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Abstract

Multimodal Large Language Models (MLLMs) with Federated Learning (FL) can
quickly adapt to privacy-sensitive tasks, but face significant challenges such as
high communication costs and increased attack risks, due to their reliance on multi-
round communication. To address this, One-shot FL (OFL) has emerged, aiming
to complete adaptation in a single client-server communication. However, existing
adaptive ensemble OFL methods still need more than one round of communication,
because correcting heterogeneity-induced local bias relies on aggregated global
supervision, meaning they still do not achieve true one-shot communication. In
this work, we make the first attempt to achieve true one-shot communication for
MLLMs under OFL, by investigating whether implicit (i.e., initial rather than
aggregated) global supervision alone can effectively correct local training bias. Our
key finding from the empirical study is that imposing directional supervision on
local training substantially mitigates client conflicts and local bias. Building on this
insight, we propose YOCO, in which directional supervision with sign-regularized
LoRA B enforces global consistency, while sparsely regularized LoRA A preserves
client-specific adaptability. Experiments demonstrate that YOCO cuts communi-
cation to ∼0.03% of multi-round FL while surpassing those methods in several
multimodal scenarios and consistently outperforming all one-shot competitors.

1 Introduction

Multimodal Large Language Models (MLLMs) have rapidly advanced in recent years [29], driven by
their powerful capabilities and broad applicability, achieving impressive performance across diverse
multimodal tasks through fine-tuning [57, 1, 61, 62]. However, in privacy-sensitive scenarios such
as healthcare, centralized data collection for fine-tuning is often impractical [43, 37, 52], prompting
growing interest in adapting MLLMs via Federated Learning (FL) [54, 53, 63]. Although Parameter-
Efficient Fine-Tuning (PEFT) methods [19, 23] help reduce communication costs in these approaches,
federated fine-tuning still involves transmitting large amounts of parameters across multiple rounds,
resulting in high system overhead and increased security risks [44, 51], as shown in Figure 1 (a).

One-shot FL (OFL), involving a single round of communication, is an advantageous FL paradigm,
with the communication cost equivalent to that of a single model parameter [32, 42]. Specifically,
without relying on additional data or generative models, adaptive ensemble OFL methods [42, 3]
achieve good performance by effectively correcting local training biases using supervision derived
from aggregated global weights. “Local training bias” refers to overfitting local data during client-side
training, leading to spurious correlations caused by data heterogeneity and degrading generalization.
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Figure 1: (a) Traditional FL involves multi-round communication, resulting in high system overhead
and increased security risks. (b) OFL: FuseFL [42] is a pseudo one-shot communication method that
runs beyond a single round, guided by global supervision from bottom-up aggregated blocks. (c)
OFL: FENS [3] is a pseudo one-shot communication method that operates for more than one round,
guided by global supervision from multi-round lightweight aggregators. (d) YOCO is a true one-shot
communication method, guided by implicit global supervision. Without additional data or generative
models, FuseFL and FENS are the two most representative adaptive ensemble OFL methods.

To mitigate this, “global supervision”, represented by aggregated weights containing shared knowl-
edge, is used to guide local training. However, the generation and propagation of global supervision
contradict the single-round (one-shot) communication requirement, as shown in Figure 1 (b) and (c).

In contrast, as shown in Figure 1 (d), during one-shot federated low-rank adaptation of MLLMs,
all client models share the same pre-trained weights. Unlike the aggregated “global supervision”
mentioned above, pre-trained weights, defined as “implicit global supervision”, contain more universal
and generalized knowledge. With true one-shot communication to reduce overhead and attack risks,
using implicit global supervision to guide local LoRA training results in the core problem shifting to,

Can implicit global supervision in true one-shot comm. correct local bias?

To answer this question, we explore bias correction for local LoRA training, supervised by the
magnitude and direction of implicit global supervision. Here, each LoRA [23] weight consists of
an A matrix (LoRA A) and a B matrix (LoRA B). For weights, the magnitude refers to the absolute
value, while the direction refers to the sign of each parameter. Based on our empirical study, we
draw the following two important conclusions: Direction constraints cause less interference with
optimization than magnitude constraints. Constraining only the direction of LoRA B, combined with
prior initialization, further reduces conflicts and helps correct local LoRA training bias (Section 3).

Based on the above conclusions, we propose YOCO (Figure 2), a true one-shot communication
method. In YOCO, the initial direction across clients follows the prior direction (Figure 2 (a)), using
matrix decomposition of pre-trained weights as initial weights of LoRA (for both LoRA A and B).
During local training (Figure 2 (b)), progressive regularization guides the updates of LoRA B toward
the direction of implicit supervision, by measuring the disparity in the signs of parameters, thus
mitigating aggregation conflicts from model discrepancies. While this consistency constraint benefits
aggregation, it may hinder adaptation to client-specific knowledge. In response to this, we introduce
sparse regularization to LoRA A, encouraging the learning of critical client-specific knowledge,
followed by noise-free aggregation weighted by principal components (Figure 2 (c)). Compared to
multi-round methods, YOCO uses only ∼0.03% of the communication cost, even outperforming
them in both aligned and missing modal scenarios on the CrisisMMD dataset. In the true one-shot
communication setting, YOCO consistently outperforms all baselines, proving its effectiveness.

Our main contributions can be summarized as follows,

• True one-shot communication. We are the first to explore true one-shot communication for
MLLMs with OFL, addressing the key challenge of whether implicit global supervision can
effectively correct local training bias in this true one-shot communication setting.

• Balance consistency and adaptability. We propose YOCO, which uses implicit global supervision
to correct local training bias. Derived from this supervision, prior initialization and sign-based
regularization on LoRA B ensure global consistency, while sparsity regularization and principal
component-weighted aggregation on LoRA A enhance local adaptability.

• Communication-aware Comparison. Compared to multi-round communication methods, YOCO
requires only about 0.03% of the communication cost and even outperforms these methods in some
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Figure 2: Illustration of YOCO. (a) Initialization: LoRA weights are initialized from the matrix
decomposition of pre-trained weights, providing a shared global prior direction and the sign (i.e.,
+/−) of each parameter for LoRA B. (b) Local Training: In addition to the original task loss,
LoRA B is incrementally regularized by the prior sign to maintain global consistency across clients,
while LoRA A is sparsely regularized with the ℓ1 norm to strengthen client-specific knowledge and
minimize irrelevant noise. (c) Aggregation: LoRA B uses vanilla averaging due to lower cross-client
conflict, while LoRA A adopts principal component-weighted aggregation to enhance adaptability.

multimodal scenarios. When compared to multiple true one-shot communication baselines, YOCO
delivers the best performance across all multimodal scenarios.

2 Background

One-shot Federated Learning (OFL) involves a single communication round, with a cost equivalent
to the size of one model’s parameter [32, 42]. Compared to traditional FL, OFL offers notable
advantages in privacy and efficiency [16]. Existing OFL methods are generally categorized into four
types: static ensemble, adaptive ensemble, knowledge distillation, and generative models. Knowledge
distillation and generative models [58, 10, 21] are closely linked. Specifically, knowledge distillation
includes both data [66, 40] and model distillation [13, 64, 15], with data sourced from both public and
generative model-generated synthetic data. Unlike the methods above, static and adaptive ensemble
methods offer greater flexibility in combining with others. Early approaches focused on static
ensemble [14, 24, 45], analyzing local clients’ model statistics to derive global parameters. Recently,
adaptive ensemble methods [42, 3] leverage aggregated global supervision to correct local bias, and
improve generalization. In contrast to pseudo one-shot communication methods such as FuseFL [42]
and FENS [3], YOCO first enables true one-shot communication for federated low-rank adaptation of
MLLMs via implicit global supervision. More detailed related works are provided in the appendix.

3 Empirical Motivation

Figure 3: Loss curves under three LoRA training
setups: unconstraints, magnitude constrain, and di-
rection constrain. Direction constrain shows lower
loss than magnitude constrain and gradually ap-
proaches that of the unconstrained setup.

Magnitude vs. Direction. To investigate
the key question "Can implicit global supervi-
sion in true one-shot communication correct lo-
cal training bias?", we first decouple implicit
global supervision into two distinct constraint
components—magnitude and direction—and ap-
ply them separately to guide local LoRA train-
ing. As illustrated in Figure 3, we randomly se-
lect a client and present the training loss curves
of LoRA under three different settings: (i) the
original training without any constraints; (ii)
training with only a magnitude constraint, where
the L2 norm is used to measure the distance be-
tween LoRA weights and the implicit global
supervision; and (iii) training with only a di-
rection constraint, where the per-element sign
differences are minimized to align the direction
of LoRA weights with that of the implicit global supervision. In the design of the constraint, the
implicit global supervision is projected onto the dimensions of LoRA through matrix decomposition.
The experimental results demonstrate that applying the direction constraint yields a faster loss descent
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Figure 4: Conflict matrices across clients: (a) Unconstrained baseline, (b) Direction constraints for
LoRA A and B, (c) Direction constraints for LoRA B, and (d) SVD + Direction constraints for LoRA
B. The x- and y-axes denote client indices; lighter colors indicate lower conflict and bias. In summary,
SVD initialization, combined with direction constraints only on LoRA B, most effectively reduces
conflicts and corrects local training biases under the same constraint level.

and eventually converges to a level close to the unconstrained case, outperforming the setting with
only a magnitude constraint. This indicates that the direction constraint can effectively convey the
implicit global supervision without significantly disturbing the original LoRA training process.

