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ABSTRACT

The pretrain-finetuning paradigm has achieved notable success in graph learning.
Moreover, merging models fine-tuned on different tasks to enable a parameter-
efficient model with multi-task capabilities is gaining increasing attention for its
practicality. However, existing model merging methods, such as weight averaging
and task arithmetic, struggle to generalize well to graph structures and Graph
Neural Network (GNN) models due to the unique structural heterogeneity of graph
data. In this paper, we propose an innovative graph model merging framework
called G-Merging for merging multiple task-specific fine-tuned GNN models.
G-Merging first employs task arithmetic to coarsely merge graph models, capturing
shared cross-task knowledge. Second, it introduces a Topology-aware Wasserstein
Distance (TWD) loss to train lightweight task adapters upon the merged model,
preserving domain-specific graph patterns via aligning the embeddings of merged
and fine-tuned models. Third, G-Merging integrates the adapters into a training-free,
topology-aware router within a mixture-of-experts (MoE) architecture, dynamically
routing input graphs to task-specific adapters based on structural similarity, thereby
mitigating conflicts and enhancing knowledge sharing. Extensive experiments on
8 graph downstream datasets demonstrate the effectiveness of the merged model,
showing impressive performance close to or exceeding individual finetuned models
while improving parameters and training efficiency. Our code is available at
https://anonymous.4open.science/r/G-Merging-D515

1 INTRODUCTION

With the gradual development of graph learning, various model architectures have been proposed
(Scarselli et al., 2008; Wu et al., 2020; Xu et al., 2018; Wu et al., 2022), especially Graph Neural
Networks (GNNs). Pre-trained models and pre-training strategies (Hu et al., 2020; Qiu et al., 2020; Xu
et al., 2018) on graph data have gained attention due to their strong generalization ability. Meanwhile,
fine-tuning these pre-trained models on downstream tasks has become a standard paradigm (Sun et al.,
2024; Zhang et al., 2022; Zhili et al., 2024; Sun et al., 2022), particularly in scenarios where data
labels are limited or out-of-distribution, such as in the domains of chemistry (Kim et al., 2023; Mayr
etal., 2018; Wu et al., 2018; Sterling & Irwin, 2015) or biology (Veli¢kovi¢ et al., 2018; Ingraham
etal., 2019; Zitnik et al., 2019). Fine-tuned models usually achieve good performance on specific
downstream tasks, as they are trained on task-specific datasets in a targeted manner. However, when
we need to perform multiple tasks simultaneously, applying individual fine-tuned models to different
tasks results in high storage and deployment costs. Multi-Task Learning (MTL) offers a way to train
a unified model on an aggregated multi-task dataset, but it usually learns from scratch and does not
leverage the knowledge already encapsulated in fine-tuned models.

Thus, model merging seeks to construct a unified multi-task model by combining the parameters
of fine-tuned models instead of joint training from scratch, as shown in Figure 1 (1). Ideally, it can
retain the performance of each fine-tuned model while reducing parameter overhead and avoiding the
need for extensive re-training on all task data. Until now, multiple model merging methods have been
proposed, showing both practical significance and wide applicability. These range from the simple
weight averaging strategy (Wortsman et al., 2022) to advanced ones, including Task Arithmetic
(Ilharco et al., 2022), Ties-Merging (Yadav et al., 2023), AdaMerging (Yang et al., 2023), DARE (Yu
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Figure 1: From left to right: (1) The 111ustrat10n of the graph model merging task. (2) A 2D t-SNE
visualization of the final-layer embeddings from eight protein graph datasets, encoded using the graph
pre-training model (Hu et al., 2020). (3) The cross-domain validation performance of task-specific
graph models, each fine-tuned on one of the eight datasets from a shared pre-trained model. (4) The
performance comparison between models merged via the Weight Average and our proposed methods.

et al., 2024), and Twin-Merging (Lu et al.). While model merging has been explored extensively in
domains like vision and language models, its applicability in the context of graph models still remains
a challenge. For example, as shown in Figure 1 (2), embeddings from eight similar graph datasets
exhibit distinct clustering patterns, and in Figure 1 (3), and the models from the same pre-training
graph model, fine-tuned on one of these domain (row), usually fail to generalize to others (column)
when replace the backbones of the corresponding fine-tuning models. These observations indicate
that graphs, inherently with heterogeneous structural patterns, lead to complex representations that
are highly domain-specific. These can result in a significant performance gap between fine-tuned
models and their merged model when applying existing merging strategies (Yang et al., 2024a; Huang
et al., 2025), due to task conflict and knowledge sparsity (Yadav et al., 2023).

These observations motivate the need for novel model merging strategies tailored to graph data.
In this paper, we propose an innovative framework called G-Merging for merging multi-task fine-
tuned GNN models. Specifically, we first conduct a coarse merging on multiple fine-tuned GNN
models via task arithmetic to obtain a unified GNN model. Then, to capture nuanced task-specific
knowledge, we introduce the Topology-aware Wasserstein Distance (TWD) as a feature alignment
loss. This loss trains lightweight, task-specific adapters upon the merged model, which supplement
knowledge and alleviate representation bias. Furthermore, to mitigate task conflicts and encourage
inter-task knowledge sharing, we further integrate these adapters into a Mixture of Experts (MoE)
framework with a training-free, topology-aware router, which, together with the merged model, forms
the final multi-task model. handle various downstream tasks. We demonstrate the effectiveness
and generalization ability of G-Merging through extensive experiments on eight graph datasets,
encompassing various GNN architectures and pre-training strategies. As an experimental example
shown in Figure 1 (4), our method achieves a clear performance boost over naive weight averaging.
Meanwhile, our approach offers efficient storage and fast inference, requiring storage space nearly
equivalent to a single GNN model. The main contributions can be summarized as follows:

© This paper proposes G-Merging, a novel approach to merging fine-tuned graph models via rask
arithmetic and TWD-based adapter routing, resolving cross-domain structural heterogeneity
and consolidating task-specific knowledge while enabling cross-task knowledge sharing.

® This paper proposes a topology-aware and training-free MoE that dynamically selects adapters
at inference, enabling efficient cross-task knowledge transfer and multi-task generalization.

© Extensive experiments demonstrate that G-Merging not only maintains or exceeds the perfor-
mance of individual fine-tuned models but also improves storage and training efficiency. The
framework is also model-agnostic, supporting integration with various graph models.

2 RELATED WORK

Model Merging. In recent years, model merging has became a rapidly evolving technique applied
in two dominant scenarios: (i) merging multiple models trained on the same dataset, aiming to
improve model generalization (Wortsman et al., 2022; Wang et al., 2022; Cha et al., 2021; Gupta
et al., 2020; Wang et al., 2025) or support federal learning (Liu et al., 2022a; Wang et al., 2020) (ii)
merging multiple models trained on different datasets or for different tasks to perform MTL (Matena
& Raffel; Jin et al., 2022; Yang et al., 2023; Huang et al., 2025). This paper primarily focuses on the
latter scenarios. Consequently, numerous works propose advanced merging techniques to improve
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performance or efficiency (Huang et al., 2025; Yadav et al., 2023; Lu et al.; Ilharco et al., 2022). The
baselines in our experiments provide specific examples.

Fine-tuning in Graph Transfer learning. Supervised Fine-tuning (SFT) from pre-trained models
on downstream tasks is becoming a standard paradigm in both NLP and vision fields (Paul & Chen,
2022; Dodge et al., 2020; Devlin et al., 2019; Bommasani et al., 2021; Dosovitskiy et al., 2020) and is
gaining increasing popularity in graph learning. SFT in graph transfer learning demonstrates effective
performance while alleviating the burden of collecting labels regarding new tasks. Depending
on whether all the parameters of models are adjusted, SFT can be divided into conventional full
fine-tuning (FFT) and parameter-efficient fine-tuning (PEFT). PEFT aims to reduce the number of
trainable parameters for downstream tasks by either inserting additional modules (e.g. adapters,
learnable prompts) or training only a subset of parameters while freezing the rest (Hu et al.; Liu et al.,
2022b; Houlsby et al., 2019a).

