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Abstract
Short-Answer Grading (SAG) is an applica-001
tion for NLP in education where student an-002
swers to open questions are graded. This task003
places high demands both on the reliability (ac-004
curacy and fairness) of label predictions and005
model robustness against strategic, "adversar-006
ial" input. Neural approaches are powerful007
tools for many problems in NLP, and transfer008
learning for Transformer-based models speci-009
ficially promises to support data-poor tasks010
as this. We analyse the performance of a011
Transfomer-based SOTA model, zooming in012
on class- and item type specific behavior in013
order to gauge reliability; we use adversarial014
testing to analyze the the model’s robustness015
towards strategic answers. We find a strong de-016
pendence on the specifics of training and test017
data, and recommend that model performance018
be verified for each individual use case.019

1 Introduction020

Short-Answer Grading (SAG) is a popular appli-021

cation of NLP in education. Students write one to022

three sentences in response to open test questions,023

and the task is to predict the grade based on answer024

content. The prediction can be passed on directly025

as feedback to students and teachers or serve as026

input for human review (in order to reduce manual027

grading effort). Use cases range from automated028

feedback to low-stakes quizzes and self-tests to sug-029

gestions for human review on higher-stakes tests.030

(We focus on ad-hoc, non-standardized testing.)031

Given the nature of the task, system predictions032

have to be reliable (accurate overall and fair across033

all labels), and robust towards strategic "adver-034

sarial" answers in order to be informative and be035

accepted by teachers and students.036

A long-standing challenge for SAG is the small037

size of annotated corpora (commonly in the thou-038

sands of data points, Burrows et al., 2015). Re-039

cently, the ascendance of transfer learning for040

Transformer-based models like BERT (Devlin et al.,041

2019) allows the use of large amounts of un- 042

annotated data to infer a robust language model 043

in pre-training before switching to fine-tuning for a 044

specific task. This strategy has proven very success- 045

ful on the range of language understanding tasks of 046

the standard GLUE data sets (Wang et al., 2018). 047

Results on SAG data (Ghavidel et al., 2020; Camus 048

and Filighera, 2020) are also promising. 049

The good performance of Transformer-based 050

methods on literature benchmarks raises the ques- 051

tion of whether they are appropriate to provide au- 052

tomated grade feedback. However, overall model 053

F Scores as reported for result benchmarking are 054

not informative enough to estimate both reliability 055

of grades in terms of low, balanced labelling error 056

and robustness to strategic answers. 057

In this paper, we employ straightforward meth- 058

ods to estimate both aspects of model appropriate- 059

ness: We first evaluate reliability by label-level F 060

Scores and item-type accuracy (Exp. 1, Sec. 5), and 061

then create adversarial attacks focusing on plausi- 062

ble test-taker strategies (Exp. 2, Sec. 6). We present 063

(1) example results for a literature data set to estab- 064

lish a sense of what can be expected of the models 065

in real life and (2) strategies for practioners to ver- 066

ify model appropriateness for their use case. 067

2 Previous Work 068

Task and Data In many real-world settings, sys- 069

tems will be required to work well for previously 070

unseen questions. Researchers have traditionally 071

approached this challenge with feature-based, non- 072

neural algorithms that compare student answers 073

to a correct reference answer (Burrows et al., 074

2015). There is a strong parallel between this ap- 075

proach to SAG and Natural Language Inference 076

(NLI) emphasized in the SemEval-2013 shared task 077

(Dzikovska et al., 2013): In both, a hypothesis (in 078

SAG, a student answer) is compared to a premise 079

(in SAG, a reference answer). The shared task data 080

sets, the Beetle and SciEntsBank (SEB) corpora, 081
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are still important ressources for SAG. The Beetle082

