

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 KALE: ENHANCING KNOWLEDGE MANIPULATION IN LARGE LANGUAGE MODELS VIA KNOWLEDGE-AWARE LEARNING

006
007 **Anonymous authors**
008 Paper under double-blind review

011 ABSTRACT

013 Despite the impressive performance of large language models (LLMs) pretrained
014 on vast knowledge corpora, advancing their knowledge manipulation perfor-
015 mance—the ability to effectively **recall, reason, and transfer relevant knowl-**
016 **edge**—still remains challenging. Existing methods mainly leverage supervised
017 fine-tuning (SFT) to enable LLMs to recall task-relevant knowledge by continuing
018 the training process on labeled datasets. However, we observe that LLMs fine-tuned
019 via SFT still occasionally exhibit the *known&incorrect* phenomenon, where LLMs
020 explicitly possess the relevant knowledge of a given question but cannot effectively
021 manipulate it to answer correctly. To address this challenge, we propose KALE—a
022 novel post-training framework that leverages knowledge graphs (KGs) to generate
023 high-quality relevant rationales and enhance the knowledge manipulation ability
024 via **Knowledge-Aware LEarning**. Specifically, KALE **first** proposes a **Knowledge-**
025 **Induced (KI)** data synthesis method to generate high-quality data rationales, i.e., a
026 textual reasoning process from each question to the correct answer through external
027 KGs. **Then** KALE proposes a **Knowledge-Aware (KA)** fine-tuning paradigm to
028 enhance the knowledge manipulation ability of LLMs. Extensive experiments on
029 **eight** popular benchmarks across **six** different LLM backbones demonstrate the
030 effectiveness of KALE, leading to an accuracy improvement of up to 11.72% and
031 an average of 4.18%.

032 1 INTRODUCTION

033
034 Standing out as versatile tools with vast knowledge repositories, large language models (LLMs),
035 such as GPT-4.5 (OpenAI, 2024), Deepseek R1 (Team, 2024b), LLaMA-3 (Touvron et al., 2023),
036 and Qwen2.5 (Team, 2024d), demonstrate remarkable power and versatility across a wide range of
037 domains (Zhao et al., 2021; El-Kassas et al., 2021). However, the most capable LLMs also produce
038 errors, even when the knowledge is explicitly encoded within LLMs, indicating struggles for existing
039 LLMs to flexibly manipulate task-relevant knowledge during inference (Allen-Zhu & Li, 2024; 2025).

040 Recently, extensive research efforts have been devoted to boosting LLM knowledge manipulation
041 performance for downstream tasks. One promising post-training paradigm, Supervised Fine-Tuning
042 (SFT), has emerged as a new trend, demonstrating superior performance in enhancing the ability of
043 LLMs on certain downstream tasks (Wei et al., 2022a). The key idea of SFT is to adapt pre-trained
044 LLMs to specific tasks by conducting the post-training process on labeled datasets, which refines their
045 parameters to focus on task-relevant features (Zhang et al., 2023). Several endeavors also explored
046 variations of SFT methods. Dual-stage Mixed fine-Tuning (DMT) (Dong et al., 2023) expands SFT
047 datasets to achieve a balance between the general and specialized ability. KG-SFT (Chen et al., 2025)
048 utilizes knowledge graphs (KGs) to filter SFT data to enhance LLMs’ ability on knowledge-intensive
049 tasks. Extensive studies further demonstrate both the effectiveness (Dong et al., 2023) and versatility
050 (Xie et al., 2024) of SFT methods.

051 Albeit with multiple benefits of SFT methods, LLMs fine-tuned via SFT still exhibit the
052 *known&incorrect* phenomenon—**LLMs possess relevant knowledge but cannot manipulate it**
053 **to correctly answer questions**. This phenomenon mainly stems from two limitations in the SFT
process: **(i) the lack of high-quality textual reasoning data from question to answer**. For certain

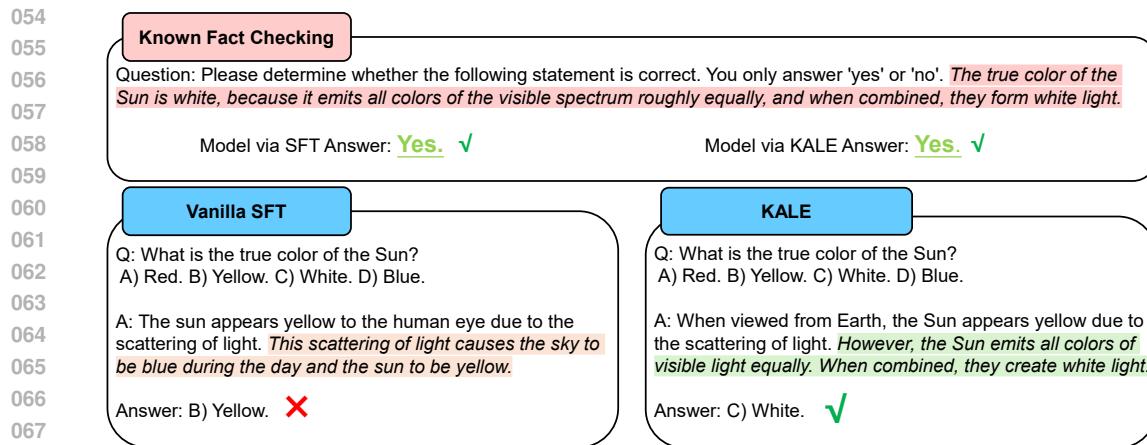


Figure 1: While both post-trained LLMs know relevant knowledge, the LLM via SFT still cannot recall the knowledge to answer. In contrast, KALE effectively recalls the knowledge and answers correctly. We use Mistral 7B (Jiang et al., 2023a) as an example, and more cases are in Appendix B.

domains, off-the-shelf reasoning data is scarce, and creating such data needs substantial human effort, which poses a significant barrier to broader applications of LLMs in downstream domains (Li et al., 2024) and **(ii) the insufficient ability to recall task-relevant knowledge**. SFT methods fine-tune LLMs using labeled datasets, where LLMs learn specific patterns through explicit input-output pairs. However, LLMs often overly rely on explicit input-output mappings, which restrict their ability to dynamically retrieve task-relevant knowledge (Luo et al., 2024). As shown in the left part of Figure 1, despite being explicitly known that the true color of the Sun is white, LLM after SFT still cannot recall this knowledge to provide a correct answer. **As a result, even after a sufficient SFT process, LLMs still struggle to effectively manipulate task-relevant knowledge to answer correctly for downstream tasks** (Allen-Zhu & Li, 2025).

To address these challenges, we propose a novel post-training framework, namely **Knowledge-Aware LEarning (KALE)** to boost LLM’s knowledge manipulation abilities. KALE consists of two components: (i) knowledge-induced data synthesis (**KI**) to generate high-quality rationale data and (ii) knowledge-aware fine-tuning (**KA**) to enable LLMs to manipulate task-relevant knowledge. Specifically, for a given Q&A pair, KALE **first** identifies named entities within the pair and extracts reasoning paths from question to answer via the proposed multi-path A* algorithm through an external KG. **Then**, KALE combines the pair and reasoning paths as input for the LLM to generate rationales underlying the pair. **Finally**, rather than learning specific patterns through explicit supervised input-output pairs, KALE minimizes the KL divergence (Kullback & Leibler, 1951) between LLM distributions with and without rationales. By doing so, KALE does not require the outputs without rationales to exactly match those produced with rationales. Instead, KALE encourages the two distributions to be more aligned, which allows LLMs to more flexibly recall task-relevant knowledge when rationales are absent during inference.

We summarize our major contributions as follows:

- (i) **An efficient high-quality SFT data generation method.** We propose an autonomous high-quality SFT data synthesis method to generate text reasoning rationales for each Q&A pair to improve the comprehensive ability of LLMs in understanding the underlying logic behind the Q&A questions.
- (ii) **A flexible knowledge manipulation fine-tuning paradigm.** We propose a knowledge-aware fine-tuning paradigm to encourage LLMs to recall relevant knowledge when answering questions by aligning distributions of LLMs with and without input rationales.
- (iii) **Significant Improvement and Versatility.** We conduct extensive experiments on **eight** different popular downstream benchmarks on **six** different LLM backbones to demonstrate the effectiveness of our KALE with a maximum accuracy improvement of 11.72%.

108

2 RELATED WORK

109

2.1 TEXT DATA AUGMENTATION METHODS

110 With the advent of LLMs, data augmentation has undergone a significant transformation (Ding
 111 et al., 2024). LLMs have shown remarkable abilities in generating high-quality text, which provides
 112 significant advantages in data augmentation tasks (Deng et al., 2023; Fang et al., 2023). AugGPT (Dai
 113 et al., 2023) leverages the generative power of LLMs to rephrase questions in SFT data. GPT3Mix
 114 (Yoo et al., 2021) extends the data augmentation abilities of LLMs by using few-shot prompting
 115 to generate questions semantically similar to the SFT data. StaR (Zelikman et al., 2024) utilizes a
 116 self-taught mechanism to let LLMs provide internal thoughts. While existing data augmentation
 117 methods primarily focus on expanding the data quantity but lack the multi-hop logic rationale, **our**
 118 **KALE can effectively generate textual rationales underlying the Q&A pair.**

119

2.2 KNOWLEDGE GRAPH RETRIEVAL GENERATION METHODS

120 Knowledge graphs (KGs) offer a complementary way to the unstructured, text-based knowledge
 121 encoded in LLMs (Pan et al., 2024). Recent research has explored the integration of KGs to enhance
 122 the Q&A and reasoning abilities of LLMs. Think-on-Graph (ToG) (Sun et al.) employs an iterative
 123 beam search over a KG to guide the reasoning process of LLMs. KGR (Guan et al., 2024) retrofits
 124 LLM responses with factual statements from KGs. KAPING (Baek et al., 2023) enhances zero-shot
 125 Q&A by appending retrieved facts to LLMs. StructGPT (Jiang et al., 2023b) employs an iterative
 126 reading-then-reasoning framework to reason over structured data. GraphRAG (Edge et al., 2024)
 127 integrates KG traversal to retrieve structured relationships from graph-indexed data. Existing retrieval-
 128 based methods require additional retrieval from a knowledge base during inference, resulting in extra
 129 time overhead. **Our KALE, once trained, does not necessitate any additional time consumption**
 130 **during inference (We provide an average testing time per sample of KALE in Appendix G).**

131

2.3 SFT VARIANTS METHODS

132 With the rise of LLMs, there is a growing emphasis on using SFT to align LLMs with human
 133 intentions to downstream tasks (Ouyang et al., 2022). Many innovative fine-tuning strategies have
 134 been proposed to enhance the performance and adaptability of LLMs. Dual-stage Mixed fine-Tuning
 135 (DMT) (Dong et al., 2023) proposes to improve the general ability of LLMs, making them more adept
 136 at handling diverse tasks and domains. Self-Distillation Fine-Tuning (SDFT) (Yang et al., 2024) uses
 137 a distilled dataset generated by model itself during the fine-tuning to reduce the catastrophic forgetting
 138 (Kirkpatrick et al., 2017). KG-SFT (Chen et al., 2025) utilizes KGs to filter SFT data to enhance
 139 LLMs' ability on knowledge-intensive tasks. Existing SFT-based methods learn specific patterns
 140 through explicit input-output pairs, which restricts LLM's ability to dynamically retrieve task-relevant
 141 knowledge. **Our KALE enables more flexible manipulation of task-relevant knowledge.**

142

3 PRELIMINARIES

143

3.1 NOTATIONS

144 We denote \mathbf{x}^{ins} as instructions for downstream tasks, \mathbf{x}^{que} as queries, \mathbf{x}^{ans} as answers and \mathbf{x}^{rats} as
 145 rationales. We denote two types of input prompts for the LLMs as follows: one includes the
 146 rationale, represented as $(\mathbf{x}^{\text{ins}}, \mathbf{x}^{\text{que}}, \mathbf{x}^{\text{rats}})$, and the other excludes the rationale, as $(\mathbf{x}^{\text{ins}}, \mathbf{x}^{\text{que}})$. Let
 147 $\mathcal{E}_q = [\mathbf{e}_{q_1}, \mathbf{e}_{q_2}, \mathbf{e}_{q_3}, \dots]$ denote the question entity list of \mathbf{x}^{que} , $\mathcal{E}_a = [\mathbf{e}_{a_1}, \mathbf{e}_{a_2}, \mathbf{e}_{a_3}, \dots]$ denote the
 148 answer entity list of \mathbf{x}^{ans} , and $\mathcal{P} = [\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \dots]$ denote the reasoning path list connecting the
 149 question entity list to the answer entity list, where e_{q_i} and e_{a_i} denote the i -th entity of \mathbf{x}^{que} and \mathbf{x}^{ans}
 150 and \mathbf{p}_i denotes the i -th path of the reasoning path list \mathcal{P} . Let $g(\mathbf{e})$, $h(\mathbf{e})$, and $f(\mathbf{e})$ be the current
 151 accumulated cost, heuristic estimated cost, and total estimated cost for a given entity \mathbf{e} , respectively.

