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Abstract

Accurate identification of druggable targets remains a critical challenge in drug1

discovery due to the inherent complexity of biology and the scarcity of labeled2

data. We present MORGaN, the first masked auto-encoder that natively oper-3

ates on heterogeneous multi-omic gene networks with diverse biological relation4

types. MORGaN learns structure-aware node embeddings without supervision,5

leveraging multi-relation topology through a cross-relation message-passing ar-6

chitecture. We deploy MORGaN for druggable gene discovery, using its repre-7

sentations to identify candidate therapeutic targets. Despite using no additional8

labels, MORGaN outperforms state-of-the-art models across all metrics (AUPR:9

0.815 → 0.888; +9%). Ablation studies highlight the importance of both relation10

diversity and architectural design in achieving these gains. Post-hoc analyses11

uncover pathway-coherent subgraphs that help explain predictions, supporting12

biological interpretability. MORGaN enables label-efficient, interpretable, and fast13

graph learning for drug discovery and other data-scarce biomedical tasks. Code14

and documentation are available at this link.15

1 Introduction16

Drug discovery is complex and time-consuming, marked by costly financial investments and a high17

risk of failure [32]. Bringing a new drug to market can take over a decade and cost upwards of 2.618

billion USD, with failure rates remaining high across all stages of development [16, 32, 39]. A major19

contributor to this attrition is the inherent complexity in correctly identifying molecular targets whose20

modulation translates into clinical benefit [10]. Improving target selection is therefore critical to21

accelerating therapeutic development and reducing the associated costs [32, 39].22

Cancer exemplifies this challenge, as tumorigenesis results from intricate, context-dependent interac-23

tions across genetic, epigenetic, and proteomic layers [4, 5, 7, 15, 37, 47]. Yet, conventional methods24

for identifying druggable genes – genes whose products can be therapeutically targeted – often rely25

on single data modalities or predefined pathways, overlooking crucial cross-layer interactions and26

tumor heterogeneity [7, 15, 37, 47]. Even network-based methods often use PPIs alone, overlooking27

diverse gene–gene relationships; models that jointly capture multiple biological relation types to28

provide a systems-level view are required [8, 36].29

Graph neural networks (GNNs) naturally model such structure via message passing, merging network30

topology and features into context-aware embeddings [14, 22, 36, 41, 45]. Particularly, Relational31

Graph Convolutional Networks (RGCNs) extend GNNs to handle heterogeneous graphs with multiple32

edge types, making them ideally suited for multi-relational biological networks [34, 42]. However,33

applying these methods to druggable gene prediction remains challenging due to the scarcity and bias34

of labeled datasets [8].35
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To address these challenges, we propose MORGaN, a self-supervised multi-relational graph learn-36

ing framework that integrates multi-omic features with diverse biological relationships for robust37

druggable gene discovery (Figure 1). By leveraging masked feature reconstruction [8, 17], MOR-38

GaN captures underlying biological structures, exploiting both labeled and unlabeled information to39

produce generalizable gene embeddings. Consequently, MORGaN significantly enhances predictive40

accuracy, scalability, and biological interpretability compared to existing methods.41

Figure 1: MORGaN overview. Graph construction and data integration: build a six-relation, multi-
omic gene network. Self-supervised pre-training: a RGCN-based masked autoencoder (GraphMAE)
reconstructs the missing features and generates node embeddings. Fine-tuning: an MLP uses these
embeddings to classify druggable genes, evaluated with AUPR, AUROC, accuracy and F1.

1.1 Contributions42

1. Masked auto-encoding for heterogeneous graphs. To our knowledge, MORGaN in-43

troduces the first MAE that operates on multi-relation, multi-omics graphs, unifying six44

biological edge types in a single self-supervised objective.45

2. State-of-the-art performance. MORGaN surpasses current SOTA across key metrics46

(AUPR +9%, AUROC +3%, Accuracy +15% and F1 +13%).47

3. Ultra-lightweight kernel. A vertically-stacked sparse matrix [42] and basis decomposition48

[34] collapse R separate message-passing steps into one sparse-dense matrix multiplication,49

cutting per-epoch time by ∼ 80%.50

4. Plug-and-play extensibility. The model is disease-agnostic; re-targeting only requires new51

node features and labels. We validate disease- and task-level transfer in out-of-distribution52

studies; see Appendix I.53

5. Out-of-the-box interpretability. GNNExplainer sub-graphs translate each prediction into a54

minimal set of genes – providing falsifiable hypotheses for experimental validation.55

2 Related work56

Multi-omic GNNs for cancer biology. Early work showed that fusing several omics layers with57

network structure helps uncover oncogenic mechanisms. Schulte-Sasse et al. [35] integrated mu-58

tation, expression and copy-number profiles with a GCN to pinpoint novel cancer genes and their59

pathways. More recently, MOGAT used graph attention over concatenated omics views to refine60

cancer-subtype labels, confirming that attention can weight modalities adaptively [41]. SMG added61

self-supervised masking to a PPI graph, improving essential- and cancer-gene recall under scarce62

labels [8]. IMI-driver extended this idea by stacking distinct functional networks (PPI, co-expression,63

co-methylation, etc.) and training a multi-graph GCN to prioritize tumor drivers across 33 TCGA64

cohorts, outperforming feature-only baselines by 15–20% AUROC [37]. MODIG [49] and the65

follow-up MDMNI-DGD [23] generalized from single PPIs to five- and six-edge-type multiplex66

graphs; per-layer attention and view-level fusion lifted driver- and druggable-gene AUPR by 6–10%67

over PPI-only models. Yet, all of these models train each edge type in isolation or require heavy68

message-passing loops, limiting scalability.69
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Self-supervised and masked graph learning. Generic graph SSL replaces expensive node labels70

with pretext tasks. Masked autoencoders such as GraphMAE reconstruct hidden node attributes and71

beat contrastive objectives on 21 benchmarks [17]; SMG applies the same principle to cancer PPIs72

[8]. Orthogonal work explores contrastive signals: HeCo co-contrasts schema- and meta-path views73

on heterogeneous graphs to lift performance without labels [25], while SpaMask couples masking74

and contrastive heads for spatial-omics clustering [27].75

3 MORGaN76

MORGaN combines heterogeneous biological knowledge with graph representation learning to77

predict druggable genes in three stages (Fig. 1):78

1. Graph construction and data integration – we construct a heterogeneous, multi-relational79

gene graph that fuses six biological interaction types with multi-omic node features;80

2. Self-supervised representation learning – a relational graph convolution masked autoen-81

coder distills structure-aware embeddings from the unlabeled graph;82

3. Task-specific fine-tuning and interpretation – the embeddings are fine-tuned to identify83

druggable genes, and post-hoc explainers expose the components that drive each prediction.84

This design unites broad biological priors with graph deep learning to deliver accurate, transparent,85

and computationally efficient predictions.86

3.1 Graph construction and data integration87

We represent the gene interaction landscape as a heterogeneous, multi-relational graph G = (V, E ,R),88

where each node vi ∈ V represents a gene. For each biological relationship type r ∈ R, we define89

a relation-specific edge set Er ⊆ V × V and we define the full graph as the union over all relations90

E =
⋃

r∈R Er. The pan-cancer graph contains 13 627 genes and 557 288 edges across six relation91

types. For further details, see Appendix A.92

Relations. Following MDMNI-DGD [23], we incorporate six biologically grounded relation types,93

based on protein-protein interaction networks (PPI), gene co-expression, pathway co-occurrence,94

gene ontology semantic similarity, and sequence similarity. Self-loops are added to preserve each95

gene’s own features during message passing. For further details, see Appendix A.2.1.96

Node features. Each gene node vi is associated with a multi-omic feature vector xi, obtained97

by concatenating log10-transformed somatic mutation frequencies, copy number alteration (CNA)98

z-scores, DNA methylation β-values, and log-normalized gene expression values. All features are99

extracted from The Cancer Genome Atlas (TCGA) pan-cancer dataset [8, 43], spanning 29,446 tumor100

samples across 16 cancer types, as in SMG [8]. For further details, see Appendix A.2.2.101

Labels. Positive druggability labels correspond to Tier 1 targets defined by Finan et al. [10], i.e.102

proteins with approved drugs or clinical candidates; an equal number of negatives is randomly103

sampled from the remaining non-target genes to balance class distributions. See Appendix A.2.3.104

3.2 Model architecture105

We adopt the relational graph convolutional network (RGCN) of Schlichtkrull et al. [34] and convert106

it into a graph masked autoencoder (GraphMAE) [17].107

Message passing formulation. For layer l the hidden state of node vi is updated via:108

h
(l+1)
i = σ

∑
r∈R

∑
j∈N r

i

1

ci,r
W (l)

r h
(l)
j +W

(l)
0 h

(l)
i

 , (1)

where h
(l)
i represents the hidden state of node vi at layer l, N r

i is the set of i’s neighbors under109

relation r, W (l)
r and W

(l)
0 are trainable relation-specific and self-loop weight matrices, respectively,110

and ci,r is a normalization constant to ensure numerical stability.111
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Vertical stacking for sparse message passing. To exploit the fast sparse–dense multiplication112

(spmm) available in PyTorch while still updating all relation types at once, we concatenate the R113

relation-specific adjacency matrices {Ar}Rr=1 vertically into a single sparse block matrix Av ∈114

R(RN)×N , as introduced by Thanapalasingam et al. [42]. During each RGCN layer, we first mix115

topological and feature information with one call to spmm(Av, X), producing a relation-expanded116

feature matrix of shape (RN)×din. This matrix is then reshaped back to N× (Rdin) and multiplied117

by a stacked weight matrix to yield the next-layer embeddings. Because the projection to higher118

dimensions happens after the sparse multiplication, vertical stacking keeps memory usage low and119

scales well to large graphs with modest input dimensionality.120

Weight decomposition. To manage parameter complexity with multiple relation types, we imple-121

ment basis decomposition [34]. Each relation-specific matrix is expressed as a linear combination of122

a shared set of B basis matrices {Vb}Bb=1:123

Wr =

B∑
b=1

arbVb, (2)

where Vb ∈ Rdin×dout are global basis matrices shared across all relations, and arb ∈ R are relation-124

specific learnable coefficients. This formulation significantly reduces parameter count compared to125

using unique weights per relation, while preserving expressiveness through learned compositions. In126

our implementation, we set B = 2 to strike a balance between model flexibility and generalization127

capacity.128

Normalization and dropout. Each layer applies layer normalization to the concatenated relation129

outputs, adds a residual connection, and then dropout (p = 0.2).130

Implementation details. All models are implemented in PyTorch 2.6.0 [31] and PyTorch-131

Geometric 2.6.1 [9]. Relation weights Wr, bases Vb, and coefficients ar,b use Xavier uniform132

(gain =
√
2 for PReLU) initialization; the self-loop matrix W0 uses Kaiming initialization. We fix133

random seeds (Python, NumPy, PyTorch, PyG) to 0 and 1 and report mean ± std over 3 runs per seed.134