Insights on Direction Constraints for LoRA Fine-Tuning. LoRA updates are restricted to a low-
rank subspace, limiting their ability to capture the full parameter space of full-parameter fine-tuning.
Aligning these updates with the pre-trained weight direction allows LoRA to follow the adaptation
path of full fine-tuning while remaining lightweight. Crucially, it is the direction, not the magnitude,
that provides effective implicit global supervision to guide local updates. Prior studies support this:
LoRA-GA [46] uses SVD-based initialization to preserve pre-trained directions and align initial
gradients; LoRA-Pro [48] enforces this alignment throughout training; and FR-LoRA [56] applies a
similar approach in federated settings, yielding consistent gains. Collectively, these results show that
maintaining alignment with pre-trained directions is key to narrowing the gap between LoRA and
full-parameter fine-tuning, highlighting the central role of directional constraints in LoRA fine-tuning.

LoRA A or LoRA B. To assess the effectiveness of direction constraints in correcting the training
bias of LoRA (including both LoRA A and LoRA B) across different clients, we introduce the
conflict matrix as a visualization tool. The conflict matrix consists of pairwise conflict rates ρ, which
measure the proportion of parameters with opposing signs, reflecting weight disagreements between
clients [55]. When ki client signs are consistent on parameter i, the average pairwise conflict rate is
ρ̄ = 2

MN(N−1)

∑
i ki(N − ki), and the overall conflict rate is C = 1

MN

∑
i min(ki, N − ki). Here,

M = card(∆W) represents the number of parameters in ∆W and N is the total number of clients.
C is positively correlated with ρ̄, i.e., C ∝ ρ̄, and serves as an upper bound approximation of ρ̄,

ρ̄ =
2N

N − 1

[
C − 1

MN2

∑
i

[min(ki, N − ki)]
2

]
(1)

Assume each parameter’s magnitude follows a distribution with mean µ and variance σ2. The
expected value and variance of the global LoRA weights ∆Wg are as follow,

E[∆Wg] = (1− 2C)µ; Var(∆Wg) =
1

N
[σ2 + 4C(1− C)µ2] (2)

As C ∈ [0, 0.5] decreases, |1 − 2C| increases, amplifying the expected magnitude of the global
weights and clarifying their direction. Meanwhile, 4C(1− C)µ2 decreases, reducing variance and
stabilizing the update, effectively correcting local training bias across clients. For example, in a
tug-of-war, C is the proportion of force opposing the target. As C decreases, more people align their
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force with the target, stabilizing the process and correcting individual force biases. The detailed
derivation is in the appendix. Lemma 3.1 concludes the proof, as follows,
Lemma 3.1 (Less Conflict, Less Bias). A decrease in ρ̄, along with a reduction in C, an increase in
the expected magnitude |E[∆Wg]|, and a decrease in the variance Var(∆Wg), helps stabilize the
global update direction, thereby effectively mitigating local training bias.

For LoRA A and B, we initially attempt to impose direction constraints on both simultaneously.
However, as shown in Figure 4 (b), constraining both LoRA A and B introduces excessive restrictions,
which in turn increases the direction conflicts of LoRA A across clients, as it limits A’s projection
space and forces clients into a narrow subspace, making A more sensitive to local data variations.
Therefore, we choose to constrain only one of LoRA A or LoRA B. Since the conflict between client
LoRA B is greater in the unconstrained baseline (Figure 4 (a)), we decide to constrain only LoRA B.
As shown in Figure 4 (c), the conflict among client LoRA A remains almost unchanged, while the
conflict among LoRA B is significantly reduced. Finally, inspired by [47, 49], we initialize LoRA A
and B using the Singular Value Decomposition (SVD) of the implicit global supervision to provide
a prior direction for all clients. Under the guidance of direction constraints, conflicts are further
mitigated (Figure 4 (d)). Notably, excessive bias correction may be counterproductive, potentially
impairing LoRA’s ability to learn client-specific knowledge. Thus, balancing bias correction with
local exploration is essential.

4 YOCO

Based on the above motivation, we propose YOCO for true one-shot communication in federated
low-rank adaptation of MLLMs. Specifically, YOCO consists of initialization, local training with
sign-based consistency and noise-free sparse regularization, followed by aggregation. The direction
supervision based on implicit global supervision enables the SVD initialization of LoRA and the
sign-based consistency regularization of LoRA B. To balance bias correction with local exploration,
noise-free sparse regularization of LoRA A is introduced, followed by principal component-weighed
aggregation. The illustration of YOCO is shown in Figure 2.

Notation and Definitions. In the classical FL framework, such as FedAvg [34], the system typically
consists of N clients, represented by the set N = {n}Nn=1. Each client possesses a local private
datasetDn and conducts local training on a model parameterized by θ, optimized using a task-specific
loss function Ls [54]. After completing local training in the tth round (t ∈ [1, T ], T ≫ 1), the system
randomly selects a subset of clients Nt ⊂ N to upload their models {θt

i, i ∈ Nt} to the server for
aggregation, resulting in a global model, i.e., θt+1 :=

∑
i∈Nt

piθ
t
i, where pi =

|Di|∑
j∈Nt

|Dj | . Unlike
FL, OFL [32] limits client-server communication to a single round (T = 1), reducing privacy risks
and communication costs. In one-shot federated low-rank adaptation for MLLMs, most parameters
are frozen and correspond to the pre-trained weights W, while only the small sets of LoRA parameters
are trained and uploaded for aggregation, i.e., the updated weights ∆W = BA. Here, B and A
represent the weights of LoRA B and LoRA A, respectively.

Initialization. Following [49], we use SVD of the pre-trained weights to initialize LoRA A and B,

U,Σ,V⊤ = SVD(W)

Ur = U[:,1:r],Σr = Σ[1:r],V
⊤
r = V⊤

[1:r,:]

A = A0 = diag(
√

Σr)V
⊤
r ,B = B0 = Urdiag(

√
Σr)

(3)

where r denotes the rank of LoRA, and diag(·) represents the operation of constructing a diagonal
matrix. A0 and B0 are the initialized weights of LoRA A and B, respectively. It is worth noting that
while using SVD to decompose pre-trained weights for LoRA initialization is common [65, 49], in
this true one-shot task, the focus of this prior initialization is to provide different clients with a more
informative and consistent starting point and direction for local LoRA training.

Sign-based Consistency Regularization. In the initialization phase, Bs is obtained by extracting the
sign of B0, i.e., Bs = sign(B0). Inspired by [55], during aggregation, the proportion of elements
with reversed signs in the parameters reflects the conflict between models. Smaller conflicts facilitate
less bias (Lemma 3.1). Therefore, to correct the local training bias for improved one-shot aggregation,
we present a direction-alignment regularization method that measures the distance between the signs
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of B and Bs, called Sign-based Consistency Regularization. Since sign(B) is non-differentiable, we
use the smooth approximation tanh(·) instead. The regularizationRsign is computed as follows,

Rsign =
∥ tanh(γB)−Bs∥2
∥Bs∥2 + ε

(4)

where γ controls the smoothness of the soft sign function, and ε is a small positive number (1e −
6) used to prevent division by zero. Notably, only the direction of B is aligned with W here.
Simultaneously constraining the directions of both A and B would impose excessive restrictions,
thereby increasing the direction conflicts of A across different clients, as shown in Figure 4.

LoRA A LoRA B LoRA A LoRA B

Missing Modal Scenario Cross Modal Scenario

Figure 5: PCA-based Visualization. After local training with loss L, we use PCA to visualize LoRA
A and B across clients. LoRA A is more dispersed, while LoRA B is more clustered, suggesting that
LoRA B captures shared knowledge, whereas LoRA A reflects client-specific information.

