

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 G-MERGING: GRAPH MODEL MERGING FOR PARAMETER-EFFICIENT MULTI-TASK KNOWLEDGE CONSOLIDATION

Anonymous authors

Paper under double-blind review

ABSTRACT

The pretrain-finetuning paradigm has achieved notable success in graph learning. Moreover, merging models fine-tuned on different tasks to enable a parameter-efficient model with multi-task capabilities is gaining increasing attention for its practicality. However, existing model merging methods, such as weight averaging and task arithmetic, struggle to generalize well to graph structures and Graph Neural Network (GNN) models due to the unique structural heterogeneity of graph data. In this paper, we propose an innovative graph model merging framework called **G-Merging** for merging multiple task-specific fine-tuned GNN models. G-Merging first employs task arithmetic to coarsely merge graph models, capturing shared cross-task knowledge. Second, it introduces a Topology-aware Wasserstein Distance (TWD) loss to train lightweight task adapters upon the merged model, preserving domain-specific graph patterns via aligning the embeddings of merged and fine-tuned models. Third, G-Merging integrates the adapters into a training-free, topology-aware router within a mixture-of-experts (MoE) architecture, dynamically routing input graphs to task-specific adapters based on structural similarity, thereby mitigating conflicts and enhancing knowledge sharing. Extensive experiments on 8 graph downstream datasets demonstrate the effectiveness of the merged model, showing impressive performance close to or exceeding individual finetuned models while improving parameters and training efficiency. Our code is available at <https://anonymous.4open.science/r/G-Merging-D515>

1 INTRODUCTION

With the gradual development of graph learning, various model architectures have been proposed (Scarselli et al., 2008; Wu et al., 2020; Xu et al., 2018; Wu et al., 2022), especially Graph Neural Networks (GNNs). Pre-trained models and pre-training strategies (Hu et al., 2020; Qiu et al., 2020; Xu et al., 2018) on graph data have gained attention due to their strong generalization ability. Meanwhile, fine-tuning these pre-trained models on downstream tasks has become a standard paradigm (Sun et al., 2024; Zhang et al., 2022; Zhili et al., 2024; Sun et al., 2022), particularly in scenarios where data labels are limited or out-of-distribution, such as in the domains of chemistry (Kim et al., 2023; Mayr et al., 2018; Wu et al., 2018; Sterling & Irwin, 2015) or biology (Veličković et al., 2018; Ingraham et al., 2019; Zitnik et al., 2019). Fine-tuned models usually achieve good performance on specific downstream tasks, as they are trained on task-specific datasets in a targeted manner. However, when we need to perform multiple tasks simultaneously, applying individual fine-tuned models to different tasks results in high storage and deployment costs. Multi-Task Learning (MTL) offers a way to train a unified model on an aggregated multi-task dataset, but it usually learns from scratch and does not leverage the knowledge already encapsulated in fine-tuned models.

Thus, model merging seeks to construct a unified multi-task model by combining the parameters of fine-tuned models instead of joint training from scratch, as shown in Figure 1 (1). Ideally, it can retain the performance of each fine-tuned model while reducing parameter overhead and avoiding the need for extensive re-training on all task data. Until now, multiple model merging methods have been proposed, showing both practical significance and wide applicability. These range from the simple weight averaging strategy (Wortsman et al., 2022) to advanced ones, including Task Arithmetic (Ilharco et al., 2022), Ties-Merging (Yadav et al., 2023), AdaMerging (Yang et al., 2023), DARE (Yu

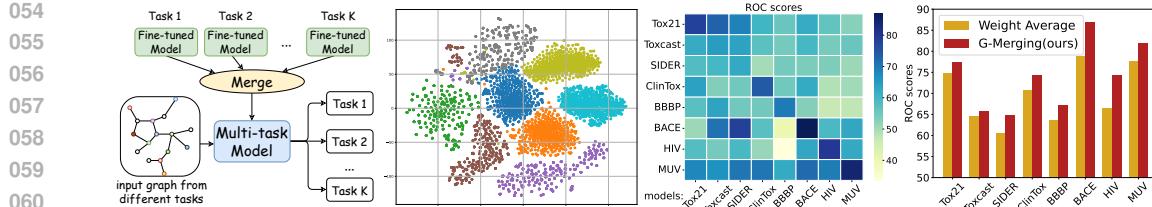


Figure 1: From left to right: (1) The illustration of the graph model merging task. (2) A 2D t-SNE visualization of the final-layer embeddings from eight protein graph datasets, encoded using the graph pre-training model (Hu et al., 2020). (3) The cross-domain validation performance of task-specific graph models, each fine-tuned on one of the eight datasets from a shared pre-trained model. (4) The performance comparison between models merged via the Weight Average and our proposed methods.

et al., 2024), and Twin-Merging (Lu et al.). While model merging has been explored extensively in domains like vision and language models, its applicability in the context of graph models still remains a challenge. For example, as shown in Figure 1 (2), embeddings from eight similar graph datasets exhibit distinct clustering patterns, and in Figure 1 (3), and the models from the same pre-training graph model, fine-tuned on one of these domain (row), usually fail to generalize to others (column) when replace the backbones of the corresponding fine-tuning models. These observations indicate that graphs, inherently with heterogeneous structural patterns, lead to complex representations that are highly domain-specific. These can result in a significant performance gap between fine-tuned models and their merged model when applying existing merging strategies (Yang et al., 2024a; Huang et al., 2025), due to task conflict and knowledge sparsity (Yadav et al., 2023).

These observations motivate the need for novel model merging strategies tailored to graph data. In this paper, we propose an innovative framework called G-Merging for merging multi-task fine-tuned GNN models. Specifically, we first conduct a coarse merging on multiple fine-tuned GNN models via task arithmetic to obtain a unified GNN model. Then, to capture nuanced task-specific knowledge, we introduce the Topology-aware Wasserstein Distance (TWD) as a feature alignment loss. This loss trains lightweight, task-specific adapters upon the merged model, which supplement knowledge and alleviate representation bias. Furthermore, to mitigate task conflicts and encourage inter-task knowledge sharing, we further integrate these adapters into a Mixture of Experts (MoE) framework with a training-free, topology-aware router, which, together with the merged model, forms the final multi-task model. We demonstrate the effectiveness and generalization ability of G-Merging through extensive experiments on eight graph datasets, encompassing various GNN architectures and pre-training strategies. As an experimental example shown in Figure 1 (4), our method achieves a clear performance boost over naive weight averaging. Meanwhile, our approach offers efficient storage and fast inference, requiring storage space nearly equivalent to a single GNN model. The main contributions can be summarized as follows:

- ① This paper proposes G-Merging, a novel approach to merging fine-tuned graph models via *task arithmetic* and *TWD-based adapter routing*, resolving cross-domain structural heterogeneity and consolidating task-specific knowledge while enabling cross-task knowledge sharing.
- ② This paper proposes a *topology-aware* and *training-free* MoE that dynamically selects adapters at inference, enabling efficient cross-task knowledge transfer and multi-task generalization.
- ③ Extensive experiments demonstrate that G-Merging not only *maintains or exceeds* the performance of individual fine-tuned models but also improves *storage and training efficiency*. The framework is also *model-agnostic*, supporting integration with various graph models.

2 RELATED WORK

Model Merging. In recent years, model merging has became a rapidly evolving technique applied in two dominant scenarios: (i) merging multiple models trained on the same dataset, aiming to improve model generalization (Wortsman et al., 2022; Wang et al., 2022; Cha et al., 2021; Gupta et al., 2020; Wang et al., 2025) or support federal learning (Liu et al., 2022a; Wang et al., 2020) (ii) merging multiple models trained on different datasets or for different tasks to perform MTL (Matena & Raffel; Jin et al., 2022; Yang et al., 2023; Huang et al., 2025). This paper primarily focuses on the latter scenarios. Consequently, numerous works propose advanced merging techniques to improve

108 performance or efficiency (Huang et al., 2025; Yadav et al., 2023; Lu et al.; Ilharco et al., 2022). The
 109 baselines in our experiments provide specific examples.
 110

111 **Fine-tuning in Graph Transfer learning.** Supervised Fine-tuning (SFT) from pre-trained models
 112 on downstream tasks is becoming a standard paradigm in both NLP and vision fields (Paul & Chen,
 113 2022; Dodge et al., 2020; Devlin et al., 2019; Bommasani et al., 2021; Dosovitskiy et al., 2020) and is
 114 gaining increasing popularity in graph learning. SFT in graph transfer learning demonstrates effective
 115 performance while alleviating the burden of collecting labels regarding new tasks. Depending
 116 on whether all the parameters of models are adjusted, SFT can be divided into conventional full
 117 fine-tuning (FFT) and parameter-efficient fine-tuning (PEFT). PEFT aims to reduce the number of
 118 trainable parameters for downstream tasks by either inserting additional modules (e.g. adapters,
 119 learnable prompts) or training only a subset of parameters while freezing the rest (Hu et al.; Liu et al.,
 120 2022b; Houlsby et al., 2019a).

121 **Mixture of Experts.** The Mixture of Experts (MoE) paradigm introduces an adaptive routing method
 122 that allocates experts dynamically to handle different inputs. Sparse MoE models activate only
 123 a subset of experts for each input to improve computational efficiency, while dense MoE models
 124 combine the outputs of all experts to achieve superior performance. The concept was first introduced
 125 by (Jacobs et al., 1991) with gating mechanisms to select the experts. Recent studies have focused on
 126 challenges such as load balancing of experts (Clark et al., 2022; Zhou et al., 2022), training instability
 127 (Zoph et al., 2022), expert specialization (Dai et al., 2024; Tang et al., 2024), and synchronization
 128 reduction (Sukhbaatar et al., 2024) for tasks in CV and NLP fields. Despite their success, the
 129 requirement for substantial multi-task data and the high cost of joint training remain significant
 130 challenges for these methods. In contrast, our MoE module is completely train-free and orchestrates
 131 task-specific experts based on TWD.
 132

3 PRELIMINARIES

133 **Notation.** Let $G(\mathcal{V}, \mathcal{E})$ be a graph with vertices \mathcal{V} and edges \mathcal{E} . An input graph data can be expressed
 134 as $G = \{\mathbf{A}, \mathbf{X}\}$, where $\mathbf{X} \in \mathbb{R}^{|\mathcal{V}| \times d_{node}}$ is the node feature matrix and $\mathbf{A} \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|}$ is the adjacency
 135 matrix. $\mathbf{A}_{ij} = 1$ otherwise 0 if there is an edge between nodes n_i and n_j . Under the pretrain-finetune
 136 paradigm, let $f_{\theta}(G_i)$ be a pre-training GNN model with parameter θ_{pre} , which is pre-trained on a
 137 large, general-purpose graph dataset. Then, we consider a collection of K downstream graph tasks,
 138 indexed by $k = \{1, 2, \dots, K\}$. Each task k is associated with a private dataset $\mathcal{D}_k = \{(G_i, y_i)\}_{i=1}^{N_k}$,
 139 where y_i is the label of the graph G_i and N_k is the number of samples in task k . For each task, the
 140 model is initialized with θ_{pre} and then fine-tuned on \mathcal{D}_k to obtain task-specific parameters θ_k with an
 141 additional task-specific prediction head.
 142

143 **Problem Definition.** The graph model merging problem aims to obtain a unified graph model
 144 f_{θ_m} with reduced parameters overhead by consolidating knowledge from a collection of fine-tuned
 145 models $\{f_{\theta_1}, f_{\theta_2}, \dots, f_{\theta_K}\}$ and pre-trained model $f_{\theta_{pre}}$, eliminating the need to maintain a full set of
 146 parameters for each task-specific model. Then, f_{θ_m} as a shared graph encoder, combined with the
 147 task-specific classification heads from the fine-tuned models, is used to perform multi-task inference.
 148 The objective is to achieve this without retraining a new multi-task model from scratch, which can
 149 be computationally expensive and require access to all labeled data, or relying on naive parameter
 150 averaging strategies, which often result in degraded performance due to parameter misalignment
 151 and lack of task-specific nuance. The goal is to strike a balance by efficiently merging multiple
 152 task-specific fine-tuned models into a unified model that *reduces storage and computational cost* by
 153 eliminating the overall number of parameters, *maintains or even improves individual performance* on
 154 all downstream tasks, and *possibly leverages shared knowledge* to enable cross-task generalization.
 155

156 **Wasserstein Distance.** Wasserstein Distance (WD) (Peyré et al., 2019)(a.k.a. Earth Mover’s Dis-
 157 tance, or Optimal Transport Distance) quantifies the similarities between objects such as probability
 158 distributions, either discrete or continuous, by computing the minimum cost of an optimal transport
 159 plan from one to the other (Bécigneul et al., 2020). We now describe the definition of WD between
 160 two discrete distributions as follows.
 161

162 **Definition 1.** Consider two discrete probability measures $\mu \in P(\mathbb{X})$ and $\nu \in P(\mathbb{Y})$, represented
 163 respectively as $\mu = \sum_{i=1}^n \mathbf{u}_i \delta_{x_i}$ and $\nu = \sum_{j=1}^m \mathbf{v}_j \delta_{y_j}$, where δ_x denotes the Dirac measure centered
 164 at x . A coupling of $\mu(x)$ and $\nu(y)$ can be expressed as $\tau(x, y) = \sum_{i=1}^n \sum_{j=1}^m \mathbf{T}_{ij} \delta_{(x_i, y_j)}$, in which
 165 $\mathbf{T} \in \mathbb{R}_+^{n \times m}$ fulfills the marginal conditions $\mathbf{T} \mathbf{1}_n = \mathbf{u}$ and $\mathbf{T}^\top \mathbf{1}_m = \mathbf{v}$. Here, \mathbf{u} and \mathbf{v} are the
 166

respective weight vectors of μ and ν , and $\mathbf{1}_n \in \mathbb{R}^n$ is the all-ones vector of length n . The Wasserstein distance between μ and ν is then given by:

$$\mathcal{D}_{wd}(\mu, \nu) = \min_{\mathbf{T} \in \Pi(\mathbf{u}, \mathbf{v})} \sum_{i=1}^n \sum_{j=1}^m \mathbf{T}_{ij} \cdot c(x_i, y_j). \quad (1)$$

where the feasible set $\Pi(\mathbf{u}, \mathbf{v}) = \{\mathbf{T} \in \mathbb{R}_+^{n \times m} \mid \mathbf{T}\mathbf{1}_n = \mathbf{u} \wedge \mathbf{T}^\top \mathbf{1}_m = \mathbf{v}\}$ includes all joint distributions with marginals μ and ν . The function $c(x_i, y_j)$ denotes the ground cost associated with transporting mass from x_i to y_j . The matrix \mathbf{T} , referred to as the **transport plan** or **transport map**, defines the quantity \mathbf{T}_{ij} of mass relocated from x_i to y_j .