3.3 Training135

We adopt a two-phase training strategy with Adam [21].136

Self-supervised pre-training. Following GraphMAE [17], we randomly mask 50% of node features137

and reconstruct them using a scaled cosine loss:138

Lrec =
1

|Ṽ|

∑
vi∈Ṽ

(
1− xT

i x̂i

|xi||x̂i|

)γ

, γ ≥ 1, (3)

where xi and x̂i denote the original and reconstructed feature vectors, respectively, and γ controls139

the loss sharpness. Pre-training runs for 100 epochs with an initial learning rate 10−2, weight decay140

10−3, cosine decay 10−6, γ = 3, and early stopping (patience 10). Hyper-parameters were selected141

via a grid sweep (see Appendix C); the best configuration is used throughout the paper. Through this142

pre-training stage, the model learns compressed embeddings that encode both multi-omic profiles143

and relational context, serving as a robust foundation for downstream classification.144

Fine-tuning (supervised). The frozen embeddings feed an MLP classifier optimized with weighted145

binary cross-entropy:146

Lclass = −w [y log σ(p) + (1− y) log(1− σ(p))] , (4)

with label-dependent weights w to handle class imbalance. We train for up to 200 epochs (learning147

rate 5× 10−3, weight decay 10−4, gradient-clip 1.0) with early stopping (patience 20) on validation148

AUPR. Hyper-parameters were selected in the same sweep used for pre-training (see Appendix C).149
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3.4 Experimental setup and evaluation150

Repeated shuffle-split validation. We generate two independent, stratified train/validation/test151

splits (80% / 10% / 10% of nodes) using different random seeds. Each split is trained three times with152

different weight initializations, giving six runs in total. We report mean ± s.d. of AUPR, AUROC,153

Accuracy, and F1 across these runs.154

Baseline models. We benchmark MORGaN against eight alternatives that span feature-only,155

homogeneous-graph and heterogeneous-graph approaches:156

1. Logistic Regression – feature-only157

2. Multilayer Perceptron (MLP) – feature-only)158

3. GCN – vanilla graph convolution on a 1-dimensional PPI graph159

4. GAT – graph attention network on the PPI graph160

5. SMG-GCN [8] – GCN with self-supervised pre-training on the PPI graph161

6. SMG-GAT [8] – GAT with self-supervised pre-training on the PPI graph162

7. MODIG [49] – heterogeneous graph model without pre-training163

8. MDMNI-DGD [23] – heterogeneous graph model without pre-training164

The two feature-only models use the concatenated multi-omic vectors. The four homogeneous165

baselines (3-6) operate on a single-relation PPI graph and therefore lack the multi-relational context166

exploited by MORGaN. The two heterogeneous baselines (7-8) share the full multi-relational topology167

with MORGaN but do not include its self-supervised pre-training stage. All models receive identical168

node features and use the same train/validation/test splits; hyper-parameters are selected by grid169

search on the validation fold. See Appendix B for further details.170

This design cleanly isolates MORGaN’s architectural and training contributions while ensuring a fair,171

rigorously repeated comparison to both feature-based and graph-based alternatives.172

Interpretability. For high-confidence predictions (p > 0.9), we use GNNExplainer [48] to high-173

light the network edges and gene features that most drive each call. We then use Enrichr to run174

pathway enrichment analysis – a simple check of whether those highlighted genes occur together in175

well-known biological pathways more often than expected by chance – reporting pathways that pass176

a false discovery rate (FDR) threshold of < 0.05.177

4 Results178

4.1 Overall predictive performance179

Table 1 summarizes mean performance ± s.d. over six stratified shuffle–split runs (see §3.4) of180

MORGaN against eight alternative approaches. MORGaN tops every metric, pushing the state of the181

art into the 0.9-range on almost every curve–based measure:182

• Precision–recall. MORGaN achieves 0.888± 0.004, an absolute gain of +0.073 (+9.0 %)183

over the strongest competitor (MDMNI-DGD, 0.815± 0.019). The gap exceeds the largest184

baseline standard deviation (0.052 for MLP) by more than 40 %, underscoring significance.185

• Discrimination ability (AUROC). Our framework reaches 0.907± 0.005, outperforming186

the next best model by +0.030 (+3.4 %). Even methods that exploit the same multi-relational187

graph but skip self-supervised pre-training (MODIG, MDMNI-DGD) lag behind.188

• Balanced classification (F1 and accuracy). MORGaN’s F1= 0.917 and Acc= 0.915189

translate to absolute gains of 10− 12 percentage points (pp) over the closest challengers,190

reflecting superior recall without sacrificing precision.191
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Table 1: Test-set performance of MORGaN versus eight baselines on the druggable-gene prediction
task (mean ± s.d.). Bold numbers indicate the best score per column; italic numbers mark the second
best. All models receive the same multi-omic node features; heterogeneous methods (bottom block)
also share the identical six-relation graph.
Model AUPR AUROC Accuracy F1 Score

Logistic regression 0.749± 0.045 0.682± 0.055 0.620± 0.944 0.577± 0.096
MLP 0.675± 0.052 0.722± 0.045 0.722± 0.045 0.701± 0.035

GCN 0.721± 0.020 0.766± 0.005 0.715± 0.025 0.722± 0.037
GAT 0.699± 0.005 0.764± 0.009 0.724± 0.015 0.742± 0.005
SMG-GCN [8] 0.714± 0.009 0.763± 0.011 0.729± 0.029 0.724± 0.014
SMG-GAT [8] 0.708± 0.005 0.776± 0.005 0.732± 0.027 0.751± 0.014

MODIG [49] 0.764± 0.017 0.837± 0.015 0.794± 0.009 0.810± 0.007
MDMNI-DGD [23] 0.815± 0.019 0.877± 0.003 0.664± 0.038 0.741± 0.022

MORGaN (no pre-training) 0 .879 ± 0 .006 0 .900 ± 0 .006 0 .898 ± 0 .006 0 .902 ± 0 .006
MORGaN (with pre-training) 0.888± 0.004 0.907± 0.005 0.915± 0.005 0.917± 0.004

Why does MORGaN win? A head-to-head inside each baseline family points to two factors:192

1. Heterogeneous edges matter. Substituting the single-edge view of GAT with the full six-193

relation interactome already yields a strong lift (AUPR +0.065 from GAT to MODIG). This194

gain confirms that druggability signals are not confined to one molecular relationship but195

are dispersed across many.196

2. Architecture matters more. MORGaN does not just stack relation-specific layers; its encoder197

processes every edge type in one coherent pass, allowing information to flow between198

relations inside each layer. This cross-relation coupling unlocks another sizable margin over199

the best heterogeneous competitor (AUPR +0.073 versus MDMNI-DGD) and leaves even200

the ablated MORGaN (no pre-training) far ahead.201

Together, these observations show that (i) embracing the full diversity of biological interactions202

and (ii) employing an architecture specifically designed to fuse those interactions in-layer are both203

necessary – and mutually reinforcing – for state-of-the-art druggable-gene discovery.204

We further test robustness under both distribution and task shift: (i) disease shift by re-training205

MORGaN on an Alzheimer’s disease (AD) graph built analogously to the cancer setting; and (ii)206

task shift, by applying the framework to essential-gene ranking. We observe qualitatively consistent207

trends under both types of shift; see Appendix I for full protocols and results.208

4.2 Ablation on biological relations and omics features209

We next asked which inputs matter most to MORGaN’s performance on the cancer dataset. Three210

complementary ablations were performed (full tables in Appendix E).211

Edge-type “drop-one” study. Starting from the six-relation graph, we removed one edge type at a212

time and re-trained the full pipeline. Figure 2 (blue boxes) plots the resulting AUPR distributions; the213

line at n = 6 is the unablated model. Removing GO semantic similarity produces the largest drop214

(0.888 → 0.878, −1.0 pp). PPI and pathway co-occurrence are nearly as important (−0.9 pp each),215

whereas sequence similarity and co-expression are slightly noisy: cutting them improves AUPR to216

0.900 and 0.899. Notably, every five-relation variant still beats the best single-relation model (GO217

only, 0.883), confirming the benefit of diverse biological context. Robustness checks across five218

popular PPI databases (Appendix Table 4) show that STRING-db gives the strongest lift (AUPR219

= 0.971), but MORGaN consistently outperforms baselines regardless of the underlying interactome.220

Randomized edge controls. To verify that gains arise from genuine biology rather than extra221

parameters, we degree-preserved-shuffled each edge type and repeated the experiment (grey boxes in222

Fig. 2). AUPR collapsed to ∼ 0.5 – close to random guessing – for every configuration, demonstrating223

that MORGaN relies on meaningful topology, not mere edge density.224
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Figure 2: For every subset size n we plot AUPR over all combinations of real edges (blue) and
their randomized counterparts (grey). The “box” at n = 6 reduces to a thin line because only one
configuration – the full graph – exists.

Omics feature ablation. A similar “leave-one-modality-out” analysis suggests that copy-number225

alterations (CNA) are the most informative modality: achieving the highest performance when used226

in isolation. Gene expression, by contrast, was the noisiest – its removal increased AUPR by +0.009,227

consistent with evidence that bulk transcriptomics yields limited signal strength, given the many228

measured features but relatively few samples [1]. Nevertheless, the full four-omics model offered229

the best overall trade-off, achieving the highest AUROC (0.907) and second-highest AUPR (see230

Appendix E.2).231

Takeaways. (1) Semantic proximity in Gene Ontology terms supplies critical long-range cues232

that cannot be captured by PPI edges alone. (2) Multi-relation structure is genuinely informative –233

performance falls to chance once biology is scrambled. (3) Results are stable across alternative PPI234

layers, with STRING-db performing best but all sources sustaining MORGaN’s edge. (4) While235

CNA dominates in isolation, combining complementary omics restores false negatives that CNA236

alone misses, yielding the best F1. These findings validate the design choices behind MORGaN.237

4.3 Biological interpretability and case studies238

MORGaN rediscovers established targets and proposes novel candidates. MORGaN correctly239

retrieves hallmark cancer-druggable genes such as EGFR, HER2, BRAF, ALK, MET, and RET.240

Beyond these, the model flags 954 additional genes with posterior probability p > 0.9. Many241

prioritized genes substantially overlap with independent resources (see Appendix H), supporting the242

reliability of MORGaN’s predictions. Furthermore, pathway enrichment, literature mining, and local243

explanations (below) indicate that many of these are, in fact, promising putative targets.244

Latent structure mirrors biology. In the learned embedding space, positives cluster distinctly245

from non-targets (Fig. 3). This separation indicates that the self-supervised pre-training has distilled246

a biologically meaningful representation in which druggable genes occupy a distinct region of latent247

space.248

Pathway-level evidence and mechanistic explanations support predictions. Predicted positives249

are enriched for receptor-mediated signaling and canonical cancer hallmarks (FDR< 0.05; see250

Appendix F). GNNExplainer recovers pathway-coherent subgraphs that support these predictions251

(see Appendix G).252
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Figure 3: t-SNE visualization of MORGaN embeddings. Each point is a gene, colored by ground-
truth class (left) or model prediction (right). The learned latent space clearly separates druggable
(dark blue) from non-druggable (light blue) genes.

