by changing pathway dynamics and dependencies.

* Gene expression. TPM-normalised RNA-seq counts serve as a proxy for transcriptional activity
along the canoncial DNA — mRNA — protein axis. High expression marks pathway engagement
and potential vulnerability; zero or strongly tissue-specific expression highlights candidates for of
potential on-target toxicity.

* Mutation frequency. A non-synonymous variant changes an amino-acid and can alter protein
function. We supply the fraction of tumours (TCGA) carrying at least one non-synonymous hit in
each gene. Recurrent hits point to cancer drivers; high frequency therefore raises the prior that a gene
is causally important — and a possible drug target.

* Methylation. CpG methylation at a promoter recruits proteins that compact chromatin and block
transcription — known as epigenetic silencing. The 3 value (where 0 = unmethylated, 1 = fully
methylated) distinguishes permanently “switched-off”” genes from merely low-copy ones, helping the
model avoid nominating silent targets.

Rationale and complementarity. Taken together, these four views cover structural (CNA), regulatory
(expression, methylation), and genetic (mutation) evidence. This complementarity provides orthogonal signals
that no single modality alone can provide, and enables the encoder to disambiguate mechanisms (e.g., high
expression due to amplification versus loss of expression due to promoter hypermethylation).

Data source and reproducibility. We derive these features from TCGA, a widely used and rigorously curated
resource for cancer genomics [23]]. Its breadth, depth, and transparent processing pipelines enable reproducible
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comparisons across studies and typically provide stronger statistical power than smaller proprietary cohorts.
While under-representation of rare histologies and understudied genes remains a limitation of any centralized
resource, TCGA’s standardization and multi-omic scope make it an appropriate foundation for building
generalizable target representations at scale.

Extensibility to additional modalities. MORGaN is feature-agnostic: any per-gene descriptor can be ap-
pended to the node feature vector without architectural changes. In particular, structural and chemoinformatics
descriptors — such as binding-site fingerprints, pocket hydrophobicity, or docking-derived scores — are natural
complements to biological priors. Embedding these signals would involve augmenting the node features with
quantities derived from 3D structures or in silico screening. Because the present work focuses on upstream
target prioritization from multi-omic and network context, a full end-to-end fusion with chemoinformatics is
left for future work; we view this as an exciting extension toward unifying biological and chemical modalities
in a single graph-learning pipeline.

A.2.3 Labels

Positive—unlabeled formulation. We frame the task as positive—unlabeled (PU) learning. High-confidence
positives — FDA-approved or clinically validated drug targets — are known. However, frue negatives do not
exist: a gene without clinical evidence is not necessarily undruggable. To reflect this epistemic asymmetry, we
treat the remaining genes as unlabeled and, for each train/validation/test split, sample negatives uniformly
at random from this pool. This approach (i) avoids penalizing understudied genes, (ii) allows estimation of
class-conditional risk without inventing a questionable negative set, and (iii) yields conservative evaluations
because improvements must persist across independent negative samplings.

Moreover, drug target labels are intrinsically skewed (on the order of ~150 Tier-1 positives versus ~16,000
unlabeled genes). There is no authoritative set of genes that are provably undruggable, and previously
intractable targets continue to become amenable with new modalities (e.g., PROTACs, molecular glues, nRNA
therapeutics). We therefore create negatives by resampling a subset of unlabeled genes for every split:

* Bias dilution. Because the negative pool changes with each split, the classifier cannot overfit to
idiosyncrasies of any single hand-curated list. Despite resampling, metric standard deviations remain
low, indicating stable performance.

* Graph neutrality. Resampled negatives retain their full connectivity and multi-omic features,
preserving the structural context established during pre-training. The model continues to learn from
each gene’s neighbourhood and attributes even when a given gene is temporarily treated as negative,
thereby avoiding topological artefacts that would arise from pruning or rewiring nodes.

* Forward compatibility. If a gene is later reclassified as drug target (e.g., due to a new modality), past
experiments remain valid because that gene was never canonically fixed as negative. Benchmarks can
be rerun with an updated label file without invalidating prior protocols.

These design choices mitigate pathway memorization, manage extreme class imbalance, and keep the evaluation
protocol adaptable to methodological and pharmacological advances.

Why binary labels in practice. In principle, “druggability” spans a continuum of chemical tractability that
evolves with technology. In practice, however, industrial target pipelines employ discrete gates (e.g., evidence
of a small-molecule binder, a clinical candidate, or regulatory approval). We therefore label Tier-1 targets
(approved or clinical candidates) as positives and sample negatives uniformly from unlabeled genes, mirroring
how pipelines prioritize targets. This operational definition enables fair, reproducible benchmarking and aligns
with prior work [4]], while remaining compatible with future re-labeling as the field progresses.

A.3 Model architecture: further details

Vertical stacking for sparse message passing. To exploit the fast sparse—dense multiplication (spmm)
available in PyTorch while still updating all relation types at once, we concatenate the R relation-specific
adjacency matrices {A,.}2_ | vertically into a single sparse block matrix A, € RZN)XN 'ag introduced by
Thanapalasingam et al. [19]. During each RGCN layer, we first mix topological and feature information
with one call to spmm(A,, X ), producing a relation-expanded feature matrix of shape (RN) X d;,,. This
matrix is then reshaped back to N x (R d;,,) and multiplied by a stacked weight matrix to yield the next-layer
embeddings. Because the projection to higher dimensions happens after the sparse multiplication, vertical
stacking keeps memory usage low and scales well to large graphs with modest input dimensionality.
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Weight decomposition. To manage parameter complexity with multiple relation types, we implement basis
decomposition [18]]. Each relation-specific matrix is expressed as a linear combination of a shared set of B
basis matrices {V;}2_;:

B
We = anV, “
b=1

where V}, € Rdin*dout gre global basis matrices shared across all relations, and a,;, € R are relation-specific
learnable coefficients. This formulation significantly reduces parameter count compared to using unique
weights per relation, while preserving expressiveness through learned compositions. In our implementation,
we set B = 2 to strike a balance between model flexibility and generalization capacity.

Normalization and dropout. Each layer applies layer normalization to the concatenated relation outputs,
adds a residual connection, and then dropout (p = 0.2).

A4 Training

Self-supervised masked pre-training During pre-training, we randomly mask a variable percentage of
node features and reconstruct them using a scaled cosine loss.

1 2Tz 0\
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where x; and Z; denote the original and reconstructed feature vectors, respectively, and «y controls the loss
sharpness. Pre-training runs for 100 epochs with an initial learning rate 10~2, weight decay 10~2, cosine
decay 1076, v = 3, and early stopping (patience 10). Hyper-parameters are selected via a grid sweep (see
Appendix [A.4); the best configuration is used throughout the paper. Through this pre-training stage, the model
learns compressed embeddings that encode both multi-omic profiles and relational context, serving as a robust
foundation for downstream classification.

Fine-tuning (supervised). The frozen embeddings feed an MLP classifier optimized with weighted binary
Cross-entropy:

Lelass = —w [yloga(p) + (1 —y)log(1 — o(p))], (6)

with label-dependent weights w to handle class imbalance. We train for up to 200 epochs (learning rate
5 x 1073, weight decay 10~*, gradient-clip 1.0) with early stopping (patience 20) on validation AUPR.

Pre-training dynamics. Fig. [ shows that the scaled-cosine reconstruction loss drops sharply during the
first ten epochs, then converges smoothly, indicating that the model quickly captures first-order correlations
and subsequently refines higher-order structure. The frozen embeddings obtained after 100 epochs serve as
initialization for the downstream drug target classifier.

Hyper-parameter search in brief. A grid of 192 runs varied mask ratio (0.1-0.8), depth (1-4 RGCN
layers), learning rate, weight decay and activation. The best AUPR clustered around a mask ratio of 0.5,
two or three layers, PReLU activation, learning rate 10~2 for pre-training and 5x 10~ for fine-tuning, and
weight decay 1073 / 10~* respectively (Fig. . These values constitute the default configuration shipped in
the supplementary config.yaml; all reported results use that setting.

Sensitivity to masking ratio. Masking ratio (feature corruption). Raising the fraction of masked features
from 5% to 50% consistently improves downstream metrics, with AUPR rising by ~ 4 pp and AUROC by
~ 3 pp. A higher mask rate forces the encoder to rely more heavily on relational context instead of relying on
raw features, leading to richer, more transferable embeddings. Beyond that, performance eventually degrades.

Sensitivity to loss exponent. Increasing the loss exponent + (the error curvature) in the SCE reconstruction
loss steepens the penalty on large reconstruction errors. This gradually lifts AUPR from 0.907 (v = 0.5) to
0.926 (v = 5.0), but the gains are modest (< 2 pp AUPR over a ten-fold change) and all standard deviations
overlap, indicating that the model remains broadly insensitive to the precise curvature of the loss.

Hence, performance improves with stronger feature corruption and a steeper loss, but the increments are small.
Why such robustness? We believe that it can be traced back to two things:
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Figure 6: Scaled-cosine reconstruction loss during masked pre-training (mean + s.d. over six splits).
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Figure 7: Parallel-coordinates view of the 192-run hyper-parameter sweep; colour encodes test AUPR. Orange
lines highlight the high-performing region described in the text.

1. Aggregated objective. The MAE sums residuals over six relation types and multidimensional
features, so changing the weight on any individual error, via masking or -, has a diluted global effect.

2. Masking as a regulariser. Even relatively moderate corruption (> 30%) regularises the model; once
in this regime, additional changes are unlikely to reshape the learned space.

Practically, this means MORGaN can be deployed with default settings (e.g. 50% masking, v = 3), still
achieving within 1 — 2 pp of the best scores - greatly simplifying hyper-parameter tuning while underscoring
the model’s inherent robustness.

A.5 Defaults

* Default hyperparameters: mask ratio = 0.5, y=3, 2-3 relation layers (PReLU), LR 1x10~2
(pre-train), 5x 10~ (fine-tune).