Mixture of Experts. The Mixture of Experts (MoE) paradigm introduces an adaptive routing method
that allocates experts dynamically to handle different inputs. Sparse MoE models activate only
a subset of experts for each input to improve computational efficiency, while dense MoE models
combine the outputs of all experts to achieve superior performance. The concept was first introduced
by (Jacobs et al., 1991) with gating mechanisms to select the experts. Recent studies have focused on
challenges such as load balancing of experts (Clark et al., 2022; Zhou et al., 2022), training instability
(Zoph et al., 2022), expert specialization (Dai et al., 2024; Tang et al., 2024), and synchronization
reduction (Sukhbaatar et al., 2024) for tasks in CV and NLP fields. Despite their success, the
requirement for substantial multi-task data and the high cost of joint training remain significant
challenges for these methods. In contrast, our MoE module is completely train-free and orchestrates
task-specific experts based on TWD.

3 PRELIMINARIES

Notation. Let G(V, £) be a graph with vertices )V and edges £. An input graph data can be expressed
as G = {A, X}, where X € RIVIXdnode js the node feature matrix and A € RIVIXIV| s the adjacency
matrix. A;; = 1 otherwise 0 if there is an edge between nodes n; and n;. Under the pretrain-finetune
paradigm, let fy(G;) be a pre-training GNN model with parameter 6., which is pre-trained on a
large, general-purpose graph dataset. Then, we consider a collection of K downstream graph tasks,
indexed by k = {1,2, ..., K'}. Each task k is associated with a private dataset Dy = {(G,v:) )%,
where y; is the label of the graph GG; and Ny, is the number of samples in task k. For each task, the
model is initialized with 6,,. and then fine-tuned on Dj, to obtain task-specific parameters 6, with an
additional task-specific prediction head.

Problem Definition. The graph model merging problem aims to obtain a unified graph model
fo,, with reduced parameters overhead by consolidating knowledge from a collection of fine-tuned
models { fy,, fo,, ..., fo, } and pre-trained model fy ., eliminating the need to maintain a full set of
parameters for each task-specific model. Then, fy, as a shared graph encoder, combined with the
task-specific classification heads from the fine-tuned models, is used to perform multi-task inference.
The objective is to achieve this without retraining a new multi-task model from scratch, which can
be computationally expensive and require access to all labeled data, or relying on naive parameter
averaging strategies, which often result in degraded performance due to parameter misalignment
and lack of task-specific nuance. The goal is to strike a balance by efficiently merging multiple
task-specific fine-tuned models into a unified model that reduces storage and computational cost by
eliminating the overall number of parameters, maintains or even improves individual performance on
all downstream tasks, and possibly leverages shared knowledge to enable cross-task generalization.

Wasserstein Distance. Wasserstein Distance (WD) (Peyré et al., 2019)(a.k.a. Earth Mover’s Dis-
tance, or Optimal Transport Distance) quantifies the similarities between objects such as probability
distributions, either discrete or continuous, by computing the minimum cost of an optimal transport
plan from one to the other (Bécigneul et al., 2020). We now describe the definition of WD between
two discrete distributions as follows.

Definition 1. Consider two discrete probability measures i € P(X) and v € P(Y), represented
respectively as n =Y i W;0,, and v = Z;nzl V;0y,;, where 6, denotes the Dirac measure centered
at x. A coupling of j1(z) and v(y) can be expressed as T(z,y) = > i, Z;n:l Tij0(x,,y;)> in which
T € R:ixm fulfills the marginal conditions T1,, = u and T'1,, = v. Here, u and v are the
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respective weight vectors of i and v, and 1,, € R" is the all-ones vector of length n. The Wasserstein
distance between |, and v is then given by:

n m
D v) = min T c(xi,y,)- 1
wd(uv ) TEMN (u,v) ; JE::I 29 ( 7 y]) ( )
where the feasible set II(u,v) = {T € R?*™ | T1, = uAT'1,, = v} includes all joint
distributions with marginals 1 and v. The function c(x;,y;) denotes the ground cost associated with
transporting mass from x; to y;. The matrix T, referred to as the transport plan or transport map,
defines the quantity 'T';; of mass relocated from x; to y;.

4 METHODOLOGY

4.1 COARSE PARAMETERS MERGING VIA TASK ARITHMETIC

We begin with a coarse merging process to - -
reduce parameter redundancy. Specifically, Algorithm 1 G-Merging
from previous investigations and discussions on  Require: fine-tuned model {fs,, fo,, .., fo, }» pre-

model merging research, knowledge modulariza- trained model fj,,. , loss fuction Lrw p L p, non-
tion is an effective and reasonable technique that parametric router R, and pre-specified weight A
decomposes the knowledge possessed by experts .

into ® Shared knowledge and ® Task-specific 1: Parameters merging: > Shared knowledge

2: Compute the unified model fo,,,,:

exclusive knowledge (Lu et al.; Huang et al., o
2025). As the name suggests, shared knowl- 30 Ouni = Opre + A3 51 (O — Opre)
edge represents common and generalized knowl- 4
edge across d1‘fferent tasks, e.g., in the pretrain- 5. oo ch task k do

finetune paradigm, the base model or pre-trained . Transfer knowledge of f5, into task-specific
model possesses shared knowledge across down- adapters fadap,o::

stream tasks. Furthermor'e, task-specific knowl- 7. 05 < train{fo, , fo..., Lowp, Larp}
edge can be compressed into shared knowledge  §: end for

by merging the parameters of fine-tuned mod-

els (e.g., direct weight averaging is a simple 9: Inference: > Main inference loop
approach). Based on the above observation, we 10: perform task k

merge fine-tuned GNN models into a unified 11: inputa graph G with embedding matrix H

model with shared knowledge, leveraging an es- 12¢ for each layer in model do

tablished merging technique called Task Arith- 13 Update embeddings by unified model:

: Training: > Exclusive knowledge

. 14: H « (H
metic (Ilharco et al., 2022). 15: Calculatef ﬁgﬁ{ér v&?eights:
Specifically, for K tasks, the corresponding 16: {witic1  R({ fadap.o; (H)}i1, k)
task vectors of parameters are defined as 7, = 17:  Merge for final output H":
0k — Opre, where k € {1,2,..., K}. Further- 18: H <+ H- 3w+ fadap,o: (H)

more, multiple task vectors {75, }X_, are added 19: end for
and merged into the pre-trained parameters 0.,

formulated as 0,5, = Opre + A Z,[le 71, where
the 6,,,,; is the parameters of unified model with
shared knowledge and A is a sclaing hyperparameter to control the balance between fundamental
knowledge in pre-trained model and task-related knowledge in fine-tuned models. Setting A as
% recovers naive weight averaging, while larger/smaller values amplify or suppress task-related
adjustments. From the empirical results in Appendix F, a value bigger than % may be more effec-
tive for downstream tasks. As shown in Phase(I) of Figure 2, this coarse merging process offers a
foundational backbone that captures commonalities across tasks, serving as an initialization for the
subsequent process.

Ensure: Output H for input graph G.