Combining global evidence (hallmark-pathway enrichment) with local mechanistic explanations253

shows that MORGaN both rediscovers established targets and delivers a set of 954 high-confidence,254

biologically coherent putative targets for experimental validation.255

4.4 Computational efficiency256

Thanks to vertically stacked sparse message passing and basis-matrix weight decomposition (§3.2),257

MORGaN trains in 24.3± 2.9 s end-to-end – about 65× and 23× faster than MODIG and MDMNI-258

DGD, respectively; full hardware and per-stage breakdown are in Appendix D.259

5 Limitations and future work260

This study relies on a static interaction graph that merges data across tissues and time; it therefore261

misses the dynamic rewiring that accompanies disease progression. Moreover, our data is derived262

from public resources that may over-represent well-studied genes and common cancers, which can263

introduce dataset bias and obscure disease-driven network rewiring. However, we choose TCGA264

because it provides breadth, standardization, and reproducibility. In addition, we treat druggability as265

a binary label, whereas in practice it lies on a spectrum shaped by modality, structure, and clinical266

tractability; future versions could adopt multi-label or continuous endpoints. Nonetheless, binary267

labels mirror industrial practice – at a given point in time, for a specific therapeutic class (here,268

small-molecule drugs), targets are operationally treated as either druggable or not.269

6 Conclusion270

This work introduces MORGAN, a self-supervised multi-relational graph framework that integrates271

six biological edge types with four omics modalities to prioritize druggable genes in cancer. By272

combining relational structure with masked feature reconstruction, MORGaN bridges two gaps in273

target discovery: (i) the siloing of heterogeneous interaction data and (ii) the scarcity of high-quality274

labels. On a pan-cancer benchmark, MORGaN beats eight strong baselines and re-discovers hallmark275

pathways, without sacrificing efficiency. Masked pre-training cuts label dependence, efficiency276

enables large graph sweeps, and explainer subgraphs provide falsifiable mechanisms. Being disease-277

agnostic, MORGAN transfers to other pipelines with minimal changes (Appendix I). Code and278

configs are available on GitHub.279
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Appendix523

A Graph construction and data integration524

A.1 Graph summary and descriptive statistics525

Table 2 lists the edge count and filtering threshold used for each of the six relation types that form526

the heterogeneous gene network. The graph is moderately sparse (overall density <0.004), with a527

heavy-tailed degree distribution typical of biological interaction maps (details in the supplied Jupyter528

notebook). All subsequent experiments use this exact graph unless stated otherwise.529

Table 2: Edge statistics for the heterogeneous gene graph.

Relation type Threshold #Edges

CPDB PPI score ≥ 0.50 504 378
Co-expression |r| ≥ 0.80 34 982
Pathway co-occurrence Jaccard ≥ 0.60 8 964
GO semantic similarity Wang ≥ 0.80 8 606
Sequence similarity top 5 % bitscore 150
Domain similarity Jaccard ≥ 0.30 208

A.2 Components530

A.2.1 Relations531

The heterogeneous MORGaN graph contains six complementary edge types. Each captures a different532

notion of functional similarity; combining them lets the model reconcile noisy, partially overlapping533

evidence rather than over-focusing on any single assay. We consider the following relation types:534

• Protein–protein interaction (PPI). Proteins are large biomolecules composed of amino-535

acid chains encoded by genes. A PPI edge is added when two proteins form a physical536

complex – e.g. an enzyme binds its substrate or two receptors dimerize – detected by assays537

such as yeast-two-hybrid or affinity purification. We connect the genes that encode the538

interacting proteins with an undirected edge. Because small molecule drugs also act at539

this physical level, PPI edges supply high-resolution mechanistic context. High-confidence540

protein-protein interactions are obtained from one of STRING-db [40] (score ≥ 0.8), CPDB541

[26] (score ≥ 0.5), IRefIndex v.1 and v.4 [33] (score ≥ 0.8), and PCNet [18] (default542

threshold). CPDB is used as a default.543

• Co-expression. RNA-seq quantifies how often each gene is transcribed across thousands of544

samples; higher counts mean the gene is more active. If two genes’ expression profiles are545

consistently correlated, we add an edge, reflecting shared regulation by common transcription546

factors or signaling programs – even when their proteins never touch. Co-expression547

therefore contributes regulatory information that PPI alone cannot provide. An edge is548

added between genes with an absolute Pearson correlation ≥ 0.7 across 79 healthy human549

tissues, based on GSE1133 [38].550

• Pathway co-occurrence. KEGG [19, 20] curate step-by-step biochemical pathways (e.g.551

“MAPK signaling”). Genes that appear in the same pathways are linked because they552

participate in a shared biological process. This injects human knowledge and adds a loose553

sense of up-/down-stream directionality without exploding the number of edge types. We554

compute the Jaccard similarity of KEGG [19, 20] pathway memberships:555

Jp(G1, G2) =
|PG1 ∩ PG2 |
|PG1

∪ PG2
|

(5)

and include an edge where similarity ≥ 0.60.556

• GO semantic similarity. The Gene Ontology (GO) is a controlled vocabulary with three557

name-spaces: Biological Process (what the gene does), Molecular Function (how), and558
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Cellular Component (where) [2, 44]. Terms are assigned by curators and automated pipelines.559

GO edges generalize “same pathway” and cover genes that lack rich KEGG annotations.560

We compute the geometric mean of best-match-average (BMA) Wang scores [46] across561

the GO Biological Process (BP), Molecular Function (MF), and Cellular Component (CC)562

ontologies [2, 44]:563

RGO(G1, G2) = (SimBP
BMA(G1, G2)× SimMF

BMA(G1, G2)× SimCC
BMA(G1, G2))

1
3 (6)

and add an edge where RGO(G1, G2) > 0.80.564

• Sequence similarity. A sequence similarity edge joins proteins whose sequences align with565

high statistical confidence. Such homology implies a common ancestor and often a shared566

3-D fold or catalytic pocket, allowing MORGaN to transfer knowledge from well-studied567

family members to poorly characterized relatives. We add an edge to the top 5% BLAST568

bit-scores (normalized for sequence length) between non-identical gene pairs.569

• Domain similarity. Pfam domains are recurrent, modular sequence blocks that fold into570

functional units (e.g. SH2, zinc-finger). We connect two proteins if the Jaccard similarity571

between their Pfam domain sets exceeds 0.30 [11]. Whereas full-length sequence similarity572

is global, domain similarity edges focus on the local pockets – pinpointing druggable pockets573

that recur across otherwise dissimilar proteins, which has proved useful for scaffold hopping574

in medicinal chemistry.575

Why multiple relations? Biology is inherently multi-scale: genes can be co-expressed yet never576

touch, or interact directly yet be regulated in opposite ways. Integrating multiple edge types allows577

the model to draw from these multiple relation types.578

A.2.2 Node features579

Each gene is associated with a four-view multi-omic vector that aggregates evidence about how the580

gene is altered or active in sixteen different cancer types: KIRC (kidney renal clear cell carcinoma),581

BRCA (breast invasive carcinoma), READ (rectum adenocarcinoma), PRAD (prostate adenocarci-582

noma), STAD (stomach adenocarcinoma), HNSC (head and neck squamous cell carcinoma), LUAD583

(lung adenocarcinoma), THCA (thyroid carcinoma), BLCA (bladder urothelial carcinoma), ESCA584

(esophageal carcinoma), LIHC (liver hepatocellular carcinoma), UCEC (uterine corpus endometrial585

carcinoma), COAD (colon adenocarcinoma), LUSC (lung squamous cell carcinoma), CESC (cervical586

squamous cell carcinoma and endocervical adenocarcinoma), and KIRP (kidney renal papillary587

cell carcinoma). This representation allows the model to exploit both pan-cancer regularities and588

tissue-specific idiosyncrasies in a unified space. The following omics types are included:589

• Copy-number alteration (CNA). Chromosomal instability can duplicate or delete large590

DNA segments. We encode the resulting log2 copy-ratio for each gene. Amplifications drive591

oncogenes via dosage; deletions can inactivate tumour suppressors; either type of alteration592

increases the gene’s potential therapeutic relevance by changing pathway dynamics and593

dependencies.594

• Gene expression. TPM-normalised RNA-seq counts serve as a proxy for transcriptional595

activity along the canoncial DNA → mRNA → protein axis. High expression marks pathway596

engagement and potential vulnerability; zero or strongly tissue-specific expression highlights597

candidates for of potential on-target toxicity.598

• Mutation frequency. A non-synonymous variant changes an amino-acid and can alter599

protein function. We supply the fraction of tumours (TCGA) carrying at least one non-600

synonymous hit in each gene. Recurrent hits point to cancer drivers; high frequency therefore601

raises the prior that a gene is causally important—and druggable.602

• Methylation. CpG methylation at a promoter recruits proteins that compact chromatin and603

block transcription – known as epigenetic silencing. The β value (where 0 = unmethylated,604

1 = fully methylated) distinguishes permanently “switched-off” genes from merely low-copy605

ones, helping the model avoid nominating silent targets.606

Rationale and complementarity. Taken together, these four views cover structural (CNA), regu-607

latory (expression, methylation), and genetic (mutation) evidence. This complementarity provides608

orthogonal signals that no single modality alone can provide, and enables the encoder to disambiguate609
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mechanisms (e.g., high expression due to amplification versus loss of expression due to promoter610

hypermethylation).611

Data source and reproducibility. We derive these features from TCGA, a widely used and rig-612

orously curated resource for cancer genomics [43]. Its breadth, depth, and transparent processing613

pipelines enable reproducible comparisons across studies and typically provide stronger statistical614

power than smaller proprietary cohorts. While under-representation of rare histologies and understud-615

ied genes remains a limitation of any centralized resource, TCGA’s standardization and multi-omic616

scope make it an appropriate foundation for building generalizable target representations at scale.617

Extensibility to additional modalities. MORGaN is feature-agnostic: any per-gene descriptor618

can be appended to the node feature vector without architectural changes. In particular, structural619

and chemoinformatics descriptors – such as binding-site fingerprints, pocket hydrophobicity, or620

docking-derived scores – are natural complements to biological priors. Embedding these signals621

would involve augmenting the node features with quantities derived from 3D structures or in silico622

screening. Because the present work focuses on upstream target prioritization from multi-omic and623

network context, a full end-to-end fusion with chemoinformatics is left for future work; we view this624

as an exciting extension toward unifying biological and chemical modalities in a single graph-learning625

pipeline.626

A.2.3 Labels627

Positive–unlabeled formulation. We frame the task as positive–unlabeled (PU) learning. High-628

confidence positives – FDA-approved or clinically validated drug targets – are known. However, true629

negatives do not exist: a gene without clinical evidence is not necessarily undruggable. To reflect this630

epistemic asymmetry, we treat the remaining genes as unlabeled and, for each train/validation/test631

split, sample negatives uniformly at random from this pool. This approach (i) avoids penalizing632

understudied genes, (ii) allows estimation of class-conditional risk without inventing a questionable633

