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Abstract

Kidney transplantation offers a significant improvement in the quality of life for individuals
with irreversible kidney failure. Early detection of rejection through pathologists’ assess-
ment of kidney biopsies is critical to ensure long-term graft survival. Traditional assessment
methods rely on semi-quantitative estimations from a pathologist while implementing deep
learning models holds promise for providing more accurate measurements. Large annotated
datasets, required to train such models, are challenging to obtain for kidney tissue. In this
study, we fine-tune and modify the Segment Anything Model (SAM) to facilitate instance
segmentation on whole-slide imaging (WSI) data. Leveraging SAM’s zero-shot capability,
we accelerate dataset creation by automatically obtaining annotations which we refine and
label. We demonstrate promising results with limited annotated slides for training. Addi-
tionally, our approach allows for iterative dataset expansion to enhance model performance
over time. Code is available at: https://github.com/JurreWeijer/SAM-Nephro.
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1. Introduction

Kidney transplantation significantly improves the quality of life for individuals with irre-
versible kidney failure (Garcia et al., 2012). The pathologists’ assessment of protocol kidney
biopsies after transplantation to detect early rejection is crucial to ensure long-term graft
survival (Kers et al., 2022). Assessing the kidney tissue involves scoring using the Banff clas-
sification system by estimating factors like the degree of tubular atrophy/interstitial fibrosis
(IFTA) and glomerulosclerosis (Roufosse et al., 2018) (Hermsen et al., 2019). Deploying
deep learning models for autonomous tissue assessment can yield more accurate measure-
ments compared to semi-quantitative estimations from a pathologist. Training such models
requires large annotated datasets, which poses a challenge for kidney tissue because of the
large number of small tissue features (Razzak et al., 2018). Foundation models offer a
solution as fine-tuning for downstream tasks does not require an extensive dataset (Han
et al., 2021). A notable foundation model for this problem is the Segment Anything Model
(SAM), a zero-shot segmentation model that shows promise in accurately delineating image
structures (Kirillov et al., 2023). However, SAM has not been trained on pathology images
and does not provide labels for the masks.
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This study aims to develop a deep learning model for automated renal allograft tissue
assessment. We leverage SAM’s zero-shot capability to speed up dataset creation by using its
automatic mask generator to obtain unlabeled annotations that we refine and label. Using
the dataset, we fine-tune a modified version of SAM to perform instance segmentation of
the proximal tubules, distal tubules, atrophic tubules, glomeruli, sclerotic glomeruli, vessels,
and background.

2. Methods

We gathered all slides stained with periodic acid-Schiff (PAS) from 72 patients containing
tissue from protocol kidney biopsies taken three months after transplantation. The slides
from 22 patients were used for training and validation, selecting one slide per patient, while
we reserved the remaining 50 patients to evaluate histopathological features.

We developed a tool leveraging SAM and the automatic mask generator to speed up the
annotation process. Slides were divided into patches for which masks were automatically
generated, using overlapping patches to mitigate border artifacts. We employ a tissue mask
to eliminate masks outside the tissue areas, while a size constraint ensures that masks do
not exceed 4% of the slide patch area to exclude masks that are not of tissue features.
When annotations in the patch overlap area did not agree, we kept the mask with the
largest area when there was 90% overlap, otherwise, we kept the mask with the highest
predicted IoU output from SAM. The segmentations are refined and labeled by a medical
student, supervised by a pathologist, using QuPath (Bankhead et al., 2017). An ”unspecified
tubule” class was assigned when the class of tubular object could not be determined, which
we omitted during the training process.

We maintained the majority of SAM’s architecture but made some modifications to the
mask decoder to obtain labels for the segmentations. We removed the option for multiple
masks as output and introduced an additional class token. The class token is combined
with the mask token, IoU token, and the prompt embeddings which, along with the image
embedding, are the input for the two-way transformer. The output of the two-way trans-
former, resulting from class tokens, goes through an MLPs to obtain class probabilities
as shown in Figure 1. We modified the annotation tool to accommodate labeled annota-
tions for inference with the modified model. To obtain IFTA annotations, we accumulated
clusters of adjacent atrophic tubules and created a hull around them.

3. Results and Discussion

The right side of Figure 1 displays the model’s predictions compared to the ground truth.
We highlight regions of glomerulosclerosis and atrophic tubules, as these are pivotal for
clinical decision-making. We obtained the best performance for the glomerulus class with
an mAP of 0.51, followed by proximal, distal, and atrophic tubules with mAP values of
0.43, 0.30, and 0.25, respectively. The sclerotic glomerulus and vessel classes exhibit the
lowest performance, with mAPs of 0.08 and 0.13, respectively. The mAP is computed using
a range of IoU values between 0.5 and 0.95 with an interval of 0.05 (Chen et al., 2023).

In Figure 2 on the left, we show the correlation between the degree of IFTA from
the ground truth training data and the pathology report, which has a Pearson correlation
coefficient of 0.43 (95% CI: 0.01-0.72), showing it is difficult to obtain a strong correlation.
In Figure 2 on the right, we can see that the mean IFTA prediction of the model obtains a
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Figure 1: Left, the architecture of modified mask decoder, additions are displayed in green. Right,
patches of predictions compared to the ground truth. The classes are: tubules proximal (blue),
tubules distal (yellow), tubules atrophic (light blue), glomerulus (magenta), glomerulosclerosis (pur-
ple), vessel (red), and background (black)

similar correlation with a Pearson correlation coefficient of 0.42 (95% CI: 0.15-0.63). The
predicted values are the mean of predictions made on three PAS-stained consecutive sections
from the same biopsy of a patient.

For the training method, we do not require fully annotated slides which allows im-
provement of performance for certain classes by increasing the number of instances in the
dataset. Similarly, we can expand the dataset with data from slides with more severe
allograft pathology and differently stained slides to create a more robust model.

Figure 2: The correlation between the percentage of IFTA according to the pathology report and the
percentage of IFTA from the ground truth (Left) or the mean prediction from the model (Right).

4. Conclusion

In this study, we generated a dataset using SAM, followed by modifying the model to
facilitate instance segmentation of multiple tissue feature classes in kidney biopsies, aimed
at assisting pathologists in their assessment of kidney biopsies. Our approach demonstrates
promising results with a limited number of annotated slides for training, due to starting
from a foundation model, while also having the flexibility to easily expand the dataset to
enhance model performance in the future.
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