* Early stopping: monitor validation AUPR with patience 20 epochs.
 Splits: report mean =+ s.d. over k seeds; use consistent positive fractions across splits.

* Compute: single spmm per layer via basis decomposition for efficiency; training-time wall clock
improvements observed vs. per-relation updates.
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B Models

We keep the node features (§2.1)) and the stratified 80/10/10 train—validation—test splits described in §2.4]the
same across all models. Hyper-parameters are selected by grid search on the validation fold and seeds are
fixed to 0, 1 for full reproducibility. Mean * s.d. over six runs are reported in Table [3| of the main paper.
The eight models fall into three tiers: feature-only, homogeneous (single-relation) graph and heterogeneous
(multi-relation) graph.

B.1 Feature-only models

Logistic regression. A linear classifier with Lo regularization trained on the node features, with no
graph structure We use scikit-learn’s LogisticRegression(max_iter = 1000, penalty = "12",
solver = "lbfgs") and optimize the inverse regularization strength C over {0.01, 0.1, 1, 10}. Class weights
are set inverse-frequency to counter the 1:1 positive/unlabeled sampling. This baseline tests whether a strictly
linear decision boundary in feature space can already separate drug targets from non-drug targets.

Multilayer perceptron (MLP). Identical input as above, but with two hidden layers to capture non-linear
feature interactions. Architecture: [in — 64 — 32 — 2] with ReLU, dropout 0.2 after each hidden layer,
and softmax output. Optimiser: Adam (Ir = 1 x 103, weight-decay 5 x 10~%), batch size 256, 100 epochs,
early stopping (patience 20). Validation tuning sweeps hidden size {32, 64, 128} and learning rate {1 x 10~4,
1 x 1072, 5 x 1073}. Serves as a capacity-matched non-graph baseline.

B.2 Homogeneous-graph models

Graph convolutional network (GCN). The vanilla spectral GCN operating on the single PPI edge set. Best
configuration from the grid: two layers, hidden 128, PReLU activation, dropout 0.2, weight-decay 1 x 1074,
Input is a graph where nodes represent genes, node features are the same as above, and edges are derived from
PPIs.

Graph attention network (GAT). Multi-head attention on the same PPI graph. We use three layers with
hidden 64 per head, LeakyReLLU(0.2), feat-drop 0.2 and attn-drop 0.2. Heads are concatenated inside the
network and averaged in the output layer. Edge-specific attention weights let the model down-weight noisy
PPI links, providing a stronger yet still homogeneous comparator.

SMG-based (self-supervised masking) Following Cui et al. [14] we add a masked-feature reconstruction
pre-text stage to the GCN and GAT backbones. Mask ratio 0.5, 100 pre-training epochs (Ir 1 x 10~2, weight-
decay 1 x 1073, cosine decay), then fine-tune as above for at most 200 epochs (Ir 5 x 10~3). This pair isolates
the effect of self-supervision while holding the single-relation topology constant.

B.3 Heterogeneous-graph models

MODIG. The multi-omics, multi-relation GAT of Zhao et al. [21] trained on our six-edge-type graph. Each
relation is processed by its own two-layer GAT; relation-specific embeddings are fused with learned view-level
attention before a final MLP classifier. We keep the authors’ recommended settings (hidden 128, 8 heads,
dropout 0.3) and tune only the learning rate. MODIG gauges the benefit of heterogeneous edges without any
self-supervised pre-training.

MDMNI-DGD. The meta-path DNN of Li et al. [22] — a six-view extension of MODIG that stacks dense
layers on hand-crafted meta-path incidence vectors. We train the model on our dataset, following the original
paper — we use three hidden layers (256—128-64, dropout 0.3) and Adam (Ir 1 x 10~2). This baseline retains
heterogeneous information but replaces GNN message passing with fully-connected fusion, testing whether
explicit relational reasoning is needed.

Together, these baselines allus us to disentangle the contributions of (i) multi-omic feature depth, (ii) homo-
geneous versus heterogeneous topology, and (iii) self-supervised pre-training, ultimately demonstrating the
incremental value added by each MORGaN component.
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C Computational requirements and efficiency

On identical hardware and training budgets, MORGaN attains state-of-the-art accuracy with markedly lower
wall-clock time. A complete pre-train — fine-tune cycle takes 24.3+£2.9 s — about 65x and 23 x faster than
MODIG and MDMNI-DGD, respectively (Supplementary Table [2). The speedup arises from two design
choices in the encoder: vertically stacked sparse message passing that fuses all relations within each layer, and
basis-matrix weight decomposition that reduces per-relation parameters without sacrificing expressivity (see

$£.2.
All timings were obtained on a MacBook Pro (Apple M3, 8-core CPU, 16 GB RAM, macOS 15.4.1) with
no GPU acceleration. Table[2]compares MORGaN to the two strongest heterogeneous baselines.

Table 2: Runtime on the six-relation graph (mean =+ s.d. over six runs).

Model CPU time / epoch (s) End-to-end time (s)
MODIG 18.60 +1.18 1582+ 116
MDMNI-DGD 5.69 4+ 0.82 566 + 16
MORGaN 0.23 +£0.07 24.3+29

Key numbers. MORGaN trains ~ 80x faster per epoch than MODIG and completes the full pre-train +
fine-tune pipeline = 65 faster. Put differently, a hyper-parameter sweep that takes one day with MODIG
finishes in under 30 minutes with MORGaN on a traditional laptop.

D Supplementary results

D.1 Predictive performance

Table 3: Test-set performance of MORGaN versus eight models on the drug target identification task (mean
+ s.d.). Bold numbers indicate the best score per column; italic numbers mark the second best. All models
receive the same multi-omic node features; heterogeneous methods (bottom blocks) also share the identical
six-relation graph. Same splits. A full description of the baselines is provided in Appendix [B]

Model AUPR AUROC Accuracy F1 Score

Logistic regression 0.749 £ 0.045 0.682 £ 0.055 0.620 £ 0.044 0.577 £ 0.096
MLP 0.675 £+ 0.052 0.722 £ 0.045 0.722 £ 0.045 0.701 £ 0.035
GCN 0.721 £+ 0.020 0.766 £+ 0.005 0.715 £ 0.025 0.722 +0.037
GAT 0.699 £ 0.005 0.764 £+ 0.009 0.724 £0.015 0.742 £ 0.005
SMG-GCN [14] 0.714 £+ 0.009 0.763 £ 0.011 0.729 £+ 0.029 0.724 £ 0.014
SMG-GAT [14] 0.708 + 0.005 0.776 £ 0.005 0.732 £ 0.027 0.751 £0.014
MODIG [21] 0.764 + 0.017 0.837 £ 0.015 0.794 £+ 0.009 0.810 £+ 0.007
MDMNI-DGD [22] 0.815 +0.019 0.877 £ 0.003 0.664 £+ 0.038 0.741 £ 0.022
MORGaN (no pre-training) 0.879 £0.006 0.900 £ 0.006 0.898 £0.006 0.902 + 0.006
MORGaN (with pre-training) 0.888 £0.004 0.907 +0.005 0.915+0.005 0.917 £ 0.004

D.2 Extended discussion

D.2.1

MORGaN prioritizes a large, biologically coherent set of candidate targets

MORGaN correctly retrieves hallmark cancer drug targets such as EGFR, HER2, BRAF, ALK, MET, and RET.
To quantify confidence across all genes, we use a consensus probability score_mean (the mean predicted
probability across seeds/splits) and bin genes into tiers: below < 0.60, exploratory (0.60,0.75], medium
(0.75,0.90], high (0.90, 1.00], plus an additional top label for score_mean= 1.0. Using this scheme, MOR-
GaN nominates 1141 high-confidence positives and 312 fop hits, including 163 novel candidates. These
predictions are not diffuse; they cluster in pharmacologically tractable families and converge on cancer and
immune signaling programs (below). Moreover, an external concordance analysis shows that the majority of
high-confidence predictions are independently supported by DGIdb and/or the Finan druggable-genome atlas,
with a large three-way intersection (Appendix [D.10} Table [I6).
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D.2.2 Embeddings organize genes into pathway-coherent clusters

To assess whether MORGaN’s representations organize genes into biologically coherent modules, we projected
the learned embeddings with UMAP (cosine; npeighbors = 30) and overlaid the predictions. The 2-D map
reveals a broad crescent-shaped manifold on which predicted probabilities vary smoothly (Fig. [3a); the majority
of high-confidence positives occupy the arc, whereas predicted negatives form a separate island. Crucially,
“unlabeled — predicted+” genes (our putative novel targets) co-localize with known positives rather than
with negatives (Fig.[3b). A simple k-means partition of the UMAP (k = 12) further divides the space into
contiguous segments (Supplementary Fig.[T4); cluster-level enrichment points to distinct biological programs.
For example, the bottom left-hand island (cluster6) is enriched for nuclear-receptor and sterol biology together
with drug-metabolism modules (Cytochrome P450; Phase I functionalization) and GPCR ligand binding
(Supplementary Fig. [I5b), consistent with a detoxification/metabolic hub. An adjacent island (cluster3)
highlights stress-response and metabolic control (TP53-regulated metabolic genes, glutathione metabolism,
mTOR signaling; Supplementary Fig. [I5a)), while a segment on the outer arc (clusterl1) is enriched for
receptor-proximal trafficking and signal transduction (retrograde Golgi transport, RHO GTPase cycle, BMP
signaling, and PI3K cascade downstream of FGFR2; Supplementary Fig.[I5d). Global projections that regress
individual drivers onto the centered UMAP coordinates identify modest but consistent axes aligned with
the crescent (per-feature R? ~ 0.01 — 0.02), including cancer—type gene-expression contrasts (e.g., BRCA,
LUAD, PRAD, LUSC, KIRC/KIRP) and a clustering-based summary (Supplementary Fig.[I6). Together, these
analyzes indicate that MORGaN arranges genes along interpretable gradients — from metabolic/detoxification
and nuclear-receptor programs through stress and growth-factor signaling to GPCR/RHO-cytoskeletal modules
— and that newly prioritized, previously unlabeled genes fall into the same neighborhoods as established targets.