4.2 INCORPORATING TASK-SPECIFIC ADAPTERS

While coarse merging provides a foundation for capturing shared knowledge, it may be insufficient
for capturing nuanced, task-specific knowledge. Empirically, we notice that the single unified
GNN model we obtained exhibits a performance gap compared to the fine-tuned GNN models on
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Figure 2: Overall framework of G-Merging, containing three main phases. In phase(I), we coarsely
merge GNN models fine-tuned on different tasks into a unified model using task arithmetic. In
phase(Il), we train multiple task-specific adapters, lightweight modules used to solve the represen-
tation bias between the unified model and the fine-tuned model. Moreover, we apply the graph
Topology-Aware Wasserstein Distance (denoted as L7y p in the figure) and the L1 distance (denoted
as L/ p in the figure) to promote representation alignment at the node and graph levels, respectively.
In Phase (IIT), we add MoE adapters, composed of task-specific adapters and a router method, at each
layer of the unified GNN model and before the prediction head for test-time inference.

downstream graph tasks. Previous research has demonstrated that this discrepancy is attributed to
representation bias, which refers to a substantial difference in the representation distribution between
the unified and fine-tuned models (Yang et al., 2024a;b). To address this problem, we further introduce
additional adapter-based modules, which are inserted after the graph convolution layers and before
the classification head. We trained task-specific adapters to minimize representation bias at both the
node level (i.e., NodeAdapters) and the graph level (i.e., GraphAdapters).

Specifically, given an input graph data G = {A, X}, the node embedding matrices H® ¢ RIVIxd

(H(©®) = X)) updated in I-th GNN layers with or without NodeAdapters are respectively formulated as

l l -1 l -1
By = Frono (A 02) = fadapo: (Feonuo (A H 1)),
l -1
Hé) = fconv,G(A7H§ ))7
where 6 and 6* denote the parameters of GNN model and adapters, respectively, f.ono is the graph
convolution function for aggregating messages and updating embeddings, which varies with different
GNN backbones like GIN or GCN, and f,q4qp is the lightweight adapter module, which can be an

arbitrary implementation (such as multiple fully connected layers). Without loss of generality, in our
method, we follow the original work on Adapters (Houlsby et al., 2019b) and set fqqq; as follows:

fadap,@* (H) = RCLU(H : Wdown) : Wupa 3)

where W gon € RY" and W, € R™* are two trainable matrices, i.e., 0* = {Wiown, Wup},
ReLU(-) is a nonlinear activation function. The parameter r represents the internal rank of the

(@)
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adapters, controlling the scale. Similarly, the final graph embedding vectors h € R? extracted by the
Pooling layer with or without GraphAdapter can be formulated as

by g = fr({(H}) = fudap.o- (/- ((F}). @
= ,({Hy'D),

where f,. is a readout function such as averaging or summarizing the node embeddings.

For each task k, we denote the task-specific adapter parameters as 6. We train these adapters on the
corresponding task graph data to align the distribution of embeddings extracted by the merged and
the previous fine-tuned GNN models. To achieve this, we employ Wasserstein Distance in Section 3
to quantify the similarity between two sets of node embeddings in a graph, which can be regarded as
discrete distributions (Zhang et al., 2022; Chen et al., 2020). Motivated by the earlier observation
of domain-specific structural patterns inherent in graph data, we further incorporate graph topology

1)

to enhance structural awareness. Specifically, given the node embeddings Héum o encoded from

the [-th layer of the previously derived unified model with NodeAdapters and H((,lk) from the k-th
fine-tuned model, we introduce an alignment loss based on Topology-aware Wasserstein Distance:

V| Vv
c =TWDH{) . HY A)= Ti; - (b’ n["), 5
TWD = (Hy,. .00 Hg,» Tgﬁ?A)z;; ;- c(hf ) ®)
where II(A) = {T € er\x\v‘ | Tl = \Tll 1y /\TT1|V| = ﬁ Ay ATO (1\V\><\V\ —A)=
Oy|x|v|} is the set of transport plans, hg) = ((,l)” 0*[2' ;] and h;.(l) = Hélk) [4,:] denote two

embedding vectors, and ¢(-, -) is the cost function. Compared to the original WD, the transport plan T
is now constrained by the graph adjacency matrix A. Therefore, this loss function is computationally
aware of graph topology.

Notably, in our task, we calculate the cosine distance ¢(a, b) = % (1 — cos(a, b)) as the cost function,
following many prior works based on the application of Optimal Transport problems (Zhang et al.,
2022; Xu et al., 2020; Chen et al., 2020). Additionally, we set A as the 1-hop adjacency matrix with
self-loops, i.e., A;; = 1 if and only if ¢ = j or there exists an edge between ¢ and j. Conceptually,
reducing the cosine distance between h; and any h’;, where j € N (i) U {i} (with NV(j) denotes
the set of neighbors of node %), contributes to the reduction of TWD. This is intuitively reasonable
because the embeddings of neighboring nodes extracted by GNNs are expected to be similar—a
property often referred to as the smoothness of GNNs (Li et al., 2018). Similar to the standard WD,
calculating TWD requires finding out the optimal transport plan T'. This problem has been extensively
studied in prior work, with efficient solutions such as Sinkhorn algorithm variants (Cuturi, 2013;
Peyré et al., 2019; Dvurechensky et al., 2018; Zhang et al., 2022). We provide a detailed introduction
including theoretical background and computational complexity of TWD in Appendix A.

For the final graph embeddings hy,, . ¢: and hy, _, we define the alignment loss as Manhattan

Distance (also called L1 distance) between them, i.e., Lyrp = ||hg — hy, ||1. Combining the
losses above, the final optimization problem is

L
L= H;}}l |Dk| Z (01 -Lyp + Z ETWD) (6)

GEDy, =1

unm

where « is the hyperparameter to balance two losses.

As shown in Figure 2, in Phase(Il), we train without task labels and obtain K sets of adapters
corresponding to K tasks. These adapters serve as supplemental task-specific knowledge to the
shared knowledge in the unified model and improve the performance on downstream tasks. Notably,
our training process is efficient because the majority of parameters 6,,,; are frozen while only
parameters in adapters ¢ remain for training.

4.3 INFERENCE PROCEDURE

In the inference phase, we aim to obtain an enhanced model by integrating the knowledge in adapters
from different tasks. Inspired by the perspective that knowledge from similar tasks can be mutually
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beneficial (Ilharco et al., 2022), we compose the task-specific adapters into MoEAdapters based on a
parameter-free Mixture-of-Experts architecture (Cai et al., 2024) during inference. Specifically, we
compose fadap,0+ 10 frnoe, {6703 ..o} in Equations 2 and 4. Inside the MoEAdapter, each expert is
set as the task-specific adapter, well-trained for a particular task, and the output is a weighted sum of
the outputs of the experts. The process can be formulated as

K
fmoe,{afﬁ;,‘..,@}(}(H) = Z W - fadapﬂ; (H) (7)
k=1

where {07,605, ..., 0% } are parameters trained in phase(Il), {w1, wa, ..., wx } are MoE weights cal-
culated by a train-free router module based on the similarity between different tasks. Precisely,
assume that we have node embeddings H € RIYI*4 from a given graph G and obtain two outputs,
f adap,0%, (H) and f‘ldapﬂfa (H), from two task-specific adapters. We can consider task A and task
B to be similar if fidap,07, (H) and fadap,02, (H) are similar, and the similarity can be measured by
TWD. On this basis, during inference on task k, {w, wa, ..., wx } are calculated as follows:

{w1, wa, ..., wi } = softmax({—TWD( fadap,or (H), fadap.o: (H))}<,) ®)

This mechanism amplifies the contribution of experts trained on similar tasks when addressing the
target task. Additionally, the similarity between two graph embeddings h € R¢ can be meatured by
Manhattan Distance, and the {w;, wa, ..., wx } on graph level are calculated as:

{w1, wa, ..., wi } = softmax ({—|| fadap,o: (h) — fadap,o: ())[1}/<)) ©)

In this way, the MoEAdapters are tailored for each graph instance and effectively utilize knowledge
while mitigating knowledge conflict across different tasks. As a result, we only deploy 6,,,,; and
{67,05, ..., 0%} during inference for all tasks, which is significantly smaller than the total size of
01,05, ..., 0 from all finetuned models, according to the experimental data in Table 4.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We use 8 binary graph classification datasets for molecule property prediction as down-
stream tasks, which are widely used as benchmarks for evaluating pretrain-finetune strategy in
previous work (Zhang et al., 2022; Kim et al., 2023; Zhili et al., 2024; Sun et al., 2024). Data statistics
and preprocessing are detailed in Appendix B and C.

