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Abstract

Short-Answer Grading (SAG) is an applica-
tion for NLP in education where student an-
swers to open questions are graded. This task
places high demands both on the reliability (ac-
curacy and fairness) of label predictions and
model robustness against strategic, "adversar-
ial" input. Neural approaches are powerful
tools for many problems in NLP, and transfer
learning for Transformer-based models speci-
ficially promises to support data-poor tasks
as this. We analyse the performance of a
Transfomer-based SOTA model, zooming in
on class- and item type specific behavior in
order to gauge reliability; we use adversarial
testing to analyze the the model’s robustness
towards strategic answers. We find a strong de-
pendence on the specifics of training and test
data, and recommend that model performance
be verified for each individual use case.

1 Introduction

Short-Answer Grading (SAG) is a popular appli-
cation of NLP in education. Students write one to
three sentences in response to open test questions,
and the task is to predict the grade based on answer
content. The prediction can be passed on directly
as feedback to students and teachers or serve as
input for human review (in order to reduce manual
grading effort). Use cases range from automated
feedback to low-stakes quizzes and self-tests to sug-
gestions for human review on higher-stakes tests.
(We focus on ad-hoc, non-standardized testing.)

Given the nature of the task, system predictions
have to be reliable (accurate overall and fair across
all labels), and robust towards strategic "adver-
sarial" answers in order to be informative and be
accepted by teachers and students.

A long-standing challenge for SAG is the small
size of annotated corpora (commonly in the thou-
sands of data points, Burrows et al., 2015). Re-
cently, the ascendance of transfer learning for
Transformer-based models like BERT (Devlin et al.,

2019) allows the use of large amounts of un-
annotated data to infer a robust language model
in pre-training before switching to fine-tuning for a
specific task. This strategy has proven very success-
ful on the range of language understanding tasks of
the standard GLUE data sets (Wang et al., 2018).
Results on SAG data (Ghavidel et al., 2020; Camus
and Filighera, 2020) are also promising.

The good performance of Transformer-based
methods on literature benchmarks raises the ques-
tion of whether they are appropriate to provide au-
tomated grade feedback. However, overall model
F Scores as reported for result benchmarking are
not informative enough to estimate both reliability
of grades in terms of low, balanced labelling error
and robustness to strategic answers.

In this paper, we employ straightforward meth-
ods to estimate both aspects of model appropriate-
ness: We first evaluate reliability by label-level F
Scores and item-type accuracy (Exp. 1, Sec. 5), and
then create adversarial attacks focusing on plausi-
ble test-taker strategies (Exp. 2, Sec. 6). We present
(1) example results for a literature data set to estab-
lish a sense of what can be expected of the models
in real life and (2) strategies for practioners to ver-
ify model appropriateness for their use case.

2 Previous Work

Task and Data In many real-world settings, sys-
tems will be required to work well for previously
unseen questions. Researchers have traditionally
approached this challenge with feature-based, non-
neural algorithms that compare student answers
to a correct reference answer (Burrows et al.,
2015). There is a strong parallel between this ap-
proach to SAG and Natural Language Inference
(NLI) emphasized in the SemEval-2013 shared task
(Dzikovska et al., 2013): In both, a hypothesis (in
SAG, a student answer) is compared to a premise
(in SAG, a reference answer). The shared task data
sets, the Beetle and SciEntsBank (SEB) corpora,



are still important ressources for SAG. The Beetle
data contains several correct reference answers per
question; since many systems are designed to work
with a single reference answer, results are often
reported for SEB only. Three parallel annotations
at different levels of granularity (2-way, 3-way, 5-
way) are present.

Distributional and neural models Sultan et al.
(2016) was the first to show that the use of the dis-
tributional information in word embeddings (along
with the alignment of reference and student answer)
for training a traditional classifier is helpful. Saha
et al. (2018) achieved further improvement by com-
bining token-level similarity features and sentence
embeddings, but found that the sentence embed-
ding feature is less and less informative the further
away from the training domain the test data is.

The first experiments with neural network SAG
are reported in Riordan et al. (2017). Adapting and
evolving the Taghipour and Ng (2016) approach
to essay scoring, they trained an LSTM over word
embeddings. The results are less encouraging for
SAG than for the longer essays: The model just
reaches the state of the art on one of three data sets
and underperforms it on the other two. The reason
is likely the lack of training data for SAG since
corpora are small and each data point is at most a
few sentences long.

