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Abstract

Preference optimization, particularly through Reinforcement Learning from Human Feedback
(RLHF), has achieved significant success in aligning Large Language Models (LLMs) to adhere
to human intentions. Unlike offline alignment with a fixed dataset, online feedback collection
from humans or AI on model generations typically leads to more capable reward models and
better-aligned LLMs through an iterative process. However, achieving a globally accurate
reward model requires systematic exploration to generate diverse responses that span the
vast space of natural language. Random sampling from standard reward-maximizing LLMs
alone is insufficient to fulfill this requirement. To address this issue, we propose a bilevel
objective optimistically biased towards potentially high-reward responses to actively explore
out-of-distribution regions. By solving the inner-level problem with the reparameterized
reward function, the resulting algorithm, named Self-Exploring Language Models (SELM),
eliminates the need for a separate RM and iteratively updates the LLM with a straightforward
objective. Compared to Direct Preference Optimization (DPO), the SELM objective reduces
indiscriminate favor of unseen extrapolations and enhances exploration efficiency. Our
experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-
8B-Instruct models, SELM significantly boosts the performance on instruction-following
benchmarks such as MT-Bench and AlpacaEval 2.0, as well as various standard academic
benchmarks in different settings.

1 Introduction

Large Language Models (LLMs) have recently achieved significant success largely due to their ability to follow
instructions with human intent. As the defacto method for aligning LLMs, Reinforcement Learning from
Human Feedback (RLHF) works by maximizing the reward function, either a separate model (Ouyang et al.,
2022; Bai et al., 2022; Gao et al., 2023) or reparameterized by the LLM policy (Rafailov et al., 2024b;a; Azar
et al., 2023; Zhao et al., 2023), which is learned from the prompt-response preference data labeled by humans.
The key to the success of alignment is the response diversity within the preference data, which prevents
reward models (RMs) from getting stuck in local optima, thereby producing more capable language models.

Offline alignment methods (Rafailov et al., 2024b; Tang et al., 2024) attempt to manually construct diverse
responses for fixed prompts (Cui et al., 2023; Ivison et al., 2023; Zhu et al., 2023), which, unfortunately,
struggles to span the nearly infinite space of natural language. On the other hand, online alignment follows
an iterative procedure: sampling responses from the LLM and receiving feedback to form new preference data
for RM training (Ouyang et al., 2022; Guo et al., 2024). The former step helps explore out-of-distribution
(OOD) regions through randomness in sampling. However, in standard online RLHF frameworks, maximizing
the expected reward learned from the collected data is the only objective for the LLM, sampling from which
often leads to responses clustered around local optima. This passive exploration mechanism can suffer from
overfitting and premature convergence, leaving the potentially high-reward regions unexplored.
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To address this issue, we propose an active exploration method for online alignment that elicits novel favorable
responses. In its simplest form, an optimism term α maxy r(x, y) is added to the reward-fitting loss (e.g., the
negative log-likelihood Llr on dataset D), resulting in a bilevel optimization objective for the reward model r:

max
r

max
y

αr(x, y) − Llr(r; D), (1.1)

where α is a hyperparameter controlling the degree of optimism. The intuition is illustrated in Figure 1.
Specifically, minimizing the vanilla reward-fitting loss Llr is likely to give a locally accurate RM that overfits
the observed data and gets stuck in local minima. Random sampling from this vanilla RM may take a long
time to explore the OOD regions that contain the best response. By incorporating the optimism term, we
obtain an RM that both fits the data well and has a large maxy r(x, y). This ensures that the greedy response
yu from it is either globally optimal when uncertainty in high-reward regions is eliminated, or potentially good
in unexplored areas where r(x, yu) can be arbitrarily huge due to the relaxed reward-fitting loss. Feedback
from humans on these responses yu can then reduce uncertainty and train a more accurate RM.
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Figure 1: Intuition of our method. For a fixed prompt x, a reward model r(x, y) tries to fit the ground-truth
reward r∗(x, y). The blue and green RMs are equally good when using standard reward-fitting loss Llr,
since the observed preference data (red stars) are fitted equally well. However, the green RM has a larger
maxy r(x, y) and thus a lower optimistically biased loss Llr − α maxy r(x, y). Therefore, the response yu at
which the uncertainty is high can be elicited and then proceeded for human feedback to reduce uncertainty.

In this paper, we formulate this idea within the context of online direct alignment, where the LLM is iteratively
updated without a separate RM. We first introduce two modifications to the bilevel RM objective in (1.1),
namely adding KL constraints and using relative maximum reward. Then we derive a simple LLM training
objective by applying the closed-form solution of the inner-level problem and reparameterizing the reward
with the LLM policy. The resulting iterative algorithm is called Self-Exploring Language Models (SELM). We
show that the policy gradient of SELM is biased towards more rewarding areas. Furthermore, by reducing
the chance of generating responses that are assigned low implicit rewards, SELM mitigates the indiscriminate
favoring of unseen extrapolations in DPO (Rafailov et al., 2024b;a) and enhances exploration efficiency.

In experiments, we implement SELM using Zephyr-7B-SFT (Tunstall et al., 2023b) and Llama-3-8B-Instruct
(Meta, 2024) as base models. By fine-tuning solely on the UltraFeedback (Cui et al., 2023) dataset and
using the small-sized PairRM (Jiang et al., 2023) for iterative AI feedback, SELM boosts the performance of
Zephyr-7B-SFT and Llama-3-8B-Instruct by a large margin on AlpacaEval 2.0 (Dubois et al., 2024) (+16.24%
and +11.75% LC win rates) and MT-Bench (Zheng et al., 2024) (+2.31 and +0.32). SELM also demonstrates
strong performance on standard academic benchmarks and achieves higher pairwise LC win rates against the
strong iterative DPO baseline.
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2 Related Work

Data Synthesis for LLMs. A key challenge for fine-tuning language models to align with users’ intentions
lies in the collection of demonstrations, including both the SFT instruction-following expert data and the
RLHF preference data. Gathering such data from human labelers is expensive, time-consuming, and sometimes
suffers from variant quality (Ouyang et al., 2022; Köpf et al., 2024). To address this issue, synthetic data (Liu
et al., 2024a) has been used for aligning LLMs. One line of work focuses on generating plausible instruction
prompts for unlabeled data by regarding the target output as instruction-following responses (Li et al., 2023a;
Wu et al., 2023; Josifoski et al., 2023; Taori et al., 2023; Li et al., 2024a). Besides, high-quality data can
also be distilled from strong models for fine-tuning weaker ones (Gunasekar et al., 2023; Abdin et al., 2024;
Li et al., 2023b; Ding et al., 2023; Peng et al., 2023). To construct synthetic datasets for offline RLHF, a
popular pipeline (Cui et al., 2023; Tunstall et al., 2023b; Wang et al., 2024b; Ivison et al., 2023; Zhu et al.,
2023) involves selecting responses sampled from various LLMs on a set of prompts in the hope to increase
the diversity of the data that can span the whole language space. However, data manually collected in such a
passive way does not consider what improves the model most through its training, leaving the potentially
high-reward regions unexplored.