Baselines. Since we have not found related work in merging GNN models, we compare our G-
Merging with several typical and advanced model merging methods from the CV or NLP field,
including: Weight Averaging, Task Arithmetic (Ilharco et al., 2022), Ties-Merging (Yadav et al.,
2023), and EMR-Merging (Huang et al., 2025), AdaMerging (Yang et al., 2023), Twin-merging (Lu
et al.) (detailed in Appendix D). Furthermore, we include Multi-task Learning, individual fine-tuned
models, and the pre-trained model as additional baselines beyond the merging strategy. The fine-tuned
and pre-trained models serve as the upper and lower performance bounds, respectively.

Settings. To evaluate the effectiveness of G-Merging in various scenarios, we use models with a
range of GNN backbones. Specifically, we reuse the pretrained models provided by Weihua ez al. (Hu
et al., 2020) with two GNN architectures: GIN (Xu et al., 2018) and GCN (Kipf & Welling, 2016),
and two pretrain strategies: contextpred and edgepred. All models are self-supervised and pretrained
on the chemistry dataset ZINC15 (Sterling & Irwin, 2015) (containing over 2 million molecules).
We obtain the fine-tuned models by fully fine-tuning pretrained models on 8 downstream tasks. We
run our method with 5 different random seeds and report the mean and standard deviation of the
performance. In addition, we also validate a simplified version of our method, G-Merging-s, which
directly uses task-specific adapters but not MoEAdapters during inference. More details of pretrained
models and hyperparameters are provided in Appendix B.

5.2 EXPERIMENTAL RESULTS AND ANALYSIS

Main Results. The ROC-AUC scores in Table 1, Table 2, and Table 6 (in Appendix E) show
the results for all tasks with various pretrained GNN models. The total average scores across 8
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Table 1: Test ROC-AUC score (%) of GIN models (contextpred) on downstream molecular property

prediction tasks after merging fine-tuned models. (" * " denotes performance surpassing that of the

fine-tuned model.)
Methods | Tox21 ~ Toxcast SIDER ClinTox BBBP BACE HIV MUV | Average
Full Fine-Tuned 78.0 64.8 62.5 74.0 69.6 86.8 79.6 83.9 74.9
Pretrained 68.9 63.3 58.1 61.9 55.3 78.5 59.1 72.3 64.7
Multi-Task Learning 75.5 63.4 62.8 64.9 66.4 84.7 74.8 71.5 71.2
Weight Average 74.7 64.5 60.4 70.7 63.5 78.8 66.5 71.5 69.6
Task Arithmetic 74.2 64.6 60.4 71.6" 66.6 70.8 68.5 74.8 69.7
Ties-Merging 69.2 63.4 57.8 62.1 55.5 79.0 61.6 71.5 65.8
EMR-Merging 71.6 63.5 62.2 72.8 69.1 80.9 74.8 71.3 71.5
AdaMerging 69.2 62.0 57.6 64.6 60.2 70.5 64.2 66.7 64.4
Twin-Merging 69.9 63.4 59.0 63.0 59.0 57.5 59.8 75.7 63.4

G-Merging-s (Ours) | 77.2+04 65.7"0.1 64.6"+05 76.0°+05 67.0x02 86.6+02 76.0+03 80.8+0s5| 74.2
G-Merging (Ours) |77.4+05 65.8"x01 64.8"+t06 74.2°+0s 67.1+02 86.8+02 74.2+04 819x0s| 74.0

Table 2: Test ROC-AUC score (%) of GIN models (edgepred) on downstream molecular property
prediction tasks after merging fine-tuned models.

Methods ‘ Tox21 Toxcast SIDER ClinTox BBBP BACE HIV MUV ‘ Average
Full Fine-Tuned 76.1 66.1 64.8 70.0 70.5 86.1 77.6 79.7 73.9
Pretrained 71.6 64.9 60.0 61.6 54.6 76.4 64.4 65.5 64.9
Multi-Task Learning 73.8 64.0 63.3 71.2 68.8 81.1 74.5 72.8 71.2
Weight Average 74.1 66.1 62.2 65.9 63.6 78.7 67.0 68.5 68.3
Task Arithmetic 74.1 65.8 63.1 71.6 66.1 75.7 68.9 66.8 69.0
Ties-Merging 71.7 65.0 59.7 61.5 54.8 78.3 64.4 66.6 65.2
EMR-Merging 76.6 65.3 64.1 67.8 70.4 82.1 70.2 67.1 70.4
AdaMerging 71.3 63.6 59.7 72.7 57.3 724 68.6 60.8 65.8
Twin-Merging 71.8 64.6 58.8 67.6 56.4 56.7 61.6 69.0 63.3

G-Merging-s (Ours)\77.3*io.4 66.0£0.1 64.6:02 7417105 69.2+03 83.1x06 74.9+07 75‘5i0.5‘ 73.1
G-Merging (Ours) \76.9’}0.4 66.0£0.1 64.8:02 71.8"104 68.9+03 84.6:105 742407 77.4i0.6‘ 73.1

datasets indicate the overall capability of merging methods. We observe that our method significantly
outperforms the baseline method in the vast majority of tasks, regardless of the GNN architectures
and pretraining strategies. The performance is competitive with finetuned models, and outperforms
them in some tasks, indicating that our merging method maintains or even improves individual
performance, which is perhaps attributed to knowledge transfer or knowledge complementarity across
tasks. Comparing G-Merging with G-Merging-s, G-Merging can perform better on certain tasks,
indicating that one task can benefit from others in the MoE structure. Additionally, for tasks with
more pronounced topological heterogeneity, such as HIV and MUV (datasets with numerous and
structurally complex molecules), our method achieves a more significant performance improvement
over the baselines. This suggests that the TWD loss effectively extracts topological information from
graph data, which is an essential element of the knowledge in the merged GNN model.

Ablation Studies. To examine the effect of each compo- 76 Jas
nent on the final performance, we conduct ablation studies 732 735 22

on eight downstream tasks using the GIN (contextpred)

pretrained model. We design five variants of G-Merging

Appendix E Figure 6). “ ] H

by removing certain components, and their overall perfor-
[ Pretrained

mances is shown in Figure 3 (more results are shown in
Effect of parameter merging. When we directly use the £ wio parameter merging
[ w/o node level moe adapters

original pretrained model as the unified model (6,,,,; = £ wio graph evel moe adapters
Opre) and skip the phase of parameter merging, the per- Typle 3: Ablation Studies. Average
formance significantly drops. This suggests that shared ROC_AUC scores across 8 tasks for five
knowledge is an indispensable fundamental part of amodel  ,pated variants of G-Merging

before incorporating task-specific exclusive knowledge.