152

3.2 A* ALGORITHM

153 A* algorithm (Hart et al., 1968) is an extension of the Bellman-Ford algorithm (Bellman, 1958; Ford,
 154 1956; Moore, 1959). Unlike the Bellman-Ford algorithm that propagates through nodes uniformly,

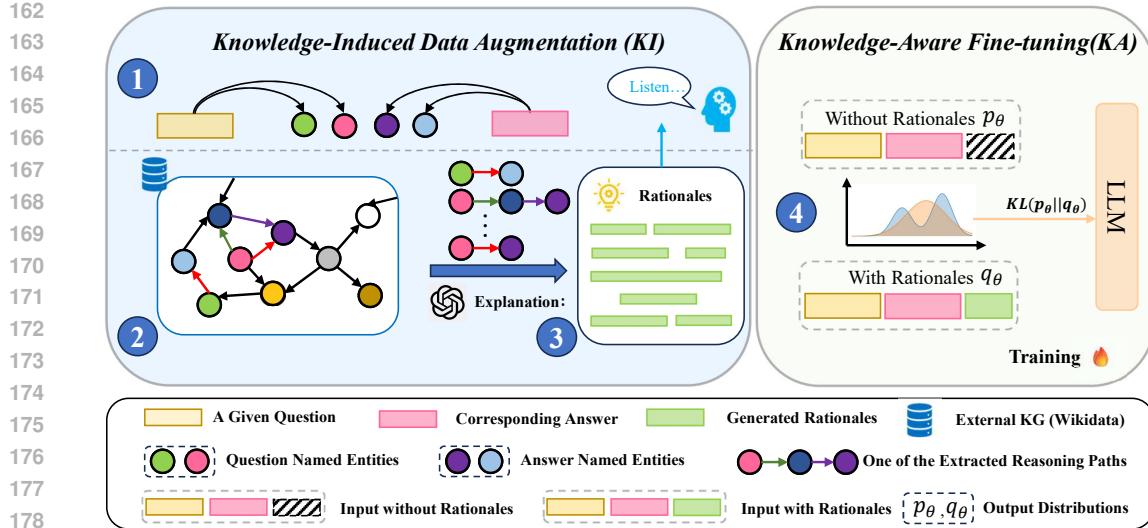


Figure 2: An overview of KALE. For a given Q&A pair in the training set, the workflow of KALE is as follows. **(1)** Perform named entity recognition to extract potential question and answer entities. **(2)** Search the reasoning path via the proposed multi-path A* algorithm. **(3)** Combine the reasoning path and Q&A pair and generate the corresponding rationale via GPT-4o. **(4)** Align LLM’s output distributions for cases with and without the rationale via knowledge-aware fine-tuning.

the A* algorithm prioritizes propagation with a proper heuristic function to reduce the search space:

$$s(\mathbf{e}) = d(\mathbf{e}_{start}, \mathbf{e}) \oplus h(\mathbf{e}, \mathbf{e}_{end}), \quad (1)$$

where \oplus is a aggregation function, $d(\mathbf{e}_{start}, \mathbf{e})$ is the length of current shortest path from start entity \mathbf{e}_{start} to \mathbf{e} , and $h(\mathbf{e}, \mathbf{e}_{end})$ is a heuristic function estimating the cost from \mathbf{e} to target entity \mathbf{e}_{end} .

4 METHOD

4.1 KNOWLEDGE-INDUCED DATA SYNTHESIS

Answering a question may require the integration of multiple knowledge fragments. For instance, for the question *“What is the true color of the Sun?”* and answer: *“White”*, it involves multiple knowledge such as: **(i)** “The Sun emits all colors of visible spectrum,” **(ii)** “The combination of all visible light produces white light,” and **(iii)** “The intensity distribution of sunlight roughly exhibits balance when integrated.” The fragmented nature of such knowledge in pre-training data creates challenges for LLMs to manipulate relevant knowledge during inference. In contrast, KGs provide a way to represent fragmented knowledge into structured and logical correlations. Specifically, it can be formalized into a reasoning path: *“the Sun–emits–>full spectrum light–integrates–into–>white light”*, which corresponds to a series of interconnected triples within a KG, including [the Sun, emits, full-spectrum light] and [full-spectrum light, integrates into, white light]. Building upon the observation, we propose knowledge-induced data synthesis (KI) to generate rationales.¹

Specifically, KALE will **first** perform named entity recognition separately on the question and the answer, resulting in the question entity list $\mathcal{E}_q = \{\text{the Sun}\}$ and the answer entity list $\mathcal{E}_a = \{\text{white}\}$. **Then**, KALE leverages these entities to search for reasoning paths in a KG. Conducting a full breadth-first search (BFS) from the question entities to the answer entities in a large KG (e.g., Wikidata²) is time-consuming. For instance, the extraction of reasoning paths from the AbsR’s (Xiong et al., 2024)

¹We only generate rationales for the training set. We use this query only to explain our workflows. In testing (as in Figure 1), we do not perform these steps. KALE does not introduce additional overhead in testing.

²In this paper, we use Wikidata by default as the external KG to extract all reasoning paths. To evaluate the robustness of KALE to different KGs, we report results using alternative KGs in Appendix M.

216 training set **requires over one week**. Therefore, we propose an efficient multi-path A* algorithm to
 217 extract reasoning paths. It requires **less than 4 hours** to extract all reasoning paths on the same set.
 218 Specifically, we adopt a small set of *anchor entities*. For a given entity pair \mathbf{e}_q and \mathbf{e}_a in \mathcal{E}_q and \mathcal{E}_a ,
 219 we select k anchor entities by randomly sampling from the m -hop neighbors of the answer entity
 220 \mathbf{e}_a , thereby extracting a local subgraph around the answer entity. For each anchor, we conduct a
 221 limited 3-step BFS, i.e., a constrained BFS that explores up to three hops from the anchor entity to
 222 pre-compute partial distances, which serve as a lower bound for the remaining path cost in A*.

223 Formally, let $g(\mathbf{e})$ be the accumulated cost (the number of edges traversed) from start entity to current
 224 entity \mathbf{e} and $h(\mathbf{e})$ be the heuristic function estimating the cost from \mathbf{e} to the answer entity \mathbf{e}_a . We
 225 define the priority function as $f(\mathbf{e}) = g(\mathbf{e}) + h(\mathbf{e})$, where $f(\mathbf{e})$ is the priority value in A*. To ensure
 226 $h(\mathbf{e})$ does not overestimate the actual distance (preserving the admissibility condition of A*), we use
 227 the maximum of anchor-based lower bounds derived from the BFS. Specifically, let $\{\alpha_1, \alpha_2, \dots, \alpha_k\}$
 228 be k anchor entities, we pre-compute $\text{dist}(\alpha_i, \mathbf{e})$ up to depth d ; if \mathbf{e} is not reachable within d steps,
 229 we set $\text{dist}(\alpha_i, \mathbf{e}) = \infty$. Likewise, we compute $\text{dist}(\alpha_i, \mathbf{e}_a)$ for each anchor. Then we let

$$231 \quad h(\mathbf{e}) = \max_{1 \leq i \leq k} [\text{dist}(\alpha_i, \mathbf{e}_a) - \text{dist}(\alpha_i, \mathbf{e})]^+, \quad (2)$$

232 where $[x]^+ = \max(x, 0)$ ensures non-negative values. Intuitively, if \mathbf{e} is already close to the answer
 233 entity compared with α_i , this difference is a nontrivial lower bound; otherwise, it contributes zero and
 234 does not lead to overestimation (We prove the admissibility of our multi-path A* via the proposed
 235 heuristic function in Appendix C). This heuristic design is simple yet efficient for reasoning path
 236 retrieval in a large KG. We can also apply KG embedding-based methods (Rossi et al., 2021; Zhu
 237 et al., 2021; 2024) to incorporate semantic information from KG, and we leave it as future work.

238 To retrieve multiple reasoning paths, we extend the standard A* algorithm by incorporating a
 239 priority queue \mathcal{Q} , which stores multiple paths leading to the same entity. Each entry in \mathcal{Q} is a tuple
 240 $(f(\mathbf{e}), g(\mathbf{e}), \mathbf{e}, p_{\mathbf{e}}^i)$, where $p_{\mathbf{e}}^i$ is the i -th path from the start entity \mathbf{e}_q to the current entity \mathbf{e} . **Algorithm 1**
 241 in Appendix D provides the pseudo codes of the overall procedure. After obtaining \mathcal{P} , we combine
 242 the Q&A pair and \mathcal{P} as input for GPT-4o, prompting it to generate the rationale \mathbf{x}^{rats} underlying the
 243 Q&A pair (Appendix J.2 provides prompt details). For example, for the extracted reasoning path,
 244 "the Sun-emits->full spectrum light-integrates_into->white light," the rationales are "The Sun emits
 245 light that contains the entire visible spectrum. When these different colors of light are combined, they
 246 create white light." **These rationales offer high-quality textual reasoning data from question**
 247 **to answer, which enables better understanding of the underlying logic and correlations.** We
 248 include more examples of reasoning paths and rationales in Appendix K to provide a comprehensive
 249 understanding of KALE.

251 4.2 KNOWLEDGE-AWARE FINE-TUNING PARADIGM

252 When confronted with a given question, a typical human response process of answering often involves
 253 retrieving the related experiences and learned knowledge, reasoning based on this knowledge, and
 254 then providing a response (Buckner & Wheeler, 2001; Yadav et al., 2022). Motivated by this,
 255 we propose a simple yet effective learning paradigm called knowledge-aware fine-tuning, which
 256 encourages LLMs to recall relevant knowledge and reason over it before generating a response.