data contains several correct reference answers per083

question; since many systems are designed to work084

with a single reference answer, results are often085

reported for SEB only. Three parallel annotations086

at different levels of granularity (2-way, 3-way, 5-087

way) are present.088

Distributional and neural models Sultan et al.089

(2016) was the first to show that the use of the dis-090

tributional information in word embeddings (along091

with the alignment of reference and student answer)092

for training a traditional classifier is helpful. Saha093

et al. (2018) achieved further improvement by com-094

bining token-level similarity features and sentence095

embeddings, but found that the sentence embed-096

ding feature is less and less informative the further097

away from the training domain the test data is.098

The first experiments with neural network SAG099

are reported in Riordan et al. (2017). Adapting and100

evolving the Taghipour and Ng (2016) approach101

to essay scoring, they trained an LSTM over word102

embeddings. The results are less encouraging for103

SAG than for the longer essays: The model just104

reaches the state of the art on one of three data sets105

and underperforms it on the other two. The reason106

is likely the lack of training data for SAG since107

corpora are small and each data point is at most a108

few sentences long.109

Transfer Learning for SAG Transformer-based110

models promise advantages for underressourced111

tasks like SAG through pre-training on un-112

annotated data. Sung et al. (2019) generalized this113

idea and collected additional domain-specific data114

for a second pre-training round before fine-tuning115

BERT (Devlin et al., 2019) on the SEB corpus.116

They showed an improvement over the state of the117

art, but evaluated for the 3-way SAG task only and118

did not compare to off-the-shelf BERT. Ghavidel119

et al. (2020) completed this comparison, experi-120

menting with BERT and XLNet (Yang et al., 2019),121

an auto-regression variant of the Transformer fam-122

ily, on SEB data. They found that off-the-shelf123

BERT’s accuracy is more stable for out-of-domain124

test sets than the Sung et al. (2019) version, which125

suggests that their domain-specific pre-training ap-126

proach is too tightly focused to generalise well.127

BERT and XLNet performed similarly and appear128

to come into their own as the number of classes129

increases and conversely, the number of training130

instances per class decreases.131

Also pursuing the idea of choosing models with132

optimal pre-training for SAG, Camus and Filighera 133

(2020) looked at the large range of available pre- 134

trained models from the BERT family and found 135

that larger models perform better due to the larger 136

number of parameters available for further learning 137

during fine-tuning and that pre-training for an NLI 138

task before fine-tuning for SAG offers a noticeable 139

performance gain over the base version (especially 140

for RoBERTa, Liu et al., 2019). Evaluation was 141

done on the on the 3-way SemEval test data, using 142

model-level Accuracy and F Scores. 143

Robustness is in focus in Ding et al. (2020). They 144

are the first to use the adversarial testing paradigm 145

to expose an LSTM-based neural model and a rule- 146

based approach to cheating strategies such as pro- 147

viding a list of relevant keywords instead of a co- 148

herent answer text. While the neural model per- 149

forms better in terms of reliability, they find that 150

the rule-based model is overall more robust and 151

can be tuned more easily by removing features that 152

increase its vulnerability to the adversarial attacks. 153

However, they report that some reliability is lost 154

by removing those features. Unfortunately, their 155

results are not directly comparable due to the use 156

of a different model architecture and different SAG 157

training set. 158

3 Research Questions 159

In this paper, we ask whether whether SOTA SAG 160

models are appropriate for real-life automated SAG 161

on two dimensions: 162

Reliability Around 15% disagreement between hu- 163

man graders have been accepted for published SAG 164

corpora from non-standardized testing situations 165

(Mieskes and Padó, 2018). We verify that SOTA 166

models can reach this overall performance level. 167

Then, we test for grading imbalances like undue 168

strictness or lenience. We also ask whether any 169

imbalance patterns are stable and predictable or 170

whether they vary with the data sets, which would 171

increase the need for case-based investigation of 172

model behavior. 173

Please note that we cannot look at algorithmic 174

fairness proper (see,e.g., Kizilcec and Lee, 2021) 175

which compares model predictions for different 176

subgroups of students because we have no further 177

information about the students’ abilities and back- 178

ground in our data set. 179

Robustness Any model that provides feedback to 180

students will face strategic input as students attempt 181

to "game the system" and gain points despite be- 182
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ing unsure about the correct answer. Additionally,183