Transfer Learning for SAG Transformer-based
models promise advantages for underressourced
tasks like SAG through pre-training on un-
annotated data. Sung et al. (2019) generalized this
idea and collected additional domain-specific data
for a second pre-training round before fine-tuning
BERT (Devlin et al., 2019) on the SEB corpus.
They showed an improvement over the state of the
art, but evaluated for the 3-way SAG task only and
did not compare to off-the-shelf BERT. Ghavidel
et al. (2020) completed this comparison, experi-
menting with BERT and XLNet (Yang et al., 2019),
an auto-regression variant of the Transformer fam-
ily, on SEB data. They found that off-the-shelf
BERT’s accuracy is more stable for out-of-domain
test sets than the Sung et al. (2019) version, which
suggests that their domain-specific pre-training ap-
proach is too tightly focused to generalise well.
BERT and XLNet performed similarly and appear
to come into their own as the number of classes
increases and conversely, the number of training
instances per class decreases.

Also pursuing the idea of choosing models with

optimal pre-training for SAG, Camus and Filighera
(2020) looked at the large range of available pre-
trained models from the BERT family and found
that larger models perform better due to the larger
number of parameters available for further learning
during fine-tuning and that pre-training for an NLI
task before fine-tuning for SAG offers a noticeable
performance gain over the base version (especially
for RoOBERTa, Liu et al., 2019). Evaluation was
done on the on the 3-way SemEval test data, using
model-level Accuracy and F Scores.

Robustness is in focus in Ding et al. (2020). They
are the first to use the adversarial testing paradigm
to expose an LSTM-based neural model and a rule-
based approach to cheating strategies such as pro-
viding a list of relevant keywords instead of a co-
herent answer text. While the neural model per-
forms better in terms of reliability, they find that
the rule-based model is overall more robust and
can be tuned more easily by removing features that
increase its vulnerability to the adversarial attacks.
However, they report that some reliability is lost
by removing those features. Unfortunately, their
results are not directly comparable due to the use
of a different model architecture and different SAG
training set.

3 Research Questions

In this paper, we ask whether whether SOTA SAG
models are appropriate for real-life automated SAG
on two dimensions:

Reliability Around 15% disagreement between hu-
man graders have been accepted for published SAG
corpora from non-standardized testing situations
(Mieskes and Pado, 2018). We verify that SOTA
models can reach this overall performance level.
Then, we test for grading imbalances like undue
strictness or lenience. We also ask whether any
imbalance patterns are stable and predictable or
whether they vary with the data sets, which would
increase the need for case-based investigation of
model behavior.

Please note that we cannot look at algorithmic
fairness proper (see,e.g., Kizilcec and Lee, 2021)
which compares model predictions for different
subgroups of students because we have no further
information about the students’ abilities and back-
ground in our data set.

Robustness Any model that provides feedback to
students will face strategic input as students attempt
to "game the system" and gain points despite be-



ing unsure about the correct answer. Additionally,
input may be inadvertently garbled or incomplete
and should still be labelled in a human-like fashion.
Only models that are robust towards strategies like
chaining together relevant keywords or producing
very long, irrelevant answers can be used to provide
feedback without human monitoring.

Due to the wide range of usage contexts for SAG
in education, we do not attempt to define general
minimum requirements for model quality. We leave
it to practitioners to define requirements for their
individual use case and instead aim to provide an
intuition of what to expect from a SOTA model.

4 Approach

Reliability To evaluate the reliability of SOTA
models, we will first pick such a model from an
array of approaches trained on the 2-way SAG task
(grading answers as correct-incorrect). We
compare the base version of the Transformer mod-
els, fine-tuning on the GLUE MNLI (Multi-Genre
Natural Language Inference) task and fine-tuning
on the GLUE MRPC (Microsoft Research Para-
phrase Corpus) — the paraphrase recognition task
being also highly relevant to the student-reference
answer comparison approach to SAG.