Iterative Online Preference Optimization. Compared to offline RLHF algorithms (Rafailov et al.,
2024b; Zhao et al., 2023; Azar et al., 2023) that collect preference datasets ahead of training, online RLHF
(Ouyang et al., 2022; Guo et al., 2024), especially the iterative/batched online RLHF (Bai et al., 2022; Xu
et al., 2023; Chen et al., 2022; Gulcehre et al., 2023; Hoang Tran, 2024; Xiong et al., 2023; Calandriello et al.,
2024; Rosset et al., 2024) has the potential to gather better and better synthetic data as the model improves.
As a special case, self-aligned models match their responses with desired behaviors, such as model-generated
feedback (Yuan et al., 2024; Yuanzhe Pang et al., 2024; Sun et al., 2024; Wang et al., 2024a). Unfortunately,
the above methods still passively explore by relying on the randomness during sampling and easily get stuck at
local optima and overfit to the current data due to the vast space of natural language. A notable exception is
Dwaracherla et al. (2024), which proposed to use ensembles of RMs to approximately measure the uncertainty
for posterior-sampling active exploration. On the contrary, our method explores based on the optimistic bias
and does not estimate the uncertainty explicitly, bypassing the need to fit multiple RMs.

Active Exploration. In fact, active exploration has been widely studied beyond LLMs. Similar to
Dwaracherla et al. (2024), most existing sample-efficient RL algorithms first estimate the uncertainty of the
environment using historical data and then either plan with optimism (Auer, 2002; Russo & Van Roy, 2013;
Jin et al., 2020; Mehta et al., 2023; Das et al., 2024), or select the optimal action from a statistically plausibly
set of values sampled from the posterior distribution (Strens, 2000; Osband et al., 2013; 2023; Zhang, 2022; Li
et al., 2024c). The proposed self-exploration objective can be categorized as an optimism-based exploration
method. However, most previous works require the estimation of the upper confidence bound, which is often
intractable. Ensemble methods (Osband et al., 2024; Chua et al., 2018; Lu & Van Roy, 2017) can serve as
approximations to estimate the uncertainty but are still computationally inefficient.

Concurrent Work. We highlight the concurrent work (to the first version of the current paper) of Xie
et al. (2024); Cen et al. (2024); Liu et al. (2024c), among which Xie et al. (2024) establishes the first analysis
of the sample complexity of a DPO algorithm in the online setting of RLHF (formulated as MDPs). All of
them focus on incorporating an SFT loss or a similar term (as bonus or penalty) alongside the DPO loss as
an optimistic or pessimistic adjustment in the online or offline setting, respectively. Xie et al. (2024); Cen
et al. (2024) and the current paper focus on the former, while Liu et al. (2024c) focuses on the latter. In the
second version of the current paper, we provide the sample complexity of SELM following the proof technique
of Xie et al. (2024). Through a reduction technique from Xie et al. (2024), we show how to connect the
sample complexity of SELM to that of existing RL algorithms (Zhong et al., 2022; Liu et al., 2024b), which
are not tailored to RLHF but enjoy strong theoretical guarantees.
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3 Background

Large Language Models. A language model π ∈ ∆X
Y typically takes the prompt x ∈ X as input and

outputs the response y ∈ Y. Here, X and Y are finite spaces of prompts and responses, respectively. Given
the prompt x ∈ X , a discrete probability distribution π(· | x) ∈ ∆Y is generated, where ∆Y is the set of
discrete distributions over Y. After pretraining and Supervised Fine-Tuning (SFT), preference alignment is
employed to enhance the ability of the language model to follow instructions with human intentions.

Reinforcement Learning from Human Feedback (RLHF). Standard RLHF frameworks consist of
learning a reward model and then optimizing the LLM policy using the learned reward.

Specifically, a point-wise reward r(x, y) : X × Y → R represents the Elo score (Elo & Sloan, 1978) of the
response y given the prompt x. Then the preference distribution can be expressed by the Bradley-Terry
model that distinguishes between the preferred response yw and the dispreferred response yl given prompt x,
denoted as yw ≻ yl | x, using the logistic function σ:

p(yw ≻ yl | x) := Eh

[
1(h prefers yw over yl given x)

]
= σ

(
r(x, yw) − r(x, yl)

)
=

exp
(
r(x, yw)

)
exp
(
r(x, yw)

)
+ exp

(
r(x, yl)

) , (3.1)

where h denotes the human rater and the expectation is over h to account for the randomness of the
choices of human raters we ask for their preference. When provided a static dataset of N comparisons
D = {xi, yw,i, yl,i}N

i=1, the parameterized reward model can be learned by minimizing the following negative
log-likelihood loss:

Llr(r; D) = −E(x,yw,yl)∼D
[
log σ

(
r(x, yw) − r(x, yl)

)]
. (3.2)

Using the learned reward, the LLM policy π ∈ ∆X
Y is optimized with reinforcement learning (RL) to maximize

the expected reward while maintaining a small deviation from some base reference policy πref, i.e., maximizing
the following objective

J (π) = Ex∼D,y∼π(·|x)
[
r(x, y)

]
− βDKL(π || πref), (3.3)

where β is a hyperparameter and DKL(π || πref) := Ex∼D[KL(π(· | x) || πref(· | x))] is the expected Kullback-
Leibler (KL) divergence. An ideal πref is the policy that helps mitigate the distribution shift issue (Rafailov
et al., 2024b; Guo et al., 2024) between the true preference distribution and the policy π during the off-policy
RL training. Since we only have access to the dataset D sampled from the unavailable true preference
distribution, πref can be obtained by fine-tuning on the preferred responses in D or simply setting πref = πSFT

and performing RLHF based on the SFT model.

Direct Alignment from Preference. With the motivation to get rid of a separate reward model, which
is computationally costly to train, recent works (Rafailov et al., 2024b; Azar et al., 2023; Zhao et al., 2023;
Tunstall et al., 2023b; Ethayarajh et al., 2024) derived the preference loss as a function of the policy by
changing of variables. Among them, DPO (Rafailov et al., 2024b) shows that when the BT model in (3.1)
can perfectly fit the preference, the global optimizers of the RLHF objective in (3.3) and the following loss
are equivalent:

LDPO(π; D) = −E(x,yw,yl)∼D

[
log σ

(
β log π(yw | x)

πref(yw | x) − β log π(yl | x)
πref(yl | x)

)]
.

4



Under review as submission to TMLR

4 Self-Exploring Language Models

4.1 RM-Free Objective for Active Exploration

In this section, we present several modifications to the optimistically biased objective (1.1) motivated in the
introduction. Then we derive an RM-free objective for the LLM policy and analyze how active exploration
works by examining its gradient.