257 Formally, consider an LLM denoted by \mathcal{M} with parameters θ and input $\mathbf{x}^{\text{inp}} = (\mathbf{x}^{\text{ins}}, \mathbf{x}^{\text{que}}, \mathbf{x}^{\text{ans}})$, where
 258 \mathbf{x}^{ins} denote instructions, \mathbf{x}^{que} and \mathbf{x}^{ans} denotes the Q&A pair. It constructs a conditional probability
 259 for the output \mathbf{x}^{out} . We consider two probabilities, which differ in whether rationales are as input:

$$260 \quad \mathcal{M}(\mathbf{x}^{\text{inp}}, \mathbf{x}^{\text{out}}, \theta) = - \sum_t \log p_{\theta}(\mathbf{x}_t^{\text{out}} | \mathbf{x}_t^{\text{inp}}, \mathbf{x}_{<t}^{\text{out}}), \quad (3a)$$

$$261 \quad \mathcal{M}(\mathbf{x}^{\text{inp}}, \mathbf{x}^{\text{rats}}, \mathbf{x}^{\text{out}}, \theta) = - \sum_t \log q_{\theta}(\mathbf{x}_t^{\text{out}} | \mathbf{x}_t^{\text{inp}}, \mathbf{x}^{\text{rats}}, \mathbf{x}_{<t}^{\text{out}}). \quad (3b)$$

262 equation 3a represents the classical process of LLM generation, where a given instruction and query
 263 are provided as input, and the LLM produces an output. We aim for the LLM to manipulate learned
 264 knowledge and reason over it. As in equation 3b, we also use the generated rationales \mathbf{x}^{rats} as input to
 265 the LLM to enable better recalling knowledge fragments relevant to the question.

270 Therefore, we hope that the LLM can automatically complete rationales based on the instruction and
 271 query before generating a response, and we propose knowledge-aware fine-tuning to minimize the
 272 divergence between the two distributions in equation 3a and equation 3b as follows:
 273

$$274 \quad \mathcal{L}(\theta) = \mathbb{E}_{(\mathbf{x}^{\text{inp}}, \mathbf{x}^{\text{out}}, \mathbf{x}^{\text{rats}})} [\text{KL} (p_{\theta}(\mathbf{x}_t^{\text{out}} \mid \mathbf{x}^{\text{inp}}, \mathbf{x}_{<t}^{\text{out}}) \parallel q_{\theta}(\mathbf{x}_t^{\text{out}} \mid \mathbf{x}^{\text{inp}}, \mathbf{x}^{\text{rats}}, \mathbf{x}_{<t}^{\text{out}}))], \quad (4)$$

276 where $\text{KL}(\cdot \parallel \cdot)$ denotes the KL divergence. We initialize two LLMs: p_{θ} is updated during training,
 277 and q_{θ} is fixed and used solely as an alignment target. The latter represents the distribution with the
 278 input rationales that our KA aims to align. By minimizing the KL divergence in equation 4, KALE
 279 does not require outputs without rationales to exactly match those produced with rationales. Instead,
 280 it encourages the two distributions to align, which enables the LLM to flexibly retrieve task-relevant
 281 knowledge when rationales are absent during inference.
 282

283 5 EXPERIMENTS

285 We aim to evaluate the effectiveness of KALE to enhance LLM’s knowledge manipulation ability
 286 and the versatility of KALE. With this desiderata, we divide the experiments into **seven** parts:
 287

- 288 • To demonstrate the superiority and generalizability, we conduct comparative experiments on
 289 **eight** different benchmarks across **six** different LLM backbones.
- 290 • To investigate the contribution of each component, we conduct the ablation study.
- 291 • To provide more insight, we conduct the case study on **known&incorrect phenomenon**
 292 and **ratios of augmented rationales**.
- 293 • To demonstrate the versatility, we evaluate our KALE on **knowledge-intensive domains** of
 294 six different languages in Appendix F.
- 295 • To analyze KALE’s real-world deployability, we evaluate its **the inference time per sample**
 296 and **sensitivity to hyperparameters** in Appendix G and H.
- 297 • To provide a comprehensive understanding, we conduct an analysis of generated rationales:
 - 300 (i) We employ **different external KGs** to generate reasoning paths in Appendix M.
 - 301 (ii) We use **rationales by other LLMs** to demonstrate KALE’s robustness in Appendix Q.
 - 302 (iii) We prompt LLMs to generate **irrelated and contrast rationales** in Appendix R.
 - 303 (iv) We evaluate **the quality of the generated rationales** in Appendix S.
- 304 • To further improve KALE’s performance, we explore **combining KALE with SFT** in a
 305 sequential manner in Appendix T.

307 5.1 EXPERIMENT SETUPS

309 **Implementations and Benchmarks.** We apply **six** open-source LLMs scaling from 7B to 32B,
 310 including LLaMA3 8B (Team, 2024c), Mistral 7B (Jiang et al., 2023a), Qwen2.5-32B (Team, 2024d),
 311 Gemma2 9B (Team et al., 2024), OLMOE 7B (Muennighoff et al., 2024), and Orca2 7B (Mitra et al.,
 312 2023). Experiments where the model size is under 32B are conducted on 8 NVIDIA SXM A100
 313 80G GPUs, while for models with 32B size are on 16 NVIDIA SXM A100 80G GPUs. For each
 314 benchmark, the reported performance stems from a model fine-tuned exclusively on the specific
 315 dataset’s training data. We apply tasks for **logical reasoning**, including AbsR (Xiong et al., 2024),
 316 Commonsense (denote by Common) (Xiong et al., 2023), and Big Bench Hard (BBH) (Suzgun et al.,
 317 2023), **reading comprehension** including RACE-H and RACE-M (Lai et al., 2017), and **natural**
 318 **language understanding** including MMLU (Hendrycks et al.), ARC-c, and ARC-e (Clark et al.,
 319 2018). We use **accuracy** as the evaluation metric. **More details are in Appendix E.**

320 **Baseline Methods.** We compare **thirteen** baselines: (i) **Vanilla**: standalone LLMs without modifi-
 321 cations. (ii) **CoT** (Wei et al., 2022b): prompting LLMs to generate internal thoughts. (iii) **Think-on-**
 322 **Graph (TOG)** (Sun et al.): applying iterative beam search to enhance LLMs’ reasoning ability. (iv)
 323 **StructGPT** (Jiang et al., 2023b): proposing iterative reading-then-reasoning based on structured data.
 (v) **GraphRAG** (Edge et al., 2024): integrating KG traversal to retrieve structured relationships. (vi)

324
 325 Table 1: Results of our KALE using LlaMA3 8B, Mistral 7B, and Qwen2.5 32B as backbone models
 326 (for more results of different backbone models, please see Appendix L). We **bold** the best results and
 327 underline the suboptimal results for each backbone model.

Backbone	Category	Method	AbsR	ARC-c	ARC-e	Common	MMLU	BBH	RACE-h	RACE-m
LlaMA3 8B	Prompt-based	Vanilla	62.68	66.79	69.90	58.72	55.88	46.54	53.35	57.02
		CoT	63.15	71.67	69.34	54.67	56.83	48.55	54.31	57.02
	Retrieval-based	TOG	65.98	69.93	72.23	61.87	56.97	48.81	58.60	59.80
		StructGPT	65.35	70.50	73.34	62.32	58.87	49.58	60.03	60.86
		GraphRAG	75.83	74.83	75.76	61.51	57.28	<u>55.83</u>	60.89	69.57
	SFT-based	SFT	67.77	68.23	71.74	59.79	58.00	45.39	56.17	58.91
		SDFT	76.15	<u>74.91</u>	71.44	62.24	58.78	52.37	56.88	61.03
		DMT	74.57	70.82	72.84	61.43	<u>59.11</u>	50.14	<u>61.46</u>	60.64
		MeanLearn	71.09	72.53	74.53	<u>63.39</u>	58.79	50.61	<u>60.03</u>	61.84
		KG-SFT	78.20	73.12	<u>79.55</u>	63.09	58.79	53.68	64.98	62.47
	Augmented-based	STaR	69.95	71.50	70.99	58.20	53.41	50.07	61.21	<u>64.32</u>
		AugGPT	64.45	72.22	75.29	55.12	56.82	51.90	59.21	60.16
		GPT3Mix	68.27	70.57	74.24	61.33	57.79	53.92	61.03	62.67
		KALE (ours)	83.62	81.23	86.45	65.69	63.27	57.33	68.61	74.12
Mistral 7B	Prompt-based	Vanilla	62.35	52.05	68.31	39.15	37.43	28.68	50.14	55.92
		CoT	67.18	58.45	66.08	36.94	43.57	31.60	55.15	58.98
	Retrieval-based	TOG	64.60	57.25	70.41	50.78	41.35	31.29	52.20	56.96
		StructGPT	65.17	57.94	69.28	46.11	44.94	32.98	55.69	60.10
		GraphRAG	68.26	57.76	71.93	48.24	45.53	35.12	57.15	62.60
	SFT-based	SFT	68.48	55.89	71.55	44.14	48.86	34.90	57.09	61.00
		SDFT	<u>73.82</u>	61.01	73.61	51.84	<u>52.19</u>	34.97	<u>64.32</u>	<u>65.53</u>
		DMT	73.22	57.00	72.85	49.71	50.49	35.89	61.64	64.42
		MeanLearn	70.97	64.42	71.55	47.83	50.95	35.58	61.06	64.42
		KG-SFT	72.39	<u>65.96</u>	72.94	<u>54.55</u>	52.10	34.20	61.15	63.37
	Augmented-based	STaR	70.02	57.85	<u>74.53</u>	49.80	41.02	35.89	55.09	59.12
		AugGPT	65.28	59.73	72.77	48.24	40.24	33.21	57.75	59.96
		GPT3Mix	59.72	61.69	71.93	53.97	39.84	<u>36.04</u>	56.75	60.10
		KALE (ours)	76.90	71.59	77.95	59.05	54.21	39.26	67.98	70.06
Qwen2.5 32B	Prompt-based	Vanilla	66.35	75.09	80.10	65.52	80.47	69.01	71.47	76.95
		CoT	68.72	76.79	82.07	66.34	81.65	69.79	73.58	77.64
	Retrieval-based	TOG	74.64	80.55	84.13	68.63	83.27	72.09	74.12	78.34
		StructGPT	74.17	82.43	83.29	<u>71.58</u>	83.41	71.93	75.56	77.92
		GraphRAG	75.24	80.20	84.18	69.00	84.85	73.20	75.84	77.37
	SFT-based	SFT	72.03	79.61	83.33	67.89	82.82	70.40	73.99	79.39
		SDFT	73.34	<u>80.80</u>	84.30	71.25	84.13	71.01	74.59	80.71
		DMT	75.24	81.48	86.07	70.43	85.17	<u>73.62</u>	75.72	80.01
		MeanLearn	71.09	76.37	84.18	69.12	83.61	<u>72.85</u>	74.64	81.82
		KG-SFT	78.91	78.41	84.13	69.62	84.26	72.39	74.80	80.43
	Augmented-based	STaR	72.99	83.87	84.60	69.21	85.24	73.16	76.30	80.43
		AugGPT	78.91	84.47	86.27	68.96	85.04	71.93	<u>77.16</u>	<u>81.89</u>
		GPT3Mix	80.10	<u>85.23</u>	<u>87.33</u>	69.53	<u>85.69</u>	73.47	76.21	80.77
		KALE (ours)	91.82	89.93	94.90	75.02	88.59	77.91	81.76	86.70

SFT (Wei et al., 2022a): standalone SFT process. (vii) **Self-Distillation Fine-Tuning (SDFT)** (Yang et al., 2024): guiding fine-tuning with a dataset generated by model itself. (viii) **Dual-stage Mixed Fine-tuning (DMT)** (Dong et al., 2023): achieving a balance between general and specialized ability. (ix) **MeanLearn** (Xiong et al., 2024): teaching LLMs to leverage generic facts. (x) **KG-SFT** (Chen et al., 2025): utilizing KGs to filter SFT data to enhance LLMs’ ability. (xi) **Self-Taught Reasoner (STaR)** (Zelikman et al., 2024): generating a rationale dataset from a few initials iteratively. (xii) **AugGPT** (Dai et al., 2023): using an LLM to rephrase questions in original data. (xiii) **GPT3Mix** (Yoo et al., 2021): prompting an LLM to generate similar questions in the SFT data.