In Exp. 1 (Sec. 5), class-based Precision and Re-

call will identify any grading imbalances towards
one of the target classes and the fine-grained 5-way
annotation available for SEB and Beetle will help
identify the origin of those imbalances. This infor-
mation is important for teachers and students when
interpreting the model output.
Robustness towards garbled or strategic input is in
focus in Exp. 2 (Sec. 6). We will use the adversar-
ial testing approach and generate multiple sets of
synthetic test data to analyse the model’s ability to
resist various test gaming strategies.

4.1 Data

We work with the SemEval-2013 data’. It is a stan-
dard English-language data set consisting of the
Beetle and SciEntsBank (SEB) corpora. The cor-
pora contain student answers to science domain
questions; Beetle (3.6k answers) was collected
from interactions with a tutoring system, while
SEB (4.5k answers) stems from a conventional test
setting. Both corpora offer in-domain (unseen an-
swers to seen questions, UA) and out-of-domain

'Available from https://www.cs.york.ac.uk/

semeval-2013/task7/index.php%3Fid=data.
html.

test sets (answers to unseen questions, UQ, and, for
SEB, from an unseen domain, UD). This allows
us to gauge the dependence of the models on key-
words seen in training and helps avoid data leakage
between training and test (Elangovan et al., 2021;
Lewis et al., 2021).

In order to cleanly set hyperparameters, we cre-
ated a development set in the UA setting by pseudo-
randomly selecting roughly 10% of the training
data.? Across all data sets, the incorrect an-
swers are the majority class; their percentage is at
about 60% consistently across all data subsets.?

5 Exp. 1: Reliability

5.1 Model Training and Selection

We begin by creating a SOTA model for 2-way
SAG. From the literature, we choose three well-
performing models and three pre-training regimes
to compare. The models are BERT and XLNet
from (Ghavidel et al., 2020) and RoBERTa as the
best model in (Camus and Filighera, 2020).

For each model, we choose the base version
(uncased where available) as well as the versions
fine-tuned on MRPC and MNLIL* The input se-
quences for SAG fine-tuning were the reference
and student answers; the alternative reference an-
swers in Beetle were concatenated. For model
sizes, training times and hyperparameter choices,
see Appendix B.

Since the three evaluation measures used in
SemEval-2013, Accuracy, weighted and macro F1,
are very close in our experiments, we evaluate on
weighted I and where needed report macro F} for
compatibility with the literature.

Table 1 shows the performance of the different
models on the development sets. For each combina-
tion of model type and previous training regime we
give the average weighted I Scores across three
different random initialisations for fine-tuning to
SAG. F Scores are genereally higher on Beetle,
where multiple reference answers offer paraphrases
of the correct solution.

Of the three models, BERT performs most con-
sistently and is the best model in all three set-
tings. ROBERTa sometimes achieves similar perfor-
mance, but twice (Beetle-MRPC, SEB-base) fails

%Per selected question, several answers were extracted.
See Appendix E for data availability.

3See Appendix A for all details on size and label distribu-
tion.

4 All models are available on huggingface. co.
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Corpus  Model Base MRPC MNLI
BERT 84.20 8420 87.10
Beetle RoBERTa 7625 47.78 86.94
XLNet 76.24 7049  85.72
BERT 83.87 83.13  84.56
SEB RoBERTa 43.02 8275 84.45
XLNet 78.29 6496 84.52

Table 1: Average weighted F} on the development set
across three training runs. Fine-tuning for Beetle or
SEB on top of the base model, or after first fine-tuning
on MRPC or MNLI.

Beetle SEB
UA UQ UA UQ UD
SemEval-13 83.3 72.0 76.8 73.7 70.5
Saha et al. - - 78.6 739 70.9
BERT Nz 89.7 765 817 728 70.6

Table 2: Macro F} on the test sets for literature bench-
marks and BERT y;n ;-

to learn in all three training runs, acquiring only the
frequency baseline. XL.Net generally lags behind.

Of the three settings, MNLI is clearly the most
advantageous for learning SAG on the SemEval-
13 data. When using MNLI, the models perform
closely together on Beetle and virtually identically
on SEB. It appears that the model specifics have
very little impact on performance once a sufficient
amount of informative training data is used.

We will therefore continue with the robust
BERT )/ nrr models (see Appendix C for the best
parameters for each corpus).