First, we consider the equivalence of (1.1): maxr −Llr(r; D) + α maxπ Ey∼π[r(x, y)], where the inner π is
deterministic when optimal. To account for the change of π relative to the reference policy πref, we introduce
two modifications: (1) replacing the optimistic bias term maxπ Ey∼π[r(x, y)] with maxπ Ey∼π,y′∼πref [r(x, y) −
r(x, y′)], and (2) incorporating a KL-divergence loss term between π and πref. These changes ensure that
the resulting optimistic RM elicits responses with high potential unknown to the reference policy πref while
minimizing the deviation between π and πref.

Formally, for the reward r, the bilevel optimization problem with optimism is formulated as:

max
r

−Llr(r; Dt) + α max
π

(
Ex∼Dt,y∼π(·|x)

y′∼πref(·|x)

[
r(x, y) − r(x, y′)

]
− βDKL(π || πref)︸ ︷︷ ︸

F(π;r)

)
, (4.1)

where Dt = {xi, yt
w,i, yt

l,i}N
i=1 is the associated dataset at iteration t and Llr is the logistic regression loss

defined in (3.2). The nested optimization in (4.1) can be handled by first solving the inner optimization
F(π; r) to obtain πr that is optimal under r. The solution is as follows and we defer all the derivations in
this section to Appendix A.

πr(y | x) := argmax
π

F(π; r) = 1
Z(x)πref(y | x) exp

(
r(x, y)/β

)
,

where the partition function Z(x) =
∑

y πref(y|x) exp(r(x, y)/β). By substituting π = πr into F(π; r), we
can rewrite the bilevel objective in (4.1) as a single-level one:

max
r

−Llr(r; Dt) + αF(πr; r).

Following the implicit reward formulation in DPO, we reparameterize the reward function with θ ∈ Θ as
r̂θ(x, y) = β(log πθ(y | x) − log πref(y | x)), which is the optimal solution of (3.3) and can express all reward
classes consistent with the BT model as proved in (Rafailov et al., 2024b). With the above change of variable,
we obtain the RM-free objective for direct preference alignment with optimism:

max
πθ

−LDPO(πθ; Dt) − αβEx∼D,y∼πref(·|x)
[
log πθ(y | x)

]
. (4.2)

We now analyze how this new objective encourages active exploration. Specifically, we derive the gradient of
(4.2) with respect to θ as

βE(x,yw,yl)∼Dt

[
σ
(
r̂θ(x, yl) − r̂θ(x, yw)

)(
∇θ log πθ(yw | x) − ∇θ log πθ(yl | x)

)]
︸ ︷︷ ︸

−∇θLDPO(πθ;Dt)

− αβEx∼D,y∼πθ(·|x)
[
exp
(
−r̂θ(x, y)/β

)
∇θ log πθ(y | x)

]
. (4.3)

We note that the second line, corresponding to the gradient of the optimism term, decreases the log-likelihood
of response y generated by πθ that has a high value of exp(−r̂θ(x, y)/β). Therefore, the added optimism
term biases the gradient toward parameter regions that can elicit responses y with high implicit reward r̂θ,
consistent with our intuition outlined in Figure 1.
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This also explains why Eπref [log πθ] is minimized in our objective (4.2), which is equivalent to maximizing
the KL divergence between πref and πθ, while the reverse KL in the policy optimization objective (3.3) is
minimized. For the DPO gradient ∇θLDPO(πθ; Dt), the degree of deviation of policy πθ from πref only affects
the preference estimated with r̂θ. In other words, σ(r̂θ(x, yl) − r̂θ(x, yw)) is a scalar value and the policy
deviation only determines the step size of the policy gradient, instead of its direction. On the other hand, our
added exploration term directly controls the direction of the gradient toward potentially more rewarding
areas while still fitting the preference data in Dt. As more feedback data is collected iteratively, deviating
from the unbiasedly fitted model incurs a higher DPO loss, which ultimately dominates our objective at
convergence. This mechanism ensures that the resulting LLM effectively balances between exploring novel
responses and exploiting previously observed ones, leading to a more accurate and aligned model.

4.2 Algorithm

With the optimistically biased objective derived above, the language model can actively generate OOD
responses worth exploring. Human or AI feedback follows to reduce the uncertainty in these regions. These
two steps are executed iteratively to get a more and more aligned model.

In practice, we split the offline preference dataset into three portions with equal sizes, one for each iteration.
Besides, we use AI rankers, such as external RMs, to provide feedback on the model-generated response and
the original chosen, rejected responses. The complete pseudocode of our algorithm, named Self-Exploring
Language Models (SELM), is outlined in Algorithm 1.

Algorithm 1 Self-Exploring Language Models (SELM)
Input: Reference model πref, preference dataset D, online iterations T , optimism coefficient α.

1: for iteration t = 1, 2, . . . , T do
2: Set Dt as the t-th portion of D and generate y ∼ πref(· | x) for each prompt x in Dt.
3: Rank {y, yw, yl} and update Dt to contain the best (chosen) and worst (rejected) responses.
4: Train the LLM πθt = argmaxπθ

{−LDPO(πθ; Dt) − αEx∼Dt [log πθ(y | x)]}, let πref = πθt .
5: end for

5 Analysis

5.1 Self-Exploration Reduces Indiscriminate Favor of Unseen Extrapolations

It has been observed recently (Rafailov et al., 2024a; Pal et al., 2024; Xu et al., 2024) that DPO decreases
the likelihood of responses generated by the reference policy. It is because for any prompt x, at convergence
when πθ ̸= πref, it holds that

Ey∼πref

[
r̂θ(x, y)/β

]
= Ey∼πref

[
log πθ(y | x) − log πref(y | x)

]
= −KL

(
πref(· | x) || πθ(· | x)

)
< 0,

while at the beginning of training when πθ = πref, the above terms are zero. Thus, the expected implicit
reward r̂θ as well as the likelihood of πθ will decrease on the reference model’s responses. This indicates that
DPO stimulates a biased distribution favoring unseen extrapolated responses. In the online iterative setting
that we consider, the LLM policy generates responses and receives preference feedback alternately, where
biasing towards OOD regions may sometimes help discover outstanding novel responses. However, DPO
indiscriminately favors unseen extrapolations and passively explores based purely on the randomness inherent
in sampling from the LLM. As a consequence, the vast space of natural language makes it almost impossible
to exhaustively explore all the possible responses and identify those that most effectively benefit alignment.

Next, we demonstrate that SELM mitigates this issue by performing guided exploration. Specifically,
consider the proposed self-exploration objective in (4.2), which, in addition to the standard DPO loss, also
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minimizes Ex,y∼πref [log πθ(y | x)]. We now investigate how the probability distribution changes with this
term incorporated.
Theorem 5.1. For any ρ ∈ Θ in the policy parameter space, let r̂ρ(x, y) = β(log πρ(y | x) − log πref(y | x))
be the reparameterized implicit reward. Denote πmin

ρ as the policy that minimizes the expected implicit
reward under the KL constraint, i.e.,

πmin
ρ (· | x) := argmin

π
Ex,y∼π(·|x)

[
r̂ρ(x, y)

]
+ βDKL(π || πρ). (5.1)

Then minimizing Ex,y∼πref [log πθ(y|x)] decreases the likelihood of responses sampled from πmin
ρ :

min
πθ

Ex,y∼πref(·|x)
[
log πθ(y | x)

]
= min

πθ

Ex,y∼πmin
ρ (·|x)

[
log πθ(y | x)

]
.