5.2 MAIN RESULTS

We conduct experiments using three representative LLMs with varied scales: LlaMA3 8B, Mistral 7B, and Qwen2.5 32B in Table 1. We also provide more results for other *three* different open-source LLMs in Table 13, Figures 9, and 10 in Appendix L to demonstrate the versatility of KALE across different LLMs. From Table 1, we observe that KALE consistently and significantly outperforms other state-of-the-art baselines across three LLMs by a substantial margin. **Notably, for the logical reasoning task using the AbsR benchmark, KALE achieves a maximum accuracy improvement of 11.72% when utilizing Qwen2.5 32B as the backbone model.** We also observe that traditional SFT-based and or data augmentation methods yield marginal improvements on downstream tasks,

378
 379 Table 2: Results of the ablation study of KALE, using LlaMA3 8B, Mistral 7B, and Qwen2.5 32B as
 380 backbones (We provide more results for the other three backbones in Appendix N).

Backbone	Method	AbsR	ARC-c	ARC-e	Common	MMLU	BBH	RACE-h	RACE-m
LlaMA3 8B	KALE _{w/o KI}	78.91 _{±4.71}	76.79 _{±4.44}	81.65 _{±4.80}	65.52 _{±0.17}	60.09 _{±3.18}	55.21 _{±2.12}	64.15 _{±4.46}	69.50 _{±4.62}
	KALE _{w/o KA}	73.93 _{±9.69}	75.26 _{±5.97}	78.70 _{±7.75}	63.06 _{±2.63}	60.74 _{±2.53}	53.68 _{±3.65}	60.03 _{±8.58}	64.76 _{±9.36}
	KALE	83.62	81.23	86.45	65.69	63.27	57.33	68.61	74.12
Mistral 7B	KALE _{w/o KI}	71.09 _{±5.81}	66.30 _{±5.29}	65.45 _{±12.50}	57.58 _{±11.47}	52.58 _{±1.63}	36.81 _{±2.45}	64.95 _{±3.03}	66.85 _{±3.21}
	KALE _{w/o KA}	65.64 _{±11.26}	63.91 _{±7.68}	63.05 _{±14.90}	56.84 _{±2.21}	49.05 _{±5.16}	35.74 _{±3.52}	62.78 _{±5.20}	64.00 _{±6.06}
	KALE	76.90	71.59	77.95	59.05	54.21	39.26	67.98	70.06
Qwen2.5 32B	KALE _{w/o KI}	87.32 _{±4.50}	87.03 _{±2.90}	89.98 _{±4.92}	71.01 _{±4.01}	86.87 _{±1.72}	75.15 _{±2.76}	78.04 _{±3.72}	83.57 _{±3.13}
	KALE _{w/o KA}	82.94 _{±8.88}	85.32 _{±4.61}	88.38 _{±6.52}	70.43 _{±4.59}	84.91 _{±3.68}	76.69 _{±1.22}	77.82 _{±3.94}	82.94 _{±3.76}
	KALE	91.82	89.93	94.90	75.02	88.59	77.91	81.76	86.70

388
 389 particularly when applied to larger and more powerful LLMs (e.g., only a 1.39% improvement on the
 390 BBH benchmark when using Qwen2.5 32B). In contrast, KALE delivers a consistent and significant
 391 improvement on larger LLMs. This indicates that as LLMs scale up and become more capable,
 392 SFT-based methods that focus on learning input-output patterns or data augmentation methods that
 393 merely increase the quantity of data are suboptimal to further enhance LLMs. In contrast, **KALE**
 394 **proposes a way to improve LLMs' ability to manipulate knowledge, which achieves better**
 395 **results on larger LLMs significantly.**

398 5.3 ABLATION STUDY

400 To investigate the contribution of each component within KALE, we conduct ablation experiments on
 401 the entire framework. We present the ablation results of KALE using LlaMA3 8B, Mistral 7B, and
 402 Qwen2.5 32B as the three representative backbone models of different structures and scales in Table
 403 2. **More Results using the other three backbone models are in Table 13 in Appendix N.**

404 **Ablation on Rationale Generation** We denote KALE *without* Knowledge-Induced (KI) data
 405 synthesis as KALE_{w/o KI}. That is, we do not utilize our proposed multi-path A* algorithm to provide
 406 reasoning paths for each Q&A pair. Instead, we directly input the Q&A pair and prompt the LLM
 407 to generate rationales. As shown in Table 2, we observe that using rationales directly generated by
 408 prompting LLMs without reasoning paths leads to a performance degradation. Notably, when using
 409 Mistral 7B as the backbone model, the degradation on the ARC-e dataset reaches 12.50%. This
 410 demonstrates that the extracted reasoning paths effectively capture the thought process from question
 411 to answer, which contributes to the generation of higher-quality rationales.

412 **Ablation on KL Divergence** We denote KALE *without* the Knowledge-Aware (KA) fine-tuning
 413 as KALE_{w/o KA}. That is, we directly apply the rationale data generated through the KG to LLM
 414 using Cross-Entropy loss as the objective function. We observe that aligning LLMs' outputs with and
 415 without rationales using cross-entropy does not achieve satisfactory results. Specifically, when using
 416 Mistral 7B as the backbone on the ARC-e dataset, KALE_{w/o KA} results in a 14.90% degradation. This
 417 demonstrates the effectiveness of the KL divergence for better knowledge manipulation performance.

418 5.4 CASE STUDY

419 **Known&incorrect Phenomenon** As illustrated in Figure 1, LLMs via SFT still exhibit the
 420 known&incorrect phenomenon. We provide a detailed analysis of six different LLMs after SFT and
 421 KALE (please refer to Appendix O for results of other baselines). We use the known fact checking
 422 process in Figure 1 (please refer to Appendix J for prompt details) to categorize LLMs' responses
 423 **under the precondition that LLMs already possesses relevant knowledge:** (i) **Known&correct:**
 424 LLMs possess the knowledge and correctly answers the question, which indicates a successful
 425 knowledge manipulation. (ii) **Known&incorrect:** LLMs possess the knowledge yet cannot correctly
 426 answer questions, which indicates an inflexible knowledge manipulation. As shown in the left part of
 427 Figure 3, we observe that SFT models often exhibit the *known&incorrect* phenomenon. More than
 428 25% of the questions are cases where LLM possesses the knowledge to answer but cannot provide
 429 correct responses. In OLMOE 7B, it reaches 44.1%. In contrast, LLMs via KALE demonstrate
 430 excellent knowledge manipulation ability, with less than 10% *known&incorrect* issues of questions

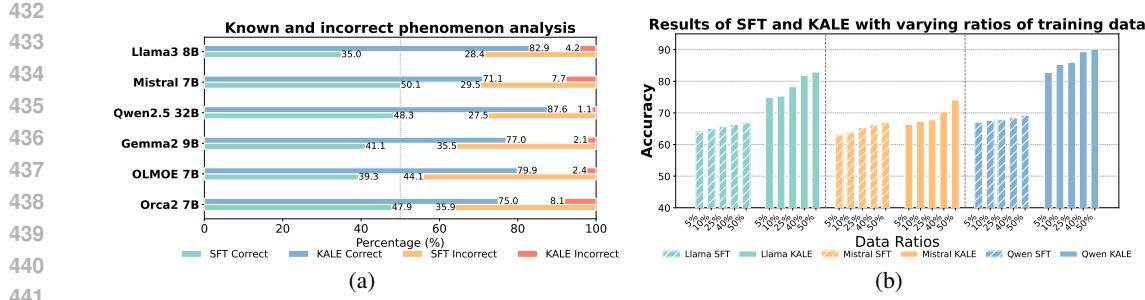


Figure 3: We illustrate two case study results to provide more insights into our KALE. **(i) Known&incorrect phenomenon analysis:** following the known fact checking in Figure 1, we collect cases where LLMs possess the knowledge to answer and analyze the ratios of correct and incorrect answers provided by LLMs, denoted as *known&correct* and *known&incorrect*. **(ii) Ratios of augmented rationales:** by setting the data augmentation ratio from 5% to 50%, we explore the differences between KALE and the SFT under varying data scales. We provide results of LlaMA3 8B, Mistral 7B, and Qwen2.5 32B as the backbones as examples, with more results in Appendix P.

across all LLMs. Notably, for the Qwen2.5 32B model, this proportion dropped to as low as 1.1%. These results indicate that KALE effectively enhances LLM’s knowledge manipulation ability.

Ratios of Augmented Rationales In real-world applications, data acquisition in certain domains can be particularly challenging due to privacy concerns, security restrictions, etc. (Rodríguez-Mazahua et al., 2016). Therefore, we investigate KALE and SFT under limited training data scenarios. Taking the AbsR dataset as an example, by setting the training data ratio from only 5% to 50%, we provide the results in the right part of Figure 3. We find that KALE consistently outperforms SFT methods across all levels of augmented rationales. Moreover, this improvement becomes more significant on Qwen-2.5 32B, which also demonstrates that our KALE is highly effective on more powerful LLMs. **This highlights the significant potential of KALE for low-data, real-world applications.**

6 CONCLUSION

Conclusion In this paper, we propose a novel Knowledge-Aware LEarning (KALE) framework to enable better knowledge manipulation ability of LLMs. Specifically, KALE consists of (i) a knowledge-induced data synthesis method to generate high-quality rationales for each Q&A pair through a structured knowledge graph, and (ii) a knowledge-aware fine-tuning paradigm to enhance the knowledge manipulation ability of LLMs. Extensive experiments on **eight** benchmarks and **six** open-source models across different scales, ranging from 7B to 32B, demonstrate the superiority of our KALE, delivering significant, consistent, and generalizable improvements.³

Limitations and Future Work We consider a few limitations and future directions. (i) Current KALE relies on a structured Q&A dataset to facilitate knowledge-induced data synthesis. For cases where a Q&A dataset is not available, users can consider employing GPT-4o or other LLMs to transform a raw corpus into a structured Q&A. We think applying KALE directly to raw data is a promising direction. (ii) When generating reasoning paths, multi-path A* algorithm is a hard-match approach. Obtaining vectorized embeddings for similarity-based matching is also an optimization direction. (iii) In multi-path A*, we empirically sample k anchor nodes for distance estimation. Finer entity-specific selection (e.g., a neural decision module) may yield better results. (iv) Current KALE relies on an available KG, which may constrain its applicability in domains where specialized KGs are scarce. Meanwhile, many areas—including the medical domain—already benefit from community-maintained Wikidata, whose ongoing expansion enhances its value for diverse applications. We are further encouraged by advances in the KG community that target automatic construction of domain-specific KGs: methods like SAC-KG (Chen et al., 2024) show promise in building high-quality KGs. Such approaches are pivotal for extending KALE to domains where mature KGs are not available.

³More discussions on KALE can be found in Appendix U.