N NN
S N B

Avg. ROC scores
o o
S &

w/o TWD
wj/o L1 distance
G-Merging (Ours)

 —
 —
B Full Fine-Tuned

Effect of MoE adapters. The performance of the two variant methods without MoEAdapters at either
the node or graph level is worse than that of G-Merging, and the model performs the worst when
MoEAdapters are removed at the graph level. This demonstrates the importance of MoEAdapters as
task-specific knowledge suppliers and their effectiveness in alleviating representation bias.
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Effect of loss functions. We further validate the effectiveness of Ly p and £, p by disabling one
of them during training. From the results, it can be seen that L7y p improves performance more
significantly as it effectively leverages graph topological information. In addition, £,p further
boosts performance by enhancing graph embeddings alignment based on this.

Efficiency and Storage Analysis. We examine how G-Merging Taple 4: The parameter cost of the
can reduce storage and computational cost. As shown in Fig- nMoE adapters module.

ure 3 (a), our method remains effective under various settings of
rank 7, which is a hyperparameter related to the scale of adapters
(see equation 6). It can be seen that, as the rank gradually in-

| The total number of parameters
Rank | MoE adapters |  Ratio(%)

creases, performance improves obviously when the rank is below ég 32888 g?i
30, but .de?crea.ses sl.ightly whpn the rank exceeds 30. .Empirically, 30 144000 775
our training time is approximately 1/8 of finetuning a whole 40 192000 1033
model (see Table 7 in Appendix E). Additionally, the number of 50 240000 12.92
parameters in Table 4 indicates that the scale of MoEAdapters one full GNN model: 1857900

is considerably smaller compared to a full GNN model.

ROlltil'lg Analysis. Here we perform Upper Bound (Full Fine-Tuned) Upper Bound (Full Fine-Tuned)
. Yemmmm e m K= M= =X 3= =3 K = e = e = e = = K= = X
an analysis of the TWD-based router 74 74
method in our MoE structure. We ex- ¢ ,, 8.5 G-Mdrging
3 o [
tract the average of expert Welghts dur- = -
ing inference, shown in Figure 4 and 2 g
. . . . 5 68 - 68
Appendix E, Figure 5. It is evident 2 g
that each graph sample reCCiVCS max- 66 Lower Bound (Pretrained) 66 Lower Bound (Pretrained)
. ioh h d Hmm e mm H——— = e ———— Hem—Hm =N = He— =K== H—=X
Imum weig| ts on't e expert adapters 10 20 30 20 0 1 3 3 4 5 6 7 8
corresponding to its source task. Fur- rank top-k

Figure 3: (a) Average scores over § tasks with varying ranks
of the adapters. (b) Average scores over 8 tasks of top-k
expert selection in our routing mechanism.

thermore, the router tends to allocate
a greater weight to expert adapters
when there is higher similarity be-

os

tween the test task and the source ™2 [l o1 [

task of the expert, and this relation- Toxcast- . Toxcast- . 0
ship is bidirectional. For instance, S'PER- SIDER- B

considering the two tasks, ClinTox ClinTox- || ClinTox- B ”
and SIDER, which focus on the tox-  BBBP- . BBBP1 .
icity of drug compounds and diverse — BACE- [ | BACE- [ |

adverse drug reactions, respectively, HIVY [ ] HIV- [ ]
they intuitively share a high degree of ~ ™Mwv- - MUY I -
similarity. Consequently, the router expertsko\cv:&@i@% FFLoS S expertS;\OQ:&@%;o% LS

tends to allocate greater weights to
expert_ClinTox when performing the
SIDER task, and vice versa. This
demonstrates the capability of our
method to effectively integrate knowledge across tasks. We further conduct experiments on the
top-k expert selection strategy in our routing mechanism, which is a common design consideration
in MoE models (see Appendix B for detailed settings). The overall results presented in Figure 3(b)
(detailed in Appendix E Figure 7) show that as the number K of selected experts increases from 1
to 8, the model performance first decreases and then increases. When relatively few task experts
are selected, the source task cannot receive sufficient support from other tasks, and due to the het-
erogeneity of adapters, the effectiveness of the original adapter may also be affected, leading to
performance degradation. In contrast, when more task experts are selected, the router can better fulfill
its role by assigning appropriate balancing weights, allowing a large pool of similar task experts to
collaboratively support the source task, thereby improving the performance. As a result, the above
results suggest that G-Merging possibly leverages shared knowledge to promote generalization across
tasks.

Figure 4: The MoE weight heatmaps illustrate the expert al-
location patterns during inference on a target task, using two
pre-trained models, GIN (contextpred) and GIN (edgepred).

6 CONCLUSIONS

In this paper, we investigate the problem of graph model merging for the first time. We propose a
method called G-Merging, which consolidates knowledge from task-specific fine-tuned models and
achieves high performance while requiring lower storage and training costs. The effectiveness of
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G-Merging is validated by extensive experiments on 8 downstream datasets, which also indicate that
graph model merging can be successfully achieved ,like models in the CV and NLP fields. Moreover,
we demonstrate that fully utilizing the graph structure can significantly impact the performance of
the merged model. Finally, we conclude that knowledge sharing and mutual benefit between tasks
are feasible and promising for models on graph data. In the future, we will extend our work to more
model merging and graph learning scenarios, such as graph continual learning.
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Appendix

In this appendix, we provide supplementary materials for this work. In Section A, we present detailed
introduction of Topology-aware Wasserstein distance with related theoretical analysis. Sections B
to G offer a comprehensive description of our experimental settings, including additional results and
analyses. The limitations and furture works are in Appendix I

A TOPOLOGY-AWARE WASSERSTEIN DISTANCE

A.1 BACKGROUND AND DEFINITION

Recall the definition of original Wasserstein Distance (Definition 1), we firstly discuss how to use
the Wasserstein distance to measure the similarity between two sets of node embeddings in a graph.
Given a graph G(V, £) with adjacency matrix A and two different node emmbedding matrix X~ and

XT, corresponding to the two sets of node embeddings {x?; }l | and {xT}z 1, we characterize these

two sets using two unified distributions y = Z‘lv‘l I\I/\ Oys and v = ZLV‘I n0x7 - » If we replace the

distributions with ¢ and v in Eq. 1, we obtain the Wasserstein distance for node embeddings as

follows:
VI V|

Dwdnode(,ua = min Z Z Tz] C 4 7 X5 ) (10)

TeI(u, v) -1 i

However, Eq. 10 depends solely on the node embeddings and not on the graph’s topological structure.

9 can be transported to any X € {XT}IV| by transport plan T';;.

S

As discussed above, mass in x;

Here, we intuitively assume that mass in x;’ can only be transported to xj if there is an edge between
node n; and n; (i.e. A;; = 1). This constralnt can be enforced by setting T;; = 0 whenever
A;; = 0. In this way, we incorporate the graph’s topological information into the WD, namely, the
Topology-aware Wasserstein Distance (TWD). The definition is given as follows:

Definition 2 (Topology-aware Wasserstein distance) Let G (V, &) be a graph with adjacency matrix
A and two sets of node embeddings {XS } 2, and {XT}Z 1, represented by two unified distributions

= lev‘l ox 0y s andv = Zlvll 9% 0y T. The Topology-aware Wasserstein distance between |1 and
v is then deﬁned as:

VIV

Diwa(A, ) :Tgﬁ& ;;T” o(x7,x]). (11)

Vx|V
where II(A) = {T € RlJr hlld | Tl = \V| 1y ATT 1y = \V\ Ay ATO (1\V\><\V\ A) =
O\y|x|v|} and c(-, ) is the cost function. Compared to the original WD, the transport plan T is now

constrained by graph adjacency matrix A. Different matrix A, node embedding x;, and cost function
lead to different WD, and its obvious that Dyya(A, 1, V) > Dya(p, v).