“non-druggable” set, and (iii) yields conservative evaluations because improvements must persist634

across independent negative samplings.635

Moreover, druggability labels are intrinsically skewed (on the order of ∼150 Tier-1 positives versus636

∼16,000 unlabeled genes). There is no authoritative set of genes that are provably undruggable, and637

previously intractable targets continue to become amenable with new modalities (e.g., PROTACs,638

molecular glues, mRNA therapeutics). We therefore create negatives by resampling a subset of639

unlabeled genes for every split:640

• Bias dilution. Because the negative pool changes with each split, the classifier cannot641

overfit to idiosyncrasies of any single hand-curated list. Despite resampling, metric standard642

deviations remain low, indicating stable performance.643

• Graph neutrality. Resampled negatives retain their full connectivity and multi-omic644

features, preserving the structural context established during pre-training. The model645

continues to learn from each gene’s neighbourhood and attributes even when a given gene is646

temporarily treated as negative, thereby avoiding topological artefacts that would arise from647

pruning or rewiring nodes.648

• Forward compatibility. If a gene is later reclassified as druggable (e.g., due to a new649

modality), past experiments remain valid because that gene was never canonically fixed as650

negative. Benchmarks can be rerun with an updated label file without invalidating prior651

protocols.652

These design choices mitigate pathway memorization, manage extreme class imbalance, and keep the653

evaluation protocol adaptable to methodological and pharmacological advances.654

Why binary labels in practice. In principle, “druggability” spans a continuum of chemical655

tractability that evolves with technology. In practice, however, industrial target pipelines employ656

discrete gates (e.g., evidence of a small-molecule binder, a clinical candidate, or regulatory approval).657

We therefore label Tier-1 targets (approved or clinical candidates) as positives and sample negatives658

uniformly from unlabeled genes, mirroring how pipelines prioritize targets. This operational definition659

enables fair, reproducible benchmarking and aligns with prior work [10], while remaining compatible660

with future re-labeling as the field progresses.661
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B Baselines662

We keep the node features (§3.1) and the stratified 80/10/10 train–validation–test splits described in663

§3.4 the same across all baselines. Hyper-parameters are selected by grid search on the validation664

fold and seeds are fixed to 0, 1 for full reproducibility. Mean ± s.d. over six runs are reported665

in Table 1 of the main paper. The eight baselines fall into three tiers: feature-only, homogeneous666

(single-relation) graph and heterogeneous (multi-relation) graph.667

B.1 Feature-only baselines668

Logistic regression. A linear classifier with L2 regularization trained on the node features, with no669

graph structure We use scikit-learn’s LogisticRegression(max_iter = 1000, penalty670

= "l2", solver = "lbfgs") and optimize the inverse regularization strength C over {0.01, 0.1,671

1, 10}. Class weights are set inverse-frequency to counter the 1:1 positive/unlabeled sampling.672

This baseline tests whether a strictly linear decision boundary in feature space can already separate673

druggable from non-druggable genes.674

Multilayer perceptron (MLP). Identical input as above, but with two hidden layers to capture675

non-linear feature interactions. Architecture: [in → 64 → 32 → 2] with ReLU, dropout 0.2676

after each hidden layer, and softmax output. Optimiser: Adam (lr = 1 × 10−3, weight-decay 5 ×677

10−4), batch size 256, 100 epochs, early stopping (patience 20). Validation tuning sweeps hidden678

size {32, 64, 128} and learning rate {1 × 10−4, 1 × 10−3, 5 × 10−3}. Serves as a capacity-matched679

non-graph baseline.680

B.2 Homogeneous-graph baselines681

Graph convolutional network (GCN). The vanilla spectral GCN operating on the single PPI682

edge set. Best configuration from the grid: two layers, hidden 128, PReLU activation, dropout 0.2,683

weight-decay 1 × 10−4. Input is a graph where nodes represent genes, node features are the same as684

above, and edges are derived from PPIs.685

Graph attention network (GAT). Multi-head attention on the same PPI graph. We use three layers686

with hidden 64 per head, LeakyReLU(0.2), feat-drop 0.2 and attn-drop 0.2. Heads are concatenated687

inside the network and averaged in the output layer. Edge-specific attention weights let the model688

down-weight noisy PPI links, providing a stronger yet still homogeneous comparator.689

SMG-based (self-supervised masking) Following Cui et al. [8] we add a masked-feature recon-690

struction pre-text stage to the GCN and GAT backbones. Mask ratio 0.5, 100 pre-training epochs (lr 1691

× 10−2, weight-decay 1 × 10−3, cosine decay), then fine-tune as above for at most 200 epochs (lr 5692

× 10−3). This pair isolates the effect of self-supervision while holding the single-relation topology693

constant.694

B.3 Heterogeneous-graph baselines695

MODIG. The multi-omics, multi-relation GAT of Zhao et al. [49] trained on our six-edge-type696

graph. Each relation is processed by its own two-layer GAT; relation-specific embeddings are fused697

with learned view-level attention before a final MLP classifier. We keep the authors’ recommended698

settings (hidden 128, 8 heads, dropout 0.3) and tune only the learning rate. MODIG gauges the699

benefit of heterogeneous edges without any self-supervised pre-training.700

MDMNI-DGD. The meta-path DNN of Li et al. [23] – a six-view extension of MODIG that701

stacks dense layers on hand-crafted meta-path incidence vectors. We train the model on our dataset,702

following the original paper – we use three hidden layers (256–128–64, dropout 0.3) and Adam (lr703

1× 10−3). This baseline retains heterogeneous information but replaces GNN message passing with704

fully-connected fusion, testing whether explicit relational reasoning is needed.705

Together, these baselines allus us to disentangle the contributions of (i) multi-omic feature depth,706

(ii) homogeneous versus heterogeneous topology, and (iii) self-supervised pre-training, ultimately707

demonstrating the incremental value added by each MORGaN component.708
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C Self-supervised masked pre-training709

Pre-training dynamics. Figure 4 shows that the scaled-cosine reconstruction loss drops sharply710

during the first ten epochs, then converges smoothly, indicating that the model quickly captures711

first-order correlations and subsequently refines higher-order structure. The frozen embeddings712

obtained after 100 epochs serve as initialization for the downstream druggability classifier.713

Figure 4: Scaled-cosine reconstruction loss during masked pre-training (mean ± s.d. over six splits).

Hyper-parameter search in brief. A grid of 192 runs varied mask ratio (0.1–0.8), depth (1–4714

RGCN layers), learning rate, weight decay and activation. The best AUPR clustered around a mask715

ratio of 0.5, two or three layers, PReLU activation, learning rate 10−2 for pre-training and 5×10−3 for716

fine-tuning, and weight decay 10−3 / 10−4 respectively (Fig. 5). These values constitute the default717

configuration shipped in the supplementary config.yaml; all reported results use that setting.718

Figure 5: Parallel-coordinates view of the 192-run hyper-parameter sweep; colour encodes test AUPR.
Orange lines highlight the high-performing region described in the text.

Sensitivity to masking ratio. Masking ratio (feature corruption). Raising the fraction of masked719

features from 5% to 50% consistently improves downstream metrics, with AUPR rising by ∼ 4 pp720

and AUROC by ∼ 3 pp. A higher mask rate forces the encoder to rely more heavily on relational721

context instead of relying on raw features, leading to richer, more transferable embeddings. Beyond722

that, performance eventually degrades.723

Sensitivity to loss exponent. Increasing the loss exponent γ (the error curvature) in the SCE724

reconstruction loss steepens the penalty on large reconstruction errors. This gradually lifts AUPR725

from 0.907 (γ = 0.5) to 0.926 (γ = 5.0), but the gains are modest (< 2 pp AUPR over a ten-fold726
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change) and all standard deviations overlap, indicating that the model remains broadly insensitive to727

the precise curvature of the loss.728

Hence, performance improves with stronger feature corruption and a steeper loss, but the increments729

are small. Why such robustness? We believe that it can be traced back to two things:730

1. Aggregated objective. The MAE sums residuals over six relation types and multidimen-731

sional features, so changing the weight on any individual error, via masking or γ, has a732

diluted global effect.733

2. Masking as a regulariser. Even relatively moderate corruption (≥ 30%) regularises the734

model; once in this regime, additional changes are unlikely to reshape the learned space.735

Practically, this means MORGaN can be deployed with default settings (e.g. 50% masking, γ = 3),736

still achieving within 1− 2 pp of the best scores - greatly simplifying hyper-parameter tuning while737

underscoring the model’s inherent robustness.738

C.1 Defaults739

• Default hyperparameters: mask ratio = 0.5, γ=3, 2–3 relation layers (PReLU), LR740

1×10−2 (pre-train), 5×10−3 (fine-tune).741

• Early stopping: monitor validation AUPR with patience 20 epochs.742

• Splits: report mean ± s.d. over k seeds; use consistent positive fractions across splits.743

• Compute: single spmm per layer via basis decomposition for efficiency; training-time wall744

clock improvements observed vs. per-relation updates.745
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D Computational requirements and efficiency746

All timings were obtained on a MacBook Pro (Apple M3, 8-core CPU, 16 GB RAM, macOS747

15.4.1) with no GPU acceleration. Table 3 compares MORGaN to the two strongest heterogeneous748

baselines.749

Table 3: Runtime on the six-relation graph (mean ± s.d. over six runs).
Model CPU time / epoch (s) End-to-end time (s)

MODIG 18.60± 1.18 1 582± 116
MDMNI-DGD 5.69± 0.82 566± 16
MORGaN 0.23± 0.07 24.3± 2.9

Key numbers. MORGaN trains ≈ 80× faster per epoch than MODIG and completes the full750

pre-train + fine-tune pipeline ≈ 65× faster. Put differently, a hyper-parameter sweep that takes one751

day with MODIG finishes in under 30 minutes with MORGaN on a traditional laptop.752
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E Ablation studies753

The main paper shows that MORGaN outperforms eight strong baselines; the natural follow-up754

question is why. We therefore conduct six systematic ablation experiments, which all run on the same755

train–validation–test splits and are evaluated with the same metrics as the main results (AUPR is the756

headline score).757

1. PPI-source comparisons (Table 4) swap the base PPI layer among five popular databases758

(STRING-db, PCNet, CPDB, IRefIndex 2015, IRefIndex 2009) while holding all other759

relations and features constant. CPDB is used in all main-paper experiments.760

2. Feature ablations (Table 5) isolate the importance of the four node-feature modalities761

(CNA, gene expression, methylation, mutation frequency) by training MORGaN on every762

single, pairwise, triple, and full combination.763

3. Edge-type ablations (Tables 6-7) repeat the experiment for the six biological relation types.764

4. Randomized-edge control ablations (Tables 8-9) replace each real edge set with a degree-765

preserved shuffle keeping node features unchanged. Performance dropping to chance under766

this perturbation demonstrates that the improvements arise from genuine biology rather than767

increased edge density or model capacity.768

5. Domain-restricted (organ-system) training (Table 10) tests whether pan-cancer gains769

arise from cross-tumour transfer or from a few dominant entities. We retrain MORGaN on770

organ-specific feature and label subsets while holding graph topology fixed.771

6. Model ablations. We swap the basis-decomposed RGCN encoder for a relational GIN772

(RGIN) with matched depth/width/parameters and identical pre-training task, decoder, and773

schedule to probe whether gains are operator-specific or persist across encoder families774

(Table 11). In addition, we ablate the efficiency components – vertical stacking and weight775

decomposition – showing that stacking provides the dominant speedup while decomposition776

preserves this throughput, reduces parameters via sharing, and acts as a mild regularizer777

(Table 12).778

All ablation results are averaged over the six stratified shuffle–split runs described in §3.4; one779

standard deviation is shown for completeness. The next subsections present the detailed numbers and780

summarize the key observations.781

E.1 Comparison between PPI datasets782

Table 4: PPI-source comparison. Performance of MORGaN when the PPI layer is sourced from
five popular interaction databases. All other edge types and node features are kept identical. Bold
numbers highlight the best score within each column. STRING-db provides the most informative
PPI set, pushing AUPR to 0.971, whereas the older IRefIndex releases yield lower accuracy despite
comparable AUPR/AUROC figures.