486 ETHICS STATEMENT
487488 This work adheres to the ICLR Code of Ethics. Our study does not involve human subjects or
489 personally identifiable information (PII), and we did not collect new sensitive data. All datasets are
490 publicly available under their respective licenses, and third-party resources are credited. We report
491 methods and results transparently, consider potential risks such as misuse or bias amplification, and
492 do not recommend deployment in high-stakes settings without additional safety assessment.
493494 REPRODUCIBILITY STATEMENT
495496 We provide details to facilitate replication: dataset names and versions, preprocessing steps, mod-
497 el/configuration, training schedules, and evaluation protocols. All hyperparameters are listed in the
498 appendix; scripts and configs are included in the anonymous supplementary materials. For theoretical
499 or algorithmic components, assumptions and full proofs are provided in the appendix. These pointers
500 collectively enable independent reproduction of our results.
501502 REFERENCES
503504 Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: part 3.1, knowledge storage
505 and extraction. In *Proceedings of the 41st International Conference on Machine Learning*, pp.
506 1067–1077, 2024.507 Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.2, knowledge manipulation.
508 In *The Thirteenth International Conference on Learning Representations*, 2025.509 Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary Ives.
510 Dbpedia: A nucleus for a web of open data. In *international semantic web conference*, pp. 722–735.
511 Springer, 2007.512 Jinheon Baek, Alham Fikri Aji, and Amir Saffari. Knowledge-augmented language model prompting
513 for zero-shot knowledge graph question answering. In *Proceedings of the 1st Workshop on Natural
Language Reasoning and Structured Explanations (NLRSE)*, pp. 78–106, 2023.514 Yonatan Belinkov and Yonatan Bisk. Synthetic and natural noise both break neural machine transla-
515 tion. In *International Conference on Learning Representations*, 2018.516 Richard Bellman. On a routing problem. *Quarterly of applied mathematics*, 16(1):87–90, 1958.517 BIG bench authors. Beyond the imitation game: Quantifying and extrapolating the capabilities of
518 language models. *Transactions on Machine Learning Research*, 2023.519 Chandra Bhagavatula, Ronan Le Bras, Chaitanya Malaviya, Keisuke Sakaguchi, Ari Holtzman,
520 Hannah Rashkin, Doug Downey, Wen-tau Yih, and Yejin Choi. Abductive commonsense reasoning.
521 In *International Conference on Learning Representations*, 2019.522 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
523 commonsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*,
524 volume 34, pp. 7432–7439, 2020.525 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
526 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
527 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020a.528 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
529 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
530 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020b.531 Randy L Buckner and Mark E Wheeler. The cognitive neuroscience of remembering. *Nature Reviews
532 Neuroscience*, 2(9):624–634, 2001.

540 Hanzhu Chen, Xu Shen, Qitan Lv, Jie Wang, Xiaoqi Ni, and Jieping Ye. Sac-kg: Exploiting large
 541 language models as skilled automatic constructors for domain knowledge graphs. *arXiv preprint*
 542 *arXiv:2410.02811*, 2024.

543 Hanzhu Chen, Xu Shen, Jie Wang, Zehao Wang, Qitan Lv, Junjie He, Rong Wu, Feng Wu, and
 544 Jieping Ye. Knowledge graph finetuning enhances knowledge manipulation in large language
 545 models. In *The Thirteenth International Conference on Learning Representations*, 2025.

546 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 547 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
 548 *arXiv preprint arXiv:1803.05457*, 2018.

549 Claude Coulombe. Text data augmentation made simple by leveraging nlp cloud apis. *arXiv preprint*
 550 *arXiv:1812.04718*, 2018.

551 Haixing Dai, Zhengliang Liu, Wenxiong Liao, Xiaoke Huang, Zihao Wu, Lin Zhao, Wei Liu, Ninghao
 552 Liu, Sheng Li, Dajiang Zhu, Hongmin Cai, Quanzheng Li, Dinggang Shen, Tianming Liu, and
 553 Xiang Li. Chataug: Leveraging chatgpt for text data augmentation. Feb 2023.

554 Yihe Deng, Weitong Zhang, Zixiang Chen, and Quanquan Gu. Rephrase and respond: Let large
 555 language models ask better questions for themselves. *arXiv preprint arXiv:2311.04205*, 2023.

556 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 557 bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.

558 Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu, Xian Li, Asli Celikyilmaz, and
 559 Jason Weston. Chain-of-verification reduces hallucination in large language models. *arXiv preprint*
 560 *arXiv:2309.11495*, 2023.

561 Bosheng Ding, Chengwei Qin, Ruochen Zhao, Tianze Luo, Xinze Li, Guizhen Chen, Wenhan Xia,
 562 Junjie Hu, Luu Anh Tuan, and Shafiq Joty. Data augmentation using llms: Data perspectives,
 563 learning paradigms and challenges. In *Findings of the Association for Computational Linguistics*
 564 *ACL 2024*, pp. 1679–1705, 2024.

565 Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng Li, Mingfeng Xue, Dayiheng Liu, Wei Wang,
 566 Zheng Yuan, Chang Zhou, and Jingren Zhou. How abilities in large language models are affected
 567 by supervised fine-tuning data composition. *arXiv preprint arXiv:2310.05492*, 2023.

568 Li Du, Xiao Ding, Kai Xiong, Ting Liu, and Bing Qin. e-care: a new dataset for exploring explainable
 569 causal reasoning. In *Proceedings of the 60th Annual Meeting of the Association for Computational*
 570 *Linguistics (Volume 1: Long Papers)*, pp. 432–446, 2022.

571 Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
 572 Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From local to global: A
 573 graph rag approach to query-focused summarization. *arXiv preprint arXiv:2404.16130*, 2024.

574 Wafaa S El-Kassas, Cherif R Salama, Ahmed A Rafea, and Hoda K Mohamed. Automatic text
 575 summarization: A comprehensive survey. *Expert systems with applications*, 165:113679, 2021.

576 Luyang Fang, Gyeong-Geon Lee, and Xiaoming Zhai. Using gpt-4 to augment unbalanced data for
 577 automatic scoring. *arXiv preprint arXiv:2310.18365*, 2023.

578 Jr Ford, L. R. Network flow theory,. *Rand Corporation Paper Santa Monica*, 1956.

579 Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did aristotle
 580 use a laptop? a question answering benchmark with implicit reasoning strategies. *Transactions of*
 581 *the Association for Computational Linguistics*, 9:346–361, 2021.

582 Andrew Gordon, Zornitsa Kozareva, and Melissa Roemmele. SemEval-2012 task 7: Choice of
 583 plausible alternatives: An evaluation of commonsense causal reasoning. In **SEM 2012: The First*
 584 *Joint Conference on Lexical and Computational Semantics – Volume 1: Proceedings of the main*
 585 *conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on*
 586 *Semantic Evaluation (SemEval 2012)*, pp. 394–398, Montréal, Canada, 7-8 June 2012. Association
 587 for Computational Linguistics.

594 Xinyan Guan, Yanjiang Liu, Hongyu Lin, Yaojie Lu, Ben He, Xianpei Han, and Le Sun. Mitigating
 595 large language model hallucinations via autonomous knowledge graph-based retrofitting. In
 596 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 18126–18134, 2024.
 597

598 Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of
 599 minimum cost paths. *IEEE transactions on Systems Science and Cybernetics*, 4(2):100–107, 1968.

600 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 601 Steinhardt. Measuring massive multitask language understanding. In *International Conference on*
 602 *Learning Representations*.

603 Fan Huang, Haewoon Kwak, and Jisun An. Chain of explanation: New prompting method to generate
 604 quality natural language explanation for implicit hate speech. In *Companion Proceedings of the*
 605 *ACM Web Conference 2023*, pp. 90–93, 2023.

606

607 Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
 608 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
 609 *Mistral 7b*. *arXiv preprint arXiv:2310.06825*, 2023a.

610 Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Wayne Xin Zhao, and Ji-Rong Wen. Structgpt: A
 611 general framework for large language model to reason over structured data. In *Proceedings of the*
 612 *2023 Conference on Empirical Methods in Natural Language Processing*, pp. 9237–9251, 2023b.

613

614 Di Jin, Eileen Pan, Nassim Oufattolle, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What
 615 disease does this patient have? a large-scale open domain question answering dataset from medical
 616 exams. *Applied Sciences*, 11(14):6421, 2021.

617 Jungo Kasai, Yuhei Kasai, Keisuke Sakaguchi, Yutaro Yamada, and Dragomir Radev. Evaluating
 618 gpt-4 and chatgpt on japanese medical licensing examinations. *arXiv preprint arXiv:2303.18027*,
 619 2023.

620

621 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
 622 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
 623 catastrophic forgetting in neural networks. *Proceedings of the National Academy of Sciences*, 114
 (13):3521–3526, 2017.

624

625 Solomon Kullback and Richard A Leibler. On information and sufficiency. *The annals of mathematical*
 626 *statistics*, 22(1):79–86, 1951.

627

628 Yanis Labrak, Adrien Bazoge, Richard Dufour, Béatrice Daille, Pierre-Antoine Gourraud, Emmanuel
 629 Morin, and Mickaël Rouvier. Frenchmedmcqa: A french multiple-choice question answering
 630 dataset for medical domain. In *Proceedings of the 13th International Workshop on Health Text*
 631 *Mining and Information Analysis (LOUHI)*, pp. 41–46, 2022.

632

633 Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
 634 comprehension dataset from examinations. In *Proceedings of the 2017 Conference on Empirical*
 635 *Methods in Natural Language Processing*, pp. 785–794, 2017.

636

637 Jinu Lee and Julia Hockenmaier. Evaluating step-by-step reasoning traces: A survey. *arXiv preprint*
 638 *arXiv:2502.12289*, 2025.

639

640 Haoran Li, Qingxiu Dong, Zhengyang Tang, Chaojun Wang, Xingxing Zhang, Haoyang Huang, Shao-
 641 han Huang, Xiaolong Huang, Zeqiang Huang, Dongdong Zhang, et al. Synthetic data (almost) from
 642 scratch: Generalized instruction tuning for language models. *arXiv preprint arXiv:2402.13064*,
 643 2024.

644

645 Tianyu Liu, Yun Li, Qitan Lv, Kai Liu, Jianchen Zhu, Winston Hu, and Xiao Sun. PEARL:
 646 Parallel speculative decoding with adaptive draft length. In *The Thirteenth International Conference*
 647 *on Learning Representations*, 2025. URL <https://openreview.net/forum?id=QOXRVMiHGK>.

648

649 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
 650 Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
 651 approach, 2019.

648 Junyu Luo, Xiao Luo, Kaize Ding, Jingyang Yuan, Zhiping Xiao, and Ming Zhang. Robustft:
 649 Robust supervised fine-tuning for large language models under noisy response. *arXiv preprint*
 650 *arXiv:2412.14922*, 2024.

651 Qitan Lv, Jie Wang, Hanzhu Chen, Bin Li, Yongdong Zhang, and Feng Wu. Coarse-to-fine highlighting:
 652 Reducing knowledge hallucination in large language models. In Ruslan Salakhutdinov, Zico
 653 Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
 654 (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of
 655 *Proceedings of Machine Learning Research*, pp. 33594–33623. PMLR, 21–27 Jul 2024. URL
 656 <https://proceedings.mlr.press/v235/lv24c.html>.