4 METHODOLOGY

4.1 COARSE PARAMETERS MERGING VIA TASK ARITHMETIC

We begin with a coarse merging process to reduce parameter redundancy. Specifically, from previous investigations and discussions on model merging research, *knowledge modularization is an effective and reasonable technique that decomposes the knowledge possessed by experts into ① Shared knowledge and ② Task-specific exclusive knowledge (Lu et al.; Huang et al., 2025)*. As the name suggests, shared knowledge represents common and generalized knowledge across different tasks, *e.g.*, in the pretrain-finetune paradigm, the base model or pre-trained model possesses shared knowledge across downstream tasks. Furthermore, task-specific knowledge can be compressed into shared knowledge by merging the parameters of fine-tuned models (*e.g.*, direct weight averaging is a simple approach). Based on the above observation, we merge fine-tuned GNN models into a unified model with shared knowledge, leveraging an established merging technique called Task Arithmetic (Ilharco et al., 2022).

Specifically, for K tasks, the corresponding task vectors of parameters are defined as $\tau_k = \theta_k - \theta_{pre}$, where $k \in \{1, 2, \dots, K\}$. Furthermore, multiple task vectors $\{\tau_k\}_{k=1}^K$ are added and merged into the pre-trained parameters θ_{pre} , formulated as $\theta_{uni} = \theta_{pre} + \lambda \sum_{k=1}^K \tau_k$, where the θ_{uni} is the parameters of unified model with shared knowledge and λ is a scaling hyperparameter to control the balance between fundamental knowledge in pre-trained model and task-related knowledge in fine-tuned models. Setting λ as $\frac{1}{K}$ recovers naive weight averaging, while larger/smaller values amplify or suppress task-related adjustments. From the empirical results in Appendix F, a value bigger than $\frac{1}{K}$ may be more effective for downstream tasks. As shown in Phase(I) of Figure 2, this coarse merging process offers a foundational backbone that captures commonalities across tasks, serving as an initialization for the subsequent process.

4.2 INCORPORATING TASK-SPECIFIC ADAPTERS

While coarse merging provides a foundation for capturing shared knowledge, it may be insufficient for capturing nuanced, task-specific knowledge. Empirically, we notice that the single unified GNN model we obtained exhibits a performance gap compared to the fine-tuned GNN models on

4

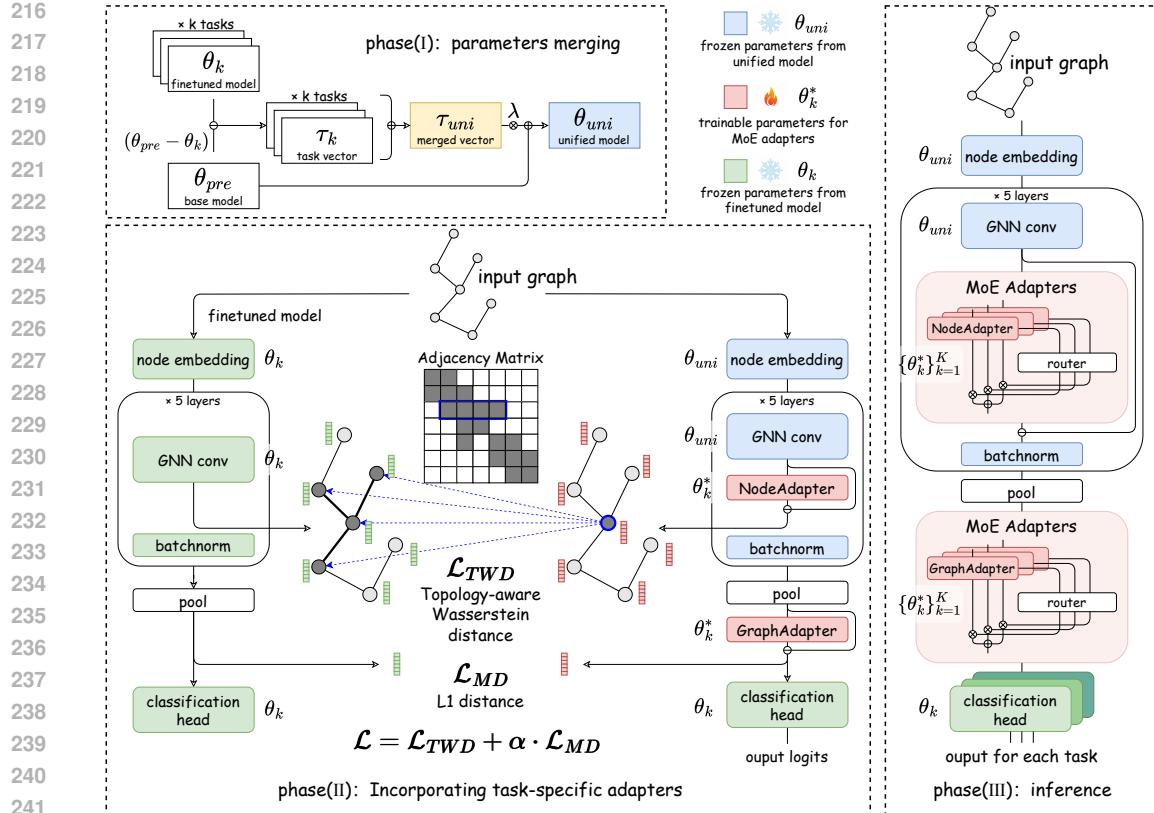


Figure 2: Overall framework of G-Merging, containing three main phases. In phase(I), we coarsely merge GNN models fine-tuned on different tasks into a unified model using task arithmetic. In phase(II), we train multiple task-specific adapters, lightweight modules used to solve the representation bias between the unified model and the fine-tuned model. Moreover, we apply the graph Topology-Aware Wasserstein Distance (denoted as \mathcal{L}_{TWD} in the figure) and the L1 distance (denoted as \mathcal{L}_{MD} in the figure) to promote representation alignment at the node and graph levels, respectively. In Phase (III), we add MoE adapters, composed of task-specific adapters and a router method, at each layer of the unified GNN model and before the prediction head for test-time inference.

downstream graph tasks. Previous research has demonstrated that this discrepancy is attributed to representation bias, which refers to a substantial difference in the representation distribution between the unified and fine-tuned models (Yang et al., 2024a;b). To address this problem, we further introduce additional adapter-based modules, which are inserted after the graph convolution layers and before the classification head. We trained task-specific adapters to minimize representation bias at both the node level (i.e., NodeAdapters) and the graph level (i.e., GraphAdapters).

Specifically, given an input graph data $G = \{\mathbf{A}, \mathbf{X}\}$, the node embedding matrices $\mathbf{H}^{(l)} \in \mathbb{R}^{|\mathcal{V}| \times d}$ ($\mathbf{H}^{(0)} = \mathbf{X}$) updated in l -th GNN layers with or without NodeAdapters are respectively formulated as

$$\begin{aligned} \mathbf{H}_{\theta, \theta^*}^{(l)} &= f_{conv, \theta}^{(l)}(\mathbf{A}, \mathbf{H}_{\theta, \theta^*}^{(l-1)}) - f_{adap, \theta^*}(f_{conv, \theta}^{(l)}(\mathbf{A}, \mathbf{H}_{\theta, \theta^*}^{(l-1)})), \\ \mathbf{H}_{\theta}^{(l)} &= f_{conv, \theta}^{(l)}(\mathbf{A}, \mathbf{H}_{\theta}^{(l-1)}), \end{aligned} \quad (2)$$

where θ and θ^* denote the parameters of GNN model and adapters, respectively, f_{conv} is the graph convolution function for aggregating messages and updating embeddings, which varies with different GNN backbones like GIN or GCN, and f_{adap} is the lightweight adapter module, which can be an arbitrary implementation (such as multiple fully connected layers). Without loss of generality, in our method, we follow the original work on Adapters (Houlsby et al., 2019b) and set f_{adap} as follows:

$$f_{adap, \theta^*}(\mathbf{H}) = \text{ReLU}(\mathbf{H} \cdot \mathbf{W}_{down}) \cdot \mathbf{W}_{up}, \quad (3)$$

where $\mathbf{W}_{down} \in \mathbb{R}^{d \times r}$ and $\mathbf{W}_{up} \in \mathbb{R}^{r \times d}$ are two trainable matrices, i.e., $\theta^* = \{\mathbf{W}_{down}, \mathbf{W}_{up}\}$, $\text{ReLU}(\cdot)$ is a nonlinear activation function. The parameter r represents the internal rank of the

270 adapters, controlling the scale. Similarly, the final graph embedding vectors $\mathbf{h} \in \mathbb{R}^d$ extracted by the
 271 Pooling layer with or without GraphAdapter can be formulated as
 272

$$\begin{aligned} 273 \quad \mathbf{h}_{\theta, \theta^*} &= f_r(\{\mathbf{H}_\theta^{(l)}\}) - f_{\text{adapt}, \theta^*}(f_r(\{\mathbf{H}_\theta^{(l)}\})), \\ 274 \quad \mathbf{h}_\theta &= f_r(\{\mathbf{H}_\theta^{(l)}\}), \end{aligned} \quad (4)$$

275 where f_r is a readout function such as averaging or summarizing the node embeddings.
 276

277 For each task k , we denote the task-specific adapter parameters as θ_k^* . We train these adapters on the
 278 corresponding task graph data to align the distribution of embeddings extracted by the merged and
 279 the previous fine-tuned GNN models. To achieve this, we employ Wasserstein Distance in Section 3
 280 to quantify the similarity between two sets of node embeddings in a graph, which can be regarded as
 281 discrete distributions (Zhang et al., 2022; Chen et al., 2020). Motivated by the earlier observation
 282 of domain-specific structural patterns inherent in graph data, we further incorporate graph topology
 283 to enhance structural awareness. Specifically, given the node embeddings $\mathbf{H}_{\theta_{\text{uni}}, \theta_k^*}^{(l)}$ encoded from
 284 the l -th layer of the previously derived unified model with NodeAdapters and $\mathbf{H}_{\theta_k}^{(l)}$ from the k -th
 285 fine-tuned model, we introduce an alignment loss based on Topology-aware Wasserstein Distance:
 286

$$\mathcal{L}_{\text{TWD}} = \text{TWD}(\mathbf{H}_{\theta_{\text{uni}}, \theta_k^*}^{(l)}, \mathbf{H}_{\theta_k}^{(l)}, \mathbf{A}) = \min_{\mathbf{T} \in \Pi(\mathbf{A})} \sum_{i=1}^{|\mathcal{V}|} \sum_{j=1}^{|\mathcal{V}|} \mathbf{T}_{ij} \cdot c(\mathbf{h}_i^{(l)}, \mathbf{h}_j^{(l)}), \quad (5)$$