Features AUPR AUROC Accuracy F1

CPDB 0.888 ± 0.004 0.906 ± 0.004 0.917 ± 0.004 0.919 ± 0.004
IRefIndex 2015 0.949 ± 0.008 0.944 ± 0.004 0.866 ± 0.011 0.869 ± 0.010
IRefIndex 0.949 ± 0.008 0.944 ± 0.004 0.866 ± 0.011 0.869 ± 0.010
PCNet 0.950 ± 0.008 0.941 ± 0.007 0.893 ± 0.004 0.888 ± 0.004
STRINGdb 0.971 ± 0.002 0.970 ± 0.001 0.927 ± 0.007 0.927 ± 0.007
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E.2 Feature ablations783

Table 5: Ablation of the four input omics modalities. Blocks separated by lines correspond to (top
to bottom) single-, pair-, triple- and four-modality configurations. Bold numbers highlight the best
score within each column, and italics highlight the second-best. Copy-number alterations (CNA) are
the most informative modality on their own, whereas combining CNA with gene expression (GE) or
mutation frequency (MF) restores accuracy and F1 to the highest levels. Using all four modalities
yields a balanced performance but does not surpass the best CNA–based subsets on AUPR.

Features AUPR AUROC Accuracy F1

Copy Number Alterations (CNA) 0.908 ± 0.002 0.927 ± 0.001 0.907 ± 0.005 0.909 ± 0.005
Gene Expression (GE) 0.859 ± 0.007 0.919 ± 0.002 0.917 ± 0.004 0.919 ± 0.004
Methylation (METH) 0.884 ± 0.003 0.907 ± 0.002 0.913 ± 0.004 0.914 ± 0.004
Mutation Frequency (MF) 0.866 ± 0.002 0.909 ± 0.002 0.900 ± 0.008 0.902 ± 0.007

CNA + GE 0.874 ± 0.011 0.920 ± 0.007 0.919 ± 0.000 0.921 ± 0.000
CNA + METH 0.893 ± 0.005 0.910 ± 0.007 0.909 ± 0.004 0.911 ± 0.004
CNA + MF 0.908 ± 0.004 0.929 ± 0.003 0.911 ± 0.000 0.913 ± 0.000
GE + METH 0.891 ± 0.018 0.907 ± 0.002 0.909 ± 0.008 0.911 ± 0.007
GE + MF 0.881 ± 0.005 0.920 ± 0.002 0.917 ± 0.004 0.918 ± 0.004
METH + MF 0.890 ± 0.004 0.909 ± 0.001 0.915 ± 0.005 0.917 ± 0.005

CNA + GE + METH 0.891 ± 0.002 0.912 ± 0.002 0.917 ± 0.004 0.919 ± 0.004
CNA + GE + MF 0.886 ± 0.006 0.918 ± 0.004 0.919 ± 0.000 0.921 ± 0.000
CNA + METH + MF 0.897 ± 0.005 0.916 ± 0.006 0.911 ± 0.007 0.913 ± 0.006
GE + METH + MF 0.908 ± 0.006 0.913 ± 0.007 0.896 ± 0.008 0.901 ± 0.007

CNA + GE + METH + MF 0.888 ± 0.005 0.906 ± 0.004 0.917 ± 0.004 0.919 ± 0.004
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E.3 Edge ablations784

Table 6: Edge–type ablation, part I (up to four relation types). Each row shows test performance
when the heterogeneous graph is restricted to the specified subset of biological relations. Values
are mean ± s.d. over the six splits described in §3.4. The full six-relation result (AUPR = 0.888,
cf. Table 1) is given for reference in Table 7. The horizontal rules separate 1-, 2-, 3- and 4-relation
configurations. Bold numbers mark the best score within each block.
Relations AUPR AUROC Accuracy F1

Co-expression (Coexpr.) 0.788 ± 0.006 0.788 ± 0.003 0.805 ± 0.000 0.782 ± 0.000
Domain Similarity (DomSim) 0.764 ± 0.000 0.533 ± 0.000 0.537 ± 0.000 0.123 ± 0.000
GO Semantic Similarity (GO) 0.883 ± 0.002 0.819 ± 0.001 0.805 ± 0.000 0.778 ± 0.000
Pathway Co-occurrence (Path) 0.863 ± 0.008 0.847 ± 0.004 0.843 ± 0.004 0.832 ± 0.005
Sequence Similarity (SeqSim) 0.752 ± 0.000 0.508 ± 0.000 0.512 ± 0.000 0.032 ± 0.000

Coexpr. + DomSim 0.809 ± 0.007 0.798 ± 0.002 0.813 ± 0.000 0.793 ± 0.000
Coexpr. + GO 0.882 ± 0.015 0.892 ± 0.003 0.878 ± 0.000 0.878 ± 0.001
Coexpr. + PPI 0.827 ± 0.021 0.881 ± 0.001 0.835 ± 0.015 0.825 ± 0.013
Coexpr. + Path. 0.878 ± 0.007 0.904 ± 0.003 0.894 ± 0.011 0.894 ± 0.013
Coexpr. + SeqSim 0.783 ± 0.001 0.790 ± 0.001 0.805 ± 0.000 0.782 ± 0.000
DomSim + GO 0.887 ± 0.008 0.825 ± 0.015 0.805 ± 0.000 0.778 ± 0.000
DomSim + PPI 0.756 ± 0.007 0.804 ± 0.004 0.738 ± 0.041 0.740 ± 0.068
DomSim + Path. 0.878 ± 0.003 0.855 ± 0.007 0.841 ± 0.008 0.830 ± 0.010
DomSim + SeqSim 0.769 ± 0.000 0.541 ± 0.000 0.545 ± 0.000 0.152 ± 0.000
GO + PPI 0.849 ± 0.030 0.789 ± 0.074 0.813 ± 0.016 0.792 ± 0.028
GO + Path. 0.904 ± 0.003 0.901 ± 0.001 0.894 ± 0.000 0.894 ± 0.001
GO + SeqSim 0.880 ± 0.004 0.812 ± 0.002 0.805 ± 0.000 0.778 ± 0.000
PPI + Path. 0.869 ± 0.007 0.904 ± 0.002 0.843 ± 0.004 0.835 ± 0.006
PPI + SeqSim 0.740 ± 0.014 0.789 ± 0.014 0.726 ± 0.043 0.729 ± 0.059
Path. + SeqSim 0.853 ± 0.004 0.839 ± 0.008 0.835 ± 0.004 0.822 ± 0.005

Coexpr. + DomSim + GO 0.897 ± 0.010 0.895 ± 0.002 0.878 ± 0.007 0.877 ± 0.008
Coexpr. + DomSim + PPI 0.856 ± 0.015 0.895 ± 0.002 0.833 ± 0.019 0.826 ± 0.018
Coexpr. + DomSim + Path. 0.861 ± 0.023 0.902 ± 0.004 0.909 ± 0.004 0.910 ± 0.004
Coexpr. + DomSim + SeqSim 0.811 ± 0.004 0.802 ± 0.003 0.813 ± 0.000 0.793 ± 0.000
Coexpr. + GO + PPI 0.903 ± 0.018 0.909 ± 0.033 0.876 ± 0.004 0.876 ± 0.005
Coexpr. + GO + Path. 0.891 ± 0.001 0.918 ± 0.001 0.917 ± 0.004 0.918 ± 0.004
Coexpr. + GO + SeqSim 0.890 ± 0.025 0.881 ± 0.009 0.872 ± 0.004 0.870 ± 0.004
Coexpr. + PPI + Path. 0.878 ± 0.005 0.917 ± 0.003 0.909 ± 0.004 0.910 ± 0.004
Coexpr. + PPI + SeqSim 0.827 ± 0.015 0.874 ± 0.004 0.819 ± 0.010 0.810 ± 0.021
Coexpr. + Path. + SeqSim 0.866 ± 0.032 0.900 ± 0.003 0.909 ± 0.004 0.910 ± 0.004
DomSim + GO + PPI 0.861 ± 0.031 0.800 ± 0.068 0.807 ± 0.004 0.782 ± 0.008
DomSim + GO + Path. 0.910 ± 0.001 0.910 ± 0.000 0.902 ± 0.000 0.903 ± 0.000
DomSim + GO + SeqSim 0.892 ± 0.004 0.835 ± 0.009 0.811 ± 0.004 0.786 ± 0.006
DomSim + PPI + Path. 0.886 ± 0.007 0.914 ± 0.008 0.860 ± 0.012 0.852 ± 0.015
DomSim + PPI + SeqSim 0.778 ± 0.006 0.810 ± 0.006 0.754 ± 0.008 0.766 ± 0.009
DomSim + Path. + SeqSim 0.875 ± 0.005 0.856 ± 0.007 0.848 ± 0.008 0.837 ± 0.010
GO + PPI + Path. 0.895 ± 0.005 0.889 ± 0.014 0.894 ± 0.000 0.894 ± 0.000
GO + PPI + SeqSim 0.872 ± 0.029 0.850 ± 0.066 0.797 ± 0.022 0.779 ± 0.007
GO + Path. + SeqSim 0.902 ± 0.002 0.901 ± 0.001 0.894 ± 0.000 0.894 ± 0.000
PPI + Path. + SeqSim 0.878 ± 0.009 0.905 ± 0.007 0.850 ± 0.008 0.840 ± 0.010