5.2 Reliability Analysis

We begin by evaluating BERT 3, 1,7 on the test sets
on overall F Scores. We report the first results for
2-way Beetle since SemEval-20133 and compare
to Saha et al. (2018) on SEB.°

Table 2 shows that we have succeeded in train-
ing a model that outperforms or closely matches
the SOTA for both corpora using macro F}. The
performance patterns are the same for weighted
(not available for SemEval-13, see App. D).

In the literature as well as in our results, a clear
domain effect is visible: Model performance drops

SResults for the best model for each test set from the top-
ranked Heilman and Madnani (2013) and Ott et al. (2013).

SGhavidel et al. (2020) achieved a slightly higher F; score
for UA at 79.7, but lower scores for UQ and UD.

as the test data becomes more dissimilar to the
training data. Despite the focus on comparing the
input sentences taught by the MNLI data, the model
also acquires vocabulary specific to the training
data, which becomes less and less relevant for out-
of-domain test data. For real-life SAG, this means
that as before, models should be expected to be
less reliable for unseen questions than for questions
seen during training, despite the additional training
undergone by Transformers.

On the UA data, BERT ;1 has a prediction
error of 10% on Beetle (corresponding to 1-0.90
Accuracy) and of 17.8% on SEB. This is is close
to the value of about 15% disagreement between
two human annotators that has been accepted for
published SAG corpora. Therefore, it appears not
implausible to use the model for real-life grading
to relieve teacher workloads at this point.
Grading tendencies We look at the F score of the
predictions for individual labels in Table 3 to iden-
tify imbalances of error. Indeed, the models con-
sistently make more errors predicting correct.
Also, moving from the in-domain test set UA to
the out-of-domain test sets UQ and UD, both labels
lose F Score, but the loss for correct is much
more pronounced.

The reason for this parallel pattern is different
for the two data sets when looking at Precision and
Recall separately’: The Beetle model is overly gen-
erous on UA data and labels too many answers as
correct, with Recall. at 90.3 and Precision,. at
85.5 for UA (while Precision; is 93.3). Moving
from UA to UQ, it becomes much stricter: Recall,.
drops by 28 percentage points, but Precision. only
by four points. Since there are only two possible
labels, Precision; correspondingly drops by 17 per-
centage points. For real-life applications this means
that on seen questions, predictions of incorrect
are almost certain to be reliable, but the situation
reverses drastically on unseen questions, affecting
the interpretation of the model output.

The SEB model is too strict on UA data, reject-
ing a quarter of correct answers at a Recall. of
75.5 (Recall; is 87.3). Assignments of correct
conversely are quite reliable at Precision, of 81.9.
Moving to UQ items, the model becomes dramat-
ically more lenient, with Precision, (and Recall;)
dropping by 15 percentage points, while the other
measures remain virtually the same. 33% of
correct and 21% of incorrect labels are

"The full result table can be found in Appendix D.



Beetle SEB
UA UQ UA UQ UD
c 878 704 786 689 650
i 915 827 848 768 76.3

Table 3: F for the correct (c) and incorrect (1) classes.

now wrong. On UD, this trend reverses to some
extent as Recall,. suffers a drop of nine points; con-
sequently, Precision; also drops by five points. All
categories are now affected strongly by error and
labels should be revised by a human grader before
being passed on to students.

Item subclasses We can analyse model per-
formance further by wusing the SemEval-
2013 5-way annotation, which applies to
the same items as the 2-way annotation,
but effectively splits the incorrect la-
bel into contradictory, irrelevant,
partially correct/incomplete and
non-domain. We bin the test set items into
classes according to the 5-way labels and compute
the percentage of items for which the binary
models appropriately predicted correct or
incorrect. We do not discuss the performance
for non-domain, which was perfect for both
models and corpora.

For Beetle, we know that the UA model is
too lenient and accepts incorrect answers.
The 5-way labels show that the accepted answers
are almost exclusively partially correct
items: 15% were over-generously accepted,
while more than 90% of contradictory and
irrelevant items were treated correctly.® This
is reassuring, since the model errs most in the grey
area between correct and incorrect, rather than spu-
riously accepting clearly incorrect answers. The
increase in model strictness on UQ data can be seen
exclusively on the correct items that are now
often being rejected; all other labels are assigned
as accurately as before.