287 where $\Pi(\mathbf{A}) = \{\mathbf{T} \in \mathbb{R}_+^{|\mathcal{V}| \times |\mathcal{V}|} \mid \mathbf{T}\mathbf{1}_{|\mathcal{V}|} = \frac{1}{|\mathcal{V}|} \cdot \mathbf{1}_{|\mathcal{V}|} \wedge \mathbf{T}^\top \mathbf{1}_{|\mathcal{V}|} = \frac{1}{|\mathcal{V}|} \cdot \mathbf{1}_{|\mathcal{V}|} \wedge \mathbf{T} \odot (\mathbf{1}_{|\mathcal{V}| \times |\mathcal{V}|} - \mathbf{A}) = 0_{|\mathcal{V}| \times |\mathcal{V}|}\}$ is the set of transport plans, $\mathbf{h}_i^{(l)} = \mathbf{H}_{\theta_{\text{uni}}, \theta_k^*}^{(l)}[i, :]$ and $\mathbf{h}_j^{(l)} = \mathbf{H}_{\theta_k}^{(l)}[j, :]$ denote two
 288 embedding vectors, and $c(\cdot, \cdot)$ is the cost function. Compared to the original WD, the transport plan \mathbf{T}
 289 is now constrained by the graph adjacency matrix \mathbf{A} . Therefore, this loss function is computationally
 290 aware of graph topology.
 291

292 Notably, in our task, we calculate the cosine distance $c(\mathbf{a}, \mathbf{b}) = \frac{1}{2}(1 - \cos(\mathbf{a}, \mathbf{b}))$ as the cost function,
 293 following many prior works based on the application of Optimal Transport problems (Zhang et al.,
 294 2022; Xu et al., 2020; Chen et al., 2020). Additionally, we set \mathbf{A} as the 1-hop adjacency matrix with
 295 self-loops, i.e., $\mathbf{A}_{ij} = 1$ if and only if $i = j$ or there exists an edge between i and j . Conceptually,
 296 reducing the cosine distance between \mathbf{h}_i and any \mathbf{h}'_j , where $j \in \mathcal{N}(i) \cup \{i\}$ (with $\mathcal{N}(j)$ denotes
 297 the set of neighbors of node i), contributes to the reduction of TWD. This is intuitively reasonable—a
 298 property often referred to as the smoothness of GNNs (Li et al., 2018). Similar to the standard WD,
 299 calculating TWD requires finding out the optimal transport plan \mathbf{T} . This problem has been extensively
 300 studied in prior work, with efficient solutions such as Sinkhorn algorithm variants (Cuturi, 2013;
 301 Peyré et al., 2019; Dvurechensky et al., 2018; Zhang et al., 2022). We provide a detailed introduction
 302 including theoretical background and computational complexity of TWD in Appendix A.
 303

304 For the final graph embeddings $\mathbf{h}_{\theta_{\text{uni}}, \theta_k^*}$ and $\mathbf{h}_{\theta_{\text{pre}}}$, we define the alignment loss as Manhattan
 305 Distance (also called L1 distance) between them, i.e., $\mathcal{L}_{\text{MD}} = \|\mathbf{h}_{\theta_{\text{uni}}, \theta_k^*} - \mathbf{h}_{\theta_k}\|_1$. Combining the
 306 losses above, the final optimization problem is
 307

$$\mathcal{L} = \min_{\theta_k^*} \frac{1}{|\mathcal{D}_k|} \sum_{G \in \mathcal{D}_k} \left(\alpha \cdot \mathcal{L}_{\text{MD}} + \sum_{l=1}^L \mathcal{L}_{\text{TWD}} \right) \quad (6)$$

308 where α is the hyperparameter to balance two losses.
 309

310 As shown in Figure 2, in Phase(II), we train without task labels and obtain K sets of adapters
 311 corresponding to K tasks. These adapters serve as supplemental task-specific knowledge to the
 312 shared knowledge in the unified model and improve the performance on downstream tasks. Notably,
 313 our training process is efficient because the majority of parameters θ_{uni} are frozen while only
 314 parameters in adapters θ_k^* remain for training.
 315

316 4.3 INFERENCE PROCEDURE

317 In the inference phase, we aim to obtain an enhanced model by integrating the knowledge in adapters
 318 from different tasks. Inspired by the perspective that knowledge from similar tasks can be mutually
 319

324 beneficial (Ilharco et al., 2022), we compose the task-specific adapters into MoEAdapters based on a
 325 parameter-free Mixture-of-Experts architecture (Cai et al., 2024) during inference. Specifically, we
 326 compose f_{adap, θ^*} to $f_{moe, \{\theta_1^*, \theta_2^*, \dots, \theta_K^*\}}$ in Equations 2 and 4. Inside the MoEAdapter, each expert is
 327 set as the task-specific adapter, well-trained for a particular task, and the output is a weighted sum of
 328 the outputs of the experts. The process can be formulated as

$$329 \quad 330 \quad 331 \quad f_{moe, \{\theta_1^*, \theta_2^*, \dots, \theta_K^*\}}(\mathbf{H}) = \sum_{k=1}^K w_k \cdot f_{adap, \theta_k^*}(\mathbf{H}) \quad (7)$$

332 where $\{\theta_1^*, \theta_2^*, \dots, \theta_K^*\}$ are parameters trained in phase(II), $\{w_1, w_2, \dots, w_K\}$ are MoE weights cal-
 333 culated by a train-free router module based on the similarity between different tasks. Precisely,
 334 assume that we have node embeddings $\mathbf{H} \in \mathbb{R}^{|V| \times d}$ from a given graph G and obtain two outputs,
 335 $f_{adap, \theta_A^*}(\mathbf{H})$ and $f_{adap, \theta_B^*}(\mathbf{H})$, from two task-specific adapters. We can consider task A and task
 336 B to be similar if $f_{adap, \theta_A^*}(\mathbf{H})$ and $f_{adap, \theta_B^*}(\mathbf{H})$ are similar, and the similarity can be measured by
 337 TWD. On this basis, during inference on task k, $\{w_1, w_2, \dots, w_K\}$ are calculated as follows:

$$338 \quad 339 \quad \{w_1, w_2, \dots, w_K\} = \text{softmax}(\{-\text{TWD}(f_{adap, \theta_i^*}(\mathbf{H}), f_{adap, \theta_k^*}(\mathbf{H}))\}_{i=1}^K) \quad (8)$$

340 This mechanism amplifies the contribution of experts trained on similar tasks when addressing the
 341 target task. Additionally, the similarity between two graph embeddings $\mathbf{h} \in \mathbb{R}^d$ can be measured by
 342 Manhattan Distance, and the $\{w_1, w_2, \dots, w_K\}$ on graph level are calculated as:

$$343 \quad 344 \quad \{w_1, w_2, \dots, w_K\} = \text{softmax}(\{-\|\mathbf{f}_{adap, \theta_i^*}(\mathbf{h}) - \mathbf{f}_{adap, \theta_k^*}(\mathbf{h})\|_1\}_{i=1}^K) \quad (9)$$

345 In this way, the MoEAdapters are tailored for each graph instance and effectively utilize knowledge
 346 while mitigating knowledge conflict across different tasks. As a result, we only deploy θ_{uni} and
 347 $\{\theta_1^*, \theta_2^*, \dots, \theta_K^*\}$ during inference for all tasks, which is significantly smaller than the total size of
 348 $\theta_1, \theta_2, \dots, \theta_K$ from all finetuned models, according to the experimental data in Table 4.

349 350 5 EXPERIMENTS

351 352 5.1 EXPERIMENTAL SETUP

353 **Datasets.** We use 8 binary graph classification datasets for molecule property prediction as down-
 354 stream tasks, which are widely used as benchmarks for evaluating pretrain-finetune strategy in
 355 previous work (Zhang et al., 2022; Kim et al., 2023; Zhili et al., 2024; Sun et al., 2024). Data statistics
 356 and preprocessing are detailed in Appendix B and C.

357 **Baselines.** Since we have not found related work in merging GNN models, we compare our G-
 358 Merging with several typical and advanced model merging methods from the CV or NLP field,
 359 including: Weight Averaging, Task Arithmetic (Ilharco et al., 2022), Ties-Merging (Yadav et al.,
 360 2023), and EMR-Merging (Huang et al., 2025), AdaMerging (Yang et al., 2023), Twin-merging (Lu
 361 et al.) (detailed in Appendix D). Furthermore, we include Multi-task Learning, individual fine-tuned
 362 models, and the pre-trained model as additional baselines beyond the merging strategy. The fine-tuned
 363 and pre-trained models serve as the upper and lower performance bounds, respectively.

364 **Settings.** To evaluate the effectiveness of G-Merging in various scenarios, we use models with a
 365 range of GNN backbones. Specifically, we reuse the pretrained models provided by Weihua et al. (Hu
 366 et al., 2020) with two GNN architectures: GIN (Xu et al., 2018) and GCN (Kipf & Welling, 2016),
 367 and two pretrain strategies: *contextpred* and *edgepred*. All models are self-supervised and pretrained
 368 on the chemistry dataset ZINC15 (Sterling & Irwin, 2015) (containing over 2 million molecules).
 369 We obtain the fine-tuned models by fully fine-tuning pretrained models on 8 downstream tasks. **We**
 370 **run our method with 5 different random seeds and report the mean and standard deviation of the**
 371 **performance.** In addition, we also validate a simplified version of our method, G-Merging-s, which
 372 directly uses task-specific adapters but not MoEAdapters during inference. More details of pretrained
 373 models and hyperparameters are provided in Appendix B.

374 375 5.2 EXPERIMENTAL RESULTS AND ANALYSIS

376 **Main Results.** The ROC-AUC scores in Table 1, Table 2, and Table 6 (in Appendix E) show
 377 the results for all tasks with various pretrained GNN models. The total average scores across 8

378
 379 Table 1: Test ROC-AUC score (%) of GIN models (contextpred) on downstream molecular property
 380 prediction tasks after merging fine-tuned models. (" * " denotes performance surpassing that of the
 381 fine-tuned model.)

Methods	Tox21	Toxcast	SIDER	ClinTox	BBBP	BACE	HIV	MUV	Average
Full Fine-Tuned	78.0	64.8	62.5	74.0	69.6	86.8	79.6	83.9	74.9
Pretrained	68.9	63.3	58.1	61.9	55.3	78.5	59.1	72.3	64.7
Multi-Task Learning	75.5	63.4	62.8	64.9	66.4	84.7	74.8	77.5	71.2
Weight Average	74.7	64.5	60.4	70.7	63.5	78.8	66.5	77.5	69.6
Task Arithmetic	74.2	64.6	60.4	77.6*	66.6	70.8	68.5	74.8	69.7
Ties-Merging	69.2	63.4	57.8	62.1	55.5	79.0	61.6	77.5	65.8
EMR-Merging	77.6	63.5	62.2	72.8	69.1	80.9	74.8	71.3	71.5
AdaMerging	69.2	62.0	57.6	64.6	60.2	70.5	64.2	66.7	64.4
Twin-Merging	69.9	63.4	59.0	63.0	59.0	57.5	59.8	75.7	63.4
G-Merging-s (Ours)	77.2\pm0.4	65.7\pm0.1	64.6\pm0.5	76.0\pm0.5	67.0\pm0.2	86.6\pm0.2	76.0\pm0.3	80.8\pm0.5	74.2
G-Merging (Ours)	77.4\pm0.5	65.8\pm0.1	64.8\pm0.6	74.2\pm0.6	67.1\pm0.2	86.8\pm0.2	74.2\pm0.4	81.9\pm0.5	74.0

392
 393 Table 2: Test ROC-AUC score (%) of GIN models (edgepred) on downstream molecular property
 394 prediction tasks after merging fine-tuned models.

Methods	Tox21	Toxcast	SIDER	ClinTox	BBBP	BACE	HIV	MUV	Average
Full Fine-Tuned	76.1	66.1	64.8	70.0	70.5	86.1	77.6	79.7	73.9
Pretrained	71.6	64.9	60.0	61.6	54.6	76.4	64.4	65.5	64.9
Multi-Task Learning	73.8	64.0	63.3	71.2	68.8	81.1	74.5	72.8	71.2
Weight Average	74.1	66.1	62.2	65.9	63.6	78.7	67.0	68.5	68.3
Task Arithmetic	74.1	65.8	63.1	71.6	66.1	75.7	68.9	66.8	69.0
Ties-Merging	71.7	65.0	59.7	61.5	54.8	78.3	64.4	66.6	65.2
EMR-Merging	76.6	65.3	64.1	67.8	70.4	82.1	70.2	67.1	70.4
AdaMerging	71.3	63.6	59.7	72.7	57.3	72.4	68.6	60.8	65.8
Twin-Merging	71.8	64.6	58.8	67.6	56.4	56.7	61.6	69.0	63.3
G-Merging-s (Ours)	77.3\pm0.4	66.0\pm0.1	64.6\pm0.2	74.1\pm0.5	69.2\pm0.3	83.1\pm0.6	74.9\pm0.7	75.5\pm0.5	73.1
G-Merging (Ours)	76.9\pm0.4	66.0\pm0.1	64.8\pm0.2	71.8\pm0.4	68.9\pm0.3	84.6\pm0.5	74.2\pm0.7	77.4\pm0.6	73.1

405 datasets indicate the overall capability of merging methods. We observe that our method significantly
 406 outperforms the baseline method in the vast majority of tasks, regardless of the GNN architectures
 407 and pretraining strategies. The performance is competitive with finetuned models, and outperforms
 408 them in some tasks, indicating that our merging method *maintains or even improves individual*
 409 *performance*, which is perhaps attributed to knowledge transfer or knowledge complementarity across
 410 tasks. Comparing G-Merging with G-Merging-s, G-Merging can perform better on certain tasks,
 411 indicating that one task can benefit from others in the MoE structure. Additionally, for tasks with
 412 more pronounced topological heterogeneity, such as HIV and MUV (datasets with numerous and
 413 structurally complex molecules), our method achieves a more significant performance improvement
 414 over the baselines. This suggests that the TWD loss effectively extracts topological information from
 415 graph data, which is an essential element of the knowledge in the merged GNN model.