Coexpr. + DomSim + GO + PPI 0.905 ± 0.018 0.907 ± 0.031 0.882 ± 0.008 0.882 ± 0.007
Coexpr. + DomSim + GO + Path 0.899 ± 0.001 0.920 ± 0.001 0.919 ± 0.000 0.921 ± 0.000
Coexpr. + DomSim + GO + SeqSim 0.898 ± 0.010 0.878 ± 0.013 0.870 ± 0.015 0.868 ± 0.016
Coexpr. + DomSim + PPI + Path. 0.870 ± 0.030 0.905 ± 0.016 0.909 ± 0.004 0.910 ± 0.004
Coexpr. + DomSim + PPI + SeqSim 0.844 ± 0.026 0.885 ± 0.010 0.833 ± 0.010 0.837 ± 0.007
Coexpr. + DomSim + Path. + SeqSim 0.863 ± 0.022 0.902 ± 0.005 0.909 ± 0.004 0.910 ± 0.004
Coexpr. + GO + PPI + Path. 0.896 ± 0.003 0.915 ± 0.003 0.915 ± 0.008 0.917 ± 0.008
Coexpr. + GO + PPI + SeqSim 0.876 ± 0.002 0.861 ± 0.001 0.880 ± 0.010 0.879 ± 0.010
Coexpr. + GO + Path. + SeqSim 0.884 ± 0.003 0.915 ± 0.000 0.919 ± 0.000 0.921 ± 0.000
Coexpr. + PPI + Path. + SeqSim 0.866 ± 0.022 0.900 ± 0.004 0.904 ± 0.012 0.906 ± 0.012
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Table 7: Edge–type ablation, part II (four to six relation types, continued). This table completes the
sweep by listing the remaining four- and five-relation subsets followed by the full six-relation graph
(bottom row). Metrics are reported as mean ± s.d. over six runs.
Relations AUPR AUROC Accuracy F1

DomSim + GO + PPI + Path. 0.899 ± 0.008 0.893 ± 0.018 0.902 ± 0.000 0.903 ± 0.000
DomSim + GO + PPI + SeqSim 0.888 ± 0.010 0.889 ± 0.006 0.801 ± 0.024 0.786 ± 0.005
DomSim + GO + Path. + SeqSim 0.908 ± 0.001 0.909 ± 0.001 0.900 ± 0.004 0.901 ± 0.004
DomSim + PPI + Path. + SeqSim 0.874 ± 0.005 0.899 ± 0.009 0.837 ± 0.018 0.829 ± 0.015
GO + PPI + Path. + SeqSim 0.883 ± 0.004 0.868 ± 0.006 0.890 ± 0.005 0.890 ± 0.005

Coexpr. + DomSim + GO + PPI + Path. 0.900 ± 0.005 0.919 ± 0.002 0.917 ± 0.004 0.919 ± 0.004
Coexpr. + DomSim + GO + PPI + SeqSim 0.891 ± 0.014 0.880 ± 0.031 0.884 ± 0.010 0.885 ± 0.007
Coexpr. + DomSim + GO + Path. + SeqSim 0.891 ± 0.002 0.918 ± 0.001 0.917 ± 0.004 0.918 ± 0.004
Coexpr. + DomSim + PPI + Path. + SeqSim 0.878 ± 0.010 0.906 ± 0.011 0.894 ± 0.020 0.897 ± 0.018
Coexpr. + GO + PPI + Path. + SeqSim 0.886 ± 0.007 0.910 ± 0.006 0.913 ± 0.004 0.915 ± 0.004
DomSim + GO + PPI + Path. + SeqSim 0.899 ± 0.010 0.896 ± 0.021 0.896 ± 0.004 0.897 ± 0.004

Coexpr. + DomSim + GO + PPI + Path. + SeqSim 0.888 ± 0.004 0.907 ± 0.005 0.915 ± 0.005 0.917 ± 0.004

E.4 Edge ablations (randomized)785

Table 8: Randomized–edge ablation, part I (up to three relation types). For each subset of biological
relations we replace every edge with a degree-preserved shuffle, keeping node features unchanged.
Performance collapses to chance level (AUPR ≈ 0.5, AUROC ≈ 0.5), demonstrating that MORGaN’s
gains in Table 6 come from biologically meaningful topology rather than edge density or parameter
count. Horizontal rules separate 1-, 2- and 3-relation configurations; values are mean ± s.d. over six
runs.

Relations AUPR AUROC Accuracy F1

Coexpr. 0.512 ± 0.050 0.499 ± 0.060 0.503 ± 0.046 0.494 ± 0.072
DomSim 0.372 ± 0.141 0.496 ± 0.005 0.504 ± 0.000 0.349 ± 0.367
GO 0.548 ± 0.036 0.531 ± 0.039 0.520 ± 0.045 0.482 ± 0.112
Path. 0.530 ± 0.038 0.500 ± 0.018 0.502 ± 0.015 0.479 ± 0.157
SeqSim 0.498 ± 0.289 0.496 ± 0.005 0.498 ± 0.004 0.166 ± 0.332

Coexpr. + DomSim 0.480 ± 0.040 0.494 ± 0.053 0.488 ± 0.018 0.491 ± 0.059
Coexpr. + GO 0.504 ± 0.026 0.514 ± 0.022 0.528 ± 0.018 0.504 ± 0.078
Coexpr. + PPI 0.622 ± 0.148 0.494 ± 0.025 0.504 ± 0.007 0.141 ± 0.164
Coexpr. + Path. 0.583 ± 0.030 0.579 ± 0.019 0.553 ± 0.015 0.575 ± 0.027
Coexpr. + SeqSim 0.469 ± 0.044 0.460 ± 0.071 0.480 ± 0.043 0.482 ± 0.060
DomSim + GO 0.538 ± 0.054 0.515 ± 0.040 0.520 ± 0.015 0.494 ± 0.151
DomSim + PPI 0.582 ± 0.119 0.520 ± 0.047 0.512 ± 0.033 0.396 ± 0.287
DomSim + Path. 0.491 ± 0.013 0.473 ± 0.018 0.492 ± 0.005 0.341 ± 0.168
DomSim + SeqSim 0.628 ± 0.145 0.512 ± 0.014 0.508 ± 0.014 0.669 ± 0.006
GO + PPI 0.619 ± 0.149 0.495 ± 0.014 0.508 ± 0.008 0.166 ± 0.261
GO + Path. 0.503 ± 0.042 0.474 ± 0.052 0.484 ± 0.024 0.478 ± 0.094
GO + SeqSim 0.483 ± 0.042 0.476 ± 0.027 0.496 ± 0.034 0.358 ± 0.159
PPI + Path. 0.640 ± 0.134 0.497 ± 0.047 0.502 ± 0.040 0.359 ± 0.311
PPI + SeqSim 0.634 ± 0.132 0.525 ± 0.040 0.512 ± 0.022 0.337 ± 0.371
Path. + SeqSim 0.488 ± 0.025 0.485 ± 0.037 0.494 ± 0.023 0.473 ± 0.172

Coexpr. + DomSim + GO 0.539 ± 0.023 0.524 ± 0.032 0.514 ± 0.012 0.496 ± 0.026
Coexpr. + DomSim + PPI 0.492 ± 0.012 0.487 ± 0.009 0.498 ± 0.004 0.479 ± 0.071
Coexpr. + DomSim + Path. 0.507 ± 0.018 0.501 ± 0.028 0.520 ± 0.015 0.519 ± 0.023
Coexpr. + DomSim + SeqSim 0.494 ± 0.015 0.478 ± 0.034 0.482 ± 0.032 0.463 ± 0.078
Coexpr. + GO + PPI 0.617 ± 0.066 0.590 ± 0.067 0.549 ± 0.062 0.561 ± 0.053
Coexpr. + GO + Path. 0.465 ± 0.045 0.463 ± 0.082 0.480 ± 0.072 0.438 ± 0.081
Coexpr. + GO + SeqSim 0.566 ± 0.048 0.549 ± 0.055 0.551 ± 0.033 0.564 ± 0.030
Coexpr. + PPI + Path. 0.480 ± 0.022 0.485 ± 0.031 0.472 ± 0.027 0.468 ± 0.177
Coexpr. + PPI + SeqSim 0.465 ± 0.030 0.447 ± 0.051 0.467 ± 0.060 0.395 ± 0.113
Coexpr. + Path. + SeqSim 0.487 ± 0.036 0.493 ± 0.037 0.504 ± 0.016 0.541 ± 0.087
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Table 9: Randomized–edge ablation, part II (three to six relation types). Continuation of Table 8,
covering the remaining three-, four-, five- and full six-relation shuffles. Even with all six relation
layers present but randomized, MORGaN remains close to random guessing, reinforcing that the real
multi-relation structure (Table 7) is essential for predictive power.
Relations AUPR AUROC Accuracy F1

DomSim + GO + PPI 0.503 ± 0.051 0.522 ± 0.061 0.490 ± 0.029 0.467 ± 0.152
DomSim + GO + Path. 0.503 ± 0.048 0.531 ± 0.057 0.537 ± 0.040 0.546 ± 0.079
DomSim + GO + SeqSim 0.532 ± 0.026 0.509 ± 0.020 0.498 ± 0.017 0.552 ± 0.115
DomSim + PPI + Path. 0.582 ± 0.131 0.518 ± 0.063 0.510 ± 0.028 0.420 ± 0.316
DomSim + PPI + SeqSim 0.532 ± 0.008 0.537 ± 0.022 0.533 ± 0.041 0.432 ± 0.224
DomSim + Path. + SeqSim 0.498 ± 0.050 0.523 ± 0.047 0.524 ± 0.037 0.489 ± 0.132
GO + PPI + Path. 0.491 ± 0.063 0.470 ± 0.075 0.480 ± 0.060 0.471 ± 0.176
GO + PPI + SeqSim 0.506 ± 0.049 0.481 ± 0.034 0.486 ± 0.026 0.472 ± 0.114
GO + Path. + SeqSim 0.504 ± 0.028 0.524 ± 0.052 0.533 ± 0.030 0.535 ± 0.074
PPI + Path. + SeqSim 0.552 ± 0.040 0.555 ± 0.023 0.539 ± 0.046 0.504 ± 0.127
Coexpr. + DomSim + GO + PPI 0.529 ± 0.070 0.494 ± 0.064 0.504 ± 0.083 0.522 ± 0.079

Coexpr. + DomSim + GO + Path. 0.532 ± 0.079 0.549 ± 0.102 0.541 ± 0.060 0.550 ± 0.054
Coexpr. + DomSim + GO + SeqSim 0.486 ± 0.045 0.489 ± 0.046 0.502 ± 0.031 0.465 ± 0.081
Coexpr. + DomSim + PPI + Path. 0.549 ± 0.053 0.551 ± 0.019 0.549 ± 0.037 0.460 ± 0.288
Coexpr. + DomSim + PPI + SeqSim 0.477 ± 0.018 0.443 ± 0.023 0.470 ± 0.022 0.488 ± 0.163
Coexpr. + DomSim + Path. + SeqSim 0.520 ± 0.053 0.461 ± 0.029 0.490 ± 0.014 0.449 ± 0.041
Coexpr. + GO + PPI + Path. 0.526 ± 0.021 0.504 ± 0.047 0.496 ± 0.026 0.271 ± 0.076
Coexpr. + GO + PPI + SeqSim 0.496 ± 0.081 0.475 ± 0.087 0.470 ± 0.027 0.509 ± 0.227
Coexpr. + GO + Path. + SeqSim 0.516 ± 0.040 0.507 ± 0.048 0.520 ± 0.030 0.486 ± 0.049
Coexpr. + PPI + Path. + SeqSim 0.538 ± 0.036 0.554 ± 0.026 0.541 ± 0.017 0.467 ± 0.172
DomSim + GO + PPI + Path. 0.519 ± 0.050 0.507 ± 0.040 0.512 ± 0.037 0.539 ± 0.094
DomSim + GO + PPI + SeqSim 0.529 ± 0.039 0.531 ± 0.026 0.533 ± 0.014 0.524 ± 0.093
DomSim + GO + Path. + SeqSim 0.585 ± 0.067 0.582 ± 0.061 0.561 ± 0.049 0.547 ± 0.037
DomSim + PPI + Path. + SeqSim 0.537 ± 0.066 0.536 ± 0.057 0.518 ± 0.017 0.524 ± 0.086
GO + PPI + Path. + SeqSim 0.481 ± 0.049 0.468 ± 0.055 0.492 ± 0.045 0.462 ± 0.151