Noise-free Sparse Regularization. Aligning the global direction of B reduces conflicts between
clients and aids aggregation. However, the specific information in clients’ private datasets often
differs from the general features learned during pretraining. To balance global consistency and local
adaptability, we enhance client-specific knowledge through LoRA A, using the simple and effective
ℓ1 norm for noise-free sparse regularization Rsparse = λ × ∥A∥1. Where λ controls the degree of
sparsity enhancement. The total loss of the local training is L = Ls +Rsign +Rsparse. After local
training with loss L, the regularization terms encourage LoRA B to learn shared knowledge, while
LoRA A captures client-specific features. To illustrate this, we visualize the distribution of LoRA A
and B across different clients using Principal Component Analysis (PCA), as shown in Figure 5. The
visualization reveals that the more dispersed LoRA A across clients reflects stronger client-specific
information, while the more clustered LoRA B suggests a tendency toward shared knowledge.

Principal Component-weighted Aggregation. As shown in Figure 5, LoRA B, which captures
shared information, is more concentrated and suited for vanilla aggregation, while LoRA A, capturing
client-specific information, is more dispersed and should maintain its diversity during aggregation.
Inspired by the PCA visualization, we present a principal component-weighted aggregation method
for LoRA A across clients. The process is as follows,

Z = PCA(A′),Z ∈ RN×k; A′ = [a1,a2, . . . ,aN ] ∈ RN×d,a = vec(A) ∈ Rd

Ag = Zg ·P⊤,P⊤ ∈ Rk×d; Zg =

N∑
i=1

|Di|∑N
j=1 |Dj |

Zi,Zg ∈ Rk
(5)

where A′ is obtained by flattening and stacking the LoRA A matrices from all clients, and P⊤

denotes the transpose of the principal-component matrix. Zi represents the top-k PCA coordinates of
client i’s LoRA A, and P is the PCA loading matrix (written as P⊤ in the paper) used to map the
weighted average Zg back to the original parameter space. Ag denotes global weights from principal
component-weighted aggregation. Bg is obtained via vanilla aggregation. The aggregation phase
occurs on the server, where Ag and Bg merge with the pre-trained weights for evaluation.

5 Experiments

5.1 Experimental Setup

Datasets. To evaluate YOCO’s effectiveness in true one-shot communication for MLLM adaptation,
we use five public multimodal datasets: Hateful-Memes [25], CrisisMMD [2], VQA-RAD [27],
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Table 1: Comparison of YOCO with multi-round methods and one-shot baselines across aligned (α)
and missing (β) modal scenarios on Hateful-Memes and CrsisMMD. YOCO with 1×1×1 incurs
only ∼0.03% of communication cost of multi-round methods (25(rounds)×28(layers)×4(LoRAs) or
40×28×4), yet outperforms them in all CrisisMMD scenarios, and surpasses all one-shot baselines.

Method Comm. Hateful-Memes Comm. CrisisMMD
cost α=5.0 α=1.0 α=0.5 β=30% β=40% β=50% cost α=5.0 α=1.0 α=0.5 β=30% β=40% β=50%

FedYogi 25×28×4 75.74 72.50 74.32 76.58 76.75 75.12 40×28×4 60.95 60.82 61.46 60.07 56.76 53.78
FedAdam 25×28×4 74.02 73.24 72.97 76.82 77.28 75.58 40×28×4 61.80 59.12 60.56 59.54 57.64 54.82
FedAvgM 25×28×4 74.08 72.94 64.22 60.62 57.90 57.34 40×28×4 58.28 56.87 54.22 32.64 32.97 31.72
FedAdagrad 25×28×4 74.53 73.34 71.80 71.97 70.64 70.59 40×28×4 60.77 60.43 60.21 56.96 57.48 55.55
Local 0×1×1 68.84 66.75 66.69 66.66 66.24 66.31 0×1×1 54.62 47.05 37.27 36.96 36.36 36.34
FedAdam 1×1×1 68.85 67.31 68.15 67.45 67.32 67.33 1×1×1 51.27 46.15 44.65 42.13 42.81 39.57
FedAvgM 1×1×1 69.06 69.64 68.27 69.20 68.58 67.57 1×1×1 61.52 59.72 55.17 50.64 42.90 47.05
FedAdagrad 1×1×1 69.24 68.16 68.17 67.64 67.35 67.35 1×1×1 33.90 33.82 33.42 32.50 32.23 30.31
FedAvg 1×1×1 64.72 70.44 68.19 69.21 68.58 66.97 1×1×1 61.57 59.01 46.06 50.57 41.75 46.96
Mean 1×1×1 69.16 68.15 67.28 67.49 66.69 66.09 1×1×1 62.47 60.50 60.05 59.70 58.37 59.55
Ensemble 1×1×1 68.42 67.89 68.99 68.22 68.21 68.03 1×1×1 62.13 59.88 53.71 56.43 56.74 54.46
Combine 1×1×1 69.06 69.98 68.79 69.31 68.79 67.58 1×1×1 62.38 61.90 60.14 58.88 59.23 57.66
YOCOInit 1×1×1 68.90 70.18 69.60 68.81 69.03 69.03 1×1×1 63.23 63.05 60.98 58.77 59.90 57.63
YOCOInit&B 1×1×1 69.61 70.42 70.42 68.89 69.21 69.33 1×1×1 63.58 63.17 61.12 59.90 59.94 57.77
YOCOInit&BA 1×1×1 69.92 69.20 70.64 69.05 69.76 69.45 1×1×1 63.51 62.27 61.73 60.12 60.06 57.57
YOCOInit&BĀ 1×1×1 70.14 70.76 70.65 69.48 69.39 69.96 1×1×1 63.69 63.66 61.28 59.95 59.71 58.10

SLAKE [30], and MedAlpaca [18] (the last three are medical datasets). Following [54], we conduct
experiments under aligned, missing, cross, and hybrid modal scenarios with non-IID partitioning
from a Dirichlet distribution (α = {5.0, 1.0, 0.5}), considering multimodal heterogeneity (β =
{30%, 40%, 50%}, I-T={3-7, 5-5, 7-3}, and p = {80%, 70%, 60%}). Evaluation metrics are AUC
for Hateful-Memes, F1 for CrisisMMD, and GPT-4 [1]-assessed accuracy for the medical datasets.

Baselines. To ensure a fair comparison in the true one-shot communication setting, we construct a
series of "1×1×1" baselines, representing minimal communication cost with a single round, layer,
and LoRA. "FedYogi", "FedAdam", and "FedAdagrad" [38] use dynamic optimizers, while "Fe-
dAvgM" [22] applies momentum. Unlike "Mean", "FedAvg" [34] incorporates sample-size weighting.
"Ensemble" combines LoRA votes from all clients. "Combine" denotes the different aggregations for
LoRA A and B. Local in "0×1×1" represents the average result from independent client training.
We experiment with four YOCO variants: YOCOinit (initialization only), YOCOinit&B (initialization
with sign-based consistency regularization), YOCOinit&BA (noise-free sparse regularization built on
YOCOinit&B), and YOCOinit&BĀ (adding principal component-weighted aggregation to YOCOinit&BA).

Configurations. Similar to [54], we adopt MiniCPM-V-2_6-int4 [62] as the default version of
MLLMs. Only the last layer’s q_proj is fine-tuned using LoRA [23], with a rank of 8, a lora_alpha of
8, and a dropout rate of 0.05. Under the default setting, the total number of clients is 10, with each
client trained for 10 epochs. We report the best performance of different baselines at both the 5th and
10th epochs. For the Hateful-Memes dataset, the initial learning rate is set to 2e-5, while for the other
datasets, it is set to 2e-4. A cosine learning rate scheduler is used, with a warmup ratio of 1%. The
per-device training batch size is set to 1, and the gradient accumulation steps are set to 4. As shown
in Table 4, we also conduct experiments with different MLLM versions and varying total numbers of
clients. Details of γ and λ are in the appendix. All experiments are performed on NVIDIA A40.

5.2 Experimental Results

Main results. As shown in Tables 1 to 3, YOCO is comprehensively evaluated on four public
datasets. We can see that: 1) YOCO outperforms all one-shot baselines and consumes only ∼0.03%
of the communication cost of multi-round methods, even surpassing them in some CrisisMMD
and medical scenarios; 2) YOCOinit&B outperforms YOCOInit in most cases, validating the effect
of regularization, while the superior performance of YOCOinit&BA and YOCOinit&BĀ highlights the
importance of enhancing local adaptability; 3) YOCO with 1×1×1 also lowers computation cost.

Loss curves for YOCO variants. As shown in Figure 6, we present the training loss curves of
multiple YOCO variants on three randomly selected clients. Compared to YOCOInit, YOCOinit&B,
which incorporates sign-based consistency regularization for LoRA B, converges to a similar loss
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Table 2: Comparison of YOCO with multi-round methods and one-shot baselines in cross (I-T) and
hybrid (p) modal scenarios on Hateful-Memes and CrsisMMD. YOCO with 1×1×1 uses only∼0.03%
of communication cost of multi-round methods (25(rounds)×28(layers)×4(LoRAs) or 40×28×4),
yet performs comparably in some CrisisMMD scenarios and exceeds all one-shot baselines.