657 Arindam Mitra, Luciano Del Corro, Shweta Mahajan, Andres Codas, Clisse Simoes, Sahaj Agarwal,
 658 Xuxi Chen, Anastasia Razdaibiedina, Erik Jones, Kriti Aggarwal, et al. Orca 2: Teaching small
 659 language models how to reason. *arXiv preprint arXiv:2311.11045*, 2023.

660 E. F. Moore. The shortest path through a maze. In *Proc. of the International Symposium on the
 661 Theory of Switching*, 1959.

662 Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia
 663 Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al. Olmoe: Open mixture-of-experts language
 664 models. *arXiv preprint arXiv:2409.02060*, 2024.

665 OpenAI. Chatgpt: A large-scale generative model for conversation, 2020.

666 OpenAI. Gpt-4 technical report, 2024. URL <https://arxiv.org/abs/2303.08774>.

667 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 668 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 669 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 670 27744, 2022.

671 Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. Unifying large
 672 language models and knowledge graphs: A roadmap. *IEEE Transactions on Knowledge and Data
 673 Engineering*, 2024.

674 Pengcheng Qiu, Chaoyi Wu, Xiaoman Zhang, Weixiong Lin, Haicheng Wang, Ya Zhang, Yanfeng
 675 Wang, and Weidi Xie. Towards building multilingual language model for medicine. *Nature
 676 Communications*, 15(1):8384, 2024.

677 Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
 678 understanding by generative pre-training. *arXiv preprint*, 2018.

679 Lisbeth Rodríguez-Mazahua, Cristian-Aarón Rodríguez-Enríquez, José Luis Sánchez-Cervantes, Jair
 680 Cervantes, Jorge Luis García-Alcaraz, and Giner Alor-Hernández. A general perspective of big
 681 data: applications, tools, challenges and trends. *The Journal of Supercomputing*, 72:3073–3113,
 682 2016.

683 Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata, and Paolo Merialdo. Knowledge
 684 graph embedding for link prediction: A comparative analysis. *ACM Transactions on Knowledge
 685 Discovery from Data (TKDD)*, 15(2):1–49, 2021.

686 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social iqa: Common-
 687 sense reasoning about social interactions. In *Proceedings of the 2019 Conference on Empirical
 688 Methods in Natural Language Processing and the 9th International Joint Conference on Natural
 689 Language Processing (EMNLP-IJCNLP)*, pp. 4463–4473, 2019.

690 Mohammad Shoeybi, Md. Mostofa Ali Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and
 691 Bryan Catanzaro. Megatron-Lm: Training multi-billion parameter language models using model
 692 parallelism. *Cornell University - arXiv, Cornell University - arXiv*, Sep 2019.

693 Robyn Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An open multilingual graph of
 694 general knowledge. In *Proceedings of the AAAI conference on artificial intelligence*, volume 31,
 695 2017.

702 Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Lionel Ni,
 703 Heung-Yeung Shum, and Jian Guo. Think-on-graph: Deep and responsible reasoning of large
 704 language model on knowledge graph. In *The Twelfth International Conference on Learning
 705 Representations*.

706 Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 707 Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, et al. Challenging big-bench tasks and
 708 whether chain-of-thought can solve them. In *Findings of the Association for Computational
 709 Linguistics: ACL 2023*, pp. 13003–13051, 2023.

710

711 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
 712 answering challenge targeting commonsense knowledge. In *Proceedings of the 2019 Conference of
 713 the North American Chapter of the Association for Computational Linguistics: Human Language
 714 Technologies, Volume 1 (Long and Short Papers)*, pp. 4149–4158, 2019.

715 Anthropic Team. The claude 3 model family: Opus, sonnet, haiku. 2024a. URL <https://api.semanticscholar.org/CorpusID:268232499>.

716

717 DeepSeek-AI Team. Deepseek-v3 technical report, 2024b. URL <https://arxiv.org/abs/2412.19437>.

718

719 Gemini Team. Gemini: A family of highly capable multimodal models, 2023a.

720

721 Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
 722 Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
 723 Gemma 2: Improving open language models at a practical size. *arXiv preprint arXiv:2408.00118*,
 724 2024.

725

726 Llama2 Team. Llama 2: Open foundation and fine-tuned chat models, 2023b. URL <https://arxiv.org/abs/2307.09288>.

727

728 Llama3 Team. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024c.

729

730 PALM Team. Palm: Scaling language modeling with pathways, 2022.

731

732 Qwen Team. Qwen2. 5 technical report. *arXiv preprint arXiv:2412.15115*, 2024d.

733

734 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 735 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambr, Faisal Azhar, et al. Llama: Open and
 736 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

737

738 David Vilares and Carlos Gómez-Rodríguez. Head-qa: A healthcare dataset for complex reasoning.
 739 In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pp.
 740 960–966, 2019.

741

742 Jianing Wang, Qiushi Sun, Nuo Chen, Xiang Li, and Ming Gao. Boosting language models reasoning
 743 with chain-of-knowledge prompting. *arXiv preprint arXiv:2306.06427*, 2023a.

744

745 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
 746 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
 747 models. In *The Eleventh International Conference on Learning Representations*.

748

749 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
 750 Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
 751 *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
 752 1: Long Papers)*, pp. 13484–13508, 2023b.

753

754 Jason Wei and Kai Zou. Eda: Easy data augmentation techniques for boosting performance on text
 755 classification tasks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural
 756 Language Processing and the 9th International Joint Conference on Natural Language Processing
 757 (EMNLP-IJCNLP)*. Association for Computational Linguistics, 2019.

758

759 Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
 760 Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In *International
 761 Conference on Learning Representations*, 2022a.

756 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 757 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 758 *Neural Information Processing Systems*, 35:24824–24837, 2022b.

759 Shiming Xie, Hong Chen, Fred Yu, Zeye Sun, and Xiuyu Wu. Minor sft loss for llm fine-tune to
 760 increase performance and reduce model deviation. *arXiv preprint arXiv:2408.10642*, 2024.

762 Kai Xiong, Xiao Ding, Yixin Cao, Ting Liu, and Bing Qin. Examining inter-consistency of large
 763 language models collaboration: An in-depth analysis via debate. In *Findings of the Association for*
 764 *Computational Linguistics: EMNLP 2023*, pp. 7572–7590, 2023.

765 Kai Xiong, Xiao Ding, Ting Liu, Bing Qin, Dongliang Xu, Qing Yang, Hongtao Liu, and Yixin
 766 Cao. Meaningful learning: Enhancing abstract reasoning in large language models via generic fact
 767 guidance. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*,
 768 2024. URL <https://openreview.net/forum?id=TIhiFqGOYC>.

769 Nakul Yadav, Chelsea Noble, James E Niemeyer, Andrea Terceros, Jonathan Victor, Conor Liston,
 770 and Priyamvada Rajasethupathy. Prefrontal feature representations drive memory recall. *Nature*,
 771 608(7921):153–160, 2022.

772 Zhaorui Yang, Tianyu Pang, Haozhe Feng, Han Wang, Wei Chen, Minfeng Zhu, and Qian
 773 Liu. Self-distillation bridges distribution gap in language model fine-tuning. *arXiv preprint*
 774 *arXiv:2402.13669*, 2024.

775 Kang Min Yoo, Dongju Park, Jaewook Kang, Sang-Woo Lee, and Woomyoung Park. Gpt3mix:
 776 Leveraging large-scale language models for text augmentation. In *Findings of the Association for*
 777 *Computational Linguistics: EMNLP 2021*, pp. 2225–2239, 2021.

779 Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu, Bingchao Wu, Bei Guan, Wang Yongji, and
 780 Jian-Guang Lou. Large language models meet nl2code: A survey. In *Proceedings of the 61st*
 781 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 782 7443–7464, 2023.

783 Eric Zelikman, YH Wu, Jesse Mu, and Noah D Goodman. Star: Self-taught reasoner bootstrapping
 784 reasoning with reasoning. In *Proc. the 36th International Conference on Neural Information*
 785 *Processing Systems*, volume 1126, 2024.

787 Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi
 788 Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey. *arXiv*
 789 *preprint arXiv:2308.10792*, 2023.

790 Yifei Zhang, Xintao Wang, Jiaqing Liang, Sirui Xia, Lida Chen, and Yanghua Xiao. Chain-of-
 791 knowledge: Integrating knowledge reasoning into large language models by learning from knowl-
 792 edge graphs. *arXiv preprint arXiv:2407.00653*, 2024.

793 Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
 794 few-shot performance of language models. In *International conference on machine learning*, pp.
 795 12697–12706. PMLR, 2021.

797 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 798 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 799 chatbot arena. *Advances in Neural Information Processing Systems*, 36:46595–46623, 2023.

800 Yaowei Zheng, Richong Zhang, Junhao Zhang, Ye Yanhan, and Zheyuan Luo. Llamafactory:
 801 Unified efficient fine-tuning of 100+ language models. In *Proceedings of the 62nd Annual Meeting*
 802 *of the Association for Computational Linguistics (Volume 3: System Demonstrations)*, pp. 400–410,
 803 2024.

804 Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford
 805 networks: A general graph neural network framework for link prediction. *Advances in Neural*
 806 *Information Processing Systems*, 34:29476–29490, 2021.

808 Zhaocheng Zhu, Xinyu Yuan, Michael Galkin, Louis-Pascal Xhonneux, Ming Zhang, Maxime
 809 Gazeau, and Jian Tang. A* net: A scalable path-based reasoning approach for knowledge graphs.
Advances in Neural Information Processing Systems, 36, 2024.

810 A MORE RELATED WORKS
811812 A.1 LARGE LANGUAGE MODELS
813

814 The advent of pre-trained language models has fundamentally transformed the landscape of natural
815 language processing (NLP), marking a significant paradigm shift in how language understanding
816 and generation tasks are approached. The pioneering work of the GPT series (Radford et al.,
817 2018; Brown et al., 2020b;b) introduced the concept of unsupervised pre-training followed by task-
818 specific fine-tuning, demonstrating the effectiveness of leveraging large-scale unlabeled text corpora.
819 This approach was further refined by BERT (Devlin et al., 2018), which introduced bidirectional
820 context encoding through the masked language modeling objective, achieving state-of-the-art results
821 across a wide range of NLP benchmarks. Subsequent advancements, such as RoBERTa (Liu et al.,
822 2019), optimized the pre-training process by removing the next sentence prediction objective and
823 training with larger batches and more data, leading to improved performance. Megatron-LM then
824 (Shoeybi et al., 2019) showcased the scalability of these models, leveraging model parallelism to
825 train significantly larger architectures. More recently, the field has witnessed the emergence of LLMs
826 that have pushed the boundaries of what is possible in NLP. Models such as LLaMA3 (Team, 2024c;
827 2023b), ChatGPT (OpenAI, 2020), GPT-4.5 (OpenAI, 2024), PaLM (Team, 2022), Gemini (Team,
828 2023a), Claude3 (Team, 2024a), and Deepseek V3 (Team, 2024b) have demonstrated remarkable
829 abilities in both few-shot and zero-shot learning scenarios (Brown et al., 2020a). These models,
830 often comprising hundreds of billions of parameters, have been pre-trained on diverse and extensive
831 benchmarks, enabling them to generalize across a wide array of tasks with minimal or no task-specific
832 fine-tuning. The evolution from earlier models like GPT and BERT to the current generation of
833 LLMs underscores the importance of scale and the effectiveness of pre-training on large corpora.
834 These advancements have not only improved performance on traditional NLP tasks but have also
835 enabled new applications and capabilities, such as conversational agents (Chen et al., 2024), code
836 generation (Zan et al., 2023; Liu et al., 2025), and complex reasoning tasks (Lv et al., 2024). The
837 continued development and refinement of these models promise to further enhance their utility and
838 impact across various domains.