416 **Ablation Studies.** To examine the effect of each component on the final performance, we conduct ablation studies
 417 on eight downstream tasks using the GIN (contextpred) pretrained model. We design five variants of G-Merging
 418 by removing certain components, and their overall performances is shown in Figure 3 (more results are shown in
 419 Appendix E Figure 6).

420 **Effect of parameter merging.** When we directly use the
 421 original pretrained model as the unified model ($\theta_{uni} = \theta_{pre}$) and skip the phase of parameter merging, the
 422 performance significantly drops. This suggests that shared
 423 knowledge is an indispensable fundamental part of a model
 424 before incorporating task-specific exclusive knowledge.

425 **Effect of MoE adapters.** The performance of the two variant methods without MoEAdapters at either
 426 the node or graph level is worse than that of G-Merging, and the model performs the worst when
 427 MoEAdapters are removed at the graph level. This demonstrates the importance of MoEAdapters as
 428 task-specific knowledge suppliers and their effectiveness in alleviating representation bias.

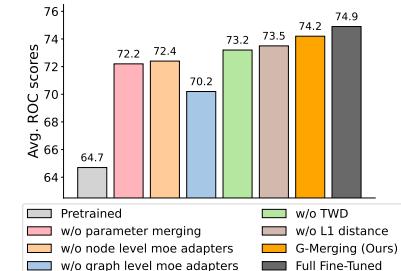


Table 3: Ablation Studies. Average ROC-AUC scores across 8 tasks for five ablated variants of G-Merging

432
 433 *Effect of loss functions.* We further validate the effectiveness of \mathcal{L}_{TWD} and \mathcal{L}_{MD} by disabling one
 434 of them during training. From the results, it can be seen that \mathcal{L}_{TWD} improves performance more
 435 significantly as it effectively leverages graph topological information. In addition, \mathcal{L}_{MD} further
 436 boosts performance by enhancing graph embeddings alignment based on this.

437 **Efficiency and Storage Analysis.** We examine how G-Merging
 438 can *reduce storage and computational cost*. As shown in Figure
 439 3 (a), our method remains effective under various settings of
 440 rank r , which is a hyperparameter related to the scale of adapters
 441 (see equation 6). It can be seen that, as the rank gradually in-
 442 creases, performance improves obviously when the rank is below
 443 30, but decreases slightly when the rank exceeds 30. Empirically,
 444 our training time is approximately 1/8 of finetuning a whole
 445 model (see Table 7 in Appendix E). Additionally, the number of
 446 parameters in Table 4 indicates that the scale of MoEAdapters
 447 is considerably smaller compared to a full GNN model.

448 **Routing Analysis.** Here we perform
 449 an analysis of the TWD-based router
 450 method in our MoE structure. We ex-
 451 tract the average of expert weights dur-
 452 ing inference, shown in Figure 4 and
 453 Appendix E, Figure 5. It is evident
 454 that each graph sample receives max-
 455 imum weights on the expert adapters
 456 corresponding to its source task. Fur-
 457 thermore, the router tends to allocate
 458 a greater weight to expert adapters
 459 when there is higher similarity be-
 460 tween the test task and the source
 461 task of the expert, and this rela-
 462 tionship is bidirectional. For instance,
 463 considering the two tasks, ClinTox
 464 and SIDER, which focus on the tox-
 465 icticity of drug compounds and diverse
 466 adverse drug reactions, respectively,
 467 they intuitively share a high degree of
 468 similarity. Consequently, the router
 469 tends to allocate greater weights to
 470 expert_ClinTox when performing the
 471 SIDER task, and vice versa. This
 472 demonstrates the capability of our
 473 method to effectively integrate knowl-
 474 edge across tasks. We further conduct
 475 experiments on the
 476 top- k expert selection strategy in our
 477 routing mechanism, which is a common
 478 design consideration in MoE models
 479 (see Appendix B for detailed settings).
 480 The overall results presented in Figure
 481 3(b) (detailed in Appendix E Figure 7)
 482 show that as the number K of selected
 483 experts increases from 1 to 8, the model
 484 performance first decreases and then
 485 increases. When relatively few task
 486 experts are selected, the source task
 487 cannot receive sufficient support from
 488 other tasks, and due to the het-
 489 erogeneity of adapters, the effectiveness
 490 of the original adapter may also be
 491 affected, leading to
 492 performance degradation. In contrast,
 493 when more task experts are selected,
 494 the router can better fulfill
 495 its role by assigning appropriate bal-
 496 ancing weights, allowing a large pool of
 497 similar task experts to
 498 collaboratively support the source task,
 499 thereby improving the performance.
 500 As a result, the above
 501 results suggest that G-Merging *possibly*
 502 *leverages shared knowledge* to promote
 503 generalization across
 504 tasks.

6 CONCLUSIONS

505 In this paper, we investigate the problem of graph model merging for the first time. We propose a
 506 method called G-Merging, which consolidates knowledge from task-specific fine-tuned models and
 507 achieves high performance while requiring lower storage and training costs. The effectiveness of

Table 4: The parameter cost of the
 MoE adapters module.

Rank	The total number of parameters	
	MoE adapters	Ratio(%)
10	48000	2.58
20	96000	5.17
30	144000	7.75
40	192000	10.33
50	240000	12.92

one full GNN model: 1857900

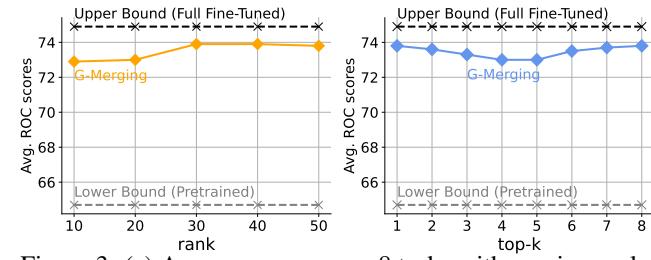


Figure 3: (a) Average scores over 8 tasks with varying ranks of the adapters. (b) Average scores over 8 tasks of top- k expert selection in our routing mechanism.

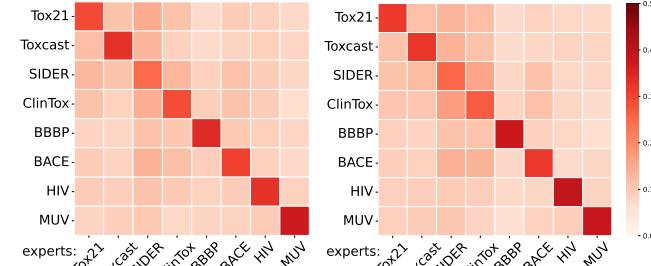


Figure 4: The MoE weight heatmaps illustrate the expert allocation patterns during inference on a target task, using two pre-trained models, GIN (contextpred) and GIN (edgepred).

Figure 4 shows the MoE weight heatmaps for two pre-trained models, GIN (contextpred) and GIN (edgepred). The heatmaps illustrate the expert allocation patterns during inference on a target task. The Y-axis represents the experts (Tox21, Toxcast, SIDER, ClinTox, BBBP, BACE, HIV, MUV) and the X-axis represents the same set of experts. The color scale indicates the weight of each expert, ranging from 0.0 (light orange) to 0.5 (dark red). The diagonal from bottom-left to top-right shows high weights (red), indicating self-attention. Off-diagonal weights are lower (orange), showing cross-task knowledge sharing. The heatmaps show that the router tends to allocate greater weights to expert_ClinTox when performing the SIDER task, and vice versa, demonstrating the capability of our method to effectively integrate knowledge across tasks.

486 G-Merging is validated by extensive experiments on 8 downstream datasets, which also indicate that
 487 graph model merging can be successfully achieved ,like models in the CV and NLP fields. Moreover,
 488 we demonstrate that fully utilizing the graph structure can significantly impact the performance of
 489 the merged model. Finally, we conclude that knowledge sharing and mutual benefit between tasks
 490 are feasible and promising for models on graph data. In the future, we will extend our work to more
 491 model merging and graph learning scenarios, such as graph continual learning.
 492

493 **REFERENCES**

495 Han Altae-Tran, Bharath Ramsundar, Aneesh S Pappu, and Vijay Pande. Low data drug discovery
 496 with one-shot learning. *ACS central science*, 3(4):283–293, 2017.

497 Jason Altschuler, Jonathan Niles-Weed, and Philippe Rigollet. Near-linear time approximation
 498 algorithms for optimal transport via sinkhorn iteration. *Advances in neural information processing
 499 systems*, 30, 2017.

500 Artem V Artemov, Evgeny Putin, Quentin Vanhaelen, Alexander Aliper, Ivan V Ozerov, and Alex
 501 Zhavoronkov. Integrated deep learned transcriptomic and structure-based predictor of clinical trials
 502 outcomes. *BioRxiv*, pp. 095653, 2016.

504 Gary Bécigneul, Octavian-Eugen Ganea, Benson Chen, Regina Barzilay, and Tommi S Jaakkola.
 505 Optimal transport graph neural networks. 2020.

506 Guy W Bemis and Mark A Murcko. The properties of known drugs. 1. molecular frameworks.
 507 *Journal of medicinal chemistry*, 39(15):2887–2893, 1996.

509 Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
 510 Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
 511 ties and risks of foundation models. *arXiv preprint arXiv:2108.07258*, 2021.

512 Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi Huang. A survey on mixture
 513 of experts. *arXiv preprint arXiv:2407.06204*, 2024.

514 Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee,
 515 and Sungrae Park. Swad: Domain generalization by seeking flat minima. *Advances in Neural
 516 Information Processing Systems*, 34:22405–22418, 2021.

518 Liqun Chen, Zhe Gan, Yu Cheng, Linjie Li, Lawrence Carin, and Jingjing Liu. Graph optimal
 519 transport for cross-domain alignment. In *International Conference on Machine Learning*, pp.
 520 1542–1553. PMLR, 2020.

521 Leshem Choshen, Elad Venezian, Noam Slonim, and Yoav Katz. Fusing finetuned models for better
 522 pretraining. *arXiv preprint arXiv:2204.03044*, 2022.

523 Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan Hoffmann,
 524 Bogdan Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, et al. Unified scaling laws for
 525 routed language models. In *International conference on machine learning*, pp. 4057–4086. PMLR,
 526 2022.

528 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in neural
 529 information processing systems*, 26, 2013.

530 Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
 531 Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
 532 of-experts language models. *arXiv preprint arXiv:2401.06066*, 2024.

533 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 534 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of
 535 the North American chapter of the association for computational linguistics: human language
 536 technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

538 Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and Noah Smith.
 539 Fine-tuning pretrained language models: Weight initializations, data orders, and early stopping.
arXiv preprint arXiv:2002.06305, 2020.

540 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 541 Unterthiner, Mostafa Dehghani, Matthias Minderer, G Heigold, S Gelly, et al. An image is
 542 worth 16x16 words: Transformers for image recognition at scale. In *International Conference on*
 543 *Learning Representations*, 2020.

544 Pavel Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin. Computational optimal transport:
 545 Complexity by accelerated gradient descent is better than by sinkhorn's algorithm. In *International*
 546 *conference on machine learning*, pp. 1367–1376. PMLR, 2018.

547 Kaitlyn M Gayvert, Neel S Madhukar, and Olivier Elemento. A data-driven approach to predicting
 548 successes and failures of clinical trials. *Cell chemical biology*, 23(10):1294–1301, 2016.

549 Vipul Gupta, Santiago Akle Serrano, and Dennis DeCoste. Stochastic weight averaging in parallel:
 550 Large-batch training that generalizes well. *arXiv preprint arXiv:2001.02312*, 2020.

551 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
 552 *Advances in neural information processing systems*, 30, 2017.

553 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
 554 Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
 555 nlp. In *International conference on machine learning*, pp. 2790–2799. PMLR, 2019a.

556 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
 557 Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
 558 nlp. In *International conference on machine learning*, pp. 2790–2799. PMLR, 2019b.

559 Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
 560 et al. Lora: Low-rank adaptation of large language models. In *International Conference on*
 561 *Learning Representations*.

562 W Hu, B Liu, J Gomes, M Zitnik, P Liang, V Pande, and J Leskovec. Strategies for pre-training
 563 graph neural networks. In *International Conference on Learning Representations (ICLR)*, 2020.

564 Chenyu Huang, Peng Ye, Tao Chen, Tong He, Xiangyu Yue, and Wanli Ouyang. Emr-merging:
 565 Tuning-free high-performance model merging. *Advances in Neural Information Processing*
 566 *Systems*, 37:122741–122769, 2025.