input may be inadvertently garbled or incomplete184

and should still be labelled in a human-like fashion.185

Only models that are robust towards strategies like186

chaining together relevant keywords or producing187

very long, irrelevant answers can be used to provide188

feedback without human monitoring.189

Due to the wide range of usage contexts for SAG190

in education, we do not attempt to define general191

minimum requirements for model quality. We leave192

it to practitioners to define requirements for their193

individual use case and instead aim to provide an194

intuition of what to expect from a SOTA model.195

4 Approach196

Reliability To evaluate the reliability of SOTA197

models, we will first pick such a model from an198

array of approaches trained on the 2-way SAG task199

(grading answers as correct-incorrect). We200

compare the base version of the Transformer mod-201

els, fine-tuning on the GLUE MNLI (Multi-Genre202

Natural Language Inference) task and fine-tuning203

on the GLUE MRPC (Microsoft Research Para-204

phrase Corpus) – the paraphrase recognition task205

being also highly relevant to the student-reference206

answer comparison approach to SAG.207

In Exp. 1 (Sec. 5), class-based Precision and Re-208

call will identify any grading imbalances towards209

one of the target classes and the fine-grained 5-way210

annotation available for SEB and Beetle will help211

identify the origin of those imbalances. This infor-212

mation is important for teachers and students when213

interpreting the model output.214

Robustness towards garbled or strategic input is in215

focus in Exp. 2 (Sec. 6). We will use the adversar-216

ial testing approach and generate multiple sets of217

synthetic test data to analyse the model’s ability to218

resist various test gaming strategies.219

4.1 Data220

We work with the SemEval-2013 data1. It is a stan-221

dard English-language data set consisting of the222

Beetle and SciEntsBank (SEB) corpora. The cor-223

pora contain student answers to science domain224

questions; Beetle (3.6k answers) was collected225

from interactions with a tutoring system, while226

SEB (4.5k answers) stems from a conventional test227

setting. Both corpora offer in-domain (unseen an-228

swers to seen questions, UA) and out-of-domain229

1Available from https://www.cs.york.ac.uk/
semeval-2013/task7/index.php%3Fid=data.
html.

test sets (answers to unseen questions, UQ, and, for 230

SEB, from an unseen domain, UD). This allows 231

us to gauge the dependence of the models on key- 232

words seen in training and helps avoid data leakage 233

between training and test (Elangovan et al., 2021; 234

Lewis et al., 2021). 235

In order to cleanly set hyperparameters, we cre- 236

ated a development set in the UA setting by pseudo- 237

randomly selecting roughly 10% of the training 238

data.2 Across all data sets, the incorrect an- 239

swers are the majority class; their percentage is at 240

about 60% consistently across all data subsets.3 241

5 Exp. 1: Reliability 242

5.1 Model Training and Selection 243

We begin by creating a SOTA model for 2-way 244

SAG. From the literature, we choose three well- 245

performing models and three pre-training regimes 246

to compare. The models are BERT and XLNet 247

from (Ghavidel et al., 2020) and RoBERTa as the 248

best model in (Camus and Filighera, 2020). 249

For each model, we choose the base version 250

(uncased where available) as well as the versions 251

fine-tuned on MRPC and MNLI.4 The input se- 252

quences for SAG fine-tuning were the reference 253

and student answers; the alternative reference an- 254

swers in Beetle were concatenated. For model 255

sizes, training times and hyperparameter choices, 256

see Appendix B. 257

Since the three evaluation measures used in 258

SemEval-2013, Accuracy, weighted and macro F1, 259

are very close in our experiments, we evaluate on 260

weighted F1 and where needed report macro F1 for 261

compatibility with the literature. 262

Table 1 shows the performance of the different 263

models on the development sets. For each combina- 264

tion of model type and previous training regime we 265

give the average weighted F1 Scores across three 266

different random initialisations for fine-tuning to 267

SAG. F Scores are genereally higher on Beetle, 268

where multiple reference answers offer paraphrases 269

of the correct solution. 270

Of the three models, BERT performs most con- 271

sistently and is the best model in all three set- 272

tings. RoBERTa sometimes achieves similar perfor- 273

mance, but twice (Beetle-MRPC, SEB-base) fails 274

2Per selected question, several answers were extracted.
See Appendix E for data availability.

3See Appendix A for all details on size and label distribu-
tion.

4All models are available on huggingface.co.
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Corpus Model Base MRPC MNLI

BERT 84.20 84.20 87.10
Beetle RoBERTa 76.25 47.78 86.94

XLNet 76.24 70.49 85.72

BERT 83.87 83.13 84.56
SEB RoBERTa 43.02 82.75 84.45

XLNet 78.29 64.96 84.52

Table 1: Average weighted F1 on the development set
across three training runs. Fine-tuning for Beetle or
SEB on top of the base model, or after first fine-tuning
on MRPC or MNLI.

Beetle SEB

UA UQ UA UQ UD

SemEval-13 83.3 72.0 76.8 73.7 70.5
Saha et al. – – 78.6 73.9 70.9

BERTMNLI 89.7 76.5 81.7 72.8 70.6

Table 2: Macro F1 on the test sets for literature bench-
marks and BERTMNLI .

to learn in all three training runs, acquiring only the275

frequency baseline. XLNet generally lags behind.276

Of the three settings, MNLI is clearly the most277

advantageous for learning SAG on the SemEval-278

13 data. When using MNLI, the models perform279

closely together on Beetle and virtually identically280

on SEB. It appears that the model specifics have281

very little impact on performance once a sufficient282

amount of informative training data is used.283

We will therefore continue with the robust284

BERTMNLI models (see Appendix C for the best285

parameters for each corpus).286

5.2 Reliability Analysis287

We begin by evaluating BERTMNLI on the test sets288

on overall F Scores. We report the first results for289

2-way Beetle since SemEval-20135 and compare290

to Saha et al. (2018) on SEB.6291

Table 2 shows that we have succeeded in train-292

ing a model that outperforms or closely matches293

the SOTA for both corpora using macro F1. The294

performance patterns are the same for weighted F1295

(not available for SemEval-13, see App. D).296

In the literature as well as in our results, a clear297

domain effect is visible: Model performance drops298

5Results for the best model for each test set from the top-
ranked Heilman and Madnani (2013) and Ott et al. (2013).