D.2.3 Pharmaceutically privileged families are enriched among high-confidence predictions

Across prediction tiers, MORGaN progressively concentrates signal in pharmaceutically tractable classes
(Figla). The fraction of GPCRs, ion channels and kinases rises from the “below”/“exploratory” sets to the
“high” and “top” tiers, while the residual “other” category shrinks, indicating that higher model confidence
coincides with established drug targets [39]. Formal over-representation testing in the top tier (Supplementary
Table[I3) confirms significant enrichment of GPCRs, ion channels, broad receptors, and cytokine receptors.
By contrast, kinases show no enrichment versus the genomic background, consistent with their high baseline
prevalence and suggesting that MORGaN shifts attention toward non-kinase, receptor-mediated opportunities.
Together, these patterns indicate that MORGaN’s highest-confidence calls naturally align with well-validated
target families — particularly GPCR and ion-channel biology — while still leaving room for diverse mechanisms
in the remaining fraction, which we examine in downstream pathway and network analyses.

Immune-relevant families follow the same pattern: among high and top calls we observe substantial repre-
sentation of cytokine signaling (n = 42 and 17), chemokine axes (n = 16 and 9), checkpoint/co-stimulatory
molecules (n = 14 and 8), and antigen-presentation components (n = 6 and 3), aligning with the cytokine-
receptor enrichment and pointing to both tumour-intrinsic and microenvironmental immune levers.

D.2.4 Pathway-enriched programs concentrate in GPCR and RTK-PI3K/ERK signaling

We assessed pathway over-representation on the High tier using a Fisher exact test against the genome-wide
background with Benjamini—Hochberg correction. High-confidence predictions were strongly enriched for
ligand-receptor signaling and growth-factor cascades (Fig. [#b). The most prominent signal was Neuroactive
ligand—receptor interaction (odds ratio, OR ~ 18 — 20; ¢ < 10~°°), accompanied by Reactome GPCR
modules — Signaling by GPCR, GPCR ligand binding, and Class A/Rhodopsin-like receptors (OR ~ 5 —
8 ¢ < 1073Y). In parallel, we observed pronounced enrichment for growth-factor receptor tyrosine kinase
pathways including RTK — RAS — ERK and RTK — PI3K branches (OR ~ 20—26; ¢ < 10~2Y), together
with PI3K-AKT signaling. A generic Cancer pathways term also appears, but the signal is mechanistically
concentrated in GPCR/RTK axes. These results align with the family-level tractability analysis — where
GPCRs, ion channels, and receptors are over-represented — and indicate that MORGaN preferentially elevates
targets embedded in well-studied signaling circuits with clear translational leverage.

D.2.5 Network context: MORGaN is not just a “hub detector”

To understand how predicted targets are positioned in the interactome, we examined degree, betweenness, and
clustering. Top hits occupy more central and cluster-forming positions than background genes (all p < 10?),
but correlation analyses (Fig. [TT)) show that MORGaN is not simply a hub detector. Across all genes, the
correlation between score and network-derived features is weak: degree p = 0.25 (partial 0.04), betweenness
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p = 0.30 (partial 0.17), and clustering p = 0.11 (partial 0.07); running-median trends indicate high scorers
span a wide degree range but are modestly enriched along information-flow routes and within local modules.
Biologically, this pattern is desirable: pure hubs can be toxic or essential, whereas genes that broker flow
between modules or sit in compact neighborhoods often mediate tractable, disease-relevant processes. These
analyses therefore support a systems-level notion of targetability aligned with pathway wiring rather than raw
connectedness.

D.2.6 Local explanations recover compact, pathway-coherent evidence per gene

To inspect why MORGaN assigns high confidence to specific genes, we applied GNNExplainer to the trained
model (methods in §D.9). The explainer learns soft masks over edges and feature dimensions, yielding (i)
a small explanation subgraph per gene and (ii) a cancer-type x omic feature—importance profile. Across
examples, the selected subgraphs are compact (visualized as the top-20 edges) and map onto recognizable
signaling motifs, while the feature masks highlight disease contexts and modalities that plausibly support the

call (Fig.0)and [T0).

Snapshots illustrate three recurring patterns. (i) Receptor—checkpoint crosstalk around known targets. For
EGFR, salient neighbors include T7P53, CDK2, and CTNNBI, tying RTK signaling to cell-cycle and Wnt
control; features concentrate in lung cancer CNAs and expression, matching clinical use. (ii) Multi-hop pathway
context. For NOTCH 1, the explainer emphasizes an ERBB4—MAPKY route and the RBPJ transcriptional
module, indicating that MORGaN leverages how Notch feeds into MAPK and downstream transcription
rather than counting direct interactors. (iii) Mechanistic neighborhoods for novel candidates. For LAMA3, the
subgraph links integrins and SMADs (ECM-integrin—~TGF/ crosstalk); for IL4R, edges to AKT2, RACI, and
TP53BP1I capture immune-to-survival and cytoskeletal routes. In both cases, feature heatmaps point to tissue
contexts (e.g., bladder/thyroid for LAMA3, colorectal/lung for /L4R) and modalities (expression, CNA) that
align with the network evidence.

Together, these local explanations indicate that high MORGaN scores are supported by structured network
motifs and relevant omic signals, not by degree alone — complementing our global centrality analyses — and
they translate directly into testable, pathway-level hypotheses for experimental follow-up (§D.9).

D.2.7 Genetic dependency signals corroborate predictions and reveal lineage-specific vulnerabilities

Cross-referencing DepMap reveals that all novel putative targets have at least one supporting dependency signal,
and we identify candidates with lineage-preferential dependencies — precisely the kind of context that enables
rational stratification. Examples include SMG1 (biliary tract), KRAS (pancreas), and cohesin/replication-
associated factors (FANCM, DSCC1, CHTF18) in fibroblast-like contexts, as well as CHP1, CDK®6, and
ERBB4 in adrenal lineage. Coupled with family and pathway annotations, these data guide concrete experi-
mental programs: for instance, focusing GPCR modulators on specific lineages where genetic dependency is
strongest, or combining RTK inhibitors with downstream PI3K/mTOR agents in contexts supported by both
network placement and dependency evidence.

D.3 Indication-focused case studies of novel MORGaN candidates

To translate aggregate performance into disease-facing hypotheses, we present indication-focused case studies
drawn from the top novel putative target set, illustrating how MORGaN’s rankings map to tractable biology
and concrete experimental avenues.

Non-small-cell lung cancer (NSCLC). Among MORGaN’s putative novel targets, we highlight EREG, that
maps to tractable axes in NSCLC biology. EREG (epiregulin) is an EGFR/ERBB ligand that can establish
autocrine signaling and is associated with aggressive behavior in NSCLC: functional work shows EREG
drives proliferation and invasion via EGFR/MEK/ERK activation, and high EREG expression portends poorer
outcomes in patient cohorts. These data suggest an actionable dependency in EREG-high tumors and motivate
testing ligand-axis blockade (e.g., pan-EGFR/ERBB inhibition) in the MORGaN-prioritized subset [40-42].

Acute myeloid leukemia (AML). MORGaN surfaces immune-checkpoint and cytokine-axis genes that
are rarely annotated as drug targets in AML labels but have growing translational support. CD274 (PD-
L1) is up-regulated on AML blasts and in the leukemic microenvironment, dampening anti-leukemia T-cell
activity; multiple studies and reviews now document PD-L1/PD-1 pathway engagement in AML and provide
a mechanistic rationale for biomarker-guided checkpoint blockade and combination strategies. MORGaN’s
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consistent prioritization of CD274 strengthens the case for systematic re-evaluation of PD-(L)1 targeting in
molecularly defined AML subsets [43H45]. As a complementary axis, IL2ZRA (CD25) — predicted as a high —
confidence positive—has been implicated in leukemic stem cell programs and adverse biology in myeloid
disease, with reports linking IL2RA expression to stemness and immune evasion. These observations, together
with existing CD25-directed agents, nominate CD25-high MORGaN candidates for prospective validation and
potential therapeutic exploration.

Ovarian cancer. MORGaN repeatedly flags GPCRs in the lysophosphatidic-acid (LPA) pathway, including
LPAR?2, as consistently positive. The LPA-LPAR signaling axis is a well-described driver of ovarian cancer
proliferation, migration, and peritoneal dissemination, with LPA present at high levels in malignant ascites
and multiple receptor subtypes (including LPAR?2) contributing to pro-metastatic phenotypes [46550]. The
convergence of MORGaN’s predictions with this pathway supports testing LPA-receptor antagonism (or
pathway-directed combinations) in the MORGaN-enriched subset of ovarian tumors.

D.4 Extended conclusions

MORGaN is built on the idea that integrating weak, heterogeneous signals improves target discovery. By
coupling multi-omic features with a multi-relation interactome and fusing relations within each layer, it
consistently outperforms strong baselines while remaining fast enough for iterative exploration. Sensitivity
analyses show these gains persist under plausible shifts in class balance, and ablations indicate they depend on
genuine network structure rather than edge density or parameter count. Overall, the results support that target
signal is distributed across complementary biological relationships and can be captured by relation-aware
message passing grounded in multi-omic context.

Biological coherence. High-confidence predictions are enriched in pharmaceutically tractable families
(GPCRs, ion channels, receptor classes) and concentrate in pathways with clear translational leverage (GPCR
signaling and RTK—PI3K/ERK cascades). In the learned representation, genes arrange along interpretable
gradients; previously unlabeled positives co-localize with known targets and fall into pathway-enriched clusters.
Network analyses further show that MORGaN is not merely recovering hubs: scores correlate only weakly
with degree, betweenness, and local clustering, highlighting candidates on information-flow routes and within
coherent modules. Brief indication-focused case studies illustrate how these signals translate into testable
hypotheses.