Coexpr. + DomSim + GO + PPI + Path. 0.506 ± 0.019 0.536 ± 0.014 0.520 ± 0.040 0.493 ± 0.236
Coexpr. + DomSim + GO + PPI + SeqSim 0.511 ± 0.048 0.507 ± 0.038 0.496 ± 0.000 0.463 ± 0.095
Coexpr. + DomSim + GO + Path. + SeqSim 0.503 ± 0.011 0.491 ± 0.011 0.504 ± 0.018 0.525 ± 0.087
Coexpr. + DomSim + PPI + Path. + SeqSim 0.460 ± 0.031 0.449 ± 0.039 0.472 ± 0.040 0.405 ± 0.092
Coexpr. + GO + PPI + Path. + SeqSim 0.515 ± 0.051 0.507 ± 0.052 0.506 ± 0.054 0.341 ± 0.262
DomSim + GO + PPI + Path. + SeqSim 0.477 ± 0.012 0.469 ± 0.016 0.484 ± 0.019 0.419 ± 0.221

Coexpr. + DomSim + GO + PPI + Path. + SeqSim 0.505 ± 0.022 0.479 ± 0.036 0.480 ± 0.038 0.472 ± 0.122

E.5 Domain-restricted (organ-system) training786

To determine whether MORGaN’s accuracy is driven by a handful of tumor entities or is truly pan-787

cancer, we trained six separate models, each restricted to one “organ-system” (omics features retained788

only for the cancer types listed in brackets), based on those already included in the pan-cancer feature789

set used to train our original model:790

• Head and Neck [HNSC]791

• Gastro-intestinal [ESCA, STAD, LIHC, COAD, READ]792

• Respiratory [LUAD, LUSC]793

• Genitourinary [KIRC, KIRP, BLCA, PRAD]794

• Reproductive [UCEC, CESC, BRCA]795

• Endocrine [THCA]796

The table below reports mean ± s.d. over three random splits (70/15/15%).797

Across the profiled organ systems, performance is uniformly strong (AUPR = 0.892 − 0.919;798

AUROC = 0.891− 0.927; Acc = 0.874− 0.905; F1 = 0.877− 0.908), indicating that MORGaN’s799

accuracy is not driven by a single tissue context. Variation is modest (absolute AUPR spread ≤ 0.027800
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Table 10: Performance by tissue group (mean ± s.d.).
Tissue group AUPR AUROC Accuracy F1

Gastrointestinal 0.898± 0.003 0.913± 0.005 0.892± 0.004 0.896± 0.004
Respiratory 0.919± 0.003 0.927± 0.002 0.890± 0.004 0.896± 0.005
Head and neck 0.893± 0.008 0.901± 0.003 0.874± 0.012 0.877± 0.016
Genitourinary 0.910± 0.009 0.922± 0.010 0.905± 0.004 0.908± 0.005
Reproductive 0.892± 0.007 0.891± 0.007 0.874± 0.009 0.877± 0.010

with s.d. ≤ 0.016), and tracks data availability: the Respiratory group achieves the highest scores801

(AUPR 0.919 ± 0.003, AUROC 0.927 ± 0.002), while Head & Neck and Reproductive, which802

have fewer established positives, are slightly lower but remain well within the high-performing803

regime (AUPR ≈ 0.892− 0.893, AUROC ≈ 0.891− 0.901). Gastrointestinal and Genitourinary are804

consistently competitive (e.g., AUPR 0.898 and 0.910; AUROC 0.913 and 0.922, respectively). In805

short, MORGaN generalizes across cancer types; although joint pan-cancer training yields the single806

best overall model, the per-tissue experiments show that it retains high fidelity even when feature sets807

are restricted to smaller, system-specific vectors.808

E.6 Model ablations809

E.6.1 Encoder-family810

To test whether MORGaN’s gains depend on the specific relational operator, we replace the basis-811

decomposed RGCN encoder/decoder with a Relational GIN (RGIN) backbone while keeping the812

pre-training objective, decoder head, data splits, optimization schedule, and regularization unchanged.813

We match depth/width to keep parameter count and per-epoch compute comparable.814

Table 11 reports mean ± s.d. across the same splits used elsewhere. RGIN performance is comparable815

with that achieved by our RGCN configuration, indicating that MORGaN’s gains primarily arise from816

the multi-relation masking objective and the information in the heterogeneous graph rather than from817

a particular choice of message-passing operator.818

Table 11: Encoder-family ablation: replacing RGCN with RGIN inside MORGaN (mean ± s.d.
across identical splits).

AUPR AUROC Accuracy F1

RGCN 0.888± 0.004 0.907± 0.005 0.915± 0.005 0.917± 0.004
RGIN 0.908± 0.005 0.913± 0.011 0.898± 0.007 0.902± 0.007

Takeaway. Comparable results with RGIN suggest the framework is robust to encoder choice; the819

core driver is the self-supervised multi-relation formulation combined with rich graph context.820

E.6.2 Weight decomposition and vertical stacking821

We assessed the effect of weight decomposition (basis sharing across relations) and vertical stacking822

(single spmm over a stacked relation matrix) on both efficiency and accuracy. Runtime was measured823

on the same data and training schedule.824

Efficiency. Vertical stacking accounts for the dominant speedup versus a naive per-relation pass.825

Adding weight decomposition maintains this fast regime while reducing parameter count via shar-826

ing. Without employing vertical stacking and weight decomposition, MORGaN training exhibits a827

substantially higher runtime (∼ seconds per iteration compared to 0.23 seconds per iteration). With828

vertical stacking but without weight decomposition, the runtime was approximately 4.26iterations829

per second.830

Accuracy. With vertical stacking but without weight decomposition, we observed slightly higher831

metrics; however, given the large efficiency/parameter benefits of decomposition and its regularizing832

effect, we retain it as the default. Reported means ± s.d. over the same splits:833
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Table 12: Performance with vertical stacking but without weight decomposition.
AUPR AUROC Accuracy F1

Vertical stacking and decomposition 0.888± 0.004 0.907± 0.005 0.915± 0.005 0.917± 0.004
Vertical stacking and no decomposition 0.912± 0.010 0.913± 0.004 0.894± 0.010 0.897± 0.012

Takeaway. Vertical stacking delivers the primary runtime gain, while weight decomposition preserves834

that efficiency, reduces parameters through sharing, and serves as an implicit regulariser; we therefore835

keep decomposition in MORGaN’s default encoder.836
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F Pathway enrichment analysis837

Rationale. Given a ranked list of genes from MORGaN (high score = predicted druggable), pathway838

enrichment asks: “Do the top-ranked genes cluster in curated biological pathways more than we839

would expect by chance?” If so, that provides external validity: the model is concentrating probability840

mass on coherent processes (e.g., cell cycle, receptor signaling) rather than on idiosyncratic single841

genes.842

Pipeline in brief. We use GSEA (Gene Set Enrichment Analysis) in the “pre-ranked” mode:843

1. Rank genes. Sort all genes by MORGaN’s prediction score.844

2. Choose gene sets. Use curated pathway collections (e.g., KEGG, GO). Each set is simply a845

list of genes that participate in a process.846

3. Enrichment statistic. For each pathway, GSEA computes a running-sum statistic that847

increases when a pathway gene is encountered high in the ranking and decreases otherwise.848

The maximum deviation of this walk is the raw enrichment score.849

4. Normalization and significance. Scores are normalized by gene-set size, yielding the850

NES (Normalized Enrichment Score), which lets large and small pathways be compared.851

Significance is assessed by permutation to form a null distribution; we report nominal852

p-values (NOM p) and multiple-testing–corrected FDR q-values.853

Analyzed gene sets. We run GSEA on two sets of predictions: (A) all genes predicted as positive854

by MORGaN, and (N) the subset of novel positives with no prior druggability annotation. Tables855

13–14 and Fig. 6 summarize the most significant results (FDR < 0.05).856

NES measures how strongly a pathway is enriched at the top of the ranking after accounting for857

set size. FDR q controls for testing many pathways at once (analogous to a false discovery rate in858

multiple-hypothesis testing). The bar plots in Fig. 6 compare NES across pathway categories; darker859

bars refer to results on set (A) and lighter bars refer to set (N).860

Cancer hallmarks. Both sets recover core oncogenic programs – cell cycle, p53, PI3K–Akt, and861

composite pathways in cancer – indicating that high-scoring genes cluster in well-established cancer862

biology (Table 13).863

Therapeutically actionable signalling. The strongest signals are receptor-mediated pathways, led864

by neuroactive ligand–receptor interaction and several GPCR cascades (Table 14). GPCRs and865

related receptors are classic drug targets because they are membrane-exposed, ligandable, and already866

richly represented in approved medicines. Enrichment here suggests MORGaN’s scores align with867

historically “druggable” target classes rather than random gene families.868

Immune and metabolism niches. In the novel set (N), we observe cytokine–cytokine receptor869

interaction, hematopoietic cell lineage, and xenobiotic/retinol metabolism. These point to immuno-870

modulatory mechanisms (e.g., tuning tumor–immune interactions) and to metabolic processes associ-871

ated with drug processing and resistance – fertile ground for new targets.872

Pathways overlap and are correlated; FDR addresses multiple testing, and NES mitigates gene-set size873

effects, but some redundancy is expected. Because MORGaN is trained with multi-omic and network874

context, we consider pathway-level enrichment a complementary sanity check that the model’s global875

ranking is biologically coherent.876

Taken together, the enrichment profile shows that MORGaN both rediscovers canonical drug classes877

(external validity) and highlights plausible novel targets for follow-up (novel set N).878
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Figure 6: Visual summary of pathway enrichment analysis results. Left: Normalized enrichment
score (NES) for five hallmark cancer pathways. Right: Ten most significant pathways overall. Dark
bars = all predicted positives; light bars = novel predictions only.

Table 13: Enrichment of hallmark cancer pathways among MORGaN predictions. Normalized
enrichment score (NES), FDR q-value and nominal p-value (NOM p) are shown for both established
druggable genes (A) and newly predicted candidates (N). All listed pathways pass FDR ≤ 0.05 and
NOM p ≤ 0.01.