6Ghavidel et al. (2020) achieved a slightly higher F1 score
for UA at 79.7, but lower scores for UQ and UD.

as the test data becomes more dissimilar to the 299

training data. Despite the focus on comparing the 300

input sentences taught by the MNLI data, the model 301

also acquires vocabulary specific to the training 302

data, which becomes less and less relevant for out- 303

of-domain test data. For real-life SAG, this means 304

that as before, models should be expected to be 305

less reliable for unseen questions than for questions 306

seen during training, despite the additional training 307

undergone by Transformers. 308

On the UA data, BERTMNLI has a prediction 309

error of 10% on Beetle (corresponding to 1-0.90 310

Accuracy) and of 17.8% on SEB. This is is close 311

to the value of about 15% disagreement between 312

two human annotators that has been accepted for 313

published SAG corpora. Therefore, it appears not 314

implausible to use the model for real-life grading 315

to relieve teacher workloads at this point. 316

Grading tendencies We look at the F score of the 317

predictions for individual labels in Table 3 to iden- 318

tify imbalances of error. Indeed, the models con- 319

sistently make more errors predicting correct. 320

Also, moving from the in-domain test set UA to 321

the out-of-domain test sets UQ and UD, both labels 322

lose F Score, but the loss for correct is much 323

more pronounced. 324

The reason for this parallel pattern is different 325

for the two data sets when looking at Precision and 326

Recall separately7: The Beetle model is overly gen- 327

erous on UA data and labels too many answers as 328

correct, with Recallc at 90.3 and Precisionc at 329

85.5 for UA (while Precisioni is 93.3). Moving 330

from UA to UQ, it becomes much stricter: Recallc 331

drops by 28 percentage points, but Precisionc only 332

by four points. Since there are only two possible 333

labels, Precisioni correspondingly drops by 17 per- 334

centage points. For real-life applications this means 335

that on seen questions, predictions of incorrect 336

are almost certain to be reliable, but the situation 337

reverses drastically on unseen questions, affecting 338

the interpretation of the model output. 339

The SEB model is too strict on UA data, reject- 340

ing a quarter of correct answers at a Recallc of 341

75.5 (Recalli is 87.3). Assignments of correct 342

conversely are quite reliable at Precisionc of 81.9. 343

Moving to UQ items, the model becomes dramat- 344

ically more lenient, with Precisionc (and Recalli) 345

dropping by 15 percentage points, while the other 346

measures remain virtually the same. 33% of 347

correct and 21% of incorrect labels are 348

7The full result table can be found in Appendix D.
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Beetle SEB
UA UQ UA UQ UD

c 87.8 70.4 78.6 68.9 65.0
i 91.5 82.7 84.8 76.8 76.3

Table 3: F for the correct (c) and incorrect (i) classes.

now wrong. On UD, this trend reverses to some349

extent as Recallc suffers a drop of nine points; con-350

sequently, Precisioni also drops by five points. All351

categories are now affected strongly by error and352

labels should be revised by a human grader before353

being passed on to students.354

Item subclasses We can analyse model per-355

formance further by using the SemEval-356

2013 5-way annotation, which applies to357

the same items as the 2-way annotation,358

but effectively splits the incorrect la-359

bel into contradictory, irrelevant,360

partially correct/incomplete and361

non-domain. We bin the test set items into362

classes according to the 5-way labels and compute363

the percentage of items for which the binary364

models appropriately predicted correct or365

incorrect. We do not discuss the performance366

for non-domain, which was perfect for both367

models and corpora.368

For Beetle, we know that the UA model is369

too lenient and accepts incorrect answers.370

The 5-way labels show that the accepted answers371

are almost exclusively partially correct372

items: 15% were over-generously accepted,373

while more than 90% of contradictory and374

irrelevant items were treated correctly.8 This375

is reassuring, since the model errs most in the grey376

area between correct and incorrect, rather than spu-377

riously accepting clearly incorrect answers. The378

increase in model strictness on UQ data can be seen379

exclusively on the correct items that are now380

often being rejected; all other labels are assigned381

as accurately as before.382

For SEB, correct answers are rejected too383

often on UA. This is of course also evident in384

the 5-way labels, but in addition to 25% rejected385

correct answers, the 5-way classification re-386

veals that 18% of partially correct an-387

swers are being erroneously accepted.9 Again,388

the error is concentrated in the grey area between389

8The full results can be found in Appendix D.
9So are 20% of contradictory items, but this category

makes up only 10% of the data.