Why does MORGaN work? Two features appear crucial to MORGaN’s performance. First, relations
are fused within each message-passing layer, allowing information from different relations to mix during
propagation rather than being processed in isolation. Second, masked multi-omic pre-training provides a
strong prior when labeled positives are scarce, improving data efficiency at fine-tuning. Edge-type ablations
(GO/PPl/pathway co-occurrence) and leave-one-omics-out results (CNA strongest alone; other modalities
recover missed cases) align with this view and suggest design principles for future graphs and models.

Our framework delivers accurate, fast, and interpretable rankings with compact, pathway-consistent local
rationales suitable for experimental follow-up. Disease specificity is encoded in node features, biological
wiring is captured by the relation layers, and task definition is set by the labels, allowing the same relation-
aware encoder to be redirected to indication-specific graphs, cross-species networks, or other node-level
problems without re-engineering. In practice, MORGaN provides a direct route from heterogeneous molecular
data to mechanistically grounded target hypotheses, and a reusable scaffold the research community can adapt
across contexts.
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D.5 Ablation studies

The main paper shows that MORGaN outperforms eight strong baselines; the natural follow-up question is
why. We therefore conduct six systematic ablation experiments, which all run on the same train—validation—test
splits and are evaluated with the same metrics as the main results (AUPR is the headline score).

1.

PPI-source comparisons (Table ) swap the base PPI layer among five popular databases (STRING-
db, PCNet, CPDB, IRefIndex 2015, IRefIndex 2009) while holding all other relations and features
constant. CPDB is used in all main-paper experiments.

. Feature ablations (Table|5) isolate the importance of the four node-feature modalities (CNA, gene

expression, methylation, mutation frequency) by training MORGaN on every single, pairwise, triple,
and full combination.

. Edge-type ablations (Tables repeat the experiment for the six biological relation types.
. Randomized-edge control ablations (Tables 8][) replace each real edge set with a degree-preserved

shuffle keeping node features unchanged. Performance dropping to chance under this perturbation
demonstrates that the improvements arise from genuine biology rather than increased edge density or
model capacity.

. Domain-restricted (organ-system) training (Table tests whether pan-cancer gains arise from

cross-tumour transfer or from a few dominant entities. We retrain MORGaN on organ-specific feature
and label subsets while holding graph topology fixed.

. Model ablations. We swap the basis-decomposed RGCN encoder for a relational GIN (RGIN)

with matched depth/width/parameters and identical pre-training task, decoder, and schedule to probe
whether gains are operator-specific or persist across encoder families (Table[TT). In addition, we ablate
the efficiency components — vertical stacking and weight decomposition — showing that stacking
provides the dominant speedup while decomposition preserves this throughput, reduces parameters
via sharing, and acts as a mild regularizer (Table[I2).

All ablation results are averaged over the six stratified shuffle—split runs described in §2.4} one standard
deviation is shown for completeness. The next subsections present the detailed numbers and summarize the
key observations.

D.5.1 Comparison between PPI datasets

Table 4: PPI-source comparison. Performance of MORGaN when the PPI layer is sourced from five popular
interaction databases. All other edge types and node features are kept identical. Bold numbers highlight the
best score within each column. STRING-db provides the most informative PPI set, pushing AUPR to 0.971,
whereas the older IRefIndex releases yield lower accuracy despite comparable AUPR/AUROC figures.

Features AUPR AUROC Accuracy F1

CPDB 0.888 £0.004 0.906 £0.004 0917 £0.004 0.919 +0.004
IRefIndex 2015  0.949 £0.008 0.944 £0.004 0.866 £0.011 0.869 £0.010
IRefIndex 0.949 £ 0.008 0.944 £0.004 0.866+0.011 0.869 +0.010
PCNet 0.950 +£0.008 0.941 £0.007 0.893 +£0.004 0.888 +0.004
STRINGdb 0.971 £ 0.002 0.970 = 0.001  0.927 +0.007  0.927 + 0.007
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D.5.2 Feature ablations

Table 5: Ablation of the four input omics modalities. Blocks separated by lines correspond to (top to
bottom) single-, pair-, triple- and four-modality configurations. Bold numbers highlight the best score within
each column, and italics highlight the second-best. Copy-number alterations (CNA) are the most informative
modality on their own, whereas combining CNA with gene expression (GE) or mutation frequency (MF)
restores accuracy and F1 to the highest levels. Using all four modalities yields a balanced performance but
does not surpass the best CNA-based subsets on AUPR.

Features AUPR AUROC Accuracy F1

Copy Number Alterations (CNA)  0.908 £ 0.002 0.927 + 0.001  0.907 £0.005 0.909 + 0.005
Gene Expression (GE) 0.859+0.007 0.919+0.002 0.917+£0.004 0.919 +0.004
Methylation (METH) 0.884 £0.003 0.907 £0.002 0.913+£0.004 0.914 +0.004
Mutation Frequency (MF) 0.866 +0.002 0.909 £0.002 0.900 +0.008 0.902 + 0.007
CNA + GE 0.874+0.011  0.920£0.007 0.919 £ 0.000 0.921 + 0.000
CNA + METH 0.893£0.005 0.910+0.007 0.909 +0.004 0.911 £ 0.004
CNA + MF 0.908 + 0.004  0.929 £0.003 0.911+£0.000 0.913 +0.000
GE + METH 0.891 £0.018 0.907 £0.002 0.909 £ 0.008 0.911 +0.007
GE + MF 0.881+£0.005 0.920+0.002 0.917 £0.004 0.918 +0.004
METH + MF 0.890 £0.004 0.909 £0.001 0.915+£0.005 0.917 £ 0.005
CNA + GE + METH 0.891+0.002 0.912+£0.002 0.917+£0.004 0.919 +0.004
CNA + GE + MF 0.886 +0.006 0918 £0.004 0.919 +0.000 0.921 + 0.000
CNA + METH + MF 0.897+0.005 0.916+0.006 0.911+0.007 0.913 +0.006
GE + METH + MF 0.908 +0.006 0.913+£0.007 0.896+0.008 0.901 +0.007
CNA + GE + METH + MF 0.888 £0.005 0.906 £0.004 0917 £0.004 0.919 £ 0.004
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D.5.3 Edge ablations

Table 6: Edge-type ablation, part I (up to four relation types). Each row shows test performance when the
heterogeneous graph is restricted to the specified subset of biological relations. Values are mean + s.d. over the
six splits described in §2.4] The full six-relation result (AUPR = 0.888, cf. Table[3) is given for reference in
Table The horizontal rules separate 1-, 2-, 3- and 4-relation configurations. Bold numbers mark the best

score within each block.