567 Gabriel Ilharco, Marco Túlio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
 568 Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. *arXiv preprint*
 569 *arXiv:2212.04089*, 2022.

570 John Ingraham, Vikas Garg, Regina Barzilay, and Tommi Jaakkola. Generative models for graph-
 571 based protein design. *Advances in neural information processing systems*, 32, 2019.

572 Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
 573 local experts. *Neural computation*, 3(1):79–87, 1991.

574 Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by
 575 merging weights of language models. *arXiv preprint arXiv:2212.09849*, 2022.

576 Suyeon Kim, Dongha Lee, SeongKu Kang, Seonghyeon Lee, and Hwanjo Yu. Learning topology-
 577 specific experts for molecular property prediction. In *Proceedings of the AAAI Conference on*
 578 *Artificial Intelligence*, volume 37, pp. 8291–8299, 2023.

579 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 580 *arXiv preprint arXiv:1609.02907*, 2016.

581 Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
 582 for semi-supervised learning. In *Proceedings of the AAAI conference on artificial intelligence*,
 583 volume 32, 2018.

584 Chang Liu, Chenfei Lou, Runzhong Wang, Alan Yuhan Xi, Li Shen, and Junchi Yan. Deep neural
 585 network fusion via graph matching with applications to model ensemble and federated learning. In
 586 *International Conference on Machine Learning*, pp. 13857–13869. PMLR, 2022a.

594 Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
 595 Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
 596 learning. *Advances in Neural Information Processing Systems*, 35:1950–1965, 2022b.

597

598 Zhenyi Lu, Chenghao Fan, Wei Wei, Xiaoye Qu, Dangyang Chen, and Yu Cheng. Twin-merging: Dy-
 599 namic integration of modular expertise in model merging. In *The Thirty-eighth Annual Conference
 600 on Neural Information Processing Systems*.

601 Ines Filipa Martins, Ana L Teixeira, Luis Pinheiro, and Andre O Falcao. A bayesian approach to in
 602 silico blood-brain barrier penetration modeling. *Journal of chemical information and modeling*, 52
 603 (6):1686–1697, 2012.

604

605 Michael Matena and Colin Raffel. Merging models with fisher-weighted averaging, 2021. *arXiv
 606 preprint arXiv:2111.09832*.

607

608 Andreas Mayr, Günter Klambauer, Thomas Unterthiner, Marvin Steijaert, Jörg K Wegner, Hugo
 609 Ceulemans, Djork-Arné Clevert, and Sepp Hochreiter. Large-scale comparison of machine learning
 610 methods for drug target prediction on chembl. *Chemical science*, 9(24):5441–5451, 2018.

611 Sayak Paul and Pin-Yu Chen. Vision transformers are robust learners. In *Proceedings of the AAAI
 612 conference on Artificial Intelligence*, volume 36, pp. 2071–2081, 2022.

613

614 Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
 615 science. *Foundations and Trends® in Machine Learning*, 11(5-6):355–607, 2019.

616

617 Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
 618 and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In *Proceedings
 619 of the 26th ACM SIGKDD international conference on knowledge discovery & data mining*, pp.
 1150–1160, 2020.

620

621 Bharath Ramsundar, Peter Eastman, Pat Walters, and Vijay Pande. *Deep learning for the life sciences:
 622 applying deep learning to genomics, microscopy, drug discovery, and more*. O'Reilly Media, 2019.

623

624 Ann M Richard, Richard S Judson, Keith A Houck, Christopher M Grulke, Patra Volarath, Inthirany
 625 Thillainadarajah, Chihae Yang, James Rathman, Matthew T Martin, John F Wambaugh, et al.
 626 Toxcast chemical landscape: paving the road to 21st century toxicology. *Chemical research in
 627 toxicology*, 29(8):1225–1251, 2016.

628

629 Sebastian G Rohrer and Knut Baumann. Maximum unbiased validation (muv) data sets for virtual
 630 screening based on pubchem bioactivity data. *Journal of chemical information and modeling*, 49
 631 (2):169–184, 2009.

632

633 Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
 634 graph neural network model. *IEEE transactions on neural networks*, 20(1):61–80, 2008.

635

636 Teague Sterling and John J Irwin. Zinc 15-ligand discovery for everyone. *Journal of chemical
 637 information and modeling*, 55(11):2324–2337, 2015.

638

639 Govindan Subramanian, Bharath Ramsundar, Vijay Pande, and Rajiah Aldrin Denny. Computational
 640 modeling of β -secretase 1 (bace-1) inhibitors using ligand based approaches. *Journal of chemical
 641 information and modeling*, 56(10):1936–1949, 2016.

642

643 Sainbayar Sukhbaatar, Olga Golovneva, Vasu Sharma, Hu Xu, Xi Victoria Lin, Baptiste Rozière,
 644 Jacob Kahn, Daniel Li, Wen-tau Yih, Jason Weston, et al. Branch-train-mix: Mixing expert llms
 645 into a mixture-of-experts llm. *arXiv preprint arXiv:2403.07816*, 2024.

646

647 Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. Gppt: Graph pre-training and
 648 prompt tuning to generalize graph neural networks. In *Proceedings of the 28th ACM SIGKDD
 649 Conference on Knowledge Discovery and Data Mining*, pp. 1717–1727, 2022.

650

651 Yifei Sun, Qi Zhu, Yang Yang, Chunping Wang, Tianyu Fan, Jiajun Zhu, and Lei Chen. Fine-tuning
 652 graph neural networks by preserving graph generative patterns. In *Proceedings of the AAAI
 653 Conference on Artificial Intelligence*, volume 38, pp. 9053–9061, 2024.

648 Anke Tang, Li Shen, Yong Luo, Nan Yin, Lefei Zhang, and Dacheng Tao. Merging multi-task models
 649 via weight-ensembling mixture of experts. *arXiv preprint arXiv:2402.00433*, 2024.
 650

651 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 652 Bengio. Graph attention networks. In *International Conference on Learning Representations*,
 653 2018.

654 Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
 655 Federated learning with matched averaging. *arXiv preprint arXiv:2002.06440*, 2020.
 656

657 Yidi Wang, Jiawei Gu, Xubin Zheng, Xiao Luo, Pengyang Wang, Ziyue Qiao, et al. Out-of-distribution
 658 graph models merging. *arXiv preprint arXiv:2506.03674*, 2025.

659 Zhenyi Wang, Xiaoyang Wang, Li Shen, Qiuling Suo, Kaiqiang Song, Dong Yu, Yan Shen, and
 660 Mingchen Gao. Meta-learning without data via wasserstein distributionally-robust model fusion.
 661 In *Uncertainty in Artificial Intelligence*, pp. 2045–2055. PMLR, 2022.

662 David Weininger. Smiles, a chemical language and information system. 1. introduction to methodol-
 663 ogy and encoding rules. *Journal of chemical information and computer sciences*, 28(1):31–36,
 664 1988.

665 Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
 666 Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
 667 soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
 668 inference time. In *International conference on machine learning*, pp. 23965–23998. PMLR, 2022.

669 Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao, and Xiaojie Guo. Graph neural networks: foundation,
 670 frontiers and applications. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge
 671 Discovery and Data Mining*, pp. 4840–4841, 2022.

672 Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
 673 Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
 674 *Chemical science*, 9(2):513–530, 2018.

675 Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
 676 comprehensive survey on graph neural networks. *IEEE transactions on neural networks and
 677 learning systems*, 32(1):4–24, 2020.

678 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 679 networks? *arXiv preprint arXiv:1810.00826*, 2018.

680 Renjun Xu, Pelen Liu, Liyan Wang, Chao Chen, and Jindong Wang. Reliable weighted optimal
 681 transport for unsupervised domain adaptation. In *Proceedings of the IEEE/CVF conference on
 682 computer vision and pattern recognition*, pp. 4394–4403, 2020.

683 Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging:
 684 Resolving interference when merging models. *Advances in Neural Information Processing Systems*,
 685 36:7093–7115, 2023.

686 Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng Tao.
 687 Adamerging: Adaptive model merging for multi-task learning. *arXiv preprint arXiv:2310.02575*,
 688 2023.

689 Enneng Yang, Li Shen, Zhenyi Wang, Guibing Guo, Xiaojun Chen, Xingwei Wang, and Dacheng Tao.
 690 Representation surgery for multi-task model merging. In *International Conference on Machine
 691 Learning*, pp. 56332–56356. PMLR, 2024a.

692 Enneng Yang, Li Shen, Zhenyi Wang, Guibing Guo, Xingwei Wang, Xiaocun Cao, Jie Zhang, and
 693 Dacheng Tao. Surgeryv2: Bridging the gap between model merging and multi-task learning with
 694 deep representation surgery. *arXiv preprint arXiv:2410.14389*, 2024b.

695 Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
 696 Absorbing abilities from homologous models as a free lunch. In *Forty-first International Conference
 697 on Machine Learning*, 2024.

702 Jiying Zhang, Xi Xiao, Long-Kai Huang, Yu Rong, and Yatao Bian. Fine-tuning graph neural
703 networks via graph topology induced optimal transport. *arXiv preprint arXiv:2203.10453*, 2022.
704

705 WANG Zhili, DI Shimin, CHEN Lei, and ZHOU Xiaofang. Search to fine-tune pre-trained graph
706 neural networks for graph-level tasks. In *2024 IEEE 40th International Conference on Data
707 Engineering (ICDE)*, pp. 2805–2819. IEEE, 2024.

708 Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
709 Le, James Laudon, et al. Mixture-of-experts with expert choice routing. *Advances in Neural
710 Information Processing Systems*, 35:7103–7114, 2022.

711 Marinka Zitnik, Rok Sosič, Marcus W Feldman, and Jure Leskovec. Evolution of resilience in protein
712 interactomes across the tree of life. *Proceedings of the National Academy of Sciences*, 116(10):
713 4426–4433, 2019.

714 Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
715 William Fedus. Designing effective sparse expert models. *arXiv preprint arXiv:2202.08906*, 2(3):
716 17, 2022.

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 Appendix

758 In this appendix, we provide supplementary materials for this work. In Section A, we present detailed
 759 introduction of Topology-aware Wasserstein distance with related theoretical analysis. Sections B
 760 to G offer a comprehensive description of our experimental settings, including additional results and
 761 analyses. The limitations and future works are in Appendix I
 762

763 A TOPOLOGY-AWARE WASSERSTEIN DISTANCE

764 A.1 BACKGROUND AND DEFINITION

767 Recall the definition of original Wasserstein Distance (Definition 1), we firstly discuss how to use
 768 the Wasserstein distance to measure the similarity between two sets of node embeddings in a graph.
 769 Given a graph $G(\mathcal{V}, \mathcal{E})$ with adjacency matrix \mathbf{A} and two different node embedding matrix \mathbf{X}^S and
 770 \mathbf{X}^T , corresponding to the two sets of node embeddings $\{\mathbf{x}_i^S\}_{i=1}^{|\mathcal{V}|}$ and $\{\mathbf{x}_i^T\}_{i=1}^{|\mathcal{V}|}$, we characterize these
 771 two sets using two unified distributions $\mu = \sum_{i=1}^{|\mathcal{V}|} \frac{1}{|\mathcal{V}|} \delta_{\mathbf{x}_i^S}$ and $\nu = \sum_{i=1}^{|\mathcal{V}|} \frac{1}{|\mathcal{V}|} \delta_{\mathbf{x}_i^T}$. If we replace the
 772 distributions with μ and ν in Eq. 1, we obtain the **Wasserstein distance for node embeddings** as
 773 follows:
 774

$$775 \mathcal{D}_{wdnode}(\mu, \nu) = \min_{\mathbf{T} \in \Pi(\mathbf{u}, \mathbf{v})} \sum_{i=1}^{|\mathcal{V}|} \sum_{j=1}^{|\mathcal{V}|} \mathbf{T}_{ij} \cdot c(\mathbf{x}_i^S, \mathbf{x}_j^T). \quad (10)$$

776 However, Eq. 10 depends solely on the node embeddings and not on the graph's topological structure.
 777 As discussed above, mass in \mathbf{x}_i^S can be transported to any $\mathbf{x}_j^T \in \{\mathbf{x}_j^T\}_{j=1}^{|\mathcal{V}|}$ by transport plan \mathbf{T}_{ij} .
 778 Here, we intuitively assume that mass in \mathbf{x}_i^S can only be transported to \mathbf{x}_j^T if there is an edge between
 779 node n_i and n_j (i.e. $\mathbf{A}_{ij} = 1$). This constraint can be enforced by setting $\mathbf{T}_{ij} = 0$ whenever
 780 $\mathbf{A}_{ij} = 0$. In this way, we incorporate the graph's topological information into the WD, namely, the
 781 **Topology-aware Wasserstein Distance (TWD)**. The definition is given as follows:
 782