correct and incorrect answers, but it is not as 390

clearly one-directional as for Beetle, which makes 391

it harder to interpret the labels. Moving to UQ, 392

we see prediction error spreading to other classes 393

as the model’s lenience does not improve the 394

amount of accurately labelled correct items 395

but rather, irrelevant items are now accepted 396

vastly more often(32% of the time instead of 6%). 397

Finally, on UD, the model’s ability to recognize 398

irrelevant items recovers, (only 14% are erro- 399

neously accepted), but correct items suffer even 400

more and are rejected 38% of the time. 401

Discussion Both models struggle more with 402

recognizing correct answers and answers 403

in the partially correct grey area than 404

they do recognizing clearly contradictory, 405

irrelevant or non-domain answers. How- 406

ever, whether the model is too lenient or too strict 407

depends on the training data. Also, while both mod- 408

els deteriorate on out-of-domain test data, the Bee- 409

tle model does so only on recognizing correct 410

answers, while the error in the SEB model spreads 411

across all classes, making the output much harder 412

to interpret. The reason may be that the students’ 413

vocabulary in Beetle is very homegenous and simi- 414

lar to the vocabulary in the reference answers due 415

to alignment with the tutoring system they inter- 416

acted with. Therefore, question-specific keywords 417

are very informative during training to identify 418

correct questions, prompting an over-reliance 419

on this source of information. 420

The error analysis clearly needs to be carried 421

out for each specific use case, since the error pat- 422

terns are corpus-dependent and change for out-of- 423

domain test sets: The predictably focused error of 424

the Beetle models is much easier to deal with, for 425

example by human review, than the generalized 426

error of the SEB models. 427

6 Exp. 2: Robustness 428

Any grading model used in an educational context 429

also needs to be robust towards strategic input, for 430

example garbled lists of words relevant in the do- 431

main. Also, it should not be overly lenient towards 432

insufficient partial answers. 433

Another Achilles’ heel of automated systems is 434

the length bias, since incorrect answers are often 435

much shorter (less detailed, or containing only "I 436

don’t know") than correct answers. Indeed, we find 437

this pattern in our data: correct Beetle answers 438

have a median length of 54 characters (min: 3, 439
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max: 367), while incorrect answers are only440