For SEB, correct answers are rejected too
often on UA. This is of course also evident in
the 5-way labels, but in addition to 25% rejected
correct answers, the 5-way classification re-
veals that 18% of partially correct an-
swers are being erroneously accepted.’ Again,
the error is concentrated in the grey area between

8The full results can be found in Appendix D.
°So are 20% of cont radictory items, but this category
makes up only 10% of the data.

correct and incorrect answers, but it is not as
clearly one-directional as for Beetle, which makes
it harder to interpret the labels. Moving to UQ,
we see prediction error spreading to other classes
as the model’s lenience does not improve the
amount of accurately labelled correct items
but rather, irrelevant items are now accepted
vastly more often(32% of the time instead of 6%).
Finally, on UD, the model’s ability to recognize
irrelevant items recovers, (only 14% are erro-
neously accepted), but correct items suffer even
more and are rejected 38% of the time.
Discussion Both models struggle more with
recognizing correct answers and answers
in the partially correct grey area than
they do recognizing clearly contradictory,
irrelevant or non-domain answers. How-
ever, whether the model is too lenient or too strict
depends on the training data. Also, while both mod-
els deteriorate on out-of-domain test data, the Bee-
tle model does so only on recognizing correct
answers, while the error in the SEB model spreads
across all classes, making the output much harder
to interpret. The reason may be that the students’
vocabulary in Beetle is very homegenous and simi-
lar to the vocabulary in the reference answers due
to alignment with the tutoring system they inter-
acted with. Therefore, question-specific keywords
are very informative during training to identify
correct questions, prompting an over-reliance
on this source of information.

The error analysis clearly needs to be carried
out for each specific use case, since the error pat-
terns are corpus-dependent and change for out-of-
domain test sets: The predictably focused error of
the Beetle models is much easier to deal with, for
example by human review, than the generalized
error of the SEB models.

6 Exp. 2: Robustness

Any grading model used in an educational context
also needs to be robust towards strategic input, for
example garbled lists of words relevant in the do-
main. Also, it should not be overly lenient towards
insufficient partial answers.

Another Achilles’ heel of automated systems is
the length bias, since incorrect answers are often
much shorter (less detailed, or containing only "I
don’t know") than correct answers. Indeed, we find
this pattern in our data: correct Beetle answers
have a median length of 54 characters (min: 3,



max: 367), while incorrect answers are only
41 characters long in the median (min: 0, max:
256). For SEB, the numbers are 60 characters (min:
4, max: 532) for correct and 51 (min: 2, max: 413)
for incorrect answers.

We use adversarial testing (Goodfellow et al.,
2015) and generate synthetic answers to existing
questions using several approaches to mimicking
these strategies. Ideally, the system will reject all
of the synthetic answers, which are highly unlikely
to be correct by human standards. We will evaluate
system performance using the Attack Rejection
Rate (ARR), the percentage of attack items that are
labelled as incorrect by the system.

Attack strategies There are five different attacks:
Length items contain sequences of random words
that are either very short, very long or of average
length for the data. Vocabulary attacks come in
different stages of severeness: We begin by ran-
domly stringing together unigrams, then move to
bi- and trigrams to create more syntactically and
semantically plausible attack items, and finally in-
clude shuffled versions of the original test items to
tease apart the influence of vocabulary and word
order. In order to keep the vocabulary attack items
comparable, we will clone each real test item using
each of the vocabulary attack strategies, preserving
its length as closely as possible.

To make the attacks as realistic as possible, we
rely on the original vocabulary of the test data.
Also, we are interested in the effect of vocabulary
differences between correct and incorrect
items and between the different SAG test sets.
Therefore, we generate the vocabulary attacks us-
ing word frequencies from the test items with the
same gold label as the original. Table 4 shows
three sample length attack items and the adversarial
clones for vocabulary attacks based ona correct
item from Beetle-UA. The shuffle attack clone dif-
fers from the original only in word order, and all
n-gram attack clones have the same length as the
original and share relevant vocabulary.

In order to isolate length effects, the words for
the length attacks are sampled from the complete
test set. We generate 200 attack items for each of
the three length classes: Short attack items are in
the range between the minimum and median length
of all relevant answers, the length of medium items
is in the range of the first to third quartile and the
length of long items is between the median and
maximum lengths for the test sets.