The proofs for theorems in this section can be found in Appendix B and C. The above theorem states
that maximizing the divergence between πθ and πref is essentially reducing the probability of generating
responses with low implicit rewards reparameterized by any policy parameter ρ during training. In other
words, the LLM policy not only exploits the existing preference data but also learns to avoid generating the
text y that is assigned a low reward value. This process occurs in every iteration with updated reference
models. Consequently, responses with high potential rewards are selectively preferred and many commonplace
responses receive a small probability mass, thus mitigating the indiscriminate favoring of unseen responses
and improving the exploration efficiency. In the next section, we will formally prove that the self-exploration
mechanism is sample-efficient.

5.2 Self-Exploration is Provably Sample-Efficient

Following the proof technique of Xie et al. (2024), we provide the sample efficiency of the self-exploration
mechanism by establishing a sublinear cumulative regret. Specifically, the cumulative regret R(T ) up to T

iterations is defined as the cumulative performance discrepancy between the learned policy πt at iteration t

and the optimal policy π∗ over the run of the algorithm:

R(T ) =
T∑

t=1
[J (π∗) − J (πt)].

The key idea is a reduction technique from Xie et al. (2024), which connects the sample complexity of SELM
to that of existing RL algorithms (Zhong et al., 2022; Liu et al., 2024b). It is worth noting that the theoretical
version of the self-exploration mechanism (Algorithm 2) is a bit different from the practical one used in the
numerical experiments and is closer to the proposed algorithm in Xie et al. (2024).
Assumption 5.2 (Realizable Policy Class with Regularity Condition). We assume access to a policy class Π
containing the optimal policy π∗. Moreover, we assume that∣∣∣∣log π(y | x)

πref(y | x)

∣∣∣∣ ≤ Rmax.

for any π ∈ Π and prompt-response pair (x, y).

Assumption 5.2 stipulates that the policy class Π is sufficiently comprehensive to include the optimal policy.
Additionally, it imposes a bounded condition on log(π/πref), which has been identified as the implicit reward
function for DPO (Rafailov et al., 2024b).
Theorem 5.3. Under Assumption 5.2, let η =

√
TdPGEC/(exp(4Rmax) log(|Π|/δ)), α = 2/(η exp(4Rmax)),

and δ ∈ (0, 1). Then with probability at least 1 − δ, we have

R(T ) ≲
√

dPGEC · exp(2Rmax) · T · log(|Π|/δ),
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where ≲ omits absolute constants, and dPGEC is a preference-based version of Generalized Eluder Coefficient
(GEC; Zhong et al., 2022) defined in Appendix C.1 capturing the complexity of learning problem. For
log-linear policy class Π = {πθ : πθ(y | x) ∝ exp(⟨ϕ(x, y), θ⟩/β)} with d-dimensional feature ϕ, it holds that
dPGEC ≤ Õ(d).

The proof technique is from Xie et al. (2024), which connects RLHF with RL and allows us to use the preference-
based version of GEC (Zhong et al., 2022; Liu et al., 2024b) as the complexity measure to characterize
the cumulative regret R(T ). We restate the proof technique from Xie et al. (2024) for completeness. We
emphasize that it is not a novel contribution of the present work. Since the cumulative regret is sublinear
in the number of iterations T , the above theorem indicates that the policy πt converges to the optimal π∗

within sufficient iterations. Moreover, by the standard online-to-batch argument, Theorem 5.3 shows that
SELM is capable of finding an ε-optimal policy with a sample complexity of Õ(1/ε2). This highlights the
sample efficiency of SELM from the theoretical perspective.

6 Experiments

6.1 Experiment Setup

We adopt UltraFeedback (Cui et al., 2023) as our training dataset, which contains 61k preference pairs of
single-turn conversations. For the external ranker during online alignment, we choose the small-sized PairRM
(0.4B) (Jiang et al., 2023). All experiments are conducted on 8xA100 GPUs.

Due to the absence of performant open-source online direct alignment codebases at the time of this study, we
first implement an iterative version of DPO as the baseline, adhering to the same steps as Algorithm 1 but
training the LLM with the standard DPO objective. Then we conduct a grid search over hyperparameters,
such as the batch size, learning rate, and iteration number, to identify the optimal settings for the iterative
DPO baseline. We follow these best settings to train SELM. In addition, we apply iterative DPO and SELM
on instruction fine-tuned models. Specifically, we consider two series of LLMs: Zephyr (Tunstall et al.,
2023b) and Llama-3 (Meta, 2024), to demonstrate the robustness of SELM. Since the official Zephyr-7B-β
model is fine-tuned with DPO on the same UltraFeedback dataset, to avoid overoptimization, we choose
Zephyr-7B-SFT1 as the base model and perform 3 iterations of SELM after a single iteration of standard
DPO training on the first portion of the training data (we refer to this model as Zephyr-7B-DPO). For
Llama-3-8B-Instruct2 that is already fine-tuned with RLHF, we directly apply 3 iterations of SELM training.

6.2 Experiment Results

We first report the performance of SELM and the baselines on the instruction-following chat benchmarks
AlpacaEval 2.0 (Dubois et al., 2024) and MT-Bench (Zheng et al., 2024) in Table 1. We can observe
that for AlpacaEval 2.0, SELM significantly boosts Zephyr-7B-SFT and Llama-3-8B-Instruct, achieving
length-controlled (LC) win rate improvements of +16.24% and +11.75%, respectively. This enhancement
results in models that are competitive with or even superior to much larger LLMs, such as Yi-34B-Chat
(Young et al., 2024) and Llama-3-70B-Instruct. For the multi-turn MT-Bench, which exhibits higher variance,
we report the average scores of SELM and DPO baselines across 3 runs. We observe that SELM improves
the scores by +2.31 and +0.32, respectively. Furthermore, the proposed method self-explores and enhances
the model monotonically, with consistent performance improvements in each iteration. This validates the
robustness of our algorithm. Compared to other iterative post-training algorithms, such as SPIN (Chen et al.,
2024), DNO (Rosset et al., 2024), and SPPO (Wu et al., 2024), SELM gains more improvements on both

1https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta
2https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
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benchmarks when using the weaker base model (Zephyr-7B-SFT), and achieves the best performance when
using Llama-3-8B-Instruct as the base model.