41 characters long in the median (min: 0, max:441

256). For SEB, the numbers are 60 characters (min:442

4, max: 532) for correct and 51 (min: 2, max: 413)443

for incorrect answers.444

We use adversarial testing (Goodfellow et al.,445

2015) and generate synthetic answers to existing446

questions using several approaches to mimicking447

these strategies. Ideally, the system will reject all448

of the synthetic answers, which are highly unlikely449

to be correct by human standards. We will evaluate450

system performance using the Attack Rejection451

Rate (ARR), the percentage of attack items that are452

labelled as incorrect by the system.453

Attack strategies There are five different attacks:454

Length items contain sequences of random words455

that are either very short, very long or of average456

length for the data. Vocabulary attacks come in457

different stages of severeness: We begin by ran-458

domly stringing together unigrams, then move to459

bi- and trigrams to create more syntactically and460

semantically plausible attack items, and finally in-461

clude shuffled versions of the original test items to462

tease apart the influence of vocabulary and word463

order. In order to keep the vocabulary attack items464

comparable, we will clone each real test item using465

each of the vocabulary attack strategies, preserving466

its length as closely as possible.467

To make the attacks as realistic as possible, we468

rely on the original vocabulary of the test data.469

Also, we are interested in the effect of vocabulary470

differences between correct and incorrect471

items and between the different SAG test sets.472

Therefore, we generate the vocabulary attacks us-473

ing word frequencies from the test items with the474

same gold label as the original. Table 4 shows475

three sample length attack items and the adversarial476

clones for vocabulary attacks based on a correct477

item from Beetle-UA. The shuffle attack clone dif-478

fers from the original only in word order, and all479

n-gram attack clones have the same length as the480

original and share relevant vocabulary.481

In order to isolate length effects, the words for482

the length attacks are sampled from the complete483

test set. We generate 200 attack items for each of484

the three length classes: Short attack items are in485

the range between the minimum and median length486

of all relevant answers, the length of medium items487

is in the range of the first to third quartile and the488

length of long items is between the median and489

maximum lengths for the test sets.490

Predictions Since our analysis in Section 5 shows 491

a deterioration of performance as the test set vocab- 492

ulary diverges more from training, we expect to see 493

effects of vocabulary in the n-gram attacks and also 494

expect clones for correct test items to be more 495

successful attacks than clones of incorrect 496

items. The strongest attack to a vocabulary-based 497

model should be to shuffle correct answers. If 498

the models use structure or at least word order, we 499

would expect the n-gram attacks to become more 500

effective with higher n, as longer word sequences 501

are being sampled from real answers. A system 502

that takes word order into account would also be 503

more easily fooled by a trigram-based answer than 504

by a shuffled answer. In addition, it is possible that 505

there will be an effect of length (where longer at- 506

tack items are more successful) given the observed 507

distribution of answer length over labels. 508

Vocabulary and structure Table 5 shows the 509

ARRs on the five test sets; a darker cell shade 510

means a higher ARR and more model robustness 511

towards the attack. We also show the percentage 512

of regular test items that the model rejects, as a 513

baseline: if the BERTMNLI labels depend only vo- 514

cabulary, it will reject the shuffled attack clones 515

exactly like the underlying test items. 516

The strong impact of vocabulary identity on 517

ARR is immediately visible: Within all the test 518

sets, we find that the n-gram ARRs are very similar 519

across different n and the shuffle attacks (which 520

completely preserve vocabulary) are more success- 521

ful than the n-gram attacks for all test sets. For 522

Beetle, we also see higher ARRs for the out-of- 523

domain test set with unseen vocabulary. 524

The model is, however, not ignoring word order: 525

The shuffle ARR is always higher (except for SEB- 526

UD) than the rejection rate of the original test items. 527

This means that quite some items are accepted in 528

their original word order, but rejected when shuf- 529

fled. Also, we see from the difference between the 530

unigram and shuffle ARRs that the right combina- 531

tion of relevant words (even in the wrong order) is 532

a stronger attack than randomly sampled question- 533

and label-specific words. Therefore, we conclude 534

that the model is not necessarily using word order, 535

but considers word cooccurrences rather than just 536

picking out relevant keywords. 537

The label-specific ARRs for the shuffle attack 538

(Table 6) allow us to tease apart the model’s reac- 539

tion to correct and incorrect vocabulary. 540

As expected, clones of correct test items are 541
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Length attacks Vocabulary Attacks

Short was path in is or is closed has incorrect Unigrams bulb share are terminal an they

Medium a affect terminal terminal by bulb off [...] (34 words) Bigrams terminal and the bulb electrical state

Long a and c path state difference bulb [...] (93 words) Trigrams an electrical state terminal are connected

Shuffle gap they are connected that no

Original that they are connected; no gap

Table 4: Adversarial attack items for length and vocabulary attacks.

Beetle SEB
UA UQ UA UQ UD

Unigrams 78.8 88.5 68.3 67.5 71.7
Bigrams 77.0 85.6 70.9 66.7 68.8
Trigrams 77.6 84.4 68.2 68.1 67.9
Shuffle 64.9 73.6 62.6 57.6 60.4
Originals 57.6 68.1 60.2 55.5 61.2

Table 5: ARRs for ngram and shuffle attacks and Re-
jection Rates for the original test items.