We define the matrix inner product (-, ) for U,V € R™*" as (U, V) =r(U'V) =", ;Ui Vij.
Furthermore, we introduce its more intuitive formulation, which serves as the alignment loss function
in Section 4.2:

VI v
TWD(X®, X", A) = Dyya(A = mi Ty - c(x,x]) = min (T,C) (12
( ) ) ) t d( s My V) Tgll'}?A) 21; J C(X x] ) Trerll'}?A)< ) > ( )
where C € RIVI*IVI is the cost matrix with Cij = c(x?, XT) A widely used option of the cost
function is cosine distance c(x7,x7) = £(1 — cos(xf ,xT)) (Zhang et al., 2022; Xu et al., 2020;

Chen et al., 2020), while others are not elaborated here. Additionally, we originally set A as the
1-hop adjacency matrix with self-loops, i.e., A;; = 1 if and only if i = j or there exists an edge
between 7 and j. The 1-hop adjacency matrix A is easy to extend to k-hop, like A2, A3, which may
represent more global information of the graph structure. We conduct a supplementary experiment to
examine this aspect in more detail, see Appendix G.
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A.2 COMPUTATION AND TIME COMPLEXITY

The computation of both WD and TWD requires solving for the optimal transport plan P, a task
that has been widely examined in the literature. In practice, an approximate solution to WD can be
obtained in polynomial time by applying the Sinkhorn algorithm with an entropic regularization term.

Computing both WD and TWD involves solving for the optimal transport plan P, a problem that has
been extensively studied in prior work. In practice, an approximate solution to WD can be obtained in
polynomial time by applying the Sinkhorn algorithm utlizing an entropic regularization term(Cuturi,
2013; Peyré et al., 2019; Dvurechensky et al., 2018).

For TWD, there exists an essential theoretical result for the iterative algorithm:

Proposition 1. Let € be a hypter-parameter, H(-) be the entropy function, and assume that 01og 0 = 0.

The solution to definition 2 with entropic regularization € - H(A © T) is unique and has the form
Tij = uiAinijvj (13)

where K;; = exp(—Cjj/e€) and (u,v) € R x R are two unknown scaling variables.

Based on this, the Sinkhorn algorithm is useful for computing the TWD by iteratively approximating
the dual variables u and v. However, the sparsity of A may lead to numerical instability or overflow
during the iterative process. To mitigate this issue, we adopt an improved version of the Sinkhorn
algorithm that performs computation in the log domain, which effectively alleviates such instability.
The entire process involves a finite number of iterations. The complete algorithm, along with the
theoretical justification of its correctness and feasibility, can be found in (Zhang et al., 2022).

We now analyze the computational complexity of the algorithm used to compute the TWD. Suppose
that after certain iterations we get an approximate solution T satisfying:

(T,C) < TWD(X®, X", A) + 7

According to (Altschuler et al., 2017), when 7 = 4elog(|V|), the computational complexity of
traditional Sinkhorn iterations to obtain T for WD is:

O(n*|C|2,77%(rlog(s) + |C|s log(n)))
where |C|o, = max;; C;; and s := Zij K;;.

In TWD computation, K is replaced with A ® K, so s is replaced with:
SI = ZA”K” S S

J
Thus, the time complexity of the algorithm becomes:
O(n®|C[3, 77> (7 log(s") + |Clos log(n)))

This is smaller than the time complexity of original WD computation. In conclusion, the time
complexity of our method is positively correlated with the number of nodes, the magnitude of the
cost values, and the sparsity of the adjacency matrix. Therefore, the proposed method is theoretically
efficient and feasible, especially on relatively small and sparse graph data (e.g., molecular graphs). As
for the inference time, the TWD needs to be computed K times ( K is the number of tasks), with each
computation differing only in the cost matrix (varying node features on the same graph). Therefore,
the overall complexity is approximately linear with respect to K.

B EXPERIMENTAL SETUP DETAILS

Data Preprocessing and Splitting. All input molecules in downstream task datasets are represented
as SMILES strings (Weininger, 1988). We follow the preprocessing procedure described in Hu et al.
(Hu et al., 2020), embedding the SMILE-formatted molecules into 120-dimensional node features
and 3-dimensional edge features. We use scaffold (Bemis & Murcko, 1996), a splitting scheme
based on the molecular graph structure, to divide the datasets into training, validation, and test sets
following an 8:1:1 ratio. This scaffold split results in unseen structures in the validation and test sets,
while common structures appear in the training set, which is closer to realistic model training and
performance (Ramsundar et al., 2019).
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Training Settings and Computational Environment. In our experiments, we employ two repre-
sentative self-supervised pretraining strategies for graphs. One of them, Context Prediction, leverages
subgraphs to infer their surrounding structures, with the goal of pretraining a GNN that places nodes
occurring in similar structural contexts close to each other in the embedding space (Hu et al., 2020).
Edge prediction leverages observed edge connections and node representations to predict whether
a masked edge exists, encouraging the GNN to learn node embeddings that place connected nodes
closer in the representation space (Hamilton et al., 2017). We run all our experiments on Nvidia
4090 GPUs equipped with 24GB RAM. We fine-tuned all parameters of the pre-trained models for
100 epochs, using binary cross-entropy loss. The learning rate was manually tuned from the set
{0.01, 0.005, 0.001, 0.0005}, and the batch size was selected from {16, 32, 64}. During the merging
stage, we train task-specific adapters for 30 epochs with the Adam optimizer. The learning rate was
consistently set to 0.01, and the batch size was selected from {16, 64, 256, 512}.

Hyperparameter Strategies. In the final test evaluation, the loss balancing parameter « in Eq. 6 is
set to a = 1. The scaling factor X in phase(I) of G-Merging (see Section 4.1) is searched to achieve
optimal performance. The sensitivity of the aforementioned hyperparameters is further analyzed
in Appendix F. For the TWD loss computation procedure, we set the hyperparameter e = 0.1, the
threshold 7 = 0.1, and the maximum number of iterations to 100.

Description of the Top-k Selection Experiments. Top-k selection means that the MoE router sorts
the assigned expert weights in descending order, keeps the top k weights, and sets all other weights to
zero. Formally, let w = {wy, wa, ..., wk } denotes the original MoE weights for K experts, the top-k
selected weights are defined as :

top-k
woPt =

{wi, if w; is among the top-k largest weights in w,
K3

0, otherwise,
Then we compute the final MoE weights as wiinl = softmax{w;‘)p'k} For this experiment, we use
the GIN (contextpred) pretrained model, and keep all other setting same as in the main experiments.

Other Details. For the numerical stability of TWD computation, we normalize the elements of
the cost matrix C;; = 3(1 — cos(x7,x7)) to the range [0, 1] using max normalization. In most
experiments, we set the adapter rank r (Eq. 6) to 30, which provides a good trade-off between

efficiency and performance.

C THOROUGH DESCRIPTION OF THE DATASETS

The downstream tasks are derived from the public MoleculeNet benchmark (Wu et al., 2018), a
widely used collection for molecular machine learning. MoleculeNet comprises more than 700,000
compounds evaluated on diverse properties, which are mainly grouped into four categories: quantum
mechanics, physical chemistry, biophysics, and physiology. For our experiments, we focus on eight
datasets restricted to binary classification tasks within the biophysics and physiology domains. The
statistical characteristics of these datasets are summarized in Table 5.

BACE. This dataset provides IC50 values and binary binding labels for 1,522 compounds targeting
human §-secretase 1 (BACE-1) (Subramanian et al., 2016). Data are collected from published studies,
with some molecules having crystal structures. Scaffold splitting is recommended for generalization.

BBBP. The BBBP dataset contains binary annotations for more than 2,000 chemical compounds,
specifying whether they can penetrate the blood—brain barrier (Martins et al., 2012). It is commonly
used in CNS drug development, with the scaffold split recommended.