783 **Definition 2** (Topology-aware Wasserstein distance). *Let $G(\mathcal{V}, \mathcal{E})$ be a graph with adjacency matrix
 784 \mathbf{A} and two sets of node embeddings $\{\mathbf{x}_i^S\}_{i=1}^{|\mathcal{V}|}$ and $\{\mathbf{x}_i^T\}_{i=1}^{|\mathcal{V}|}$, represented by two unified distributions
 785 $\mu = \sum_{i=1}^{|\mathcal{V}|} \frac{1}{|\mathcal{V}|} \delta_{\mathbf{x}_i^S}$ and $\nu = \sum_{i=1}^{|\mathcal{V}|} \frac{1}{|\mathcal{V}|} \delta_{\mathbf{x}_i^T}$. The Topology-aware Wasserstein distance between μ and
 786 ν is then defined as:*

$$787 \mathcal{D}_{twd}(\mathbf{A}, \mu, \nu) = \min_{\mathbf{T} \in \Pi(\mathbf{A})} \sum_{i=1}^{|\mathcal{V}|} \sum_{j=1}^{|\mathcal{V}|} \mathbf{T}_{ij} \cdot c(\mathbf{x}_i^S, \mathbf{x}_j^T). \quad (11)$$

788 where $\Pi(\mathbf{A}) = \{\mathbf{T} \in \mathbb{R}_{+}^{|\mathcal{V}| \times |\mathcal{V}|} \mid \mathbf{T} \mathbf{1}_{|\mathcal{V}|} = \frac{1}{|\mathcal{V}|} \cdot \mathbf{1}_{|\mathcal{V}|} \wedge \mathbf{T}^T \mathbf{1}_{|\mathcal{V}|} = \frac{1}{|\mathcal{V}|} \cdot \mathbf{1}_{|\mathcal{V}|} \wedge \mathbf{T} \odot (\mathbf{1}_{|\mathcal{V}| \times |\mathcal{V}|} - \mathbf{A}) =$
 789 $\mathbf{0}_{|\mathcal{V}| \times |\mathcal{V}|}\}$ and $c(\cdot, \cdot)$ is the cost function. Compared to the original WD, the transport plan \mathbf{T} is now
 790 constrained by graph adjacency matrix \mathbf{A} . Different matrix \mathbf{A} , node embedding \mathbf{x}_i , and cost function
 791 lead to different WD, and it is obvious that $\mathcal{D}_{twd}(\mathbf{A}, \mu, \nu) > \mathcal{D}_{wd}(\mu, \nu)$.
 792

793 We define the matrix inner product $\langle \cdot, \cdot \rangle$ for $\mathbf{U}, \mathbf{V} \in \mathbb{R}^{m \times n}$ as $\langle \mathbf{U}, \mathbf{V} \rangle = \text{tr}(\mathbf{U}^T \mathbf{V}) = \sum_{i,j} \mathbf{U}_{ij} \mathbf{V}_{ij}$.
 794 Furthermore, we introduce its more intuitive formulation, which serves as the alignment loss function
 795 in Section 4.2:
 796

$$800 \text{TWD}(\mathbf{X}^S, \mathbf{X}^T, \mathbf{A}) = \mathcal{D}_{twd}(\mathbf{A}, \mu, \nu) = \min_{\mathbf{T} \in \Pi(\mathbf{A})} \sum_{i=1}^{|\mathcal{V}|} \sum_{j=1}^{|\mathcal{V}|} \mathbf{T}_{ij} \cdot c(\mathbf{x}_i^S, \mathbf{x}_j^T) = \min_{\mathbf{T} \in \Pi(\mathbf{A})} \langle \mathbf{T}, \mathbf{C} \rangle \quad (12)$$

801 where $\mathbf{C} \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|}$ is the cost matrix with $\mathbf{C}_{ij} = c(\mathbf{x}_i^S, \mathbf{x}_j^T)$. A widely used option of the cost
 802 function is **cosine distance** $c(\mathbf{x}_i^S, \mathbf{x}_j^T) = \frac{1}{2}(1 - \cos(\mathbf{x}_i^S, \mathbf{x}_j^T))$ (Zhang et al., 2022; Xu et al., 2020;
 803 Chen et al., 2020), while others are not elaborated here. Additionally, we originally set \mathbf{A} as the
 804 1-hop adjacency matrix with self-loops, i.e., $\mathbf{A}_{ij} = 1$ if and only if $i = j$ or there exists an edge
 805 between i and j . The 1-hop adjacency matrix \mathbf{A} is easy to extend to k-hop, like $\mathbf{A}^2, \mathbf{A}^3$, which may
 806 represent more global information of the graph structure. We conduct a supplementary experiment to
 807 examine this aspect in more detail, see Appendix G.
 808

810 A.2 COMPUTATION AND TIME COMPLEXITY
811

812 The computation of both WD and TWD requires solving for the optimal transport plan \mathbf{P} , a task
813 that has been widely examined in the literature. In practice, an approximate solution to WD can be
814 obtained in polynomial time by applying the Sinkhorn algorithm with an entropic regularization term.

815 Computing both WD and TWD involves solving for the optimal transport plan \mathbf{P} , a problem that has
816 been extensively studied in prior work. In practice, an approximate solution to WD can be obtained in
817 polynomial time by applying the Sinkhorn algorithm utilizing an entropic regularization term(Cuturi,
818 2013; Peyré et al., 2019; Dvurechensky et al., 2018).

819 For TWD, there exists an essential theoretical result for the iterative algorithm:

820 **Proposition 1.** *Let ϵ be a hyper-parameter, $\mathcal{H}(\cdot)$ be the entropy function, and assume that $0 \log 0 = 0$.
821 The solution to definition 2 with entropic regularization $\epsilon \cdot \mathcal{H}(\mathbf{A} \odot \mathbf{T})$ is unique and has the form*

$$823 \quad \mathbf{T}_{ij} = \mathbf{u}_i \mathbf{A}_{ij} \mathbf{K}_{ij} \mathbf{v}_j \quad (13)$$

824 where $\mathbf{K}_{ij} = \exp(-\mathbf{C}_{ij}/\epsilon)$ and $(\mathbf{u}, \mathbf{v}) \in \mathbb{R}_+^n \times \mathbb{R}_+^m$ are two unknown scaling variables.

825 Based on this, the Sinkhorn algorithm is useful for computing the TWD by iteratively approximating
826 the dual variables \mathbf{u} and \mathbf{v} . However, the sparsity of \mathbf{A} may lead to numerical instability or overflow
827 during the iterative process. To mitigate this issue, we adopt an improved version of the Sinkhorn
828 algorithm that performs computation in the log domain, which effectively alleviates such instability.
829 The entire process involves a finite number of iterations. The complete algorithm, along with the
830 theoretical justification of its correctness and feasibility, can be found in (Zhang et al., 2022).

831 We now analyze the computational complexity of the algorithm used to compute the TWD. Suppose
832 that after certain iterations we get an approximate solution $\hat{\mathbf{T}}$ satisfying:

$$833 \quad \langle \hat{\mathbf{T}}, \mathbf{C} \rangle \leq \text{TWD}(\mathbf{X}^S, \mathbf{X}^T, \mathbf{A}) + \tau$$

834 According to (Altschuler et al., 2017), when $\tau = 4\epsilon \log(|\mathcal{V}|)$, the computational complexity of
835 traditional Sinkhorn iterations to obtain $\hat{\mathbf{T}}$ for WD is:

$$836 \quad O(n^2 |\mathbf{C}|_\infty^2 \tau^{-3} (\tau \log(s) + |\mathbf{C}|_\infty \log(n)))$$

837 where $|\mathbf{C}|_\infty := \max_{ij} \mathbf{C}_{ij}$ and $s := \sum_{ij} \mathbf{K}_{ij}$.

838 In TWD computation, \mathbf{K} is replaced with $\mathbf{A} \odot \mathbf{K}$, so s is replaced with:

$$839 \quad s' := \sum_{ij} \mathbf{A}_{ij} \mathbf{K}_{ij} \leq s$$

840 Thus, the time complexity of the algorithm becomes:

$$841 \quad O(n^2 |\mathbf{C}|_\infty^2 \tau^{-3} (\tau \log(s') + |\mathbf{C}|_\infty \log(n)))$$

842 This is smaller than the time complexity of original WD computation. In conclusion, the time
843 complexity of our method is positively correlated with the number of nodes, the magnitude of the
844 cost values, and the sparsity of the adjacency matrix. Therefore, the proposed method is theoretically
845 efficient and feasible, especially on relatively small and sparse graph data (e.g., molecular graphs). As
846 for the inference time, the TWD needs to be computed K times (K is the number of tasks), with each
847 computation differing only in the cost matrix (varying node features on the same graph). Therefore,
848 the overall complexity is approximately linear with respect to K .

849 B EXPERIMENTAL SETUP DETAILS
850

851 **Data Preprocessing and Splitting.** All input molecules in downstream task datasets are represented
852 as SMILES strings (Weininger, 1988). We follow the preprocessing procedure described in Hu et al.
853 (Hu et al., 2020), embedding the SMILE-formatted molecules into 120-dimensional node features
854 and 3-dimensional edge features. We use scaffold (Bemis & Murcko, 1996), a splitting scheme
855 based on the molecular graph structure, to divide the datasets into training, validation, and test sets
856 following an 8:1:1 ratio. This scaffold split results in unseen structures in the validation and test sets,
857 while common structures appear in the training set, which is closer to realistic model training and
858 performance (Ramsundar et al., 2019).

864 **Training Settings and Computational Environment.** In our experiments, we employ two repre-
 865 sentative self-supervised pretraining strategies for graphs. One of them, Context Prediction, leverages
 866 subgraphs to infer their surrounding structures, with the goal of pretraining a GNN that places nodes
 867 occurring in similar structural contexts close to each other in the embedding space (Hu et al., 2020).
 868 Edge prediction leverages observed edge connections and node representations to predict whether
 869 a masked edge exists, encouraging the GNN to learn node embeddings that place connected nodes
 870 closer in the representation space (Hamilton et al., 2017). We run all our experiments on Nvidia
 871 4090 GPUs equipped with 24GB RAM. We fine-tuned all parameters of the pre-trained models for
 872 100 epochs, using binary cross-entropy loss. The learning rate was manually tuned from the set
 873 $\{0.01, 0.005, 0.001, 0.0005\}$, and the batch size was selected from $\{16, 32, 64\}$. During the merging
 874 stage, we train task-specific adapters for 30 epochs with the Adam optimizer. The learning rate was
 875 consistently set to 0.01, and the batch size was selected from $\{16, 64, 256, 512\}$.
 876

877 **Hyperparameter Strategies.** In the final test evaluation, the loss balancing parameter α in Eq. 6 is
 878 set to $\alpha = 1$. The scaling factor λ in phase(I) of G-Merging (see Section 4.1) is searched to achieve
 879 optimal performance. The sensitivity of the aforementioned hyperparameters is further analyzed
 880 in Appendix F. For the TWD loss computation procedure, we set the hyperparameter $\epsilon = 0.1$, the
 881 threshold $\tau = 0.1$, and the maximum number of iterations to 100.
 882

883 **Description of the Top-k Selection Experiments.** Top-k selection means that the MoE router sorts
 884 the assigned expert weights in descending order, keeps the top k weights, and sets all other weights to
 885 zero. Formally, let $\mathbf{w} = \{w_1, w_2, \dots, w_K\}$ denotes the original MoE weights for K experts, the top- k
 886 selected weights are defined as :

$$887 \mathbf{w}_i^{\text{top-}k} = \begin{cases} w_i, & \text{if } w_i \text{ is among the top-}k \text{ largest weights in } \mathbf{w}, \\ 0, & \text{otherwise,} \end{cases} \quad i = 1, \dots, K$$

888 Then we compute the final MoE weights as $\mathbf{w}^{\text{final}} = \text{softmax}\{\mathbf{w}_i^{\text{top-}k}\}$ For this experiment, we use
 889 the GIN (contextpred) pretrained model, and keep all other setting same as in the main experiments.
 890

891 **Other Details.** For the numerical stability of TWD computation, we normalize the elements of
 892 the cost matrix $\mathbf{C}_{ij} = \frac{1}{2}(1 - \cos(\mathbf{x}_i^S, \mathbf{x}_j^T))$ to the range $[0, 1]$ using max normalization. In most
 893 experiments, we set the adapter rank r (Eq. 6) to 30, which provides a good trade-off between
 894 efficiency and performance.
 895

896 C THOROUGH DESCRIPTION OF THE DATASETS

900 The downstream tasks are derived from the public MoleculeNet benchmark (Wu et al., 2018), a
 901 widely used collection for molecular machine learning. MoleculeNet comprises more than 700,000
 902 compounds evaluated on diverse properties, which are mainly grouped into four categories: quantum
 903 mechanics, physical chemistry, biophysics, and physiology. For our experiments, we focus on eight
 904 datasets restricted to binary classification tasks within the biophysics and physiology domains. The
 905 statistical characteristics of these datasets are summarized in Table 5.
 906

907 **BACE.** This dataset provides IC50 values and binary binding labels for 1,522 compounds targeting
 908 human β -secretase 1 (BACE-1) (Subramanian et al., 2016). Data are collected from published studies,
 909 with some molecules having crystal structures. Scaffold splitting is recommended for generalization.
 910

911 **BBBP.** The BBBP dataset contains binary annotations for more than 2,000 chemical compounds,
 912 specifying whether they can penetrate the blood–brain barrier (Martins et al., 2012). It is commonly
 913 used in CNS drug development, with the scaffold split recommended.
 914

915 **Tox21.** From the Tox21 initiative, this dataset offers qualitative toxicity labels for 8,014 compounds
 916 across 12 biological targets. It was featured in the 2014 Tox21 Data Challenge¹.
 917

918 **ToxCast.** ToxCast contains high-throughput in vitro toxicity data for 8,615 compounds from over
 919 600 bioassays (Richard et al., 2016), processed by MoleculeNet.
 920

¹Tox21 Challenge, <https://tripod.nih.gov/tox21/challenge/>.