rarely, and clones of incorrect items almost542

always, rejected. Importantly, now we see that the543

items that were accepted in the original but are544

rejected as shuffle attack clones are almost exclu-545

sively correct test items (as there is little differ-546

ence between shuffled and original incorrect547

answers). This again confirms that the model does548

not do pure keyword spotting, but also considering549

word order and word cooccurrence.550

Length In order to decouple effects of length as551

much as possible from the strong vocabulary ef-552

fects identified above, we report the length ARRs553

for Beetle-UD and SEB-UQ in Table 7. There is a554

clear trend for long attack items (in the range of the555

median to the maximum length of the test data set)556

to be accepted more easily while short and medium557

attack items are reliably rejected across both cor-558

pora: The model learns and uses the correlation559

between answer length and correct label.560

Therefore, caution is needed in a real-world set-561

ting if the training data shows length biases: The562

model is likely to pick them up, and length is a very563

easily gamed answer property. Fortunately, since564

only the very longest answers are affected, gaming565

attempts through answer length can be screened for566

by a human grader.567

Discussion Our adversarial attack experiments568

have shown that the model pays a lot of attention569

to correct wording (the shuffle attack from correct570

original items is the strongest); clearly, combin-571

ing the right words (as seen in the advantage of572

shuffle vs. unigram) and putting them in the right 573

order (so that the original item is accepted but the 574

shuffled clone rejected) is also important. This 575

means that a student who tries to pass a question 576

by randomly generating domain keywords is more 577

likely to succeed if they choose a combination of 578

keywords that is relevant for the correct answer – 579

and a student who is able to do this does not re- 580

ally need to strategically fake an answer. Also, our 581

vocabulary experiments have not shown a way to 582

get an incorrect attack clone accepted more 583

easily than the original item. Generating extremely 584

long answers does appear to be a promising strat- 585

egy to fool the model, but can fortunately be easily 586

screened for by human review. 587

The typical ARRs indicate a need for human 588

oversight, anyway: ARRs of up to 85% for Beetle- 589

UQ may still be acceptable for providing student 590

feedback, but ARRs around 70% for SEB are prob- 591

ably not. Again, we see big corpus-related differ- 592

ences, stressing the need to analyse system behav- 593

ior specifically for each use case. 594

On a theoretical note, we observe that a 595

vocabulary-based model’s reliability and robust- 596

ness to strategic answers behave inversely: Relia- 597

bility is highest when the test and training data are 598

most similar; robustness (i.e. rejection of attack 599

items) is highest when the test vocabulary is dif- 600

ferent from the training vocabulary, thus avoiding 601

keyword-based erroneous acceptance. 602

7 Discussion and Conclusions 603

We have looked at the reliability and robustness 604

of a SAG model by training a Transformer-based 605

model for the 2-way task on the Beetle and SEB 606

corpora and verifying that it matches the SOTA. 607

Specific modelling decisions proved less important 608

in reaching this goal than informative pre-training 609

on the MNLI corpus. 610

Our focus was on understanding the model’s pat- 611

terns of performance in order to evaluate its appro- 612

priateness for real-world settings in an educational 613
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UA UQ UD
correct incorrect correct incorrect correct incorrect

Shuffle 26.1 91.7 49.4 91.8 – –
Beetle Originals 14.5 93.3 18.6 76.5 – –

Shuffle 28.6 88.7 29.7 77.2 37.6 77.5
SEB Originals 18.1 87.3 33.3 79.1 32.3 74.2

Table 6: Label-specific ARRs for the shuffle attack and Rejection Rates for the original test items.

Beetle-UQ SEB-UD
short 97.5 95.5
medium 89.0 83.0
long 43.0 33.0

Table 7: ARRs for length attacks.

context, which requires both correct and balanced614

predictions and robustness to strategic inputs.615

The model’s prediction quality as measured in616

overall F Scores is good and approximates levels of617

human performance. However, overall F Scores are618

not detailed enough to understand the usefulness619

of the model’s predictions: A closer look at class-620

based F Scores and more fine-grained annotation621

levels revealed that correct and partially622

correct/incomplete test items were hard-623

est to label correctly, introducing grading imbal-624

ances. These are highly relevant for interpreting625

the model’s grade predictions and for deciding how626

to use them.627

Next, we tested the model’s robustness to strate-628

gic input (such as chains of relevant keywords or629

very long, irrelevant content). We found that the630

model strongly relies on the training vocabulary631

to spot correct answers, but also considers word-632

cooccurrence and word order to some degree. In633

the best case, more than 85% of attack items were634

rejected, and the best gaming strategy is to com-635

bine several keywords relevant to a correct answer,636

which makes it relatively unlikely that answers637

with no merit at all will be accepted. However,638

the model is vulnerable to answer length, so that639

long answers need to be screened again by a human640

grader for real-world use. In sum, the model cannot641

be considered fully tamper-proof.642

In the best case, BERTMNLI , our SOTA SAG643

model, is reliable and robust enough to use for644

formative feedback in real-life, or as a support to645

human graders for higher-stakes scenarios: Grades646

are reliable overall with a clearly focused, inter-647

pretable grading imbalance and the model is most648

vulnerable to very long strategic answers, which 649

can be easily identified and screened. 650

However, this best case performance is by no 651

means guaranteed or predictable. It holds on the 652

Beetle corpus, while on the SEB corpus, both relia- 653

bility and robustness are generally much worse, and 654

we even see differences in reliability and robustness 655

for different test sets of the same training corpus. 656

Even the direction of grade imbalance can differ 657

between test sets for the same training corpus, de- 658

spite a similar label distribution. It is therefore vital 659

to closely analyse reliability and robustness of any 660

automated model for the specific use case before 661

deploying it in a real-world education setting. 662

A second learning again regards the Beetle best 663

case model but generalizes to all SAG models that 664

share its dependence on prompt-specific vocabu- 665

lary. This dependence causes a trade-off between 666

reliability and robustness: Grade predictions are 667

most reliable for the UA test sets, where prompt- 668

specific vocabulary is helpful to spot correct an- 669

swers, and deteriorates for out-of-domain test sets. 670

On the other hand, the reliance on informative 671

keywords makes the model more susceptible to 672

vocabulary-based gaming strategies, and robust- 673

ness increases for out-of-domain test sets. Adver- 674

sarial training on shuffled correct training items (as 675

the hardest attack category) might be useful here 676

to enforce more use of word order information by 677

the model; Ding et al. (2020) report that this strat- 678

egy improves the robustness of a non-neural SAG 679

model while hardly hurting overall reliability. 680
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A Training and Test Data817