839 A.2 CLASSIC TEXT DATA AUGMENTATION METHODS
840

841 Data augmentation has long been a foundational research area in natural language processing (NLP),
842 aimed at enhancing the quality and diversity of training data to improve model generalization and
843 performance. Traditional data augmentation techniques have predominantly focused on character-
844 level and word-level modifications. An example is Easy Data Augmentation (EDA) (Wei & Zou,
845 2019), which employs straightforward yet effective strategies such as random insertion, random
846 swapping, random deletion, and synonym replacement to introduce variability into the benchmark
847 (Belinkov & Bisk, 2018; Coulombe, 2018; Wang et al., 2023b). These methods, while computationally
848 efficient, are often limited in their ability to generate semantically coherent and contextually rich
849 variations, particularly at higher linguistic levels such as sentences or documents.

850 A.3 CHAIN-OF-X APPROACHES IN LLMs
851

852 The ability of LLMs to decompose complex problems into a series of intermediate steps and generate
853 internal reasoning processes, known as Chain-of-Thought (CoT) prompting (Wei et al., 2022b),
854 represents a significant advancement in enhancing their reasoning capabilities. The CoT approach
855 emulates human problem-solving strategies by breaking down intricate problems into smaller, more
856 manageable components. This step-by-step reasoning process allows LLMs to focus on each segment
857 individually, reducing errors and improving logical coherence in their responses (Wang et al.).
858 Moreover, CoT explicitly encourages models to articulate their thought processes, which not only
859 facilitates debugging and refinement of the model’s reasoning but also significantly enhances the
860 interpretability of its outputs. As a result, responses generated through CoT are often more accurate,
861 logically consistent, and contextually relevant compared to those produced by models that directly
862 generate final answers without revealing intermediate cognitive steps. The success of CoT has inspired
863 a series of follow-up works that extend its principles to other chain-of-X methods, further broadening
864 its applicability and effectiveness. For instance, chain-of-explanation (Huang et al., 2023) focuses on
865 generating detailed explanations to justify the reasoning process, while chain-of-knowledge (Wang
866 et al., 2023a) emphasizes the integration of external knowledge to enrich the model’s responses.

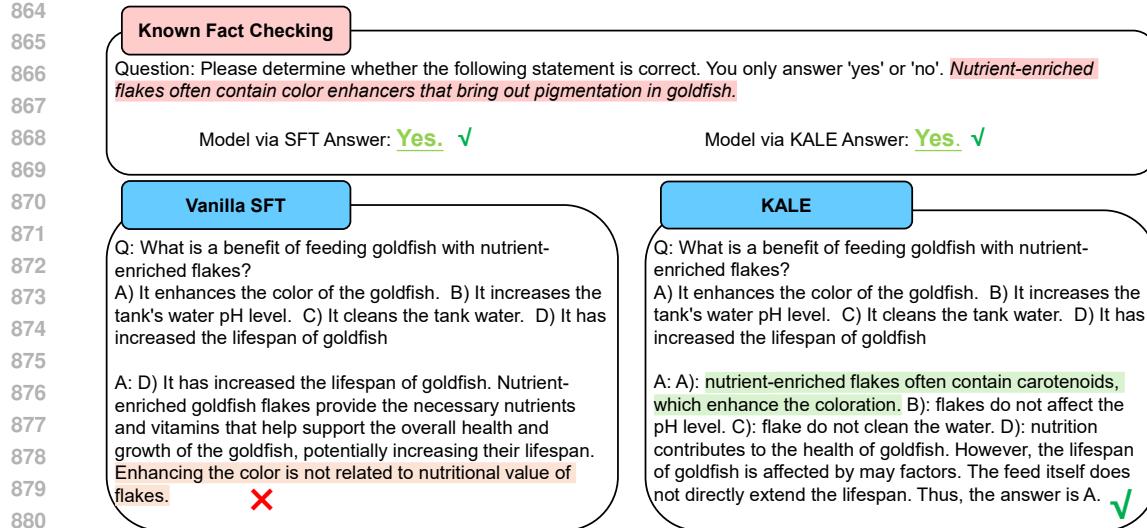


Figure 4: An example of *known&incorrect* phenomenon comparison using LlaMA3 8B as the backbone model.

More recently, chain-of-verification (Dhuliawala et al., 2023) has been proposed to enhance the reliability of LLMs by prompting them to draft initial responses, plan verification questions, answer those questions, and generate a final verified response. This iterative verification process reduces the likelihood of misunderstandings or errors in the model’s reasoning. Another notable extension is Chain-of-Knowledge (Zhang et al., 2024), which elicits LLMs to generate explicit pieces of knowledge evidence in the form of structured triples. This approach is inspired by human cognitive behaviors, where individuals often draw mind maps or knowledge maps as reasoning evidence before addressing complex questions. By structuring knowledge in this way, LLMs can better organize and utilize information, leading to more informed and accurate responses.

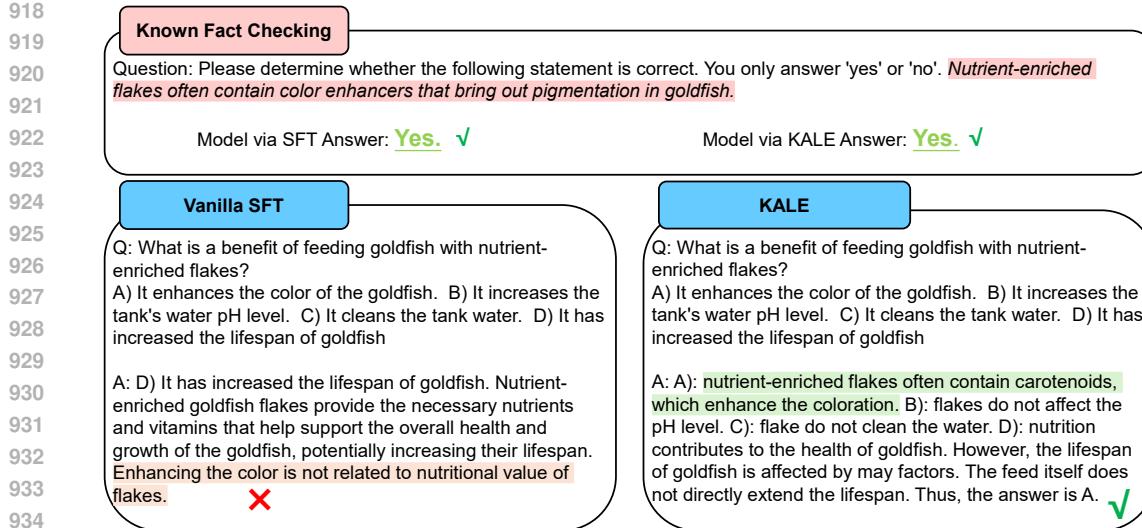
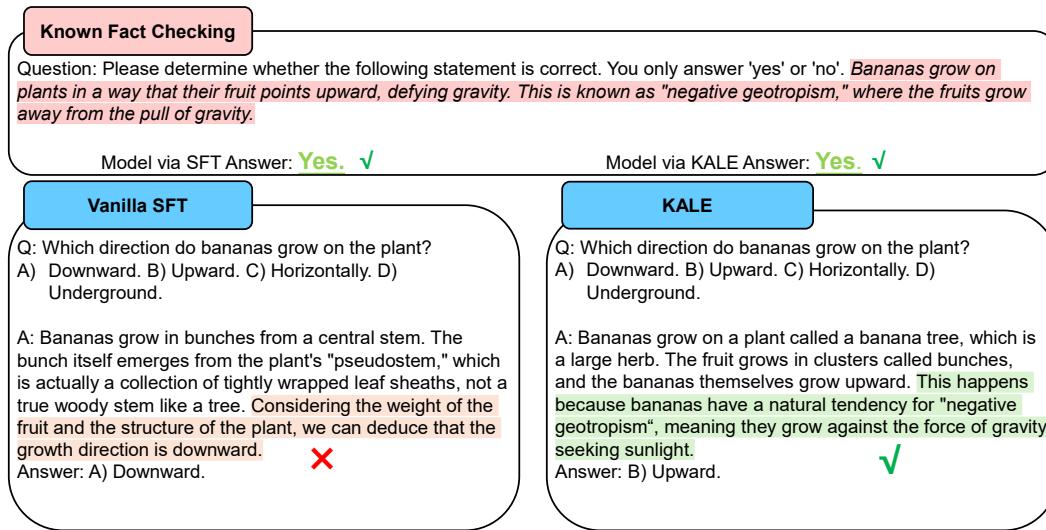
B MORE CASES OF THE *Known&incorrect* PHENOMENON

In Figure 1, we present a comparative analysis of the *known&incorrect* phenomenon of models fine-tuned after SFT and KALE, using Mistral-7B as the backbone model. In this section, we further extend the investigation by providing more *known&incorrect* phenomenon comparisons **across LlaMA3 8B, Qwen2.5 32B, Gemma2 9B, OLMOE 7B, and Orca2 7B** on various domains to comprehensively demonstrate the efficacy of our proposed KALE. As illustrated in Figures 4, 5, 6, 7, and 8, we still find that that models fine-tuned after SFT still exhibit the *known&incorrect* phenomenon, wherein the models cannot properly recall and apply acquired knowledge to answer correctly despite possessing the relevant knowledge. In contrast, LLMs fine-tuned after KALE demonstrate a better ability to effectively manipulate relevant knowledge to generate correct answers. These results also demonstrate that our KALE effectively strengthens LLMs’ knowledge manipulation ability.

C PROOF OF ADMISSIBILITY OF THE PROPOSED MULTI-PATH A* ALGORITHM

In this section, we show that our proposed heuristic estimated cost in equation 2 is admissible, i.e., $h(\mathbf{e}) \leq \text{dist}(\mathbf{e}, \mathbf{e}_g)$ for any node \mathbf{e} , which means that our proposed multi-path A* algorithm can find the best solution. We resort to the triangle inequality property of the distance metric $\text{dist}(x, y)$. For any three nodes A, B, C , the triangle inequality states:

$$\text{dist}(A, C) \leq \text{dist}(A, B) + \text{dist}(B, C) \quad (5)$$

Figure 5: An example of *known&incorrect* phenomenon comparison using Qwen2.5 32B as the backbone model.Figure 6: An example of *known&incorrect* phenomenon comparison using Gemma2 9B as the backbone model.