Relations AUPR AUROC Accuracy F1

Co-expression (Coexpr.) 0.788 £0.006 0.788 £0.003  0.805 £ 0.000 0.782 = 0.000
Domain Similarity (DomSim) 0.764 £0.000 0.533+0.000 0.537+0.000 0.123 +0.000
GO Semantic Similarity (GO) 0.883+0.002 0.819+0.001 0.805+0.000 0.778 +0.000
Pathway Co-occurrence (Path) 0.863 £0.008 0.847 £ 0.004 0.843 +0.004 0.832 + 0.005
Sequence Similarity (SeqSim) 0.752+0.000 0.508 £0.000 0.512+0.000 0.032 £ 0.000
Coexpr. + DomSim 0.809 £0.007 0.798 £0.002 0.813+0.000 0.793 + 0.000
Coexpr. + GO 0.882+0.015 0.892+0.003 0.878+0.000 0.878 +0.001
Coexpr. + PPI 0.827 £0.021 0.881 £0.001 0.835+0.015 0.825+0.013
Coexpr. + Path. 0.878 £0.007 0.904 +0.003 0.894 +0.011 0.894 + 0.013
Coexpr. + SeqSim 0.783+£0.001 0.790+0.001 0.805+0.000 0.782 + 0.000
DomSim + GO 0.887£0.008 0.825+0.015 0.805+0.000 0.778 £ 0.000
DomSim + PPI 0.756 £0.007 0.804 £0.004 0.738 £0.041 0.740 £ 0.068
DomSim + Path. 0.878 £0.003 0.855+0.007 0.841 £0.008 0.830 +£0.010
DomSim + SeqSim 0.769 £0.000 0.541+£0.000 0.545+0.000 0.152 +0.000
GO + PPIL 0.849£0.030 0.789+£0.074 0.813+0.016 0.792 £0.028
GO + Path. 0.904 £ 0.003 0901 £0.001 0.894 +£0.000 0.894 + 0.001
GO + SeqSim 0.880 £0.004 0.812+0.002 0.805+0.000 0.778 £ 0.000
PPI + Path. 0.869 £0.007 0.904 +0.002 0.843 £0.004 0.835 £ 0.006
PPI + SeqSim 0.740£0.014 0.789+£0.014 0.726 £0.043  0.729 £ 0.059
Path. + SeqSim 0.853+0.004 0.839+0.008 0.835+0.004 0.822 +0.005
Coexpr. + DomSim + GO 0.897£0.010 0.895+0.002 0.878 £0.007 0.877 +0.008
Coexpr. + DomSim + PPI 0.856 £0.015 0.895+0.002 0.833+0.019 0.826+£0.018
Coexpr. + DomSim + Path. 0.861 £0.023 0.902+0.004 0.909 £0.004 0.910 = 0.004
Coexpr. + DomSim + SeqSim 0.811+0.004 0.802+0.003 0.813+0.000 0.793 +0.000
Coexpr. + GO + PPI 0.903+0.018 0.909 £0.033 0.876 £0.004 0.876 + 0.005
Coexpr. + GO + Path. 0.891 £0.001 0918 £0.001 0.917 £ 0.004 0.918 + 0.004
Coexpr. + GO + SeqSim 0.890+£0.025 0.881+0.009 0.872+0.004 0.870 = 0.004
Coexpr. + PPI + Path. 0.878 £0.005 0.917+0.003 0.909 £0.004 0.910 + 0.004
Coexpr. + PPI + SeqSim 0.827+0.015 0.874+0.004 0.819+0.010 0.810+0.021
Coexpr. + Path. + SeqSim 0.866 +0.032 0.900+0.003 0.909 £0.004 0.910 + 0.004
DomSim + GO + PPI 0.861 £0.031 0.800+0.068 0.807 £0.004 0.782 £ 0.008
DomSim + GO + Path. 0.910 £0.001 0.910+0.000 0.902+0.000 0.903 +0.000
DomSim + GO + SeqSim 0.892+0.004 0.835+0.009 0.811+0.004 0.786 % 0.006
DomSim + PPI + Path. 0.886 +0.007 0.914+0.008 0.860+0.012 0.852+0.015
DomSim + PPI + SeqSim 0.778 £0.006 0.810+0.006 0.754 £0.008 0.766 + 0.009
DomSim + Path. + SeqSim 0.875+0.005 0.856+0.007 0.848 +£0.008 0.837 +£0.010
GO + PPI + Path. 0.895+0.005 0.889+0.014 0.894+0.000 0.894 +0.000
GO + PPI + SeqSim 0.872+0.029 0.850+0.066 0.797 £0.022 0.779 £ 0.007
GO + Path. + SeqSim 0.902+0.002 0.901 £0.001 0.894+0.000 0.894 + 0.000
PPI + Path. + SeqSim 0.878 £0.009 0.905+0.007 0.850+0.008 0.840 +0.010
Coexpr. + DomSim + GO + PPI 0.905+0.018 0.907+£0.031 0.882+0.008 0.882 +0.007
Coexpr. + DomSim + GO + Path 0.899 £0.001  0.920 £ 0.001  0.919 £ 0.000 0.921 £ 0.000
Coexpr. + DomSim + GO + SeqSim 0.898 £0.010 0.878+0.013 0.870+0.015 0.868 +£0.016
Coexpr. + DomSim + PPI + Path. 0.870+£0.030 0.905+0.016 0.909 £0.004 0.910 £ 0.004
Coexpr. + DomSim + PPI + SeqSim 0.844+£0.026 0.885+0.010 0.833+0.010 0.837 +£0.007
Coexpr. + DomSim + Path. + SeqSim  0.863 £0.022  0.902 £0.005 0.909 £ 0.004 0.910 + 0.004
Coexpr. + GO + PPI + Path. 0.896 £0.003 0.915+0.003 0.915+0.008 0.917 +£0.008
Coexpr. + GO + PPI + SeqSim 0.876 £0.002 0.861 £0.001 0.880+0.010 0.879 £0.010
Coexpr. + GO + Path. + SeqSim 0.884 £0.003 0.915+0.000 0.919 +0.000 0.921 + 0.000
Coexpr. + PPI + Path. + SeqSim 0.866 £0.022 0.900 +£0.004 0.904 +£0.012 0.906 +£0.012
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Table 7: Edge—type ablation, part II (four to six relation types, continued). This table completes the sweep
by listing the remaining four- and five-relation subsets followed by the full six-relation graph (bottom row).
Metrics are reported as mean + s.d. over six runs.

Relations AUPR AUROC Accuracy F1

DomSim + GO + PPI + Path. 0.899£0.008 0.893+0.018 0.902 +0.000 0.903 +0.000
DomSim + GO + PPI + SeqSim 0.888£0.010 0.889+0.006 0.801 £0.024 0.786 + 0.005
DomSim + GO + Path. + SeqSim 0.908 £ 0.001  0.909 £0.001  0.900 +0.004 0.901 +0.004
DomSim + PPI + Path. + SeqSim 0.874 £0.005 0.899 £0.009 0.837+0.018 0.829 £0.015
GO + PPI + Path. + SeqSim 0.883 £0.004 0.868 £0.006 0.890 +0.005 0.890 + 0.005
Coexpr. + DomSim + GO + PPI + Path. 0.900 £ 0.005 0.919 £0.002 0.917 +0.004 0.919 + 0.004
Coexpr. + DomSim + GO + PPI + SeqSim 0.891+0.014 0.880+0.031 0.884+0.010 0.885+0.007
Coexpr. + DomSim + GO + Path. + SeqSim 0.891 £0.002 0.918+0.001 0.917 +0.004 0.918 +0.004
Coexpr. + DomSim + PPI + Path. + SeqSim 0.878 £0.010 0.906 +£0.011 0.894+0.020 0.897 £0.018
Coexpr. + GO + PPI + Path. + SeqSim 0.886 £0.007 0.910+0.006 0.913+0.004 0.915+0.004
DomSim + GO + PPI + Path. + SeqSim 0.899 +£0.010 0.896+0.021 0.896+0.004 0.897 +0.004
Coexpr. + DomSim + GO + PPI + Path. + SeqSim  0.888 £0.004  0.907 £0.005 0.915+0.005 0.917 £ 0.004

D.5.4 Edge ablations (randomized)

Table 8: Randomized—edge ablation, part I (up to three relation types). For each subset of biological relations
we replace every edge with a degree-preserved shuffle, keeping node features unchanged. Performance
collapses to chance level (AUPR ~ 0.5, AUROC = 0.5), demonstrating that MORGaN’s gains in Table@
come from biologically meaningful topology rather than edge density or parameter count. Horizontal rules

separate 1-, 2- and 3-relation configurations; values are mean + s.d. over six runs.

Relations AUPR AUROC Accuracy F1

Coexpr. 0.512+0.050 0.499 £0.060 0.503 +0.046 0.494 +0.072
DomSim 0.372+0.141  0.496£0.005 0.504 +0.000 0.349 +0.367
GO 0.548 £0.036  0.531£0.039 0.520+0.045 0.482+0.112
Path. 0.530+£0.038  0.500£0.018 0.502+0.015 0.479 +0.157
SeqSim 0.498 £0.289 0.496£0.005 0.498 +0.004 0.166 +0.332
Coexpr. + DomSim 0.480+0.040 0.494+0.053 0.488+0.018 0.491 +£0.059
Coexpr. + GO 0.504 £0.026  0.514£0.022 0.528 +£0.018 0.504 +0.078
Coexpr. + PPI 0.622£0.148 0.494+0.025 0.504 +0.007 0.141 £0.164
Coexpr. + Path. 0.583+0.030 0.579+0.019 0.553+0.015 0.575+0.027
Coexpr. + SeqSim 0.469 £0.044 0.460 +£0.071 0.480+0.043 0.482 +0.060
DomSim + GO 0.538 £0.054 0.515+0.040 0.520+0.015 0.494 +0.151
DomSim + PPI 0.582+0.119 0.520+0.047 0.512+0.033 0.396 +0.287
DomSim + Path. 0.491+0.013 0.473+0.018 0.492+0.005 0.341 +0.168
DomSim + SeqSim 0.628 £0.145 0.512+0.014 0.508 +£0.014 0.669 + 0.006
GO + PPI 0.619+0.149 0.495+0.014 0.508 +0.008 0.166 +0.261
GO + Path. 0.503 £0.042 0.474+0.052 0.484 +0.024 0.478 £0.094
GO + SeqSim 0.483+0.042 0.476+0.027 0.496+0.034 0.358 +0.159
PPI + Path. 0.640 £0.134 0497 £0.047 0.502+0.040 0.359+0.311
PPI + SeqSim 0.634+0.132  0.525+0.040 0.512+0.022 0.337+0.371
Path. + SeqSim 0.488 £0.025 0.485%0.037 0.494+0.023 0.473+0.172
Coexpr. + DomSim + GO 0.539+0.023 0.524£0.032 0.514+0.012 0.496 +0.026
Coexpr. + DomSim + PPI 0.492 +£0.012 0.487£0.009 0.498 +0.004 0.479 +0.071
Coexpr. + DomSim + Path. 0.507 £0.018  0.501£0.028 0.520+0.015 0.519 +0.023
Coexpr. + DomSim + SeqSim  0.494 £0.015 0.478 £0.034 0.482+0.032 0.463 +0.078
Coexpr. + GO + PPI 0.617+0.066 0.590£0.067 0.549 +0.062 0.561 +0.053
Coexpr. + GO + Path. 0.465+0.045 0.463+£0.082 0.480+0.072 0.438 +£0.081
Coexpr. + GO + SeqSim 0.566 £0.048  0.549 £0.055 0.551+£0.033  0.564 +0.030
Coexpr. + PPI + Path. 0.480+0.022 0.485+0.031 0.472+0.027 0.468+0.177
Coexpr. + PPI + SeqSim 0.465+0.030 0.447£0.051 0.467+0.060 0.395+0.113
Coexpr. + Path. + SeqSim 0.487+0.036 0.493+0.037 0.504 +0.016 0.541 +0.087
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Table 9: Randomized—edge ablation, part II (three to six relation types). Continuation of Table |8} covering
the remaining three-, four-, five- and full six-relation shuffles. Even with all six relation layers present but
randomized, MORGaN remains close to random guessing, reinforcing that the real multi-relation structure

(Table[7) is essential for predictive power.