Table 8 shows the sizes of test, development and818

training sets for Beetle and SEB as well as the label819

distribution for 2-way annotation.820

B Model Sizes and Hyperparameters821

BERTbase and XLNetbase have 110M parame-822

ters (Devlin et al., 2019; Yang et al., 2019),823

RoBERTabase has 125M (Liu et al., 2019) parame-824

ters.825

The models received a maximum of 256 tokens826

per input sentence. We used the Adam optimizer827

with an initial learning rate of 5e-5, and ε of 1e-8;828

batch size for training was 8.829

We varied the number of training epochs (up to830

a) maximum of six) and the random seed for weight831

initialization (1, 42, or 100).832

Training times on a single GPU core were short.833

For six training epochs, BERT and RoBERTa834

trained in six minutes on Beetle and ten minutes on835

SEB. XLNet took ten and twelve minutes, respec-836

tively.837

C Best-Performing Model Parameters838

Table 9 shows the optimal random seeds and num-839

ber of training epochs for the BERTMNLI models840

on the training corpora, and the resulting individual841

weighted F Scores on the development sets.842

Seed Epochs F Score
Beetle 100 5 89.0
SEB 100 6 85.5

Table 9: Number of training epochs and random seed
for weight initialization for the BERTMNLI models.
Individual weighted F Scores on the development sets.

D Exp. 1: Reliability 843

Table 10 shows the weighted F1 scores on the test 844

set, where available. 845

Beetle SEB

UA UQ UA UQ UD

SemEval-13 – – – – –
Saha et al. – – 79.1 74.8 71.9

BERTMNLI 90.2 77.5 83.1 73.5 71.5

Table 10: Weighted F1 on the test sets for literature
benchmarks and BERTMNLI .

Table 11 shows Precision and Recall by label on 846

all the test sets. 847

Table 12 gives the percentage of accurate labels 848

assigned by the 2-way model to the test items when 849

broken down according to the 5-way classification. 850

E Code and Data 851

The code and data used for this 852

study can be downloaded at https: 853

//osf.io/72bzt/?view_only= 854

56900eb27e8e4f88b6e489398fc295db. 855

You will find 856

• SEB and Beetle UA development data (answer 857

IDs only, due to licensing restrictions on re- 858

distribution) 859

• Python code to re-format the corpora, train 860

the models and analyze results 861

• Bash scripts with the original training calls 862

• Requirement lists to re-create the server con- 863

figurations used for training 864
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Train (% i) Dev UA (% i) Test UA (% i) Test UQ (% i) Test UD (% i)

Beetle 3570 (61.3) 371 (62.3) 439 (59.9) 819 (58.0) –
SEB 4491 (59.6) 478 (58.2) 540 (56.9) 733 (58.9) 4562 (58.0)

Table 8: Size of training and test sections for the SemEval-2013 corpora. Label distribution for 2-way annotation
(% i: percentage of label incorrect). UA: Unseen Answer, UQ: Unseen Question, UD: Unseen Domain.

Beetle SEB
UA UQ UA UQ UD

c 85.5/90.3 81.6/61.9 81.9/75.5 66.3/71.8 67.9/62.5
i 93.3/89.7 76.5/89.9 82.5/87.3 79.1/74.5 74.2/78.4

Table 11: Precision/Recall for the correct (c) and incorrect (i) classes on the Unseen Answer (UA), Unseen
Question (UQ) and Unseen Domain (UD) test sets.

Beetle SEB
UA UQ UA UQ UD

correct 90.3 (175) 62.0 (344) 75.5 (233) 71.8 (301) 62.5 (1917)
contradictory 91.9 (111) 93.0 (244) 81.3 (58) 67.2 (64) 73.1 (417)
irrelevant 94.1 (17) 100 (18) 94.0 (133) 78.8 (193) 86.4 (1222)
partially correct 84.8 (112) 82.0 (172) 82.3 (113) 72.6 (175) 70.2 (986)
non-domain 100 (23) 100 (40) 100 (3) – (0) 100 (20)

Table 12: Percentage of correct labels (total number of instances) for each of the 5-way classes on the Unseen
Answer (UA), Unseen Question (UQ) and Unseen Domain (UD) test sets.
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