Predictions Since our analysis in Section 5 shows
a deterioration of performance as the test set vocab-
ulary diverges more from training, we expect to see
effects of vocabulary in the n-gram attacks and also
expect clones for correct test items to be more
successful attacks than clones of incorrect
items. The strongest attack to a vocabulary-based
model should be to shuffle correct answers. If
the models use structure or at least word order, we
would expect the n-gram attacks to become more
effective with higher n, as longer word sequences
are being sampled from real answers. A system
that takes word order into account would also be
more easily fooled by a trigram-based answer than
by a shuffled answer. In addition, it is possible that
there will be an effect of length (where longer at-
tack items are more successful) given the observed
distribution of answer length over labels.

Vocabulary and structure Table 5 shows the
ARRs on the five test sets; a darker cell shade
means a higher ARR and more model robustness
towards the attack. We also show the percentage
of regular test items that the model rejects, as a
baseline: if the BERT y;n 11 labels depend only vo-
cabulary, it will reject the shuffled attack clones
exactly like the underlying test items.

The strong impact of vocabulary identity on
ARR is immediately visible: Within all the test
sets, we find that the n-gram ARRSs are very similar
across different n and the shuffle attacks (which
completely preserve vocabulary) are more success-
ful than the n-gram attacks for all test sets. For
Beetle, we also see higher ARRs for the out-of-
domain test set with unseen vocabulary.

The model is, however, not ignoring word order:
The shuffle ARR is always higher (except for SEB-
UD) than the rejection rate of the original test items.
This means that quite some items are accepted in
their original word order, but rejected when shuf-
fled. Also, we see from the difference between the
unigram and shuffle ARRs that the right combina-
tion of relevant words (even in the wrong order) is
a stronger attack than randomly sampled question-
and label-specific words. Therefore, we conclude
that the model is not necessarily using word order,
but considers word cooccurrences rather than just
picking out relevant keywords.

The label-specific ARRs for the shuffle attack
(Table 6) allow us to tease apart the model’s reac-
tion to correct and incorrect vocabulary.

As expected, clones of correct test items are



Length attacks

Vocabulary Attacks

Short was path in is or is closed has incorrect Unigrams  bulb share are terminal an they
Medium a affect terminal terminal by bulb off [...] (34 words)  Bigrams terminal and the bulb electrical state
Long a and c path state difference bulb [...] (93 words) Trigrams an electrical state terminal are connected
Shuffle gap they are connected that no
Original that they are connected; no gap

Table 4: Adversarial attack items for length and vocabulary attacks.

SEB
uQ UA UQ UD

Beetle
UA

Unigrams
Bigrams
Trigrams
Shuffle
Originals

57.6 604

60.2 555 612

Table 5: ARRs for ngram and shuffle attacks and Re-
jection Rates for the original test items.

57.6

rarely, and clones of incorrect items almost
always, rejected. Importantly, now we see that the
items that were accepted in the original but are
rejected as shuffle attack clones are almost exclu-
sively correct test items (as there is little differ-
ence between shuffled and original incorrect
answers). This again confirms that the model does
not do pure keyword spotting, but also considering
word order and word cooccurrence.
Length In order to decouple effects of length as
much as possible from the strong vocabulary ef-
fects identified above, we report the length ARRs
for Beetle-UD and SEB-UQ in Table 7. There is a
clear trend for long attack items (in the range of the
median to the maximum length of the test data set)
to be accepted more easily while short and medium
attack items are reliably rejected across both cor-
pora: The model learns and uses the correlation
between answer length and correct label.
Therefore, caution is needed in a real-world set-
ting if the training data shows length biases: The
model is likely to pick them up, and length is a very
easily gamed answer property. Fortunately, since
only the very longest answers are affected, gaming
attempts through answer length can be screened for
by a human grader.
Discussion Our adversarial attack experiments
have shown that the model pays a lot of attention
to correct wording (the shuffle attack from correct
original items is the strongest); clearly, combin-
ing the right words (as seen in the advantage of

shuffle vs. unigram) and putting them in the right
order (so that the original item is accepted but the
shuffled clone rejected) is also important. This
means that a student who tries to pass a question
by randomly generating domain keywords is more
likely to succeed if they choose a combination of
keywords that is relevant for the correct answer —
and a student who is able to do this does not re-
ally need to strategically fake an answer. Also, our
vocabulary experiments have not shown a way to
get an incorrect attack clone accepted more
easily than the original item. Generating extremely
long answers does appear to be a promising strat-
egy to fool the model, but can fortunately be easily
screened for by human review.