AlpacaEval 2.0 MT-Bench
Model LC Win Rate Win Rate Avg. len Avgerage 1st Turn 2nd Turn
Zephyr-7B-SFT 8.01 4.63 916 5.30 5.63 4.97
Zephyr-7B-DPO 15.41 14.44 1752 7.31 7.55 7.07
DPO Iter 1 (Zephyr) 20.53 16.69 1598 7.53 7.81 7.25
DPO Iter 2 (Zephyr) 22.12 19.82 1717 7.55 7.85 7.24
DPO Iter 3 (Zephyr) 22.19 (↑14.18) 19.88 1717 7.46 (↑2.16) 7.85 7.06
SELM Iter 1 (Zephyr) 20.52 17.23 1624 7.53 7.74 7.31
SELM Iter 2 (Zephyr) 21.84 18.78 1665 7.61 7.85 7.38
SELM Iter 3 (Zephyr) 24.25(↑16.24) 21.05 1694 7.61 (↑2.31) 7.74 7.49
Llama-3-8B-Instruct 22.92 22.57 1899 7.93 8.47 7.38
DPO Iter 1 (Llama3-It) 30.89 31.60 1979 8.07 8.44 7.70
DPO Iter 2 (Llama3-It) 33.91 32.95 1939 7.99 8.39 7.60
DPO Iter 3 (Llama3-It) 33.17 (↑10.25) 32.18 1930 8.18 (↑0.25) 8.60 7.77
SELM Iter 1 (Llama3-It) 31.09 30.90 1956 8.09 8.57 7.61
SELM Iter 2 (Llama3-It) 33.53 32.61 1919 8.18 8.69 7.66
SELM Iter 3 (Llama3-It) 34.67 (↑11.75) 34.78 1948 8.25 (↑0.32) 8.53 7.98
SPIN 7.23 6.54 1426 6.54 6.94 6.14
Orca-2.5-SFT 10.76 6.99 1174 6.88 7.72 6.02
DNO (Orca-2.5-SFT) 22.59 24.97 2228 7.48 7.62 7.35
Mistral-7B-Instruct-v0.2 19.39 15.75 1565 7.51 7.78 7.25
SPPO (Mistral-it) 28.53 31.02 2163 7.59 7.84 7.34
Yi-34B-Chat 27.19 21.23 2123 7.90 - -
Llama-3-70B-Instruct 33.17 33.18 1919 9.01 9.21 8.80
GPT-4 Turbo (04/09) 55.02 46.12 1802 9.19 9.38 9.00

Table 1: Results on AlpacaEval 2.0 and MT-Bench averaged with 3 runs. Names inside the brackets are
the models that are aligned based upon. The red arrows indicate the increment or decrement from the base
model. Compared to iterative DPO and other online alignment baselines, SELM gains more improvements
based on the weaker Zephyr-7B-SFT model and achieves superior performance that is competitive with much
larger SOTA models when fine-tuned from Llama-3-8B-Instruct.

Notably, the implemented iterative DPO is obtained through comprehensive grid searches of hyperparameters
and practical designs (see Appendix D for details), making it a strong baseline comparable with SOTA online
alignment algorithms fine-tuned from more advanced models. For example, DPO Iter 3 (Zephyr) achieves an
MT-Bench score of 7.46, representing a 2.16 improvement over Zephyr-SFT (5.30) and coming close to DNO
(7.48), which is fine-tuned from the stronger model Orca-2.5-SFT (6.88). Additionally, SPPO achieves an
MT-Bench score of 7.59, a modest improvement of 0.08 over Mistral-it (7.51).

We also conduct pairwise comparisons between SELM, iterative DPO, and the base models to validate the
effectiveness of our method. The results for AlpacaEval 2.0 are shown in Figure 2. We observe that with the
same number of training iterations and data, SELM consistently outperforms the iterative DPO counterpart.
Additionally, when using Zephyr-7B-SFT as the base model, SELM outperforms iterative DPO even when
the latter is trained with twice the data.

Beyond instruction-following benchmarks, we also evaluate SELM and the baselines on several academic
benchmarks, including GSM8K (Cobbe et al., 2021), HellaSwag (Zellers et al., 2019), ARC challenge (Clark
et al., 2018), TruthfulQA (Lin et al., 2021), EQ-Bench (Paech, 2023), and OpenBookQA (OBQA) (Mihaylov
et al., 2018). To better reflect the capabilities of LLMs, we adopt various settings for these benchmarks,
including zero-shot, few-shot, and few-shot Chain-of-Thought (CoT) settings. The accuracy results for these
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SELM Iter 3

SELM Iter 2

SELM Iter 1

DPO Iter 3

DPO Iter 2

DPO Iter 1
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DPO Iter1
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50.00 52.85 55.93 53.64 53.88 56.54 66.02

47.15 50.00 55.60 53.26 53.59 58.33 65.56

44.07 44.40 50.00 52.32 49.65 53.91 64.43

46.36 46.74 47.68 50.00 49.78 52.25 61.58

46.12 46.41 50.35 50.22 50.00 51.69 61.29

43.46 41.67 46.09 47.75 48.31 50.00 60.24

33.98 34.44 35.57 38.42 38.71 39.76 50.00

Zephyr-7B-DPO

SELM Iter 3

DPO Iter 3

SELM Iter 2

DPO Iter 2

DPO Iter 1

SELM Iter 1
Llama3-It

SELM Iter 3

DPO Iter3

SELM Iter 2

DPO Iter2

DPO Iter1

SELM Iter 1

Llama3-It

50.00 51.79 51.96 52.18 52.69 53.41 61.39

48.21 50.00 50.10 50.46 52.28 53.71 60.70

48.04 49.90 50.00 51.24 51.91 52.91 60.57

47.82 49.54 48.76 50.00 51.30 53.82 60.52

47.31 47.72 49.75 48.70 50.00 50.20 59.62

46.59 46.29 47.09 46.18 49.80 50.00 59.23

38.61 39.30 39.43 39.48 40.38 40.77 50.00

Llama-3-8B-Instruct

Figure 2: Pairwise comparison between SELM, iterative DPO, and base models. Scores represent the LC win
rates of the row models against the column models. Models positioned in higher rows have higher LC win
rates against the base model and thus better performance.

multiple-choice QA benchmarks are provided in Table 2. It can be observed that both our method and the
baselines can degrade after the RLHF phase on some benchmarks, which is known as the alignment tax
(Askell et al., 2021; Noukhovitch et al., 2024; Li et al., 2024b). Nevertheless, our method is still able to
improve the base models on most of the benchmarks and offers the best overall performance.

We note that SELM is one of the instantiations of the proposed self-exploration objective in (1.1), with
reparameterized reward functions and algorithm-specific designs described in Section 4.2, such as the dataset
partition and update rule. However, this objective is not restricted to the current implementation and
can also be directly applied to any other online alignment framework, with or without a separate reward
model, regardless of differences in algorithm designs. Thus, the proposed method is orthogonal to and can be
integrated directly into the recent online RLHF workflows (Dong et al., 2024; Xiong et al., 2023; Hu et al.,
2024) that incorporate additional delicate designs with carefully curated datasets.