Relations AUPR AUROC Accuracy F1

DomSim + GO + PPI 0.503 £0.051 0.522+0.061 0.490+0.029 0.467 £0.152
DomSim + GO + Path. 0.503 £0.048 0.531+0.057 0.537+0.040 0.546 +0.079
DomSim + GO + SeqSim 0.532£0.026 0.509 £0.020 0.498 +£0.017 0.552+0.115
DomSim + PPI + Path. 0.582£0.131 0.518+0.063 0.510+0.028 0.420+0.316
DomSim + PPI + SeqSim 0.532+£0.008 0.537+0.022 0.533+0.041 0.432+0.224
DomSim + Path. + SeqSim 0.498 £0.050 0.523 +£0.047 0.524+0.037 0.489+0.132
GO + PPI + Path. 0.491 £0.063 0.470+0.075 0.480+0.060 0.471+£0.176
GO + PPI + SeqSim 0.506 £0.049 0.481+0.034 0.486+0.026 0.472+0.114
GO + Path. + SeqSim 0.504 £0.028 0.524+£0.052 0.533+£0.030 0.535+0.074
PPI + Path. + SeqSim 0.552+£0.040 0.555+0.023 0.539+0.046 0.504 £0.127
Coexpr. + DomSim + GO + PPI 0.529 +£0.070 0.494 £0.064 0.504+0.083 0.522 +0.079
Coexpr. + DomSim + GO + Path. 0.532+0.079 0.549+0.102 0.541+0.060 0.550 +0.054
Coexpr. + DomSim + GO + SeqSim 0486 £0.045 0.489+0.046 0.502+0.031 0.465 +0.081
Coexpr. + DomSim + PPI + Path. 0.549+0.053 0.551+0.019 0.549+0.037 0.460 +0.288
Coexpr. + DomSim + PPI + SeqSim 0477 +£0.018 0.443+0.023 0.470+0.022 0.488+0.163
Coexpr. + DomSim + Path. + SeqSim 0.520£0.053 0.461 £0.029 0.490+0.014 0.449 +0.041
Coexpr. + GO + PPI + Path. 0.526 £0.021  0.504 £0.047 0.496+0.026 0.271 £0.076
Coexpr. + GO + PPI + SeqSim 0.496 £0.081 0.475+0.087 0.470+0.027 0.509 +0.227
Coexpr. + GO + Path. + SeqSim 0.516 £0.040 0.507 £0.048 0.520+0.030 0.486 £ 0.049
Coexpr. + PPI + Path. + SeqSim 0.538£0.036 0.554+0.026 0.541+0.017 0.467+0.172
DomSim + GO + PPI + Path. 0.519£0.050 0.507£0.040 0.512+0.037 0.539 +0.094
DomSim + GO + PPI + SeqSim 0.529£0.039 0.531+0.026 0.533+0.014 0.524 £0.093
DomSim + GO + Path. + SeqSim 0.585+£0.067 0.582+0.061 0.561 +0.049 0.547 £0.037
DomSim + PPI + Path. + SeqSim 0.537£0.066 0.536+0.057 0.518 +0.017 0.524 £ 0.086
GO + PPI + Path. + SeqSim 0481 £0.049 0468 £0.055 0.492+0.045 0.462+0.151
Coexpr. + DomSim + GO + PPI + Path. 0.506 +0.019 0.536 +£0.014 0.520+0.040 0.493 +0.236
Coexpr. + DomSim + GO + PPI + SeqSim 0.511£0.048 0.507 £0.038 0.496 +0.000 0.463 +0.095
Coexpr. + DomSim + GO + Path. + SeqSim 0.503 +0.011 0.491+0.011 0.504+0.018 0.525+0.087
Coexpr. + DomSim + PPI + Path. + SeqSim 0460 £0.031 0.449+0.039 0.472+0.040 0.405+0.092
Coexpr. + GO + PPI + Path. + SeqSim 0.515£0.051 0.507 £0.052 0.506 +0.054 0.341 £0.262
DomSim + GO + PPI + Path. + SeqSim 0477+£0.012 0469 +0.016 0.484+0.019 0.419+0.221
Coexpr. + DomSim + GO + PPI + Path. + SeqSim ~ 0.505 £0.022  0.479 £0.036  0.480+0.038 0.472+0.122

D.5.5 Domain-restricted (organ-system) training

To determine whether MORGaN’s accuracy is driven by a handful of tumor entities or is truly pan-cancer,
we trained six separate models, each restricted to one “organ-system’ (omics features retained only for the
cancer types listed in brackets), based on those already included in the pan-cancer feature set used to train our

original model:

¢ Head and Neck [HNSC]

¢ Gastro-intestinal [ESCA, STAD, LIHC, COAD, READ]

» Respiratory [LUAD, LUSC]

* Genitourinary [KIRC, KIRP, BLCA, PRAD]

* Reproductive [UCEC, CESC, BRCA]

* Endocrine [THCA]

The table below reports mean =+ s.d. over three random splits (70/15/15%).

Across the profiled organ systems, performance is uniformly strong (AUPR = 0.892 — 0.919; AUROC
= 0.891 — 0.927; Acc = 0.874 — 0.905; F1 = 0.877 — 0.908), indicating that MORGaN’s accuracy is not
driven by a single tissue context. Variation is modest (absolute AUPR spread < 0.027 with s.d. < 0.016), and
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Table 10: Performance by tissue group (mean =+ s.d.).

Tissue group AUPR AUROC Accuracy F1

Gastrointestinal  0.898 £0.003 0.913 £0.005 0.892 £0.004 0.896 + 0.004
Respiratory 0.919+£0.003 0.927£0.002 0.890+0.004 0.896 £ 0.005
Head and neck  0.893 £0.008 0.901 £0.003 0.874+0.012 0.877£0.016
Genitourinary 0.910£0.009 0.922+£0.010 0.905+0.004 0.908 &£ 0.005
Reproductive 0.892 £0.007 0.891 £0.007 0.874+0.009 0.877+£0.010

tracks data availability: the Respiratory group achieves the highest scores (AUPR 0.919 =+ 0.003, AUROC
0.927 £+ 0.002), while Head & Neck and Reproductive, which have fewer established positives, are slightly
lower but remain well within the high-performing regime (AUPR ~ 0.892 —(0.893, AUROC =~ 0.891 —0.901).
Gastrointestinal and Genitourinary are consistently competitive (e.g., AUPR 0.898 and 0.910; AUROC 0.913
and 0.922, respectively). In short, MORGaN generalizes across cancer types; although joint pan-cancer
training yields the single best overall model, the per-tissue experiments show that it retains high fidelity even
when feature sets are restricted to smaller, system-specific vectors.

D.6 Model ablations

D.6.1 Encoder-family

To test whether MORGaN’s gains depend on the specific relational operator, we replace the basis-decomposed
RGCN encoder/decoder with a Relational GIN (RGIN) backbone while keeping the pre-training objective,
decoder head, data splits, optimization schedule, and regularization unchanged. We match depth/width to keep
parameter count and per-epoch compute comparable.

Table[TT|reports mean + s.d. across the same splits used elsewhere. RGIN performance is comparable with that
achieved by our RGCN configuration, indicating that MORGaN’s gains primarily arise from the multi-relation
masking objective and the information in the heterogeneous graph rather than from a particular choice of
message-passing operator.

Table 11: Encoder-family ablation: replacing RGCN with RGIN inside MORGaN (mean =+ s.d. across
identical splits).

AUPR AUROC Accuracy F1

RGCN 0.888£0.004 0.907 £0.005 0.915£0.005 0.917 £ 0.004
RGIN  0.908 £0.005 0.913£0.011 0.898 £0.007 0.902 £ 0.007

Takeaway. Comparable results with RGIN suggest the framework is robust to encoder choice; the core driver
is the self-supervised multi-relation formulation combined with rich graph context.

D.6.2 Weight decomposition and vertical stacking

We assessed the effect of weight decomposition (basis sharing across relations) and vertical stacking (single
spmm over a stacked relation matrix) on both efficiency and accuracy. Runtime was measured on the same data
and training schedule.

Efficiency. Vertical stacking accounts for the dominant speedup versus a naive per-relation pass. Adding
weight decomposition maintains this fast regime while reducing parameter count via sharing. Without
employing vertical stacking and weight decomposition, MORGaN training exhibits a substantially higher
runtime (~ seconds per iteration compared to 0.23 seconds per iteration). With vertical stacking but without
weight decomposition, the runtime was approximately 4.26iterations per second.

Accuracy. With vertical stacking but without weight decomposition, we observed slightly higher metrics;
however, given the large efficiency/parameter benefits of decomposition and its regularizing effect, we retain it
as the default. Reported means + s.d. over the same splits:
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Table 12: Performance with vertical stacking but without weight decomposition.
AUPR AUROC Accuracy F1

Vertical stacking and decomposition 0.888 £0.004 0.907 £ 0.005 0.915£0.005 0.917 + 0.004
Vertical stacking and no decomposition  0.912+0.010 0.913 +0.004 0.894 £0.010 0.897 £ 0.012

Takeaway. Vertical stacking delivers the primary runtime gain, while weight decomposition preserves that
efficiency, reduces parameters through sharing, and serves as an implicit regularizer; we therefore keep
decomposition in MORGaN’s default encoder.

D.7 Sensitivity to class imbalance

We quantified the robustness to the class balance of the training set. We swept the negative:positive ratio
used (0.25, 0.5, 1.0) while keeping the training settings fixed. Across six repeated splits, MORGaN sustained
uniformly high precision—-recall, with only a modest decline as negatives increased (AUPR ~ 0.98 — 0.91;
Supplementary Fig[T2] left). AUROC remained stable and near-maximal (peaking around the 1:2 balance and
decreasing slightly at 1:1; Supplementary Fig[I2] middle), while Accuracy varied little (Supplementary Fig[T2]
right), consistent with its known sensitivity to class prevalence. Early-stopping checkpoints were typically as
good as, or slightly better than, end-of-training models at the more imbalanced settings, suggesting a small
regularization benefit without altering conclusions. Overall, these trends indicate that MORGaN’s ranking of
putative targets is robust to plausible shifts in label prevalence, which is critical when deploying models across
disease areas.

D.8 Enrichment analysis

D.8.1 Family enrichment analysis

Table 13: Family enrichment among top-tier predictions. Overlap = number of top-tier genes in the family.
p-values from one-sided Fisher’s exact (greater); FDR = Benjamini—-Hochberg.