The typical ARRs indicate a need for human
oversight, anyway: ARRs of up to 85% for Beetle-
UQ may still be acceptable for providing student
feedback, but ARRs around 70% for SEB are prob-
ably not. Again, we see big corpus-related differ-
ences, stressing the need to analyse system behav-
ior specifically for each use case.

On a theoretical note, we observe that a
vocabulary-based model’s reliability and robust-
ness to strategic answers behave inversely: Relia-
bility is highest when the test and training data are
most similar; robustness (i.e. rejection of attack
items) is highest when the test vocabulary is dif-
ferent from the training vocabulary, thus avoiding
keyword-based erroneous acceptance.

7 Discussion and Conclusions

We have looked at the reliability and robustness
of a SAG model by training a Transformer-based
model for the 2-way task on the Beetle and SEB
corpora and verifying that it matches the SOTA.
Specific modelling decisions proved less important
in reaching this goal than informative pre-training
on the MNLI corpus.

Our focus was on understanding the model’s pat-
terns of performance in order to evaluate its appro-
priateness for real-world settings in an educational



UA

correct  incorrect
Shuffle 26.1 91.7
Beetle Originals 14.5 93.3
Shuffle 28.6 88.7
SEB Originals 18.1 87.3

49.4 91.8
18.6

UD
incorrect

uQ

incorrect

correct

correct

Table 6: Label-specific ARRs for the shuffle attack and Rejection Rates for the original test items.

Beetle-UQ SEB-UD
short

97.5 95.5
medium RSEX0) 83.0

long 43.0 33.0

Table 7: ARRs for length attacks.

context, which requires both correct and balanced
predictions and robustness to strategic inputs.

The model’s prediction quality as measured in
overall F Scores is good and approximates levels of
human performance. However, overall F Scores are
not detailed enough to understand the usefulness
of the model’s predictions: A closer look at class-
based F Scores and more fine-grained annotation
levels revealed that correct and partially
correct/incomplete test items were hard-
est to label correctly, introducing grading imbal-
ances. These are highly relevant for interpreting
the model’s grade predictions and for deciding how
to use them.

Next, we tested the model’s robustness to strate-
gic input (such as chains of relevant keywords or
very long, irrelevant content). We found that the
model strongly relies on the training vocabulary
to spot correct answers, but also considers word-
cooccurrence and word order to some degree. In
the best case, more than 85% of attack items were
rejected, and the best gaming strategy is to com-
bine several keywords relevant to a correct answer,
which makes it relatively unlikely that answers
with no merit at all will be accepted. However,
the model is vulnerable to answer length, so that
long answers need to be screened again by a human
grader for real-world use. In sum, the model cannot
be considered fully tamper-proof.

In the best case, BERT y;n 17, our SOTA SAG
model, is reliable and robust enough to use for
formative feedback in real-life, or as a support to
human graders for higher-stakes scenarios: Grades
are reliable overall with a clearly focused, inter-
pretable grading imbalance and the model is most

vulnerable to very long strategic answers, which
can be easily identified and screened.

However, this best case performance is by no
means guaranteed or predictable. It holds on the
Beetle corpus, while on the SEB corpus, both relia-
bility and robustness are generally much worse, and
we even see differences in reliability and robustness
for different test sets of the same training corpus.
Even the direction of grade imbalance can differ
between test sets for the same training corpus, de-
spite a similar label distribution. It is therefore vital
to closely analyse reliability and robustness of any
automated model for the specific use case before
deploying it in a real-world education setting.

A second learning again regards the Beetle best
case model but generalizes to all SAG models that
share its dependence on prompt-specific vocabu-
lary. This dependence causes a trade-off between
reliability and robustness: Grade predictions are
most reliable for the UA test sets, where prompt-
specific vocabulary is helpful to spot correct an-
swers, and deteriorates for out-of-domain test sets.
On the other hand, the reliance on informative
keywords makes the model more susceptible to
vocabulary-based gaming strategies, and robust-
ness increases for out-of-domain test sets. Adver-
sarial training on shuffled correct training items (as
the hardest attack category) might be useful here
to enforce more use of word order information by
the model; Ding et al. (2020) report that this strat-
egy improves the robustness of a non-neural SAG
model while hardly hurting overall reliability.
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A Training and Test Data

Table 8 shows the sizes of test, development and
training sets for Beetle and SEB as well as the label
distribution for 2-way annotation.