6.3 Ablation Study

We first provide ablation studies to better understand the explorative optimism term. We begin by investigating
the effect of the optimism coefficient α. In Figure 3 (Left), we plot the LC win rates of SELM when using
Zephyr-7B-SFT as the base model for different α in the AlpacaEval 2.0 benchmark. We find that setting a
small α, such as 0.0001, leads to very similar behaviors to the iterative DPO (α = 0) baseline, while SELM
with a large α may become overly optimistic and thus not very effective. These results meet our expectations,
suggesting that proper values of α are essential for achieving the best trade-off between exploration and
exploitation.

Next, we study the difference in reward distributions with varied α and iterations. Specifically, for prompts
from the 2k test set of UltraFeedback, we greedily sample from the LLM and generate rewards for the
responses with PairRM. We then calculate the fraction of data that lies in each partition of rewards. The
results for different α values of SELM Iter 2 (Zephyr) in Figure 3 (Middle) indicates that increasing α results
in distributions that are concentrated in higher-reward regions.
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Models GSM8K
(8-s CoT)

HellaSwag
(10-s)

ARC
(25-s)

TruthfulQA
(0-s)

EQ
(0-s)

OBQA
(10-s)

Average

Zephyr-7B-SFT 43.8 82.2 57.4 43.6 39.1 35.4 50.3
Zephyr-7B-DPO 47.2 84.5 61.9 45.5 65.2 38.0 57.0
DPO Iter 1 (Zephyr) 45.5 85.2 62.1 52.4 68.4 39.0 58.8
DPO Iter 2 (Zephyr) 44.9 85.4 62.0 53.1 69.3 39.4 59.0
DPO Iter 3 (Zephyr) 43.2 85.2 60.8 52.5 69.1 39.6 58.4
SELM Iter 1 (Zephyr) 46.3 84.8 62.9 52.9 68.8 39.6 59.2
SELM Iter 2 (Zephyr) 46.2 85.4 62.1 53.1 69.3 39.6 59.3
SELM Iter 3 (Zephyr) 43.8 85.4 61.9 52.4 69.9 39.8 58.9
Llama-3-8B-Instruct 76.7 78.6 60.8 51.7 61.8 38.0 61.3
DPO Iter 1 (Llama3-It) 78.5 81.7 63.9 55.5 64.1 42.6 64.4
DPO Iter 2 (Llama3-It) 79.4 81.7 64.4 56.4 64.3 42.6 64.8
DPO Iter 3 (Llama3-It) 80.1 81.7 64.1 56.5 64.1 42.6 64.8
SELM Iter 1 (Llama3-It) 78.7 81.7 64.5 55.4 64.1 42.4 64.5
SELM Iter 2 (Llama3-It) 79.3 81.8 64.7 56.5 64.2 42.6 64.9
SELM Iter 3 (Llama3-It) 80.1 81.8 64.3 56.5 64.2 42.8 65.0
SPIN 44.7 85.9 65.9 55.6 54.4 39.6 57.7
Mistral-7B-Instruct-v0.2 43.4 85.3 63.4 67.5 65.9 41.2 61.1
SPPO (Mistral-it) 42.4 85.6 65.4 70.7 56.5 40.0 60.1

Table 2: Performance comparison between SELM and the baselines on academic multi-choice QA benchmarks
in standard zero-shot, few-shot, and CoT settings. Here, n-s refers to n-shot. The red and blue texts represent
the best and the second-best results.
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Figure 3: Ablation on the optimism coefficient α and the change of the reward distribution. Left: The
length-controlled win rates of SELM with different α on AlpacaEval 2.0. Middle: Comparison of reward
distributions at iteration 2 with different α. Right: SELM initially explores and then shifts to higher-reward
regions as more training iterations are performed.

Additionally, Figure 3 (Right) demonstrates that the reward distribution shifts to the right (higher) as more
training iterations are performed. This shift corresponds to an initial exploration phase, where the LLM
generates uncertain responses of varying quality, followed by an exploitation phase as feedback is incorporated
and more training data is collected.

We also conduct ablation studies on the implicit reward captured by the SELM and DPO models. Recall that
for both SELM and DPO, the implicit reward takes the form of r̂θ(x, y) = β(log πθ(y | x) − log πref(y | x)).
We calculate the reward difference r̂SELM(x, y) − r̂DPO(x, y) for each prompt x in the UltraFeedback holdout
test set. Here, we study the implicit reward of the good (chosen) and bad (rejected) responses, so y = yw or
y = yl. We then sort the reward difference and plot the results for Zephyr-based models after iteration 1 in
Figure 4. The plot clearly shows that for both chosen and rejected responses, SELM produces higher implicit
rewards compared to DPO, aligning with the proposed optimistically biased self-exploration objective.
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Figure 4: Difference of implicit reward between SELM and DPO on the chosen and rejected responses. SELM
assigns a higher implicit reward than DPO for both responses.
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Figure 5: SELM actively explores by favoring high-
reward responses.

In Section 5, we show that SELM engages in more ac-
tive exploration by prioritizing high-reward responses
compared to DPO, which indiscriminately favors un-
seen extrapolations and explores passively. To validate
this, we sample three responses from SELM and DPO
Iter 2 (Zephyr) for each prompt and we calculate the
subtraction of the mean implicit rewards. As illus-
trated in Figure 5, SELM consistently achieves higher
implicit rewards across most prompts, with the positive
reward differences being notably larger in magnitude,
supporting our claim regarding SELM’s active explo-
ration behavior.

7 Conclusion & Future Work

In this paper, we introduced an active preference elicitation method for the online alignment of large language
models. By incorporating an optimism term into the reward-fitting objective, the proposed bilevel self-
exploring objective effectively balances between exploiting observed data and exploring potentially high-reward
regions. Unlike standard online RLHF algorithms that passively explore the response space by sampling from
the training LLM, whose sole objective is maximizing the expected learned reward, our method actively seeks
diverse and high-quality responses. This self-exploration mechanism helps mitigate the risk of premature
convergence and overfitting when the reward model is only locally accurate. To optimize this bilevel objective,
we solve the inner-level problem and reparameterize the reward with the LLM policy, resulting in a simple
yet novel iterative alignment algorithm called Self-Exploring Language Models (SELM). Compared to DPO,
SELM is provably sample-efficient and improves the exploration efficiency by selectively favoring responses
with high potential rewards rather than indiscriminately sampling unseen responses.

Our experiments, conducted with Zephyr-7B-SFT and Llama-3-8B-Instruct models, demonstrate the efficacy
of SELM with consistent improvements on AlpacaEval 2.0, MT-Bench, and academic benchmarks. These
results underscore the ability of SELM to enhance the alignment and capabilities of LLMs by promoting
more diverse and high-quality responses. Since the proposed technique is orthogonal to the adopted online
RLHF workflow, it will be interesting to apply our method within more sophisticated alignment frameworks
with advanced designs, which we would like to leave as future work.
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A Derivations in Section 4.1

We begin by deriving (4.2). The solution for the inner-level optimization problem of (4.1) is as follows:

max
π

F(π; r) = max
π

Ex∼Dt,y∼π(·|x)
y′∼πref(·|x)

[
r(x, y) − r(x, y′)

]
− βDKL(π || πref)

= Ex∼Dt

[
β logEy∼πref(·|x)

[
exp(r(x, y)/β)

]]
− Ex∼Dt,y′∼πref(·|x)

[
r(x, y′)

]
(A.1)

When the reward r is reparameterized by r̂θ(x, y) = β(log πθ(y | x) − log πref(y | x)), we have that the first
term in (A.1) is 0. The bilevel objective (4.1) then becomes

max
r

−Llr(r; Dt) − αEx∼D,y′∼πref(·|x)
[
r(x, y′)

]
.