918 Table 5: Statistics of the downstream graph datasets, including median, maximum, minimum, mean,
 919 and standard deviation of node numbers.

dataset	Categories	Tasks	Molecules	median	max	min	mean	std
Tox21	Physiology	12	7831	14	114	1	16.5	9.5
Toxcast	Physiology	617	8575	14	103	2	16.7	9.7
SIDER	Physiology	27	1427	23	483	1	30.0	39.7
ClinTox	Physiology	1	1478	23	121	1	25.5	15.3
BBBP	Physiology	1	2039	22	63	2	22.5	8.1
BACE	Biophysics	1	1513	32	66	10	33.6	7.8
MUV	Biophysics	1	93087	24	44	6	24.0	5.0
HIV	Biophysics	17	41127	23	222	2	25.3	12.0

929 **SIDER.** SIDER catalogs side effects of 1,427 marketed drugs, grouped into 27 organ system classes
 930 based on MedDRA (Altae-Tran et al., 2017)².

931 **ClinTox.** ClinTox compares 1,491 compounds approved by the FDA vs. those that failed clinical
 932 trials due to toxicity (Artemov et al., 2016; Gayvert et al., 2016). It includes two tasks: predicting
 933 toxicity and FDA approval.

935 **MUV.** The MUV dataset consists of 90,000 compounds across 17 tasks, designed to reduce screening
 936 bias (Rohrer & Baumann, 2009). It serves as a benchmark for virtual screening models.

937 **HIV.** From the DTP AIDS Antiviral Screen, this dataset includes over 40,000 compounds tested for
 938 HIV inhibition³. “Active” and “moderately active” labels are merged; scaffold split is recommended.

940 D BASELINES DETAILS

942 Here we will elaborate on the baselines utilized in our main comparison experiment, as outlined in
 943 Table 1, 2, and 6.

945 **Full Fine-Tuned** refers to directly performing the downstream task using a model that has been fully
 946 fine-tuned on the task-specific dataset.

947 **Pretrained** means using the pre-trained model as a fixed graph representation encoder, equipped
 948 with a task-specific classification head taken from the corresponding fine-tuned model.

950 **Multi-task learning** aggregates datasets from multiple tasks into a unified training set and trains a
 951 single model to improve generalization and achieve better performance across tasks.

952 **Weight Average** (Choshen et al., 2022) straightforwardly averages the parameters of multiple fine-
 953 tuned models, which is computationally efficient but often results in inferior performance.

955 **Task Arithmetic** (Ilharco et al., 2022) first introduces the concept of *task vectors* and merges them
 956 into the pre-trained model with a hand-tuned scalar.

957 **Ties-Merging** (Yadav et al., 2023) Improves merging stability by resolving parameter conflicts based
 958 on tied weights across models.

959 **EMR-Merging** (Huang et al., 2025) is a training-free and high-performance model merging method,
 960 containing three steps: Elect, Mark, and Rescale.

962 **AdaMerging** (Yang et al., 2023) employs output entropy minimization to learn the merging coeffi-
 963 cients without label supervision for each task vector (Task-wise AdaMerging) or for each layer
 964 (Layer-wise AdaMerging). AdaMerging++ is an enhanced version that applies Ties-Merging before
 965 learning the merging coefficients.

966 **Twin-Merging** (Lu et al.) decomposes the knowledge into shared and task-specific knowledge,
 967 where the exclusive knowledge can be compressed to enhance efficiency. Consequently, the router is
 968 trained to dynamically merge shared and task-specific knowledge based on the input. This approach
 969 significantly narrows the performance gap between pre-trained and fine-tuned models. However, it
 970 tends to perform suboptimally on graph-structured data.

971 ²Medical Dictionary for Regulatory Activities, <https://www.meddra.org/>

972 ³<https://wiki.nci.nih.gov/spaces/NCIDTPdata/pages/158204006/AIDS+Antiviral+Screen+Data>

972 E ADDITIONAL RESULTS
973

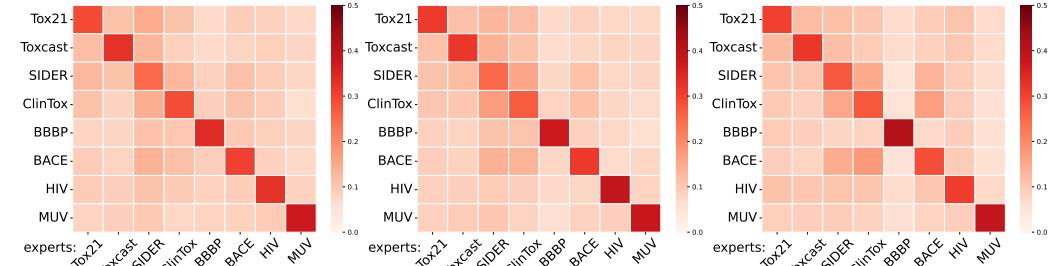
974 We provide additional experimental results that could not be included in the main text due to space
975 constraints. Table 6 reports the outcomes of the primary comparison experiment based on the
976 GCN (contextpred) pre-trained model. Figure 6 illustrates the detailed findings of the ablation
977 study introduced in Section 5.2. Table 7 lists the complete results corresponding to Figure 3(a),
978 supplemented with training time statistics. Figure 7 provides the detailed results corresponding to
979 Figure 3(b). Figure 5 shows two additional heatmaps of the MoE weights corresponding to different
980 pre-trained models beyond GIN (contextpred). Note that we compute the MoE weights for each input
981 by summing the weights from the GraphAdapter and the layer-wise NodeAdapters.

982
983 Table 6: Test ROC-AUC score (%) of GCN models (contextpred) on downstream molecular property
984 prediction tasks after merging fine-tuned models. (" * " denotes performance surpassing that of the
985 fine-tuned model.)

Methods	Tox21	Toxcast	SIDER	ClinTox	BBBP	BACE	HIV	MUV	Average
Full Fine-Tuned	75.8	64.7	60.2	65.2	71.2	76.7	77.0	81.0	71.5
Pretrained	70.4	58.5	56.9	45.4	61.7	70.8	54.7	70.0	61.1
Multi-Task Learning	73.1	62.9	62.0	61.4	68.6	76.1	74.5	73.7	69.0
Weight Average	71.5	63.0	59.8	46.3	66.3	68.5	62.9	71.9	63.8
Task Arithmetic	71.7	63.0	59.9	47.1	66.2	69.2	62.4	72.1	63.9
Ties-Merging	70.4	58.7	57.9	42.6	61.1	72.3	57.8	72.7	61.7
EMR-Merging	73.8	61.3	60.8	53.2	70.3	73.2	72.7	66.1	66.4
AdaMerging	68.4	59.1	56.3	34.4	61.2	63.7	61.6	65.1	58.7
Twin-Merging	71.4	59.8	58.5	53.3	62.4	57.4	57.4	72.0	61.5
G-Merging-s (Ours)	73.0 ± 0.2	63.1 ± 0.1	$61.9^* \pm 0.3$	62.2 ± 2.0	69.8 ± 0.2	73.4 ± 0.3	68.5 ± 1.5	78.8 ± 0.5	68.8
G-Merging (Ours)	73.0 ± 0.2	63.2 ± 0.1	$62.0^* \pm 0.3$	62.6 ± 4.2	69.8 ± 0.2	73.3 ± 0.6	68.6 ± 1.5	78.8 ± 0.5	68.9

998
999 Table 7: Efficiency and Storage Analysis of GIN (contextpred) models.

Methods	Tox21	Toxcast	SIDER	ClinTox	BBBP	BACE	HIV	MUV	Average	times
Full Fine-Tuned	78.0	64.8	62.5	74.0	69.6	86.8	79.6	83.9	74.9	about 400+ min
Multi-Task Learning	75.5	63.4	62.8	64.9	66.4	84.7	74.8	77.5	71.2	144 min 45 s
Pretrained	68.9	63.3	58.1	61.9	55.3	78.5	59.1	72.3	64.7	0 min
G-Merging(r=10)	76.0	65.6	63.1	78.9	66.0	83.8	73.3	75.9	72.9	59 min 4 s (single 4090 GPU)
G-Merging(r=20)	77.0	65.8	64.2	71.7	66.7	85.6	73.3	78.8	73.0	58 min 28 s (single 4090 GPU)
G-Merging(r=30)	77.4	65.8	64.4	74.1	67.1	86.9	74.5	81.2	73.9	57 min 56 s (single 4090 GPU)
G-Merging(r=40)	77.5	65.8	64.4	72.9	67.5	87.2	74.1	81.7	73.9	58 min 49 s (single 4090 GPU)
G-Merging(r=50)	77.5	65.8	64.3	71.2	67.6	86.6	75.4	82.7	73.8	58 min 10 s (single 4090 GPU)



1009
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
Figure 5: MoE Weights Heatmap. The heatmap illustrates the weights assigned by the routing
1126 mechanism of G-Merging between different testing tasks (rows) and task-specific expert adapters
1127 in the MoE framework (columns). Each value represents the weight distribution, indicating the
1128 contribution of each expert to a given task. Darker colors correspond to higher weights, highlighting
1129 more influential expert-task relationships. From left to right, the three figures correspond to three pre-
1130 trained model settings: GIN (ContextPred), GIN (EdgePred), and GCN (ContextPred), respectively.

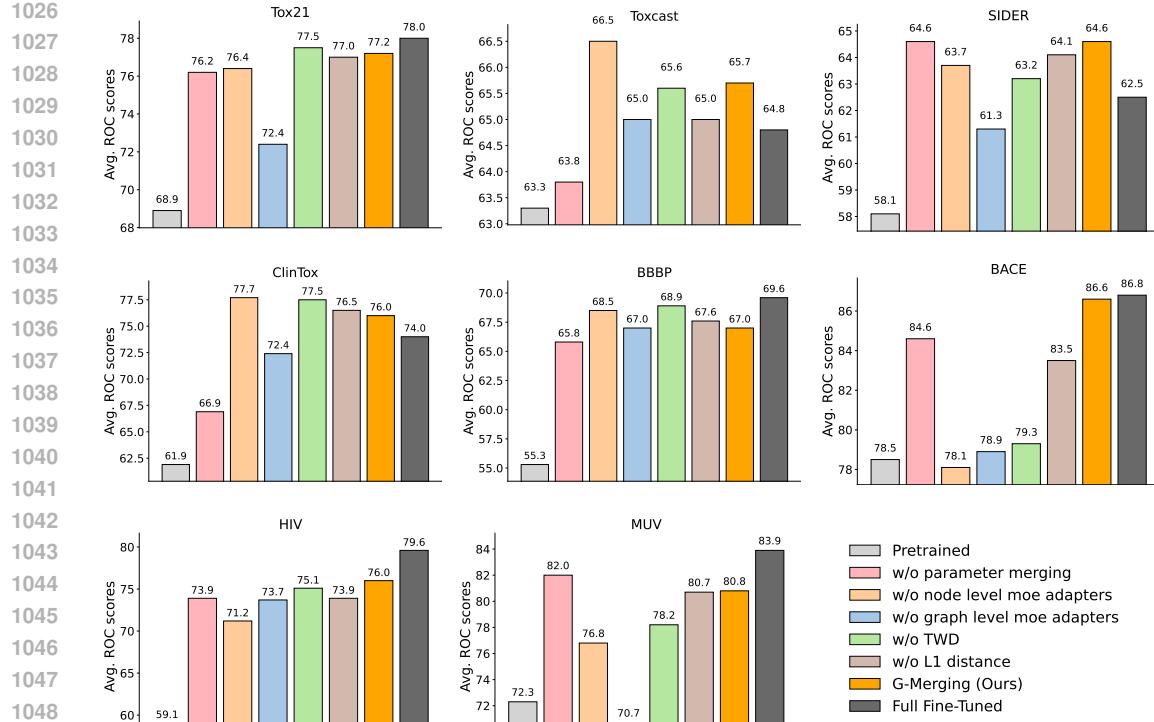


Figure 6: The detailed results of ablation studies in Section 5.2. We evaluate five ablated variants of our method, each with a specific component removed, across 8 downstream tasks.