Method Comm. Hateful-Memes Comm. CrisisMMD
cost I:3-T:7 I:5-T:5 I:7-T:3 p=80% p=70% p=60% cost I:3-T:7 I:5-T:5 I:7-T:3 p=80% p=70% p=60%

FedYogi 25×28×4 68.71 73.93 75.94 68.41 68.55 71.52 40×28×4 49.30 55.53 59.20 59.73 63.04 58.96
FedAdam 25×28×4 65.71 74.44 74.95 72.17 70.12 72.36 40×28×4 53.17 56.62 59.22 60.02 61.01 59.93
FedAvgM 25×28×4 58.20 61.57 57.40 61.55 60.01 58.93 40×28×4 32.61 38.62 33.46 46.26 42.77 39.44
FedAdagrad 25×28×4 71.26 72.48 71.57 68.77 72.96 69.26 40×28×4 48.02 49.97 51.13 57.58 58.91 53.84
Local 0×1×1 66.04 66.93 67.23 65.61 66.42 66.44 0×1×1 32.76 33.88 35.51 37.41 36.04 37.78
FedAdam 1×1×1 66.75 67.24 67.85 66.82 67.85 67.65 1×1×1 32.41 33.16 36.12 41.94 38.36 37.12
FedAvgM 1×1×1 66.68 68.89 69.28 67.63 67.16 67.35 1×1×1 45.21 50.38 51.67 54.92 46.26 47.54
FedAdagrad 1×1×1 66.85 66.75 66.66 67.74 67.96 67.16 1×1×1 28.27 29.94 29.49 32.72 32.05 31.08
FedAvg 1×1×1 66.48 68.49 68.69 67.43 67.96 67.35 1×1×1 45.01 51.20 51.51 55.13 45.53 47.38
Mean 1×1×1 66.22 68.03 68.02 67.17 67.63 68.44 1×1×1 44.07 47.89 52.15 56.61 54.31 55.48
Ensemble 1×1×1 67.94 68.25 68.26 67.93 68.45 68.34 1×1×1 51.48 52.84 55.69 56.93 56.31 57.60
Combine 1×1×1 66.48 69.83 69.10 67.13 67.56 68.16 1×1×1 42.55 47.19 52.24 56.24 54.11 55.03
YOCOInit 1×1×1 67.76 68.72 69.73 68.14 67.86 68.85 1×1×1 52.22 53.50 55.60 58.13 55.75 58.58
YOCOInit&B 1×1×1 68.04 69.44 69.63 68.23 68.07 68.94 1×1×1 51.59 53.78 56.12 57.96 57.98 58.61
YOCOInit&BA 1×1×1 68.14 69.83 68.74 69.13 68.36 68.84 1×1×1 52.40 56.55 55.01 58.77 59.06 58.26
YOCOInit&BĀ 1×1×1 68.85 69.85 70.16 67.95 68.58 69.09 1×1×1 43.33 47.51 50.33 58.43 54.99 54.76

Lo
ss

Step Step Step

Figure 6: Training loss curves of YOCOInit, YOCOinit&B, and YOCOinit&BA (YOCOinit&BĀ) from three
randomly selected clients. Sign-based regularization on LoRA B results in a final loss similar to that
without regularization, while sparse regularization on LoRA A has little impact on the training loss.

Table 3: Comparison of YOCO with multi-round methods and one-shot baselines in cross (I-T) and
hybrid (p) modal scenarios on the medical datasets. YOCO with the 1×1×1 setting incurs only
∼0.02% of the communication cost of multi-round methods (50(rounds)×28(layers)×4(LoRAs)), yet
outperforms them in most scenarios, and consistently surpasses all one-shot baselines in "Overall".

Method Comm. Scen. VQA-RAD SLAKE Scen. VQA-RAD SLAKE
cost Open Closed Overall Open Closed Overall Open Closed Overall Open Closed Overall

Local 0×28×4

I:3-T:7

42.74 69.97 59.16 58.71 65.83 61.63

I:5-T:5

43.86 70.04 59.64 58.19 65.19 60.98
FedYogi 50×28×4 45.25 68.02 58.98 53.70 66.15 58.67 44.42 71.14 60.53 52.55 63.04 56.74
FedYogi 1×1×1 43.58 67.65 58.09 62.32 61.36 61.94 42.46 71.69 60.09 60.41 61.72 60.94
FedAvgM 1×1×1 42.46 68.01 57.87 61.92 60.41 61.32 42.46 66.18 56.76 59.54 63.04 60.94
YOCOInit&BĀ 1×1×1 46.37 69.12 60.09 63.51 60.41 62.27 44.13 73.16 61.64 60.89 66.27 63.04
Local 0×28×4

I:7-T:3

41.90 71.69 59.87 59.22 62.32 60.46

p=80%

41.06 71.87 59.64 52.23 67.34 58.26
FedYogi 50×28×4 41.90 73.53 60.98 52.78 60.41 55.83 44.13 70.96 60.31 53.74 64.00 57.83
FedYogi 1×1×1 45.25 69.85 60.09 61.05 64.47 62.42 40.22 71.69 59.20 59.14 64.11 61.13
FedAvgM 1×1×1 44.13 70.96 60.31 59.86 62.68 60.98 42.46 72.43 60.53 57.39 62.56 59.46
YOCOInit&BĀ 1×1×1 48.60 71.69 62.53 61.69 66.63 63.66 46.93 69.85 60.75 58.82 64.71 61.17
Local 0×28×4

p=70%

45.25 69.85 60.09 53.02 65.67 58.07

p=60%

46.93 70.96 61.42 56.36 63.52 59.22
FedYogi 50×28×4 43.02 72.06 60.54 54.46 64.60 58.50 46.64 73.90 63.08 52.43 64.00 57.05
FedYogi 1×1×1 46.37 68.38 59.65 60.33 62.68 61.27 43.02 70.59 59.65 58.35 65.19 61.08
FedAvgM 1×1×1 45.81 68.38 59.42 56.60 64.59 59.79 46.37 73.16 62.53 57.00 63.64 59.65
YOCOInit&BĀ 1×1×1 45.25 72.79 61.86 60.25 63.64 61.60 45.81 73.90 62.75 60.02 65.67 62.27

level. Introducing noise-free sparse regularization on LoRA A in YOCOinit&BA (or YOCOinit&BĀ) on
top of YOCOinit&B has minimal impact on the loss convergence trend.
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Table 4: Comparison of different lightweight MLLMs under different numbers of total clients (N
= 10, N = 20, N = 30). YOCO with the 1×1×1 setting incurs only ∼0.03% of the communication
cost of multi-round methods (25(rounds)×28(layers)×4(LoRAs)), yet outperforms them in N = 30 of
V-2_6 MLLM and N = 20 of V-2_5 MLLM, consistently surpassing all one-shot baselines.

Method Comm. MLLMs Total Clients MLLMs Total Clients
cost N = 10 N = 20 N = 30 N = 10 N = 20 N = 30

Local 0×28×4

M
iniC

PM
-V

-2_6
i
n
t
4

66.80 64.46 63.50 M
iniC

PM
-L

lam
a3-V

-2_5
i
n
t
4

67.02 63.21 63.26
FedAdam 25×28×4 75.58 69.70 66.91 72.44 68.82 71.16
Local 0×1×1 66.31 65.05 65.47 67.12 62.71 65.20
FedAdam 1×1×1 67.33 68.05 67.29 68.62 67.80 69.60
FedAvgM 1×1×1 67.57 67.69 65.97 68.51 67.42 65.15
FedAdagrad 1×1×1 67.35 67.66 67.88 68.25 68.53 69.10
FedAvg 1×1×1 66.97 67.49 66.17 68.51 67.42 65.15
Mean 1×1×1 66.09 68.06 68.14 68.26 67.20 68.64
Ensemble 1×1×1 68.03 65.90 67.98 69.07 66.57 68.64
Combine 1×1×1 67.58 66.99 66.58 68.51 67.42 65.15
YOCOInit&BĀ 1×1×1 69.96 69.10 68.49 69.19 68.85 70.11

Different MLLMs and client numbers. We evaluate the impact of two MLLM versions with
N = 10, 20, and 30 clients, as shown in Table 4. Key findings: 1) YOCO consistently achieves top
one-shot performance, with improvements of up to 6.14% over Local baseline and up to 4.96% over
other baselines. 2) It is more robust than multi-round methods, maintaining comparable or superior
performance, particularly at N = 20 and 30, even under low communication conditions.

69.44

70.59 70.65 70.85

67

68

69

70

71

r=2 r=4 r=8 r=16

70.65

69.22

70.75
69.73

67

68

69

70

71

q k v o

Figure 7: Effect of LoRA ranks r=2, 4, 8, 16 and components
q, k, v, o. q LoRA (r=8) balances performance and efficiency.