B Model Sizes and Hyperparameters

BERT}y,sc and XLNety,se have 110M parame-
ters (Devlin et al., 2019; Yang et al., 2019),
RoBERTay, s has 125M (Liu et al., 2019) parame-
ters.

The models received a maximum of 256 tokens
per input sentence. We used the Adam optimizer
with an initial learning rate of Se-5, and € of 1e-8;
batch size for training was 8.

We varied the number of training epochs (up to
a) maximum of six) and the random seed for weight
initialization (1, 42, or 100).

Training times on a single GPU core were short.
For six training epochs, BERT and RoBERTa
trained in six minutes on Beetle and ten minutes on
SEB. XLNet took ten and twelve minutes, respec-
tively.

C Best-Performing Model Parameters

Table 9 shows the optimal random seeds and num-
ber of training epochs for the BERT y;n 1.1 models
on the training corpora, and the resulting individual
weighted F Scores on the development sets.

Seed Epochs F Score
Beetle 100 5 89.0
SEB 100 6 85.5

Table 9: Number of training epochs and random seed
for weight initialization for the BERT y;n; models.
Individual weighted F Scores on the development sets.
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D Exp. 1: Reliability

Table 10 shows the weighted F scores on the test
set, where available.

Beetle SEB
UA UQ UA UQ UD
SemEval-13 - - - - -
Saha et al. - - 79.1 748 719
BERTy/nr;r 902 77.5 831 735 71.5

Table 10: Weighted F} on the test sets for literature
benchmarks and BERT y;n 7 -

Table 11 shows Precision and Recall by label on
all the test sets.

Table 12 gives the percentage of accurate labels
assigned by the 2-way model to the test items when
broken down according to the 5-way classification.

E Code and Data

The code and data used
study can be downloaded at
//osf.io/72bzt/?view_only=
56900eb27e8e4£88b6e489398fc295db.
You will find

for this
https:

o SEB and Beetle UA development data (answer
IDs only, due to licensing restrictions on re-
distribution)

e Python code to re-format the corpora, train
the models and analyze results

e Bash scripts with the original training calls

e Requirement lists to re-create the server con-
figurations used for training
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Train (% 1) DevUA (% i) TestUA (% i) TestUQ (% i) TestUD (% 1)

Beetle 3570 (61.3) 371 (62.3) 439 (59.9) 819 (58.0) -
SEB 4491 (59.6) 478 (58.2) 540 (56.9) 733 (58.9) 4562 (58.0)

Table 8: Size of training and test sections for the SemEval-2013 corpora. Label distribution for 2-way annotation
(% i: percentage of label incorrect). UA: Unseen Answer, UQ: Unseen Question, UD: Unseen Domain.

Beetle SEB
UA UuQ UA UuQ UD

c 85.5/903 81.6/61.9 81.9/75.5 66.3/71.8 67.9/62.5
i 93.3/89.7 76.5/89.9 82.5/87.3 79.1/74.5 74.2/78.4

Table 11: Precision/Recall for the correct (c¢) and incorrect (i) classes on the Unseen Answer (UA), Unseen
Question (UQ) and Unseen Domain (UD) test sets.

Beetle SEB
UA uQ UA UuQ UD
correct 90.3 (175) 62.0(344) 75.5(233) 71.8(301) 62.5(1917)
contradictory 919 (111) 93.0(244) 81.3(58) 67.2(64) 73.1(417)
irrelevant 94.1 (17) 100 (18) 94.0 (133) 78.8(193) 86.4(1222)
partially correct 84.8(112) 82.0(172) 82.3(113) 72.6(175) 70.2 (986)
non-domain 100 (23) 100 (40) 100 (3) -(0) 100 (20)

Table 12: Percentage of correct labels (total number of instances) for each of the 5-way classes on the Unseen
Answer (UA), Unseen Question (UQ) and Unseen Domain (UD) test sets.
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