Family Overlap Odds ratio p-value Setsize Rank FDR
GPCRs 24 484 3.72x107° 488 1 3.72x1078
Ton channels 17 591 3.55x 1078 277 2 1.77x1077
Receptors 41 228 1.76 x 107° 1,769 3 587x107°
Cytokine receptors 5 1250 9.54 x107° 39 4 239x107*
Transporters 10 179 6.54 x 1072 484 5 1.31x107!
Enzymes 36 1.05 421 x107! 2,889 6 7.02x107"
Receptor tyrosine kinases 2 131 454 x 1071 128 7 6.49x 107!
Kinases 15 0.75 8.89 x 107! 1,627 8 1.00
Phosphatases 1 029 9.68 x 107! 283 9 1.00
Nuclear receptors 0 0.00 1.00 91 10 1.00

D.8.2 Pathway enrichment analysis

Rationale. Given a ranked list of genes from MORGaN (high score = predicted drug target), pathway
enrichment asks: “Do the top-ranked genes cluster in curated biological pathways more than we would expect
by chance?” If so, that provides external validity: the model is concentrating probability mass on coherent
processes (e.g., cell cycle, receptor signaling) rather than on idiosyncratic single genes.

Pipeline in brief. We use GSEA (Gene Set Enrichment Analysis) in the “pre-ranked” mode:

1. Rank genes. Sort all genes by MORGaN’s prediction score.

2. Choose gene sets. Use curated pathway collections (e.g., KEGG, GO). Each set is simply a list of
genes that participate in a process.

3. Enrichment statistic. For each pathway, GSEA computes a running-sum statistic that increases
when a pathway gene is encountered high in the ranking and decreases otherwise. The maximum
deviation of this walk is the raw enrichment score.
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4. Normalization and significance. Scores are normalized by gene-set size, yielding the NES
(Normalized Enrichment Score), which lets large and small pathways be compared. Significance
is assessed by permutation to form a null distribution; we report nominal p-values (NOM p) and
multiple-testing—corrected FDR g-values.

Analyzed gene sets. We run GSEA on two sets of predictions: (A) all genes predicted as positive by
MORGaN, and (N) the subset of novel positives with no prior annotation. Tables|14H15|and Fig. |8| summarize
the most significant results (FDR < 0.05).

NES measures how strongly a pathway is enriched at the top of the ranking after accounting for set size. FDR ¢
controls for testing many pathways at once (analogous to a false discovery rate in multiple-hypothesis testing).
The bar plots in Fig. [§|compare NES across pathway categories; darker bars refer to results on set (A) and
lighter bars refer to set (N).

Cancer hallmarks. Both sets recover core oncogenic programs — cell cycle, p53, PI3K-Akt, and composite
pathways in cancer — indicating that high-scoring genes cluster in well-established cancer biology (Table [T4).

Therapeutically actionable signalling. The strongest signals are receptor-mediated pathways, led by
neuroactive ligand—receptor interaction and several GPCR cascades (Table[I3). GPCRs and related receptors
are classic drug targets because they are membrane-exposed, ligandable, and already richly represented in
approved medicines. Enrichment here suggests MORGaN’s scores align with historically “druggable” target
classes rather than random gene families.

Immune and metabolism niches. In the novel set (N), we observe cytokine—cytokine receptor interaction,
hematopoietic cell lineage, and xenobiotic/retinol metabolism. These point to immuno-modulatory mechanisms
(e.g., tuning tumor—immune interactions) and to metabolic processes associated with drug processing and
resistance — fertile ground for new targets.

Pathways overlap and are correlated; FDR addresses multiple testing, and NES mitigates gene-set size
effects, but some redundancy is expected. Because MORGaN is trained with multi-omic and network context,
we consider pathway-level enrichment a complementary sanity check that the model’s global ranking is
biologically coherent.

Taken together, the enrichment profile shows that MORGaN both rediscovers canonical drug classes (external
validity) and highlights plausible novel targets for follow-up (novel set N).

Enrichment of cancer-related pathways among MORGaN predictions

Top 10 enriched pathways among MORGaN predictions

Al predicted positives
B Newly predicted druggable genes

Normalized Enrichment Score (NES)

o 1 H 3 3 H
Cell cycle p53 signalling PI3K-Akt signalling Pathways in cancer  Chemical carcinogenesis Normalized Enrichment Score (NES)

Figure 8: Visual summary of pathway enrichment analysis results. Left: Normalized enrichment score
(NES) for five hallmark cancer pathways. Right: Ten most significant pathways overall. Dark bars = all
predicted positives; light bars = novel predictions only.
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Table 14: Enrichment of hallmark cancer pathways among MORGaN predictions. Normalized enrichment
score (NES), FDR ¢-value and nominal p-value (NOM p) are shown for both established drug targets (A) and
newly predicted candidates (N). All listed pathways pass FDR < 0.05 and NOM p < 0.01.

Pathway Group NES FDRg NOMyp

Cell cycle (KEGG) 295 0.00049 0.000
Cell cycle (KEGG) 244 0.00610  0.0023
p53 signaling pathway (KEGG) 298  0.00098 0.000
p53 signaling pathway (KEGG) 271 0.00043 0.000
PI3K-AKkt signaling pathway (KEGG) 247 0.00112 0.000
PI3K-Akt signaling pathway (KEGG) 1.80  0.04700  0.0077
Pathways in cancer (KEGG) 2.05 0.01580 0.0031
Pathways in cancer (KEGG) 2.14 0.01050 0.0014
Chemical carcinogenesis (KEGG) 1.96  0.02410 0.0050
Chemical carcinogenesis (KEGG) 2.48  0.00057 0.000
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Table 15: Top five pathways enriched among all (A) and novel (N) MORGaN-predicted drug targets. Metrics
as in Table

Pathway Group NES FDRg NOMyp

7.31 0.000 0.000
3.69  0.000 0.000
3.82  0.000 0.000
4.00  0.000 0.000
3.65  0.000 0.000
4.50  0.000 0.000
3.85  0.000 0.000
327  0.000 0.000
320  0.000 0.000
3.05  0.000 0.000

Neuroactive ligand-receptor interaction (KEGG)

G protein-coupled receptor signaling (GO)

Adenylate cyclase-modulating GPCR signaling (GO)
Chemical synaptic transmission (GO)

Anterograde trans-synaptic signaling (GO)
Neuroactive ligand—-receptor interaction (KEGG)
Cytokine—cytokine receptor interaction (KEGG)
Xenobiotic metabolism by cytochrome P450 (KEGG)
Hematopoietic cell lineage (KEGG)

Retinol metabolism (KEGG)

ZZZ2Z2Z>» > >

D.9 Local interpretability: case studies

Deep graph models often deliver accurate predictions while leaving the mechanistic “why” opaque. We ask:
“Which subgraph structure and which feature dimensions were most influential for MORGaN'’s decision on
a specific gene?” Local explanations help users assess faithfulness, spot failure modes, and form testable
hypotheses.

To examine MORGaN’s decision process we apply GNNExplainer [51]], which learns soft masks over (i)
edges (Mg € [0,1] IEly and (ii) feature dimensions (Mp € [0, 1]%). The explainer optimizes these masks to
maximize the mutual information between the masked inputs and the model’s output for the target node:

Jmax I(Y: f(G O Mp, X © M) 0

where f is the frozen trained model, G is the graph (adjacency), X are node features, and © denotes element-
wise masking. In practice, this is implemented with a differentiable surrogate objective (e.g., cross-entropy on
the target logit), plus sparsity and entropy regularizers that encourage compact, human-readable explanations.
Thresholding Mg yields an explanation subgraph; the thicker the edge, the higher its attribution weight.

Fig. [10] displays subgraphs with the top-20 edges by mask weight for four case genes (two established:
EGFR, NOTCHI; two high-confidence novel: LAMA3, IL4R). The focal node is enlarged; edge width encodes
importance. Fig.[9]aggregates the feature mask into a cancer-type x omic-layer heat-map, so we can see
whether structure vs. features, and which modality, drove the call.

a) EGFR - validating known biology. The highest-weight edges connect EGFR to TP53, CDK2, and
CTNNBI. These neighbors sit on well-studied axes that link receptor tyrosine-kinase signaling to proliferation
control: CDK?2 is a core cell-cycle kinase (G1/S transition), TP53 constrains damaged cells from cycling, and
CTNNBI (3-catenin) mediates Wnt pathway transcriptional programs that reinforce growth signals. The feature
mask assigns large weights to copy-number and expression channels in lung adenocarcinoma (LUAD) and lung
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squamous carcinoma (LUSC), indicating that MORGaN’s per-gene score for EGFR is supported by both (i) a
structural motif tying EGFR to cell-cycle checkpoints and (ii) omics evidence of amplification/over-expression
in the histologies where EGFR inhibitors are first-line therapy.

b) NOTCH1 - pathway-centered evidence. Instead of a star around NOTCH 1, the mask emphasizes two
tightly connected patterns: (i) a receptor—kinase crosstalk motif involving ERBB4 and MAPK9 (JNK), and
(ii) a transcriptional decision module with RBPJ, the canonical DNA-binding partner for Notch intracellular
domain. This says the model is using multi-hop pathway context — how Notch signalling routes into MAPK
and transcription — rather than just counting direct interactors. Feature-wise, the importance is spread across
expression and methylation channels, which is consistent with NOTCH pathway activity being regulated by
both ligand/receptor levels and downstream transcriptional state. The selection of small, interconnected motifs
implies the predictor relies on substructures with function, not just local density or centrality.