Different LoRA ranks and com-
ponents. To investigate the ef-
fect of rank on performance, we
evaluate configurations with ranks
r = 2, 4, 8, and 16, as shown
in Figure 7. Performance differ-
ences among ranks 4, 8, and 16 are
marginal. Considering the trade-
off between performance and pa-
rameter efficiency, we adopt rank
8 as the default. Furthermore, in
addition to the default use of the q
LoRA component, we explore the v, k, and o components as well. Results show that the commonly
used q and v components yield comparable performance, while k and o lead to slight degradation.

LoRA A

C
lie

n
t

LoRA B

Client / Global Client / Global

Figure 8: Cosine similarity matrix for LoRA A and B. The 10×
10 matrix shows client-client similarities, while 10× 2 matrix
(orange box) shows client-global similarities (G1: YOCOInit&BA,
G2: YOCOInit&BĀ). LoRA A has lower cosine similarity, with
YOCOInit&BĀ preserving key specific knowledge.

Cosine similarity matrices. As
shown in the cosine similarity
matrix of Figure 8, we com-
pare the LoRAs trained by each
client in YOCOInit&BA with those
from other clients, as well as
with the aggregated global LoRAs
in YOCOInit&BA and YOCOInit&BĀ.
The cosine similarity matrix for
LoRA A exhibits lower similar-
ity compared to LoRA B, partic-
ularly with YOCOInit&BĀ, which
employs Principal Component-
weighted Aggregation to enhance
the integration of specific knowl-
edge and strengthen adaptability.

6 Discussion and Conclusion

Differences from prior works. Under one-shot federated low-rank adaptation, [36] fine-tunes the
model with an additional server-side dataset to extract prototypes for client training. In contrast,
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YOCO corrects local bias using implicit global supervision without extra data. To correct local bias,
FuseFL [42] aggregates blocks bottom-up, and FENS [3] uses lightweight aggregators, but both
violate one-shot communication constraint. YOCO is the first to correct bias via implicit supervision
in a true one-shot setting, making a fair performance comparison with FuseFL and FENS infeasible.

One-shot communication. This work tackles the challenge of using implicit global supervision
to correct local bias and improve performance under one-shot communication. In multi-round
scenarios, explicit global supervision is typically gained through model aggregation. Whether
implicit supervision provides additional benefits over explicit supervision remains an open question,
requiring further empirical investigation. We look forward to future research on this topic.

Limitations. YOCO is better suited for LoRA in initialization and regularization, while local bias
correction in other PEFT methods remains unresolved. We use the last-layer LoRA for fine-tuning,
but this is suboptimal. Future work could explore automated parameter selection for better efficiency.

In conclusion, we propose YOCO, a true one-shot communication method, after analyzing the
rationality of implicit global supervision to correct local biases. YOCO introduces sign-based and
noise-free regularization strategies, along with a PCA-based aggregation, to enhance consistency
and adaptability, building on SVD initialization, which ensures clients share a unified global starting
point. Experiments demonstrate the effectiveness of YOCO with minimal communication cost.
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of our work in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We construct a conflict matrix and demonstrate in Lemma 3.1 that fewer
conflicts result in lower bias. The full proof of Lemma 3.1 is provided in the appendix of
the supplemental material.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the experimental settings, datasets, baselines, and configurations
in Section 5, with additional hyperparameters and the algorithm detailed in the appendix of
the supplementary material. The code is also included in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have provided the code in the supplementary material. The datasets used
are public and listed in Section 5, and can be downloaded online.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, we have included all details in Section 5 and the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not report the error bars in our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have included the details on compute resources in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work does not incorporate any ethic concerns of NeurIPS. The datasets
and models are commonly used in the community, and the method does not incorporate
potential concerns.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the broad impacts of our work in appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The datasets and baselines, used libraries are properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The datasets and baselines, used libraries are well documented and cited.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Yes. This paper proposes a one-shot federated low-rank adaptation method
based on existing multimodal large language models (MLLMs), where the use of MLLMs
is an integral part of the methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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I Broader Impact

A More Related Works

One-shot federated learning. In recent years, One-shot Federated Learning (OFL) [32, 4]—requiring
only a single round of communication between the server and clients—has attracted increasing
research interest due to its significant advantages in communication efficiency and data privacy
over traditional Federated Learning (FL). Current approaches to OFL can be broadly classified into
four categories: knowledge distillation [40, 15, 64, 13, 21], generative models [64, 13, 21, 59, 58],
static ensemble methods [45, 35, 15, 64], and adaptive ensemble methods [13, 42, 3]. Knowledge
distillation can be divided into data distillation and model distillation. In data distillation [40, 66],
clients generate distilled data from private data and upload it to the server for model training. In model
distillation [15, 64, 13, 21], the knowledge from ensembled client models is distilled into the server
model using public or synthetic data. Due to the distribution gap between public and private data,
some generative model methods [64, 13, 21, 59, 58] for synthetic data have emerged. Generative
models are mainly classified into generative adversarial networks (GANs) [64, 13], variational
autoencoders (VAEs) [21], and stable diffusion models [59, 58].

Without additional data or support from generative models, static [45, 35] and adaptive [42, 3]
ensemble methods offer a direct solution to data and model heterogeneity, while their high flexibility
allows seamless integration with other approaches. Early static ensemble methods [16, 45] primarily
constructed the global model by applying strategies such as averaging, selection, or output maxi-
mization to the models uploaded by clients. Unlike static ensemble methods that rely on extracting
fixed characteristics from client models to aid global model construction, recent adaptive ensemble
approaches aggregate global supervision developed from the perspectives of causal graphs [42] and
secondary generalizers [3]. This aggregated global supervision is used to correct local training bias,
thereby achieving strong global model performance. However, aggregated global supervision violates
the one-shot communication constraint of OFL, increasing the risk of attacks. To address this, our
YOCO employs implicit global supervision—using an initial prior instead of aggregation—to correct
local bias while preserving true one-shot communication.

Federated learning with LoRA. Most existing federated learning with LoRA approaches [7]
adopt multi-round training and primarily focus on addressing three issues: server-side aggregation
bias [41, 26, 11, 50, 39, 8], data heterogeneity [17, 20, 33, 9, 60, 56, 28], and computational
heterogeneity [12, 6, 5, 31, 50]. To mitigate the issue of server-side aggregation bias, one class
of methods [41, 26, 11] adopts an alternating training strategy for the A and B matrices in LoRA,
while another explicitly computes the residual between the ideal global LoRA and the aggregated
global LoRA [39, 8]. To address data heterogeneity, some methods [17, 20, 33, 9] use two LoRA
modules or assign matrices A and B to capture shared and specific knowledge, respectively. Moreover,
FRLoRA [56] addresses data heterogeneity and expands the LoRA parameter space by adding the
global model to the residual LoRA and reinitializing parameters each local training. To tackle
computational heterogeneity, FLoRA [50] and FlexLoRA [6] multiply matrices A and B before
aggregation, while HETLORA [12] directly pads lower-rank LoRA modules with zeros. Compared
to multi-round FL with LoRA, research on OFL with LoRA under a single communication round is
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limited. FedInc [36] fine-tunes LoRA using server-side public data and generates prototypes to assist
local training. Unlike FedInc, which relies on additional public data and prototype transmission, our
method achieves true one-shot communication in OFL with LoRA by transmitting only the LoRA
weights, without any extra data.

B Detailed Proof of Lemma 3.1

For a given parameter i, let ki denote the number of client models with a positive sign, and N − ki
denote the number with a negative sign. N is the total number of clients. Then, the total number of
client pairs exhibiting sign disagreement on this parameter is ki(N − ki). The total number of client
pairs is

(
N
2

)
= N(N−1)

2 , and thus the pairwise conflict rate ρi for parameter i is:

ρi =
2ki(N − ki)

N(N − 1)
(6)

The average pairwise conflict rate ρ̄ is defined as the mean of the pairwise conflict rates ρ across all
parameters i:

ρ̄ =
1

M

M∑
i=1

ρi =
2

MN(N − 1)

M∑
i=1

ki(N − ki) (7)

where M = card(∆W) represents the number of parameters in ∆W. The overall conflict rate C is
defined as:

C =
1

MN

M∑
i=1

min(ki, N − ki) (8)

By the identity min(ki, N − ki) =
N−|2ki−N |

2 , ki(N − ki) can be expanded as:

ki(N − ki) = N ·min(ki, N − ki)− [min(ki, N − ki)]
2 (9)

Substitution into the expression of ρ̄ gives:

ρ̄ =
2

MN(N − 1)

[
N

M∑
i=1

min(ki, N − ki)−
M∑
i=1

[min(ki, N − ki)]
2

]
(10)

In conjunction with the definition of C:
M∑
i=1

min(ki, N − ki) = MN · C (11)

Therefore, the relationship between the average value ρ̄ of the pairwise conflict rate ρ and the overall
conflict rate C is given by:

ρ̄ =
2N

N − 1

[
C − 1

MN2

M∑
i=1

[min(ki, N − ki)]
2

]
(12)

ρ̄ is positively correlated with C, but the exact mathematical form depends on the distribution of
parameter conflicts.