By reparameterizing the reward with the LLM, we obtain the desired results in (4.2).

Then we provide the derivation of (4.3). We primarily consider the gradient of the newly incorporated term
Ex∼D,y∼πref(·|x)[log πθ(y | x)]. Specifically, we have

∇θEx∼D,y∼πref(·|x)
[
log πθ(y | x)

]
= Ex∼D

[∑
y

πref(y | x)∇θ log πθ(y | x)
]

= Ex∼D,y∼πθ

[πref(y | x)
πθ(y | x) ∇θ log πθ(y | x)

]
= Ex∼D,y∼πθ

[
exp
(
−r̂θ(x.y)/β

)
∇θ log πθ(y | x)

]
.

For the derivation of the DPO gradient ∇θLDPO(πθ; Dt), we refer the readers to Rafailov et al. (2024b).

B Proof of Theorem 5.1

Proof of Theorem 5.1. The solution to the KL-constrained reward minimization objective (5.1) is

πmin
ρ (y | x) = πρ(y | x) exp

(
−r̂ρ(x, y)/β

)
/Z(x),

where Z(x) =
∑

y πρ(y | x) exp(−r̂ρ(x, y)/β) = 1. Then we have πmin
ρ (y | x) = πref(y | x), i.e., the reference

policy πref achieves the lowest implicit reward reparameterized by any ρ.
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C Proof of Theorem 5.3

We use the reduction technique from Xie et al. (2024) to connect the sample complexity of SELM to that of
existing RL algorithms (Zhong et al., 2022; Liu et al., 2024b). We restate the proof technique from Xie et al.
(2024) for completeness. We emphasize that it is not a novel contribution of the present work. It is worth
noting that the theoretical version of the self-exploration mechanism (Algorithm 2) is a bit different from the
practical one used in the numerical experiments and is closer to the proposed algorithm in Xie et al. (2024).

We present the following theoretical version of the proposed self-exploration algorithm. The key modification
in Algorithm 1 lies in its pragmatic strategy for constructing the chosen and rejected responses. Despite this
adjustment, the core principles of leveraging the self-exploration objective during online alignment remain
the same.

Algorithm 2 Self-Exploring Language Models (SELM; Theoretical Version)
Input: Reference model πref, preference dataset D0 = ∅, prompt distribution ν, online iterations T , optimism

coefficient α, π0 = πref.
1: for iteration t = 1, 2, . . . , T do
2: Sample xt ∼ ν, y1

t ∼ πt−1(· | x), y2
t ∼ πref(· | x).

3: Update the preference data Dt = Dt−1 ∪ {(xt, y1
t , y2

t )}
4: Train the LLM πt = argmaxπ{−LDPO(π; Dt) − α · Ex∼νEy∼πref(·|x)[log π(y | x)]}, let πref = πt.
5: end for

Definition C.1 (Preference-based GEC). For the function class Π, we define the preference-based GEC
(PGEC) as the smallest dGPEC as

T∑
t=1

E(x,y,y′)∼(ν,πref ,πt)

[
log π∗(y | x)

πref(y | x) − log πt(y | x)
πref(y | x) − log π∗(y′ | x)

πref(y′ | x) + log πt(y′ | x)
πref(y′ | x)

]

≤

√√√√dPGEC

T∑
t=1

t−1∑
τ=1

E(x,y,y′)∼(ν,πref ,πτ )

[
log π∗(y | x)

πref(y | x) − log πτ (y | x)
πref(y | x) − log π∗(y′ | x)

πref(y′ | x) + log πτ (y′ | x)
πref(y′ | x)

]2

+ 4
√

dPGECT .

The definition of PGEC is a preference-based version of Generalized Eluder Coefficient (GEC) proposed by
(Zhong et al., 2022). Intuitively, both PGEC and GEC establish a crucial connection between prediction
error and in-sample estimation error, effectively transforming regret minimization into an online estimation
problem. For a comprehensive explanation and in-depth discussion, readers are directed to Zhong et al.
(2022). A slight difference is that the PGEC here is defined with respect to the policy class, while the GEC in
Zhong et al. (2022) is defined with respect to the model or value class. These can be connected if we regard
the implicit reward class log(π/πref) as the model or value class. As an important example, if we consider
the log-linear function class Π = {πθ : πθ(y | x) ∝ exp(⟨ϕ(x, y), θ⟩/β)}, we can show that dPGEC = Õ(d) by
the elliptical potential lemma (Abbasi-Yadkori et al., 2011; Zhong et al., 2022). Another remark is that here
the PGEC is defined in the bandit formulation, and it can be naturally extended to the token-wise MDP
formulation (Zhong et al., 2024; Rafailov et al., 2024a; Xie et al., 2024) and further connects to the eluder
dimension in the context of preference-based MDPs (Chen et al., 2022; Wang et al., 2023). Specifically, if we
regard the generation process of LLMs as token-level MDPs where the generation of each token serves as one
step, the learning objective is maximizing

J (π) = Ex∼ν,τ∼π

[
r(τ) − β log π(τ | x)

πref(τ | x)

]
.
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Here τ is the full trajectory starting from x. We can similarly define the PGEC (Definition C.1) for token-wise
MDPs by replacing the response y, y′ in the bandit formulation with the trajectories τ, τ ′ in the token-wise
MDP formulation. We have the following informal theorem:
Theorem C.2 (Regret for MDP Formulation (informal)). With proper parameter choice, it holds with
probability at least 1 − δ that

R(T ) ≲
√

dPGEC · exp(2Vmax) · T · log(|Π|/δ),

where Vmax is a bounded coefficient for toekn-wise MDPs, similar to the one described in Assumption 5.2.