Pathway Group NES FDR q NOM p

Cell cycle (KEGG) A 2.95 0.00049 0.000
Cell cycle (KEGG) N 2.44 0.00610 0.0023
p53 signaling pathway (KEGG) A 2.98 0.00098 0.000
p53 signaling pathway (KEGG) N 2.71 0.00043 0.000
PI3K–Akt signaling pathway (KEGG) A 2.47 0.00112 0.000
PI3K–Akt signaling pathway (KEGG) N 1.80 0.04700 0.0077
Pathways in cancer (KEGG) A 2.05 0.01580 0.0031
Pathways in cancer (KEGG) N 2.14 0.01050 0.0014
Chemical carcinogenesis (KEGG) A 1.96 0.02410 0.0050
Chemical carcinogenesis (KEGG) N 2.48 0.00057 0.000

Table 14: Top five pathways enriched among all (A) and novel (N) MORGaN-predicted druggable
genes. Metrics as in Table 13.

Pathway Group NES FDR q NOM p

Neuroactive ligand–receptor interaction (KEGG) A 7.31 0.000 0.000
G protein-coupled receptor signaling (GO) A 3.69 0.000 0.000
Adenylate cyclase-modulating GPCR signaling (GO) A 3.82 0.000 0.000
Chemical synaptic transmission (GO) A 4.00 0.000 0.000
Anterograde trans-synaptic signaling (GO) A 3.65 0.000 0.000
Neuroactive ligand–receptor interaction (KEGG) N 4.50 0.000 0.000
Cytokine–cytokine receptor interaction (KEGG) N 3.85 0.000 0.000
Xenobiotic metabolism by cytochrome P450 (KEGG) N 3.27 0.000 0.000
Hematopoietic cell lineage (KEGG) N 3.20 0.000 0.000
Retinol metabolism (KEGG) N 3.05 0.000 0.000
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G Local interpretability: case studies879

Deep graph models often deliver accurate predictions while leaving the mechanistic “why” opaque. We880

ask: “Which subgraph structure and which feature dimensions were most influential for MORGaN’s881

decision on a specific gene?” Local explanations help users assess faithfulness, spot failure modes,882

and form testable hypotheses.883

To examine MORGaN’s decision process we apply GNNExplainer [48], which learns soft masks884

over (i) edges (ME ∈ [0, 1]|E|) and (ii) feature dimensions (MF ∈ [0, 1]d). The explainer optimizes885

these masks to maximize the mutual information between the masked inputs and the model’s output886

for the target node:887

max
ME ,MF

I(Y ; f(G⊙ME , X ⊙MF )) (7)

where f is the frozen trained model, G is the graph (adjacency), X are node features, and ⊙ denotes888

element-wise masking. In practice, this is implemented with a differentiable surrogate objective (e.g.,889

cross-entropy on the target logit), plus sparsity and entropy regularizers that encourage compact,890

human-readable explanations. Thresholding ME yields an explanation subgraph; the thicker the891

edge, the higher its attribution weight.892

Fig. 8 displays subgraphs with the top-20 edges by mask weight for four case genes (two established:893

EGFR, NOTCH1; two high-confidence novel: LAMA3, IL4R). The focal node is enlarged; edge width894

encodes importance. Fig. 7 aggregates the feature mask into a cancer-type × omic-layer heat-map,895

so we can see whether structure vs. features, and which modality, drove the call.896

G.1 Case studies897

a) EGFR – validating known biology. The highest-weight edges connect EGFR to TP53, CDK2,898

and CTNNB1. These neighbors sit on well-studied axes that link receptor tyrosine-kinase signaling to899

proliferation control: CDK2 is a core cell-cycle kinase (G1/S transition), TP53 constrains damaged900

cells from cycling, and CTNNB1 (β-catenin) mediates Wnt pathway transcriptional programs that901

reinforce growth signals. The feature mask assigns large weights to copy-number and expression902

channels in lung adenocarcinoma (LUAD) and lung squamous carcinoma (LUSC), indicating that903

MORGaN’s per-gene score for EGFR is supported by both (i) a structural motif tying EGFR to904

cell-cycle checkpoints and (ii) omics evidence of amplification/over-expression in the histologies905

where EGFR inhibitors are first-line therapy.906

b) NOTCH1 – pathway-centered evidence. Instead of a star around NOTCH1, the mask empha-907

sizes two tightly connected patterns: (i) a receptor–kinase crosstalk motif involving ERBB4 and908

MAPK9 (JNK), and (ii) a transcriptional decision module with RBPJ, the canonical DNA-binding909

partner for Notch intracellular domain. This says the model is using multi-hop pathway context – how910

Notch signalling routes into MAPK and transcription – rather than just counting direct interactors.911

Feature-wise, the importance is spread across expression and methylation channels, which is consis-912

tent with NOTCH pathway activity being regulated by both ligand/receptor levels and downstream913

transcriptional state. The selection of small, interconnected motifs implies the predictor relies on914

substructures with function, not just local density or centrality.915

c) LAMA3 – extracellular-matrix lead. For the unlabeled candidate LAMA3 (a laminin subunit in916

basement membrane), salient neighbors include ITGA4 (integrin receptor) and SMAD1/2 (TGF-β917

effectors). Together these mark ECM–integrin–TGF crosstalk: integrins sense matrix composition918

and stiffness, transmit signals that modulate SMAD activity, and jointly regulate adhesion, migration,919

and invasion. The feature mask concentrates in bladder and thyroid contexts, with expression920

and methylation dimensions carrying the largest weights, suggesting tumor settings where ECM921

remodeling is particularly informative for the model’s decision. For a novel prediction, a coherent922

mechanistic neighborhood plus aligned feature evidence is stronger than either alone. The model is923

not “hallucinating” from topology.924

d) IL4R – immune-evasion angle. The subgraph highlights edges to AKT2 (PI3K/AKT survival925

signaling), TP53BP1 (DNA-damage signaling), and RAC1 (actin cytoskeleton and motility). This926
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context is expected for IL4R, a cytokine receptor that modulates immune and survival pathways:927

IL-4/IL-13 signaling can activate PI3K/AKT, reshape cytoskeletal dynamics via Rho GTPases, and928

influence DNA-damage responses indirectly through cell-state changes. The feature mask is strongest929

in colorectal and lung cancers, with expression and CNA dimensions dominating, again matching930

settings in which cytokine-driven immune escape and microenvironmental interactions are prominent.931

Receptor localization (membrane), a signal-integration neighborhood, and high-weight omic channels932

together form a druggability-consistent explanation. Indeed, the explanation aligns with literature933

linking IL-4/IL-13 signaling to macrophage polarization and immune escape, supporting IL4R as a934

promising immuno-oncology target.935

Overall, the explanations are compact, stable, and mechanistically plausible, letting us trace MOR-936

GaN’s “YES” decisions back to specific relational motifs and ’omic signals – useful both as a937

faithfulness check and as a hypothesis generator for downstream experiments.938

(a) EGFR (b) NOTCH1 (c) LAMA3 (d) IL4R

Figure 7: Heat-map visualization of node-feature importance for the same four driver genes. Each
panel shows a cancer-type × omic-layer matrix; color intensity is proportional to the contribution
weight assigned by GNNExplainer (darker = higher importance).

31



(a) EGFR (b) NOTCH1

(c) LAMA3 (d) IL4R

Figure 8: Sub-graphs with the 20 most influential edges (edge width ∝ contribution) for four driver
genes. The central node is enlarged and darkened.
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H External concordance939

We compared MORGaN’s high-confidence positives (p > 0.9) with two external resources: DGIdb940

[6] and the Finan et al. [10] druggable-genome atlas. Table 15 reports overlaps and proportions. The941

substantial concordance – particularly the three-way intersection – supports MORGaN’s ability to942

recover genes independently recognized as druggable.943

Table 15: Overlap between MORGaN positives and external resources.
Resource Overlap (genes) % of MORGaN positives

DGIdb [6] 50 69.1%
Finan [10] 106 74.9%
DGIdb ∩ Finan ∩ MORGaN 609 63.8%

Overall, 80.2% (765/954) of MORGaN’s high-confidence predictions are supported by at least one944

external resource (DGIdb or Finan), with 63.8% (609/954) shared by both.945

Reproducibility note (MDMNI-DGD). We attempted to include MDMNI-DGD predictions for a946

broader comparison; however, the supplementary gene list referenced in their paper was not accessible947

(the downloadable file appeared corrupted across multiple attempts). We will add this comparison948

if/when an updated file becomes available.949
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I Out-of-distribution experiments950

I.1 Alzheimer’s disease951

Setup. To test disease-agnostic generalization, we built an Alzheimer’s disease (AD) network using952

Alzheimer-specific multi-omic profiles (log2 fold-change gene expression and chromatin accessibility)953

and the same six biological relation types used in the pan-cancer graph (derived from [12]). We954

re-trained MORGaN end-to-end with the identical pre-training and fine-tuning protocol and evaluated955

on the same split strategy as in the cancer experiments.956

Results. Performance remains strong under this domain shift, with a small drop relative to oncology957

(Table 16). This suggests that the self-supervised, multi-relation objective captures disease-general958

structure that transfers beyond cancer.959

Table 16: Alzheimer’s disease: mean ± s.d. over splits.
AUPR AUROC Accuracy F1

MORGaN (AD) 0.892± 0.022 0.908± 0.009 0.840± 0.009 0.847± 0.008

Qualitative sanity checks. Among high-scoring predictions without prior druggability labels960

(“false positives” under our operational binary label), MORGaN prioritizes genes with AD-relevant961

evidence, including PDE4D (amyloid/tau pathology; cognitive decline) [28], HLA-DRA (upregulated;962

neuroinflammation) [3], members of the HDAC family (pharmacological modulation ameliorates963

cognitive deficits in AD models) [29, 30], as well as NTRK1 (nervous system development) and NRP1964

(neuronal migration, angiogenesis; upregulated in AD models) [24]. These examples support that965

out-of-distribution predictions remain biologically plausible.966

I.2 Essential genes967

Setup. To illustrate the task-agnostic utility of MORGaN embeddings, we evaluated a distinct968

prediction task: gene essentiality. We used proxy labels derived from prior predictions [13] (subset to969

E (essential)) and applied the same training/evaluation protocol (architecture and schedule unchanged),970

treating this as a separate downstream classification problem.971

Results. Despite the weaker, prediction-derived labels, performance is competitive (Table 17),972

indicating that MORGaN learns task-general representations that transfer to essentiality beyond the973

original druggability objective.974

Table 17: Essential gene prediction: mean ± s.d. over splits.
AUPR AUROC Accuracy F1

MORGaN (essential) 0.765± 0.015 0.835± 0.008 0.772± 0.009 0.797± 0.008

Takeaway. Across both experiments, MORGaN’s multi-relation self-supervision yields embeddings975

that generalize across diseases (AD) and tasks (essentiality), with only modest degradation under976

distribution shift and competitive performance under weaker labels.977
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