Tox21. From the Tox21 initiative, this dataset offers qualitative toxicity labels for 8,014 compounds
across 12 biological targets. It was featured in the 2014 Tox21 Data Challenge'.

ToxCast. ToxCast contains high-throughput in vitro toxicity data for 8,615 compounds from over
600 bioassays (Richard et al., 2016), processed by MoleculeNet.

'Tox21 Challenge, https://tripod.nih.gov/tox21/challenge/.
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Table 5: Statistics of the downstream graph datasets, including median, maximum, minimum, mean,
and standard deviation of node numbers.

dataset | Categories Tasks Molecules | median max min mean std

Tox21 Physiology 12 7831 14 114 1 165 95
Toxcast | Physiology 617 8575 14 103 2 167 97
SIDER | Physiology 27 1427 23 483 1 300 397
ClinTox | Physiology 1 1478 23 121 1 255 153
BBBP Physiology 1 2039 22 63 2 225 81
BACE Biophysics 1 1513 32 66 10 336 7.8
MUV Biophysics 1 93087 24 44 6 240 5.0
HIV Biophysics 17 41127 23 222 2 253 120

SIDER. SIDER catalogs side effects of 1,427 marketed drugs, grouped into 27 organ system classes
based on MedDRA (Altae-Tran et al., 2017)2.

ClinTox. ClinTox compares 1,491 compounds approved by the FDA vs. those that failed clinical
trials due to toxicity (Artemov et al., 2016; Gayvert et al., 2016). It includes two tasks: predicting
toxicity and FDA approval.

MUYV. The MUYV dataset consists of 90,000 compounds across 17 tasks, designed to reduce screening
bias (Rohrer & Baumann, 2009). It serves as a benchmark for virtual screening models.

HIV. From the DTP AIDS Antiviral Screen, this dataset includes over 40,000 compounds tested for
HIV inhibition?. “Active” and “moderately active” labels are merged; scaffold split is recommended.

D BASELINES DETAILS

Here we will elaborate on the baselines utilized in our main comparison experiment, as outlined in
Table 1, 2, and 6.

Full Fine-Tuned refers to directly performing the downstream task using a model that has been fully
fine-tuned on the task-specific dataset.

Pretrained means using the pre-trained model as a fixed graph representation encoder, equipped
with a task-specific classification head taken from the corresponding fine-tuned model.

Multi-task learning aggregates datasets from multiple tasks into a unified training set and trains a
single model to improve generalization and achieve better performance across tasks.

Weight Average (Choshen et al., 2022) straightforwardly averages the parameters of multiple fine-
tuned models, which is computationally efficient but often results in inferior performance.

Task Arithmetic (Ilharco et al., 2022) first introduces the concept of task vectors and merges them
into the pre-trained model with a hand-tuned scalar.

Ties-Merging (Yadav et al., 2023) Improves merging stability by resolving parameter conflicts based
on tied weights across models.

EMR-Merging (Huang et al., 2025) is a training-free and high-performance model merging method,
containing three steps: Elect, Mark, and Rescale.

AdaMerging (Yang et al., 2023) employs output entropy minimization to learn the merging coef-
ficients without label supervision for each task vector (Task-wise AdaMerging) or for each layer
(Layer-wise AdaMerging). AdaMerging++ is an enhanced version that applies Ties-Merging before
learning the merging coefficients.

Twin-Merging (Lu et al.) decomposes the knowledge into shared and task-specific knowledge,
where the exclusive knowledge can be compressed to enhance efficiency. Consequently, the router is
trained to dynamically merge shared and task-specific knowledge based on the input. This approach
significantly narrows the performance gap between pre-trained and fine-tuned models. However, it
tends to perform suboptimally on graph-structured data.

*Medical Dictionary for Regulatory Activities, https://www.meddra.org/
3https://wiki.nci.nih.gov/spaces/NCIDTPdata/pages/158204006/AIDS+Antiviral+Screen+Data
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E ADDITIONAL RESULTS

We provide additional experimental results that could not be included in the main text due to space
constraints. Table 6 reports the outcomes of the primary comparison experiment based on the
GCN (contextpred) pre-trained model. Figure 6 illustrates the detailed findings of the ablation
study introduced in Section 5.2. Table 7 lists the complete results corresponding to Figure 3(a),
supplemented with training time statistics. Figure 7 provides the detailed results corresponding to
Figure 3(b). Figure 5 shows two additional heatmaps of the MoE weights corresponding to different
pre-trained models beyond GIN (contextpred). Note that we compute the MoE weights for each input
by summing the weights from the GraphAdapter and the layer-wise NodeAdapters.

Table 6: Test ROC-AUC score (%) of GCN models (contextpred) on downstream molecular property
prediction tasks after merging fine-tuned models. (" * " denotes performance surpassing that of the
fine-tuned model.)

Methods \ Tox21 Toxcast SIDER ClinTox BBBP BACE HIV MUV \ Average
Full Fine-Tuned 75.8 64.7 60.2 65.2 71.2 76.7 77.0 81.0 71.5
Pretrained 70.4 58.5 56.9 454 61.7 70.8 54.7 70.0 61.1
Multi-Task Learning 73.1 62.9 62.0 61.4 68.6 76.1 74.5 73.7 69.0
Weight Average 71.5 63.0 59.8 46.3 66.3 68.5 62.9 71.9 63.8
Task Arithmetic 71.7 63.0 59.9 47.1 66.2 69.2 62.4 72.1 63.9
Ties-Merging 70.4 58.7 57.9 42.6 61.1 72.3 57.8 72.7 61.7
EMR-Merging 73.8 61.3 60.8 53.2 70.3 73.2 72.7 66.1 66.4
AdaMerging 68.4 59.1 56.3 344 61.2 63.7 61.6 65.1 58.7
Twin-Merging 714 59.8 58.5 533 62.4 57.4 574 72.0 61.5

G-Merging-s (Ours) | 73.0+02 63.1+01 619703 62.2+20 69.8+02 73.4+03 68.5:15 78.8+05| 68.8
G-Merging (Ours) | 73.0+02 63.2+01 62.0"£03 62.6+42 69.8+02 733x06 68.6:+15 78.8+05| 68.9

Table 7: Efficiency and Storage Analysis of GIN (contextpred) models.

Methods |Tox21 Toxcast SIDER ClinTox BBBP BACE HIV MUV |Average| times

Full Fine-Tuned 78.0 64.8 625 740 69.6 86.8 79.6 83.9| 749 about 400+ min
Multi-Task Learning| 75.5 63.4 62.8 649 664 84.7 74.8 77.5| 71.2 144 min 45 s
Pretrained 689 633 581 619 553 785 59.1 723 | 64.7 0 min

G-Merging(r=10) 76.0 656 63.1 789 66.0 83.8 733 75.9| 72.9 |59 min4 s (single 4090 GPU)
G-Merging(r=20) 770 658 642 71.7 66.7 856 73.3 788 | 73.0 |58 min 28 s (single 4090 GPU)
G-Merging(r=30) 774 658 644 741 67.1 869 745 81.2| 73.9 |57 min 56 s (single 4090 GPU)
G-Merging(r=40) 7715 658 644 729 675 87.2 74.1 81.7| 73.9 |58 min 49 s (single 4090 GPU)
G-Merging(r=50) 775 658 643 712 67.6 86.6 754 82.7| 73.8 |58 min 10 s (single 4090 GPU)

os 0s os
Tonl. Tox21. To><21.
Toxcast- . 0o Toxcast- . oa Toxcast- . 0
SIDER- SIDER- . SIDER- .
ClinTox- . ** ClinTox- . ° ClinTox- . o
BBBP- . BBBP- . BBBP- .
- " ..
BACE- . BACE- . BACE- .
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Figure 5: MoE Weights Heatmap. The heatmap illustrates the weights assigned by the routing
mechanism of G-Merging between different testing tasks (rows) and task-specific expert adapters
in the MoE framework (columns). Each value represents the weight distribution, indicating the
contribution of each expert to a given task. Darker colors correspond to higher weights, highlighting
more influential expert-task relationships. From left to right, the three figures correspond to three pre-
trained model settings: GIN (ContextPred), GIN (EdgePred), and GCN (ContextPred), respectively.