IID setting. For the sake of simplifying the proof, the global LoRA weights ∆Wg are computed by
averaging the weights from all clients:

∆Wg =
1

N

N∑
n=1

∆Wn (13)

Let each parameter ∆Wni have sign sni = sign(∆Wni) and magnitude ani = |∆Wni|, where
ani follows a distribution with mean µ and variance σ2. Given parameter i with an overall conflict
rate Ci =

min(ki,N−ki)
N , if the majority of signs are positive (probability 1 − Ci), then si = +1;

otherwise, if the majority are negative (probability Ci), then si = −1. The expectation of parameter
i is expressed as:

E[siai] = (1− Ci) · µ+ Ci · (−µ) = (1− 2Ci)µ (14)
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The expected value of the global weight ∆Wg is the average of the expected values of all parameters:

E[∆Wg] =
1

M

M∑
i=1

E[siai] =
1

M

M∑
i=1

(1− 2Ci)µ (15)

Upon substitution of C = 1
MN

∑M
i=1 min(ki, N − ki) =

1
M

∑M
i=1 Ci, we obtain:

E[∆Wg] = µ

(
1− 2 · 1

M

M∑
i=1

Ci

)
= (1− 2C)µ (16)

The variance of parameter i is:

Var(siai) = E[(siai)2]− (E[siai])2

E[(siai)2] = E[a2i ] = σ2 + µ2; (E[siai])2 = (1− 2Ci)
2µ2

Var(siai) = σ2 + µ2 − (1− 4Ci + 4C2
i )µ

2 = σ2 + 4Ci(1− Ci)µ
2

(17)

Since the global weight is the average of the client weights and the parameters are independent, the
variance is given by:

Var(∆Wg) =
1

N
· 1

M

M∑
i=1

Var(siai) (18)

Substituting the variance of a single parameter:

Var(∆Wg) =
1

NM

M∑
i=1

[σ2 + 4Ci(1− Ci)µ
2] (19)

By substituting the overall conflict rate C = 1
M

∑M
i=1 Ci and assuming a uniform distribution of the

conflict rates (i.e., Ci ≈ C), we obtain the approximation:

Var(∆Wg) ≈
1

N
[σ2 + 4C(1− C)µ2] (20)

If the overall conflict rates are not uniformly distributed, higher-order correction terms need to be
introduced:

Var(∆Wg) =
1

N
[σ2 + 4C(1− C)µ2 − 4µ2 · Var(Ci)] (21)

where Var(Ci) =
1
M

∑M
i=1(Ci − C)2. For simplicity, we typically assume Var(Ci) ≈ 0, implying a

uniform distribution of conflict rates. Other patterns warrant future exploration.

Non-IID setting. The above derivation of E[∆Wg] and Var(∆Wg) assumes that client data is IID.
To account for the non-IID setting, we provide a more general derivation below. The main differences
lie in modeling parameter heterogeneity across clients—i.e., each client may have different means
and variances—and in allowing the conflict rate Ci to vary across parameter dimensions.

Similarly, the global LoRA weights are obtained by averaging the weights from all clients, i.e.,
∆Wg = 1

N

∑N
n=1 ∆Wn. For client n, ∆Wni has sign sni = sign(∆Wni) and magnitude

ani = |∆Wni|, with ani following a distribution of mean µn,i and variance σ2
n,i. The overall

conflict rate of parameter i is Ci =
min(ki,N−ki)

N , where ki is the number of clients with a positive
sign. For parameter i, the global weight is:

∆Wg,i =
1

N

N∑
n=1

sniani (22)

Since the sign sni has a conflict rate of Ci, and the mean magnitude for each client is µn,i, the
expected value is:

E[sniani] =
{

µn,i with probability 1− Ci(majority sign = +)
−µn,i with probability Ci(majority sign = −) (23)
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Therefore, the global expectation is:

E[∆Wg,i] =
1

N

N∑
n=1

E[sniani] =
1

N

N∑
n=1

(1− 2Ci)µn,i (24)

Let the global mean be defined as µi =
1
N

∑N
n=1 µn,i, then:

E[∆Wg,i] = (1− 2Ci)µi (25)

Compute the mean over all M parameters:

E[∆Wg] =
1

M
E[∆Wg,i] =

1

M

M∑
i=1

(1− 2Ci)µi (26)

Defining the overall conflict rate as C = 1
M

∑M
i=1 Ci and the global average magnitude as µ =

1
M

∑M
i=1 µi, the global expectation can then be decomposed as:

E[∆Wg] = µ− 2 · 1

M

M∑
i=1

Ciµi (27)

Assuming that Ci and µi are independent, i.e., the conflict rate is unrelated to the parameter magnitude,
other cases are left for future work. Then:

E[∆Wg] ≈ µ− 2Cµ = (1− 2C)µ (28)

The variance of parameter i can be decomposed into:

Var(∆Wg,i) = Var

(
1

N

N∑
n=1

sniani

)
(29)

Under the assumption that clients are independent, i.e., Cov(sniani, smiami) = 0 for n ̸= m,
which is a common simplification in the literature, especially for theoretical analysis, the variance of
parameter i can be decomposed as:

Var(∆Wg,i) =
1

N2

N∑
n=1

Var(sniani) (30)

However, in non-IID settings, this independence assumption may not strictly hold, and cross-client co-
variances could potentially affect the global variance. We leave the investigation of these correlations
for future work. The variance of the parameters for each client is:

Var(sniani) = E[(sniani)2]− (E[sniani])2

E[(sniani)2] = E[a2ni] = σ2
n,i + µ2

n,i; (E[sniani])2 = (1− 2Ci)
2µ2

n,i

Var(sniani) = σ2
n,i + µ2

n,i − (1− 4Ci + 4C2
i )µ

2
n,i = σ2

n,i + 4Ci(1− Ci)µ
2
n,i

(31)

By averaging the variances of all clients, we obtain:

Var(∆Wg,i) =
1

N2

N∑
n=1

[σ2
n,i + 4Ci(1− Ci)µ

2
n,i] (32)

Further decomposed into two parts: the average variance within clients σ2
i = 1

N

∑N
n=1 σ

2
n,i, and

the variance of mean differences between clients d2i = 1
N

∑N
n=1(µn,i − µi)

2. By expanding
µ2
n,i = (µi + (µn,i − µi))

2, we obtain:

1

N

N∑
n=1

µ2
n,i = µ2

i + d2i (33)

Thus, the variance of parameter i is:

Var(∆Wg,i) =
1

N
[σ2

i + 4Ci(1− Ci)(µ
2
i + d2i )] (34)
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Take the average over all M parameters:

Var(∆Wg) =
1

M

M∑
i=1

Var(∆Wg,i) =
1

NM

M∑
i=1

[σ2
i + 4Ci(1− Ci)(µ

2
i + d2i )] (35)

If the overall conflict rates Ci ≈ C, and the means and variances are similar across clients µi ≈ µ,
σ2
i ≈ σ2, d2i ≈ d2, then the global variance can be approximated as:

Var(∆Wg) ≈
1

N
[σ2 + d2 + 4C(1− C)µ2] (36)

Assuming sign conflicts only affect the global expected direction, while client magnitude differences
(d2) exist independently. Thus, d2 is retained as a direct measure of data heterogeneity. Specifically,
d2 captures magnitude distribution differences, and C reflects sign conflict levels. Since they are
mathematically uncorrelated and physically independent, they can be approximated as separate
additive terms in the model. If the overall conflict rate Ci is unevenly distributed, higher-order terms
need to be introduced:

Var(∆Wg) =
1

N
[σ2 + d2 + 4C(1− C)µ2 − 4µ2 · Var(Ci)] (37)

where Var(Ci) =
1
M

∑M
i=1(Ci − C)2. The above derivation results are summarized as follows:

IID setting: Non-IID setting:{
E[∆Wg] = (1− 2C)µ

Var(∆Wg) ≈ 1
N [σ2 + 4C(1− C)µ2]

{
E[∆Wg] ≈ (1− 2C)µ

Var(∆Wg) ≈ 1
N [σ2 + d2 + 4C(1− C)µ2]

(38)
Regardless of whether under the IID or Non-IID setting, the conclusion of Lemma 3.1 holds: reducing
the average conflict rate ρ̄, decreasing the conflict degree C, increasing the expected magnitude of
the global update |E[∆Wg]|, and reducing its variance Var(∆Wg) all contribute to stabilizing the
global update direction, thereby effectively mitigating local training bias.