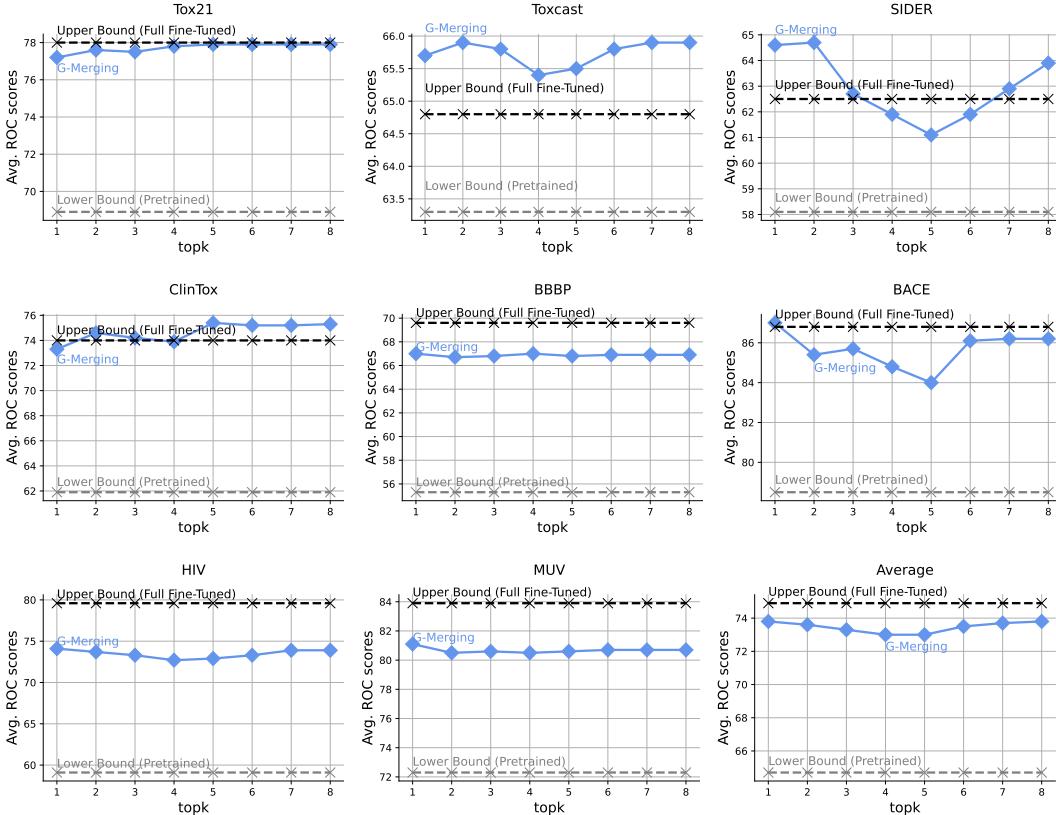
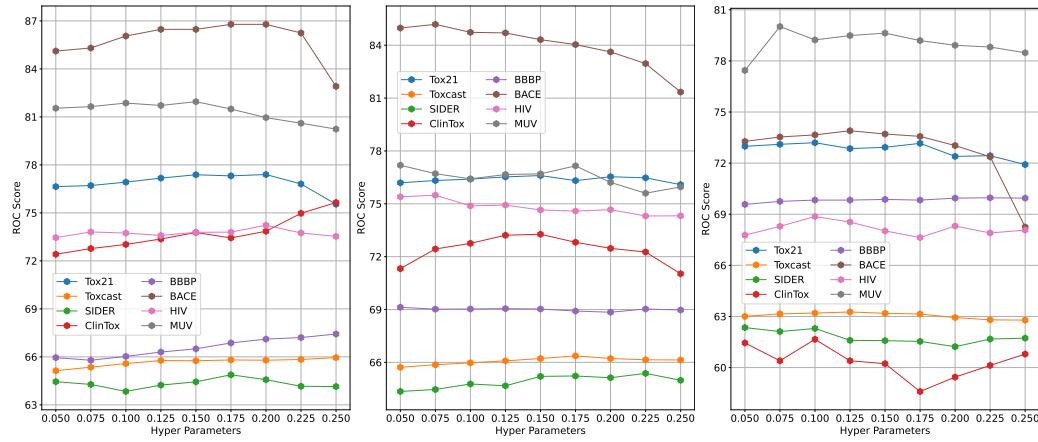


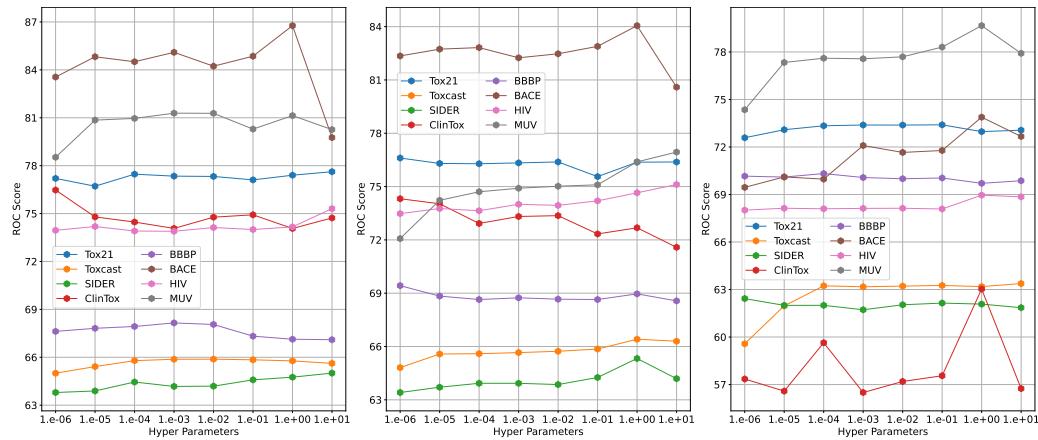
Figure 7: The impact of Top-k selection in the MoE structure on the performance of G-Merging, tested on 8 tasks and their average.

1080 F HYPERPARAMETER SENSITIVITY ANALYSIS IN G-MERGING
1081
1082

1083 We further conduct experiments about two inevitable hyperparameters in G-Merging: task vectors
1084 scalar λ and loss balance α . As shown in Figure 8 and 9, We present the performance variety of
1085 G-Merging with λ ranging from 0.05 to 0.25 and α ranging from 10^{-6} to 10.
1086



1102 Figure 8: Effect of hyperparameter λ . Lines of different colors represent the performance on each
1103 task. From left to right, the three figures correspond to three pre-trained model settings: GIN
1104 (ContextPred), GIN (EdgePred), and GCN (ContextPred), respectively



1106 Figure 9: Effect of hyperparameter α . Lines of different colors represent the performance on each
1107 task. From left to right, the three figures correspond to three pre-trained model settings: GIN
1108 (ContextPred), GIN (EdgePred), and GCN (ContextPred), respectively

1126 G VARIOUS ADJACENCY MATRICES IN CALCULATING TWD
1127
1128

1129 Recalling Eq. 5, the topology information incorporated into TWD is based on the standard 1-hop
1130 adjacency matrix \mathbf{A} . However, this matrix can be easily extended to a k -hop adjacency matrix, which
1131 may encode different aspects of the topological structure. To this end, we investigate the impact
1132 of using different adjacency matrices on the performance of TWD. As shown in Figure 10, the
1133 1-hop adjacency matrix generally performs better overall, while other adjacency matrices achieve
competitive performance on certain specific tasks.

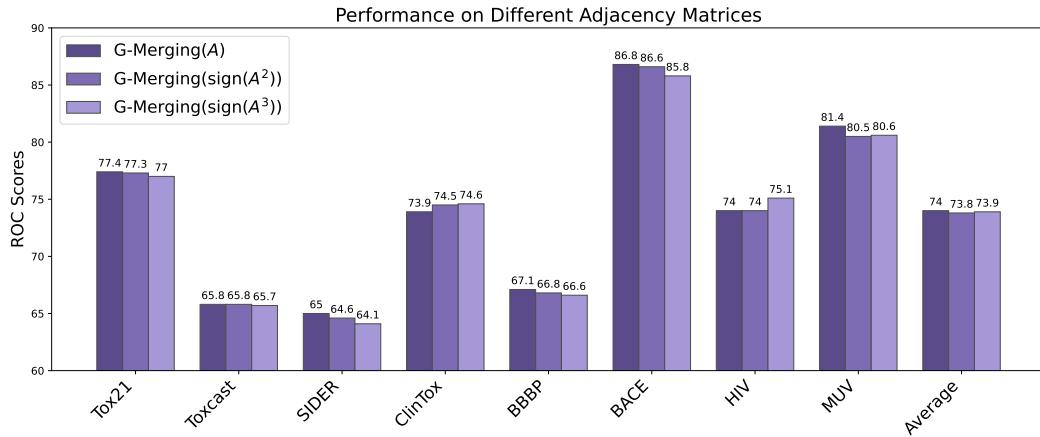


Figure 10: Investigating the Impact of Adjacency Matrices on TWD. The GIN (contextpred) pre-trained model is used in this experiment.

H G-MERGING ON HETEROGENEOUS AND NON-MOLECULAR GRAPH DOMAINS.

To further evaluate the generalization of G-Merging beyond molecular property prediction, we conduct experiments on nine heterogeneous downstream tasks, covering transportation networks, academic graphs, movie actor networks, social networks, and Reddit interaction graphs. These tasks include both node-level and graph-level classification and therefore provide a comprehensive assessment of performance outside the molecular domain. First, we presents the experimental setup here.

Pretraining. Following the protocol of GCC (Qiu et al., 2020), we adopt a publicly available pretrained GNN model trained jointly on a mixture of heterogeneous graph datasets, including: Academic networks (Academia, DBLP-SNAP, DBLP-NetRep), Entertainment networks (IMDB), and Social networks (Facebook, LiveJournal). These datasets differ substantially in structure and semantics, providing a suitable basis for evaluating the generalizability of our method beyond molecular domains.

Downstream Datasets. We fine-tune the pretrained model on nine downstream datasets covering both node-level and graph-level prediction tasks. For node-level classification, we use four datasets: USA Airport, Europe Airport, Brazil Airport, three Airline transportation networks (over 1k nodes), where labels correspond to airport activity levels (4 classes); and H-index, co-authorship subgraph from Open Academic Graph, where labels indicate whether an author’s h-index is above or below the median. For graph-level classification, we use five datasets: IMDB-Binary and IMDB-Multi, movie actor collaboration graphs (small, dense, 2–3 classes); COLLAB, medium-sized scientific collaboration networks; Reddit-Binary and Reddit-5K, Large-scale sparse Reddit discussion graphs with diverse interaction patterns. These datasets were also used in GCC (Qiu et al., 2020) as downstream tasks to evaluate the generalization of GNN models pretrained using their proposed strategy. And we believe that this setting already spans both node-level and graph-level tasks over diverse and heterogeneous graph topologies.

Merging Procedure. For each dataset, we fine-tune one model from the same pretrained checkpoint. Then we apply G-Merging and two baseline methods (Weight Average and Task Arithmeti) to merge nine finetuned models. All merged models are evaluated on their corresponding tasks using F1-score. The results are presented below:

1188

Table 8: Performance comparison on diverse non-molecular graph benchmarks.

1189

1190

1191

1192

1193

Method	usa_airport	europe_airport	brazil_airport	h-index	imdb-binary	imdb-multi	collab	rdt-b	rdt-5k
Pre-trained	41.68	37.85	56.54	56.84	59.60	39.27	61.44	59.70	32.07
Weight Average	56.49	56.32	45.09	65.29	60.40	39.88	62.12	61.32	33.09
Task Arithmetic	58.20	58.31	42.90	69.10	59.80	42.60	60.80	67.80	27.80
G-Merging (Ours)	59.01	57.24	60.52	72.87	61.29	47.30	62.22	70.57	39.11

1194

1195

We observe that G-Merging achieves the best performance on most of datasets and improves substantially over baselines on both node-level and graph-level tasks. These results demonstrate that G-Merging generalizes well to non-molecular graph domains such as transportation, academic, and social networks, and it remains effective on diverse task types, including large sparse graphs and multi-class graph classification.

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

I LIMITATIONS AND FUTURE WORKS

1206

1207

1208

1209

1210

1211

1212

Our proposed G-Merging framework demonstrates promising results in merging fine-tuned graph models and transferring knowledge across tasks. However, our setting assumes the task-specific models used for merging are all fine-tuned from a shared pretrained GNN model. A more general scenario, where these models may originate from different checkpoints or even differ in architecture, remains an open direction for future exploration. Also, the use of a fixed number of fine-tuned models may limit adaptability to evolving or unseen tasks.

1213

1214

1215

1216

1217

In future work, we plan to study a more generalized graph model merging framework by developing adapter alignment strategies that can reconcile representations from different backbones, and also explore unified routing mechanisms that remain effective across diverse model types. Furthermore, we plan to extend the framework with continual learning capabilities to enable dynamic adapter composition, improving the model’s practicality in real-world scenarios.

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241