19



Under review as a conference paper at ICLR 2026

Tox21

78 77.5
762 764

770 772

~
o

~
N

72.4

Avg. ROC scores
<
N

~
o

68.9

i

ClinTox

775

765 760

<
§ 725
?
Q 70.0
g
. 67.5 6
g
< 65.0
62.5 61.9

HIV

79.6

724
0
3.7

75.1 76
73.9

~
o

6.9
.9
71.2

~
=)

Avg. ROC scores
=
&

73,
9.1

5

1

o
=)

H

66,5 Toxcast

67.5

Avg. ROC scores
2
o

Avg. ROC scores
NN N ® ®
2 3 ® & N =

~
N

70

SIDER
65 64.6 64.6
637 64.1
64 . 63.2
0
63 62.5
o
& 62 61.3
3
Q61
960
59 58.1
=[]
BACE
86.6 86-8
86
ﬂmJ 84.6
o
8 84 83.5
]
3
Qe2
g
< 80 ros 78.9 79.3
- 78.1
78 ]
Pretrained
[ w/o parameter merging
[ w/o node level moe adapters
[ w/o graph level moe adapters
1 w/oTWD
3 w/o L1 distance
@ G-Merging (Ours)
I Full Fine-Tuned

Figure 6: The detailed results of ablation studies in Section 5.2. We evaluate five ablated variants of
our method, each with a specific component removed, across 8 downstream tasks.
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Figure 7: The impact of Top-k selection in the MoE structure on the performance of G-Merging,
tested on 8 tasks and their average.
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F HYPERPARAMETER SENSITIVITY ANALYSIS IN G-MERGING

We further conduct experiments about two inevitable hyperparameters in G-Merging: task vectors
scalar A\ and loss balance «. As shown in Figure 8 and 9, We present the performance variety of
G-Merging with \ ranging from 0.05 to 0.25 and « ranging from 10~ to 10.
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Figure 8: Effect of hyperparameter \. Lines of different colors represent the performance on each
task. From left to right, the three figures correspond to three pre- trained model settings: GIN
(ContextPred), GIN (EdgePred), and GCN (ContextPred), respectively
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task. From left to right, the three figures correspond to three pre- trained model settings: GIN
(ContextPred), GIN (EdgePred), and GCN (ContextPred), respectively

G VARIOUS ADJACENCY MATRICES IN CALCULATING TWD

Recalling Eq. 5, the topology information incorporated into TWD is based on the standard 1-hop
adjacency matrix A. However, this matrix can be easily extended to a k-hop adjacency matrix, which
may encode different aspects of the topological structure. To this end, we investigate the impact
of using different adjacency matrices on the performance of TWD. As shown in Figure 10, the
1-hop adjacency matrix generally performs better overall, while other adjacency matrices achieve
competitive performance on certain specific tasks.
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Performance on Different Adjacency Matrices
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Figure 10: Investigating the Impact of Adjacency Matrices on TWD. The GIN (contextpred) pre-
trained model is used in this experiment.

H G-MERGING ON HETEROGENEOUS AND NON-MOLECULAR GRAPH
DOMAINS.

To further evaluate the generalization of G-Merging beyond molecular property prediction, we
conduct experiments on nine heterogeneous downstream tasks, covering transportation networks,
academic graphs, movie actor networks, social networks, and Reddit interaction graphs. These
tasks include both node-level and graph-level classification and therefore provide a comprehensive
assessment of performance outside the molecular domain. First, we presents the experimental setup
here.

Pretraining. Following the protocol of GCC (Qiu et al., 2020), we adopt a publicly available
pretrained GNN model trained jointly on a mixture of heterogeneous graph datasets, including:
Academic networks (Academia, DBLP-SNAP, DBLP-NetRep), Entertainment networks (IMDB),
and Social networks (Facebook, LiveJournal). These datasets differ substantially in structure and
semantics, providing a suitable basis for evaluating the generalizability of our method beyond
molecular domains.

Downstream Datasets. We fine-tune the pretrained model on nine downstream datasets covering
both node-level and graph-level prediction tasks. For node-level classification, we use four datasets:
USA Airport, Europe Airport, Brazil Airport, three Airline transportation networks (over 1k nodes),
where labels correspond to airport activity levels (4 classes); and H-index, co-authorship subgraph
from Open Academic Graph, where labels indicate whether an author’s h-index is above or below
the median. For graph-level classification, we use five datasets: IMDB-Binary and IMDB-Multi,
movie actor collaboration graphs (small, dense, 2—3 classes); COLLAB, medium-sized scientific
collaboration networks; Reddit-Binary and Reddit-5K, Large-scale sparse Reddit discussion graphs
with diverse interaction patterns. These datasets were also used in GCC (Qiu et al., 2020) as
downstream tasks to evaluate the generalization of GNN models pretrained using their proposed
strategy. And we believe that this setting already spans both node-level and graph-level tasks over
diverse and heterogeneous graph topologies.

Merging Procedure. For each dataset, we fine-tune one model from the same pretrained checkpoint.
Then we apply G-Merging and two baseline methods (Weight Average and Task Arithmeti) to merge
nine finetuned models. All merged models are evaluated on their corresponding tasks using F1-score.
The results are presented below:
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Table 8: Performance comparison on diverse non-molecular graph benchmarks.

Method usa_airport europe_airport brazil_airport h-index imdb-binary imdb-multi collab rdt-b rdt-Sk
Pre-trained 41.68 37.85 56.54 56.84 59.60 39.27 61.44 5970 32.07
Weight Average 56.49 56.32 45.09 65.29 60.40 39.88 62.12 6132 33.09
Task Arithmetic 58.20 58.31 42.90 69.10 59.80 42.60 60.80 67.80 27.80
G-Merging (Ours) 59.01 57.24 60.52 72.87 61.29 47.30 6222 70.57 39.11

We observe that G-Merging achieves the best performance on most of datasets and improves sub-
stantially over baselines on both node-level and graph-level tasks. These results demonstrate that
G-Merging generalizes well to non-molecular graph domains such as transportation, academic, and
social networks, and it remains effective on diverse task types, including large sparse graphs and
multi-class graph classification.

Overall, this study confirms that G-Merging is not restricted to molecular property prediction. Our
method successfully merges models fine-tuned on a broad variety of graph domains and task settings,
which confirming its applicability under heterogeneous and non-molecular scenarios.

I LIMITATIONS AND FUTURE WORKS

Our proposed G-Merging framework demonstrates promising results in merging fine-tuned graph
models and transferring knowledge across tasks. However, our setting assumes the task-specific
models used for merging are all fine-tuned from a shared pretrained GNN model. A more general
scenario, where these models may originate from different checkpoints or even differ in architecture,
remains an open direction for future exploration. Also, the use of a fixed number of fine-tuned models
may limit adaptability to evolving or unseen tasks.

In future work, we plan to study a more generalized graph model merging framework by developing
adapter alignment strategies that can reconcile representations from different backbones, and also
explore unified routing mechanisms that remain effective across diverse model types. Furthermore,
we plan to extend the framework with continual learning capabilities to enable dynamic adapter
composition, improving the model’s practicality in real-world scenarios.
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