C.1 Proof of Theorem 5.3

Proof of Theorem 5.3. We first decompose the regret as

R(T ) =
T∑

t=1

[J (π∗) − J (πt)]

=
T∑

t=1

(
Ex∼ν,y∼π∗(·|x)

[
r(x, y) − β log π∗(y | x)

πref(y | x)

]
− Ex∼ν,y∼πt(·|x)

[
r(x, y) − β log πt(y | x)

πref(y | x)

])

=
T∑

t=1

(
Ex∼ν,y∼πref (·|x)

[
r(x, y) − β log π∗(y | x)

πref(y | x)

]
− Ex∼ν,y∼πt(·|x)

[
r(x, y) − β log πt(y | x)

πref(y | x)

])
,

where the last line uses the fact that

r(x, y) − β log π∗(y | x)
πref(y | x) = β · log Zr(x), (C.1)

which is independent of the response y. Rearranging the above regret decomposition, we have

R(T ) =
T∑

t=1

(
Ex∼ν,y∼πref (·|x)

[
r(x, y) − β log π∗(y | x)

πref(y | x)

]
− Ex∼ν,y∼πt(·|x)

[
r(x, y) − β log πt(y | x)

πref(y | x)

])

=
T∑

t=1

Ex∼ν,y∼πref (·|x)

[
β log πt(y | x)

π∗(y | x)

]

+
T∑

t=1

Ex∼ν,y∼πref (·|x),y′∼πt(·|x)

[
r(x, y) − β log πt(y | x)

πref(y | x) − r(x, y′) + β log πt(y′ | x)
πref(y′ | x)

]

=
T∑

t=1

Ex∼ν,y∼πref (·|x)

[
β log πt(y | x)

π∗(y | x)

]

+ β

T∑
t=1

E(x,y,y′)∼(ν,πref ,πt)

[
log π∗(y | x)

πref(y | x) − log πt(y | x)
πref(y | x) − log π∗(y′ | x)

πref(y′ | x) + log πt(y′ | x)
πref(y′ | x)

]
, (C.2)

where the last line uses (C.1). By the definition of PGEC in Definition C.1, we have
T∑

t=1

E(x,y,y′)∼(ν,πref ,πt)

[
log π∗(y | x)

πref(y | x) − log πt(y | x)
πref(y | x) − log π∗(y′ | x)

πref(y′ | x) + log πt(y′ | x)
πref(y′ | x)

]

≤

√√√√dPGEC

T∑
t=1

t−1∑
τ=1

E(x,y,y′)∼(ν,πref ,πτ )

[
log π∗(y | x)

πref(y | x) − log πτ (y | x)
πref(y | x) − log π∗(y′ | x)

πref(y′ | x) + log πτ (y′ | x)
πref(y′ | x)

]2

+ 4
√

dPGECT

≤ dPGEC

4η
+ η

T∑
t=1

t−1∑
τ=1

E(x,y,y′)∼(ν,πref ,πτ )

[
log π∗(y | x)

πref(y | x) − log πτ (y | x)
πref(y | x) − log π∗(y′ | x)

πref(y′ | x) + log πτ (y′ | x)
πref(y′ | x)

]2

,

+ 4
√

dPGECT , (C.3)
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where the last inequality follows from the fact that √
xy ≤ x/(4η) + ηy for any x, y, η > 0.

By the updating rule of πt+1 = argmaxπ{−LDPO(π; Dt) − α · Ex∼νEy∼πref(·|x)[log π(y | x)]}, we have

− LDPO(πt; Dt−1) − α · Ex∼ν,y∼πref(·|x)[log πt(y | x)]
≥ −LDPO(π∗; Dt−1) − α · Ex∼ν,y∼πref(·|x)[log π∗(y | x)],

which equivalents to that

Ex∼ν,y∼πref(·|x)

[
β log πt(y | x)

π∗(y | x)

]
≤ β

α
· (LDPO(π∗; Dt−1) − LDPO(πt; Dt−1)) . (C.4)

We upper bound the right handsise of (C.4) via the following lemma.
Lemma C.3 (Concentration). For any t ∈ [T ] and 0 < δ < 1, it holds with probability 1 − δ that

LDPO(π∗; Dt−1) − LDPO(πt; Dt−1)

≲ − 2
exp(4Rmax) ·

t−1∑
τ=1

E(x,y,y′)∼(ν,πref ,πτ )

[
log π∗(y | x)

πref(y | x) − log πτ (y | x)
πref(y | x) − log π∗(y′ | x)

πref(y′ | x) + log πτ (y′ | x)
πref(y′ | x)

]2

+ log(|Π|/δ).

Proof. The proof of this lemma follows the standard MLE analysis (Zhang, 2006) and its application for
standard reward-based RL (Agarwal et al., 2020; Liu et al., 2024b). Recent works (Liu et al., 2024c; Xie
et al., 2024; Cen et al., 2024) also applies this result for RLHF. For brevity, we omit the detailed proof here
and direct readers to these related works for the proof.

Combining (C.2), (C.3), (C.4), and Lemma C.3, together with the parameter choice α = 2/(η exp(4Rmax)),
we obtain

R(T ) ≲ βTdPGEC

η
+ βη · exp(4Rmax) log(|Π|/δ) + 4

√
dPGECT

≲
√

dPGEC · exp(2Rmax) · T · log(|Π|/δ),

where the last line follows from the fact that η =
√

TdPGEC/(exp(4Rmax) log(|Π|/δ)). Therefore, we finish
the proof of Theorem 5.3.

D Experiment Setup

In experiments, we use the Alignment Handbook (Tunstall et al., 2023a) framework as our codebase. We
find the best hyperparameter settings for the strong iterative DPO baseline by conducting a grid search
over the iteration number, batch size, learning rate, and label update rule. The results for the Zephyr-based
models are shown in Figure 6. Specifically, we find that using the same amount of data, updating the model
too many iterations can lead to instability. So we set the iteration number to 3 for Llama3-It-based and
Zephyr-based models (excluding the first iteration of DPO training). Besides, we observe that choosing
different batch sizes has a large effect on the models’ performance and the optimal batch size heavily depends
on the model architecture. In experiments, we set the batch size to 256 and 128 for the Zephyr-based and
Llama3-It-based models, respectively. For the learning rate, we consider three design choices: cyclic learning
rate with constant cycle amplitude, linearly decayed cycle amplitude, and decayed cycle amplitude at the
last iteration. We find that a decaying cycle amplitude performs better than constant amplitudes in general.
Thus, for Zephyr-based models, we set the learning to 5e − 7 for the first three iterations and 1e − 7 for
the last iteration. In each iteration, the warmup ratio is 0.1. For Llama3-It-based models, we use a linearly
decayed learning rate from 5e − 7 to 1e − 7 within 3 iterations with the same warmup ratio. We also test two
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update ways for the preference data. One is to rank yw, yl, yref and keep the best and worst responses in
the updated dataset, which is the setting that is described in the main paper. The other is to compare yw

and yref and replace the chosen or rejected response by yref based on the comparison result. We find that
the former design performs better than the latter. We also compared with stepwise DPO (Kim et al., 2024),
which updates the reference model at each iteration but uses the original dataset instead of the updated one.
This demonstrates that exploring and collecting new data is necessary.
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Figure 6: Ablation of the iterative DPO baseline. We conduct a grid search over the iteration number, batch
size, learning rate, and designs of the dataset update rule.

For the proposed SELM method, we follow the above hyperparameter settings for a fair comparison. The
optimism coefficient α is searched over 0.005, 0.001, 0.0005, and 0.0001 and is selected based on the average
external reward on the holdout test set of UltraFeedback. We set α = 0.001 for Zephyr-based SELM and
α = 0.0001 for Llama3-It-based SELM. For training SELM based on other models, we recommend setting
α = 0.005 or 0.001 as it shows minimal sensitivity to variations.
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