C Theoretical Guarantees for Convergence and Optimality

Let W denote all trainable LoRA parameters, while the pretrained backbone remains frozen. We
analyze single-round (T = 1) federated optimization under both IID and non-IID data, explicitly
modelling sign conflicts among clients. Two new hypotheses are added to the classical smooth-convex
framework to capture inter-client directional disagreement.

Assumptions

Let the global objective be L(W ). We assume:

• (A1) L-smoothness:
∥∇L(W )−∇L(W ′)∥ ≤ L∥W −W ′∥

• (A2) λ-strong convexity:
⟨∇L(W )−∇L(W ′),W −W ′⟩ ≥ λ∥W −W ′∥2

• (A3) Bounded per-sample gradient variance:
Var(x,y)∼Dj

[∇ℓ(fW (x), y)] ≤ σ2
L

• (A4) Bounded sign-conflict variance:

1

M

M∑
i=1

(Ci − C)2 ≤ ζ2

• (A5) Gradient-sign alignment:
E[⟨∇Ln(W ),∇L(W )⟩] ≥ γ(1− 2C)∥∇L(W )∥2

where C = 1
M

∑M
i=1 Ci, C ≤ 0.5, and γ ∈ (0, 1] quantifies directional coherence.
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Convergence under IID Data

From Lemma 3.1, the global update across N clients satisfies:

E[∆Wg] = (1− 2C)µ, Var(∆Wg) ≈
1

N
[σ2 + 4C(1− C)µ2]. (1.1)

where µ denotes the average local update direction and C captures the extent of directional disagree-
ment.

To account for bias arising from such conflicts, we prove the following:

Lemma C.1 (Gradient Bias Bound). Under (A1)-(A5), the bias of the aggregated gradient satisfies:∥∥E[∇L̃(W )]−∇L(W )
∥∥ ≤ 2ζµ+O

(√
σ2+4C(1−C)µ2

N

)
.

This result reflects that dispersion in sign conflicts (ζ) introduces a systematic bias, while the variance
term scales inversely with client number N .

Theorem C.1 (IID Convergence). Under (A1)-(A5), with η = 1
L+λ−1K :

E[L(W1)− L(W ∗)] ≤ (1− ηλ) [L(W0)− L(W ∗)] +
σ2

eff

2λN
,

where

σ2
eff = σ2 + 4C(1− C)µ2 + 4ζ2µ2, K =

4C(1− C)µ2

N
.

The term
(
1− λ

L+λ−1K

)
captures the contraction due to strong convexity and smoothness, degraded

by conflict-induced variance K. The residual error σ2
eff

2λN includes noise from client sampling (σ2),
sign conflict (C), and dispersion (ζ).

Extension to Non-IID Settings

Under data heterogeneity, we define d2 as the inter-client drift (see Appendix B):

d2 =
1

M

M∑
i=1

1

N

N∑
n=1

(µn,i − µi)
2, (1.2)

measuring deviation in client update directions.

The global update variance now becomes:

Var(∆Wg) ≈
1

N
[σ2 + d2 + 4C(1− C)µ2]. (1.3)

Theorem C.2 (Non-IID Convergence). Under data heterogeneity and (A1)-(A5), with η =
1

L+λ−1Kniid
:

E[L(W1)− L(W ∗)] ≤ (1− ηλγ(1− 2C)2)[L(W0)− L(W ∗)] +
σ2

niid

2λN
,

where

Kniid =
4C(1− C)µ2 + d2

N
, σ2

niid = σ2 + d2 + 4C(1− C)µ2 + 4ζ2µ2.

The exponential term exp
(
− λγ(1−2C)2

L+λ−1Kniid

)
encodes alignment efficiency γ and conflict rate C, attenu-

ated by drift d2. The residual error σ2
niid

2λN aggregates variances from sampling, conflict, dispersion,
and heterogeneity.
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Asymptotic Optimality (One-shot Limit)

The residual error as N →∞ (large client count) simplifies to:

lim
N→∞

E[L(W1)− L(W ∗)] ≤ σ2
niid

2λN
≈ d2 + 4ζ2µ2

2λN
. (1.4)

This confirms that conflict (C) and dispersion (ζ) remain additive error sources even in the one-shot
setting, alongside data heterogeneity (d2).

Key Implications for T = 1

1. Conflict Sensitivity: Optimality gap scales with C(1 − C) and ζ2, peaking at C = 0.5.
Alignment strength γ critically amplifies the exponential decay in non-IID settings.

2. Client Scaling: Residual error decays as O(1/N), emphasizing the benefit of large client
pools to mitigate variance.

3. Algorithmic Guidance: Conflict-aware aggregation (e.g., reweighting clients with low
Ci) directly reduces σ2

eff and σ2
niid. Drift reduction techniques (e.g., regularization) remain

essential for non-IID robustness.

These results provide theoretical grounding for federated LoRA fine-tuning in communication-
constrained scenarios, highlighting the irreducible impact of client disagreement even in single-round
optimization.

D Scalability Evaluation Beyond the Benchmark Setting

Based on the adopted benchmark, we primarily evaluated YOCO with 10-30 clients. The method,
however, is not restricted to this range: constrained only by GPU resources, we further conducted
experiments with 50 clients and analyzed the scalability of the conflict-matrix computation. As shown
in Table 5, YOCO consistently maintains its effectiveness at larger scales, outperforming both basic
one-shot baselines and multi-round FL approaches.

Table 5: Performance comparison with N = 50 clients under two MLLM variants: V2_6 (MiniCPM-
V-2_6int4) and V2_5 (MiniCPM-Llama3-V-2_5int4). Comm. cost denotes communication overhead.

Method Comm. cost N = 50 (V2_6) N = 50 (V2_5)

FedAdam 25×28×4 66.67 68.64
Local 0×1×1 65.71 62.93
FedAdam 1×1×1 67.69 69.09
FedAvgM 1×1×1 66.03 67.69
FedAdagrad 1×1×1 67.07 69.18
FedAvg 1×1×1 66.23 67.69
Mean 1×1×1 67.58 68.31
Combine 1×1×1 65.84 68.09
YOCOinitBĀ 1×1×1 68.15 69.83

IID Scenario: Statistical-Scale Derivation as N →∞

Let the probability that parameter i takes a positive sign be pi. Then

ki ∼ Binom(N, pi), 0 ≤ pi ≤ 1.

Expected Global Conflict Rate

E[C] =
1

MN

∑
i

E
[
min(ki, N − ki)

]
≈ 1

M

∑
i

{
N
2

[
1− 2|pi − 1

2 |
]
− O(

√
N)
}/

N.
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• If pi ≈ 0.5 (signs nearly balanced), E[C]→ 1
2 −Θ(N−1/2).

• If pi is biased to one side, then E[C]≪ 0.5 and decreases further with N .

Conclusion 1. In non-extreme mixed-sign settings, C does not grow with N ; indeed, because most
parameters converge to the same sign, its upper bound decreases monotonically as N increases.

Global Weight Noise

The original derivation gives

Var(∆Wg) =
1

N

[
σ2 + 4C(1− C)µ2

]
.

• Leading term σ2/N ⇒ variance ∝ 1/N — more clients make each global update more
stable.

• Secondary term 4C(1− C)µ2 ⇒ shrinks as C decreases; YOCO’s directional constraint is
designed to reduce C.

Conclusion 2. With hundreds or thousands of clients, the O(1/N) noise is already far smaller than
directional bias, so YOCO still delivers significant gains.

Non-IID Extension: Cluster-Level Beta–Binomial Model

Partition the clients into G clusters, with proportions αg (
∑

g αg = 1). Within cluster g, the

positive-sign probability of parameter i is p(g)i :

k
(g)
i ∼ Binom(αgN, p

(g)
i ), ki =

G∑
g=1

k
(g)
i .

Conflict Rate

E[C] =
1

MN

∑
i

∑
g

E
[
min(k

(g)
i , αgN − k

(g)
i )
]
+ O(G2) = O

(
1
N

)
+O

(
G2

N2

)
.

When G≪ N (typical in practice), the dominant term remains O(1/N).

Variance

Var(∆Wg) =
1

N

[
σ2 + 4C(1− C)µ2 +O

(
G
N

)]
,

which differs from the IID result only by the O(G/N) adjustment.

Conclusion 3. As long as each cluster contains Ω(N) clients (equivalently, G≪ N ), the O(1/N)
scaling of both C and Var(∆Wg) is retained, and YOCO’s directional-stability effect remains valid.

E Details of Experiment Configuration

E.1 Hyper Parameters

As shown in Table 6, we provide the specific hyperparameter settings of γ and λ for sign-based
consistency regularization and noise-free sparse regularization, respectively.

E.2 Aggregation Strategies

As shown in Tables 7 and 8, the aggregation strategies of different YOCO versions are presented.