¢) LAMAS3 - extracellular-matrix lead. For the unlabeled candidate LAMA3 (a laminin subunit in basement
membrane), salient neighbors include /TGA4 (integrin receptor) and SMAD1/2 (TGF-f3 effectors). Together
these mark ECM—integrin—-TGF crosstalk: integrins sense matrix composition and stiffness, transmit signals
that modulate SMAD activity, and jointly regulate adhesion, migration, and invasion. The feature mask
concentrates in bladder and thyroid contexts, with expression and methylation dimensions carrying the largest
weights, suggesting tumor settings where ECM remodeling is particularly informative for the model’s decision.
For a novel prediction, a coherent mechanistic neighborhood plus aligned feature evidence is stronger than
either alone. The model is not “hallucinating” from topology.

d) IL4R - immune-evasion angle. The subgraph highlights edges to AKT2 (PI3K/AKT survival signaling),
TP53BPI (DNA-damage signaling), and RAC (actin cytoskeleton and motility). This context is expected for
ILA4R, a cytokine receptor that modulates immune and survival pathways: 1L-4/IL-13 signaling can activate
PI3K/AKT, reshape cytoskeletal dynamics via Rho GTPases, and influence DNA-damage responses indirectly
through cell-state changes. The feature mask is strongest in colorectal and lung cancers, with expression
and CNA dimensions dominating, again matching settings in which cytokine-driven immune escape and
microenvironmental interactions are prominent. Receptor localization (membrane), a signal-integration
neighborhood, and high-weight omic channels together form a consistent explanation. Indeed, the explanation
aligns with literature linking IL-4/IL-13 signaling to macrophage polarization and immune escape, supporting
IL4R as a promising immuno-oncology target.

Overall, the explanations are compact, stable, and mechanistically plausible, letting us trace MORGaN’s
“YES” decisions back to specific relational motifs and *omic signals — useful both as a faithfulness check and
as a hypothesis generator for downstream experiments.

Importance-heat matrix Importance-heat matrix | " heat tri | " heat tri
(cancer x omic layer) (cancer x omic layer) r?faor:c?e?cf-ori?c Irgje:')x r?faor:c?e?cf-ori?c Irgjec)x
for EGFR predictions for NOTCH1 predictions for LAMA3 predictions for IL4R predictions
BLCA 0.16 BLCA BLCA BLCA
BRCA BRCA 0.16 BRCA 0.165 BRCA
0.160
CESC CESC CESC CESC
COAD COAD 0.160
ESCA 0.15 ESCA COAD COAD 0.155
HNSC HNSC 0.15 EscA 0.155 EscA
HNSC HNSC 0.150
KIRC 0 KIRC KIRC 0.150 KIRC
KIRP 14 KIRP KIRP KIRP 0.145
LIHC LIHC 0.14 LIHC 0.145 LIHC
LUAD LUAD LUAD LUAD 0.140
LusC 0.13 LuscC LUSC 0.140 LUSC
PRAD PRAD 0.13 PRAD 0.135 PRAD 0135
READ READ ’ READ ’ READ 0.130
STAD 0.12 STAD STAD 0.130 STAD '
THCA THCA THCA THCA 0.125
UCEC UCEC 0.12 UCEC 0.125 UCEC
P& P& P& P&
DA AN A A
~ ~ N W~
(a) EGFR (b) NOTCHI1 (c) LAMA3 (d) IL4R

Figure 9: Heat-map visualization of node-feature importance for the same four driver genes. Each panel
shows a cancer-type x omic-layer matrix; color intensity is proportional to the contribution weight assigned by
GNNExplainer (darker = higher importance).
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Top 20 most important edges for predicting node EGFR
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Figure 10: Sub-graphs with the 20 most influential edges (edge width o contribution) for four driver genes.

The central node is enlarged and darkened.
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D.10 External concordance

We compared MORGaN’s high-confidence positives (p > 0.9) with two external resources: DGIdb [52] and
the Finan et al. [4]] drug target atlas. Table[I6|reports overlaps and proportions. The substantial concordance —
particularly the three-way intersection — supports MORGaN’s ability to recover genes independently recognized
as drug targets.

Table 16: Overlap between MORGaN positives and external resources.

Resource Overlap (genes) % of MORGaN positives
DGIdb [52] 50 69.1%
Finan [4] 106 74.9%
DGIdb N Finan N MORGaN 609 63.8%

Overall, 80.2% (765/954) of MORGaN’s high-confidence predictions are supported by at least one external
resource (DGIdb or Finan), with 63.8% (609/954) shared by both.

Reproducibility note (MDMNI-DGD). We attempted to include MDMNI-DGD predictions for a broader
comparison; however, the supplementary gene list referenced in their paper was not accessible (the download-
able file appeared corrupted across multiple attempts). We will add this comparison if/when an updated file
becomes available.
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Figure 11: Hexbin density plots showing the relationship between the prediction scores (logit scale; y-axis)
and three network metrics: degree (loglp, left), betweenness (logl10, center), and clustering coefficient
(x-axes, right). The white line is a running median. Panel titles report the Spearman correlation (p), the partial
correlation controlling for the other centrality measure, and a permutation p-value. Associations are weak
for degree (p = 0.25; partial p = —0.04) and modest for betweenness (p = 0.30; partial p = 0.17) and
clustering (p = 0.25; partial p = 0.07), indicating MORGaN is not simply a hub detector but prioritizes
genes on information-flow routes and within locally coherent modules.
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Figure 12: Sensitivity to class balance. Mean + s.d. across repeated splits for (left) AUPR, (middle) AUROC,
and (right) Accuracy as a function of the negative:positive ratio on the test set. Solid lines: final checkpoint;
dashed lines: early-stopping checkpoint. AUPR and AUROC remain high across settings; early stopping yields
small, consistent improvements at the extremes.
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Figure 13: Average performance versus number of relation types. For each n = 1...6, bars show mean £
s.d. across all combinations of n edge types, for AUPR, AUROC, Accuracy, and F1. Performance improves
steeply from 1—3 relations and then plateaus, indicating additive value from heterogeneous biology with
diminishing returns near full coverage.
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UMAP with cluster IDs
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Figure 14: Two-dimensional UMAP of MORGaN node embeddings (cosine metric, npeighbors = 30)
colored by k-means clusters (k = 12); labels mark cluster IDs. The representation reveals a crescent-shaped
manifold of higher-scoring genes and a separate island, providing contiguous segments used for cluster-level

pathway enrichment (Fig. [[5aHT5d).
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Cluster 3: pathway enrichment

Cluster 6: pathway enrichment
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(c) Cluster 10: extracellular-matrix and adhesion sig-
nalling (integrins, collagen biosynthesis/trimerization),
complement, calcium/adenylate-cyclase pathways, and

(d) Cluster 11: receptor-proximal trafficking and cy-
toskeletal control (retrograde Golgi transport, RHO GT-
Pases), BMP signalling, and FGFR2—PI3K cascade.

glucose/gluconeogenesis metabolism.

Figure 15: Pathway enrichment of representative UMAP clusters. Bubble plots show the top enriched
pathways per cluster (x-axis: odds ratio). Point size is proportional to the overlap (number of cluster genes in the
pathway) and colour encodes — log;,(FDR). Distinct clusters capture coherent biological programs spanning
metabolism/detoxification, nuclear-receptor signalling, ECM/adhesion and complement, and RTK/RHO-driven
signal transduction.
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UMAP with global driver arrows
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Figure 16: Envfit projections of external variables onto the centered UMAP coordinates. Arrows
indicate the direction of increasing values; length is proportional to variance explained (reported R? for
each variable). Cancer-type gene-expression contrasts (e.g., BRCA, LUAD, PRAD, LUSC, KIRC/KIRP), a
methylation feature (CESC), and an unsupervised clustering summary align weakly but consistently with the
crescent-shaped manifold (R? ~ 0.01—0.02), supporting graded, biologically interpretable organization in the
embedding.
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F Out-of-distribution experiments

F.1 Alzheimer’s disease

Setup. To test disease-agnostic generalization, we built an Alzheimer’s disease (AD) network using
Alzheimer-specific multi-omic profiles (logs fold-change gene expression and chromatin accessibility) and the
same six biological relation types used in the pan-cancer graph (derived from [53]). We re-trained MORGaN
end-to-end with the identical pre-training and fine-tuning protocol and evaluated on the same split strategy as
in the cancer experiments.

Results. Performance remains strong under this domain shift, with a small drop relative to oncology
(Table[T7). This suggests that the self-supervised, multi-relation objective captures disease-general structure
that transfers beyond cancer.

Table 17: Alzheimer’s disease: mean =+ s.d. over splits.
AUPR AUROC Accuracy F1

MORGaN (AD) 0.892+0.022 0.908 £0.009 0.840 £0.009 0.847 £ 0.008

>

Qualitative sanity checks. Among high-scoring predictions without prior drug targets (“false positives’
under our operational binary label), MORGaN prioritizes genes with AD-relevant evidence, including PDE4D
(amyloid/tau pathology; cognitive decline) [54], HLA-DRA (upregulated; neuroinflammation) [55], members
of the HDAC family (pharmacological modulation ameliorates cognitive deficits in AD models) [56 57], as
well as NTRK1 (nervous system development) and NRPI (neuronal migration, angiogenesis; upregulated in
AD models) [58]. These examples support that out-of-distribution predictions remain biologically plausible.

F.2 Essential genes

Setup. To illustrate the task-agnostic utility of MORGaN embeddings, we evaluated a distinct prediction
task: gene essentiality. We used proxy labels derived from prior predictions [59] (subset to E (essential)) and
applied the same training/evaluation protocol (architecture and schedule unchanged), treating this as a separate
downstream classification problem.

Results. Despite the weaker, prediction-derived labels, performance is competitive (Table[I8), indicating
that MORGaN learns task-general representations that transfer to essentiality beyond the original objective.

Table 18: Essential gene prediction: mean =+ s.d. over splits.
AUPR AUROC Accuracy F1

MORGaN (essential) 0.765 £ 0.015 0.835£0.008 0.772£0.009 0.797 £ 0.008

Takeaway. Across both experiments, MORGaN’s multi-relation self-supervision yields embeddings that
generalize across diseases (AD) and tasks (essentiality), with only modest degradation under distribution shift
and competitive performance under weaker labels.
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