F Details of Algorithm

Details of our algorithm is shown in Algorithm 1.
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Table 6: Hyperparameter settings for γ and λ.
Hateful-Memes α=5.0 α=1.0 α=0.5 β=30% β=40% β=50%

γ (1, 50) (1, 25) (1, 200) (1, 50) (1, 100) (1, 100)
λ 1e−2 1e−1 1e−4 1e−2 1e−2 1e−3

Hateful-Memes I:3-T:7 I:5-T:5 I:7-T:3 p=80% p=70% p=60%
γ (1, 300) (1, 100) (1, 25) (1, 100) (1, 25) (1, 100)
λ 1e−3 1e−2 1e−2 1e−1 1e−3 1e−4

CrisisMMD α=5.0 α=1.0 α=0.5 β=30% β=40% β=50%
γ (1, 50) (1, 5) (1, 200) (1, 50) (1, 100) (1, 25)
λ 1e−4 1e−3 1e−2 1e−4 1e−3 1e−4

CrisisMMD I:3-T:7 I:5-T:5 I:7-T:3 p=80% p=70% p=60%
γ (1, 5) (1, 25) (1, 25) (1, 50) (1, 50) (1, 25)
λ 1e−4 1e−3 1e−2 1e−4 1e−4 1e−4

Medical Datasets I:3-T:7 I:5-T:5 I:7-T:3 p=80% p=70% p=60%
γ (1, 25) (1, 25) (1, 25) (1, 25) (1, 25) (1, 25)
λ 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4

Table 7: Aggregation strategies in YOCO on the Hateful-Memes dataset. "Combine" denotes
"FedAvgM" aggregation for LoRA A and "Mean" aggregation for LoRA B.

Hateful-Memes α=5.0 α=1.0 α=0.5 β=30% β=40% β=50%
YOCOinit Combine FedAvg Combine Combine Combine FedAvg
YOCOInit&B FedAvg FedAvg Combine FedAvg Combine FedAvg
YOCOInit&BA FedAvg Combine Combine FedAvg FedAvg FedAvg
YOCOInit&BĀ (for B) FedAvg FedAvgM FedAvgM FedAvg FedAvg FedAvg
Hateful-Memes I:3-T:7 I:5-T:5 I:7-T:3 p=80% p=70% p=60%
YOCOinit Ensemble FedAvgM FedAvgM Ensemble FedAdagrad Ensemble
YOCOInit&B Ensemble FedAvgM FedAvg Ensemble FedAdagrad Mean
YOCOInit&BA Ensemble FedAvgM FedAvgM Ensemble Ensemble Mean
YOCOInit&BĀ (for B) FedAvgM FedAvgM FedAvgM FedAdagrad Mean FedAvgM

G Experiments on the Single-Modality Setting

To further evaluate the generalizability of YOCO in a single-modality setting, we conducted additional
experiments, as presented in Table 9. The results show that YOCO consistently outperforms all one-
shot baselines in the single-modality setting and even surpasses multi-round FL on the text modality
of CrisisMMD. These findings demonstrate that YOCO remains highly effective in single-modality
scenarios, underscoring its strong generalization capability.

H More Visualizations of the Conflict Matrix

To illustrate the changes in conflicts on LoRA A and B from YOCOinit to YOCOinit&B, we visualize
the conflict matrices under two data heterogeneity settings. As shown in Figures 9 and 10, introducing
sign-based consistency regularization for LoRA B effectively reduces its conflicts, while the conflicts
on LoRA A remain nearly unchanged.

I Broader Impact

Federated learning (FL) is a distributed training framework designed to protect data privacy, making
it particularly well-suited for privacy-sensitive domains such as finance and healthcare. In recent
years, many multimodal large models (MLLMs) have become increasingly mature, exhibiting strong
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Table 8: Aggregation strategies in YOCO on the CrisisMMD and Medical datasets. "Combine"
denotes "Mean" aggregation for LoRA A and "FedAvgM" aggregation for LoRA B.
CrisisMMD α=5.0 α=1.0 α=0.5 β=30% β=40% β=50%
YOCOinit Combine Mean Combine Mean Combine Combine
YOCOInit&B Combine Mean Combine Mean Mean Mean
YOCOInit&BA Mean Mean Mean Combine Combine Combine
YOCOInit&BĀ (for B) Mean Mean Mean Mean Mean Mean
CrisisMMD I:3-T:7 I:5-T:5 I:7-T:3 p=80% p=70% p=60%
YOCOinit Ensemble Ensemble Ensemble Combine Ensemble Ensemble
YOCOInit&B Ensemble Ensemble Ensemble Combine Ensemble Ensemble
YOCOInit&BA Ensemble Ensemble Ensemble Mean Ensemble Ensemble
YOCOInit&BĀ (for B) Mean Mean Mean FedAdagrad Mean Mean
Medical Datasets I:3-T:7 I:5-T:5 I:7-T:3 p=80% p=70% p=60%
YOCOInit&BĀ (for B) FedAvgM FedAvgM FedYogi FedYogi FedYogi FedYogi

Algorithm 1 YOCO

1: Input: Local dataset Dn, hyperparameters γ, λ, client set N , task loss Ls

2: Output: Global weights ∆Wg

3: Server executes Eq. (3) to obtain A0 and B0. ▷ Initialization
4: for each client n ∈ N do ▷ Local Training with Regularization
5: Initialize local LoRA: A(0)

n ← A0; B(0)
n ← B0

6: ∆Wn = BnAn

7: Rsign = ∥ tanh(γBn)−Bs∥2

∥Bs∥2+ε ▷ Sign-based Consistency Regularization
8: Rsparse = λ× ∥An∥1 ▷ Noise-free Spare Regularization
9: L(∆Wn;Dn) = Ls +Rsign +Rsparse

10: Update parameters: ∆Wn ←∆Wn − η∇L
11: end for
12: Server Aggregation: ▷ Principal Component-weighted Aggregation
13: Aggregate Bg with vanilla strategy, Ag with Eq. (5)
14: Return global weights ∆Wg for evaluation

Table 9: Performance comparison under α = 0.5 in the single-modality setting. “Comm. cost”
denotes communication cost.

Method Comm. cost Hateful-Memes Comm. cost CrisisMMD

Image Text Image Text

FedAdam 25×28×4 72.70 68.26 40×28×4 59.59 37.95
Local 0×1×1 67.47 65.41 0×1×1 41.76 33.05
FedAdam 1×1×1 67.67 66.24 1×1×1 39.24 30.04
FedAvgM 1×1×1 68.99 66.43 1×1×1 44.98 32.95
FedAdagrad 1×1×1 67.68 66.36 1×1×1 30.74 26.47
FedAvg 1×1×1 68.79 66.42 1×1×1 44.25 33.35
Mean 1×1×1 67.36 66.49 1×1×1 53.35 35.86
Ensemble 1×1×1 69.07 66.39 1×1×1 53.21 36.54
Combine 1×1×1 69.19 66.33 1×1×1 53.45 37.08
YOCOinit 1×1×1 69.22 66.31 1×1×1 53.30 37.66
YOCOinit&B 1×1×1 69.53 66.41 1×1×1 53.99 37.78
YOCOinit&BA 1×1×1 69.88 66.93 1×1×1 54.37 38.10
YOCOinit&BĀ 1×1×1 70.10 67.11 1×1×1 54.51 38.65
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Figure 9: Conflict matrices of YOCOinit and YOCOinit&B on Hateful-Memes with α = 5.0.
YOCOinit YOCOinit&B

Lo
RA

 A
Lo

RA
 B

Figure 10: Conflict matrices of YOCOinit and YOCOinit&B on Hateful-Memes with α = 1.0.

general prior knowledge and the ability to handle a wide range of multimodal tasks in a unified
manner. These models can also achieve impressive performance on specific tasks through rapid
fine-tuning. Integrating MLLMs with FL offers significant potential to accelerate the development of
intelligent systems in privacy-critical settings.

However, conventional MLLMs+FL frameworks typically rely on multiple rounds of communication,
making them susceptible to performance degradation in resource-constrained client environments.
This limitation poses challenges for deployment on edge devices and in low-resource scenarios.
To address this, we propose YOCO, the first framework to enable efficient federated low-rank
adaptation of MLLMs under a truly one-shot communication setting. YOCO introduces an implicit
global supervision mechanism to mitigate local training bias without relying on additional data or
generative models. It substantially reduces communication overhead while maintaining—or even
enhancing—model performance.

The introduction of YOCO broadens the applicability of MLLMs+FL, particularly in settings in-
volving resource-limited edge devices, remote healthcare facilities, and small-scale organizations.
This advancement holds great promise for promoting the real-world adoption of MLLMs in privacy-
sensitive domains such as finance and healthcare.
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