961 Let us consider an arbitrary landmark α_i from the set $\{\alpha_i\}_{i=1}^k$. Applying the triangle inequality with
962 $A = \alpha_i$, $B = \mathbf{e}$, and $C = \mathbf{e}_g$, we have:

$$\text{dist}(\alpha_i, \mathbf{e}_g) \leq \text{dist}(\alpha_i, \mathbf{e}) + \text{dist}(\mathbf{e}, \mathbf{e}_g) \quad (6)$$

963 Rearranging Equation equation 6, we obtain:

$$\text{dist}(\alpha_i, \mathbf{e}_g) - \text{dist}(\alpha_i, \mathbf{e}) \leq \text{dist}(\mathbf{e}, \mathbf{e}_g) \quad (7)$$

964 Now, let $X_i = \text{dist}(\alpha_i, \mathbf{e}_g) - \text{dist}(\alpha_i, \mathbf{e})$. The term in the heuristic function involving α_i is
965 $[X_i]^+ = \max(X_i, 0)$. We consider two cases for the value of X_i :

966 1. **Case 1:** $X_i < 0$, due to the non-negative property of the distance, we have:

$$[\text{dist}(\alpha_i, \mathbf{e}_g) - \text{dist}(\alpha_i, \mathbf{e})]^+ = 0 \leq \text{dist}(\mathbf{e}, \mathbf{e}_g)$$

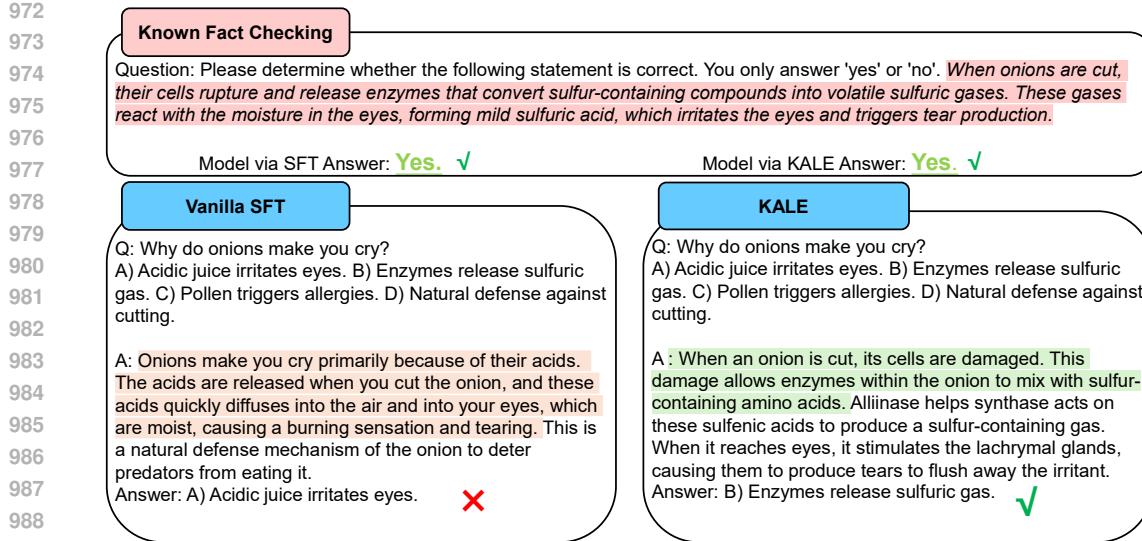


Figure 7: An example of *known&incorrect* phenomenon comparison using OLMOE 7B as the backbone model.

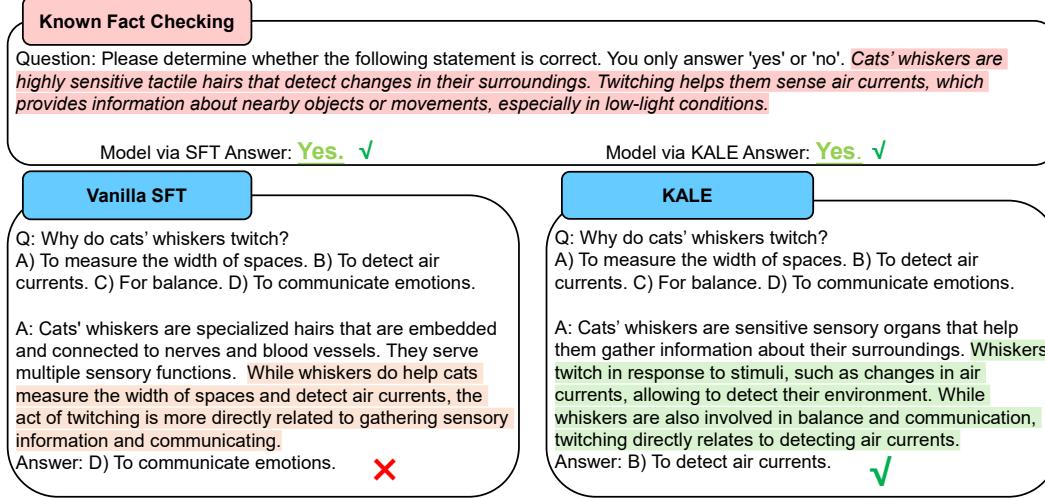


Figure 8: An example of *known&incorrect* phenomenon comparison using Orca2 7B as the backbone model.

2. **Case 2:** $X_i \geq 0$, from Eq. equation 7, we know that $\text{dist}(\alpha_i, \mathbf{e}_g) - \text{dist}(\alpha_i, \mathbf{e}) \leq \text{dist}(\mathbf{e}, \mathbf{e}_g)$. Therefore:

$$[\text{dist}(\alpha_i, \mathbf{e}_g) - \text{dist}(\alpha_i, \mathbf{e})]^+ \leq \text{dist}(\mathbf{e}, \mathbf{e}_g)$$

In both cases, for any anchor α_i ($1 \leq i \leq k$), we have shown that:

$$[\text{dist}(\alpha_i, \mathbf{e}_g) - \text{dist}(\alpha_i, \mathbf{e})]^+ \leq \text{dist}(\mathbf{e}, \mathbf{e}_g) \quad (8)$$

The heuristic function $h(\mathbf{e})$ is defined as the maximum of these terms over all i :

$$h(\mathbf{e}) = \max_{1 \leq i \leq k} [\text{dist}(\alpha_i, \mathbf{e}_g) - \text{dist}(\alpha_i, \mathbf{e})]^+$$

Since each term $[\text{dist}(\alpha_i, \mathbf{e}_g) - \text{dist}(\alpha_i, \mathbf{e})]^+$ is less than or equal to $\text{dist}(\mathbf{e}, \mathbf{e}_g)$, their maximum must also be less than or equal to $\text{dist}(\mathbf{e}, \mathbf{e}_g)$. Thus,

$$h(\mathbf{e}) \leq \text{dist}(\mathbf{e}, \mathbf{e}_g) \quad (9)$$

1026 This inequality holds for any node e . **Therefore, our proposed multi-path A* algorithm is**
 1027 **admissible, which means that for any node, our proposed multi-path A* algorithm can find the**
 1028 **best solution.**

1030 D PSEUDO CODE OF THE PROPOSED MULTI-PATH A*

1031 In Section 4.1, we introduce our multi-path A* algorithm, which efficiently extracts inference paths
 1032 from question entities to answer entities. Here, we provide the algorithm pseudo code in Algorithm 1.

1035 Algorithm 1 Pseudo code for Multi-path A* algorithm

1036 **Input:** Start node e_q , target node e_a , maximum number of paths m and maximum search depth d

1037 1: Initialize priority queue \mathcal{Q} with $(f(\mathbf{e}), g(\mathbf{e}), \mathbf{e}, p_{\mathbf{e}}^i)$
 1038 2: Initialize reasoning path and visited list $\mathcal{P}, \mathcal{V} \leftarrow \emptyset, \emptyset$
 1039 3: **while** $\mathcal{Q} \neq \emptyset$ and $|\mathcal{P}| < m$ **do**
 1040 4: Dequeue the element with the smallest $f(\mathbf{e})$ from \mathcal{Q}
 1041 5: Append \mathbf{e} into \mathcal{V}
 1042 6: **if** $\mathbf{e} = \mathbf{e}_a$ **then**
 1043 7: Append $p_{\mathbf{e}}^i$ into \mathcal{P}
 1044 8: **continue** \triangleright Find Reasoning Path
 1045 9: **end if**
 1046 10: **if** $g(\mathbf{e}) > d$ **then**
 1047 11: **continue** \triangleright Path exceeds maximum search depth
 1048 12: **end if**
 1049 13: **for** each neighbor \mathbf{n} of \mathbf{e} **do**
 1050 14: **if** $\mathbf{n} \in \mathcal{P}$ **then**
 1051 15: **continue** \triangleright Avoid cycles
 1052 16: **end if**
 1053 17: Obtain $g(\mathbf{n}) \leftarrow g(\mathbf{e}) + 1$
 1054 18: Compute $f(\mathbf{n})$ and $h(\mathbf{n})$ via Equations equation 1 and equation 2
 1055 19: Enqueue $(f(\mathbf{n}), g(\mathbf{n}), \mathbf{n}, p_{\mathbf{e}}^i + [\mathbf{n}])$ into \mathcal{Q}
 1056 20: **end for**
 1057 21: **end while**

1058 **Output:** Reasoning path list \mathcal{P}

1060 E MORE DETAILS OF BENCHMARKS AND EXPERIMENT SETUPS

1061 E.1 IMPLEMENTATION DETAILS

1062 In our implementation details, we conduct fine-tuning on all evaluated benchmarks across 3 epochs
 1063 with a consistent batch size of 16, utilizing NVIDIA A100 GPUs (80 GB) for computational processing.
 1064 The computational resources are allocated based on model scale, with 8 GPUs employed for the
 1065 7B and 8B parameter models, while the larger 32B parameter models use 16 GPUs to accommodate
 1066 their increased computational demands during the fine-tuning process. For all answer entities \mathbf{e}_a ,
 1067 we choose 10 anchor entities randomly sampled from their 3-hop neighbors. To guarantee stable
 1068 and reproducible results, we utilize greedy decoding by setting the temperature parameter to 0 in
 1069 all experiments. The optimization process employs a peak learning rate of 3e-5, implemented in
 1070 conjunction with a learning rate warmup strategy that gradually increases the learning rate over
 1071 the initial 1% of training iterations to ensure stable convergence. We set the maximum truncated
 1072 length as 2048 for all the benchmarks. We apply deepspeed⁴ to accelerate the training process. We
 1073 implement our approach based on PyTorch 2.5.1⁵ and Huggingface’s Transformers⁶. For the training
 1074 code of KALE, we modified the training scripts based on LLaMAFactory (Zheng et al., 2024). We are
 1075 committed to providing the source code of our approach, if accepted. During testing, for all models,
 1076

1077 ⁴<https://www.deepspeed.ai/>

1078 ⁵<https://pytorch.org/>

1079 ⁶<https://github.com/huggingface/transformers>

1080 we follow MeanLearn (Xiong et al., 2024) to use the same system prompt for a fair comparison: "You
 1081 are a cautious assistant. You carefully follow instructions. You are helpful and harmless, and you
 1082 follow ethical guidelines and promote positive behavior. You are given a question together with a few
 1083 options. You should give an explanation first and then answer the question." More details for the best
 1084 performance of each task and benchmark can be seen within our code.
 1085

1086 E.2 BENCHMARK DETAILS

1088 For **more details of benchmarks**, we list
 1089 below all the benchmarks used in **logical**
 1090 **reasoning, reading comprehension,** and
 1091 **natural language understanding**, re-
 1092 spectively, by KALE as follows. **Logical**
 1093 **Reasoning Task** we employ AbsR (Xiong
 1094 et al., 2024), Commonsense (Xiong et al.,
 1095 2023), and Big Bench Hard (BBH) (Suz-
 1096 gun et al., 2023) as our evaluation benchmarks.
 1097 Specifically, **the AbsR benchmark** was constructed
 1098 using GPT-4 (gpt-4-1106-preview)⁷ as the primary data annotator, following (Chen et al.,
 1099 2024; Zheng et al., 2023). For each generic fact r_i , GPT-4 was prompted to generate samples
 1100 $S_i = \{s_1^i, \dots, s_{m_i}^i \mid 1 \leq m_i \leq 3\}$ in diverse scenarios. Each sample s_j^i consists of a question X_j^i
 1101 with multiple options, a response Y_j^i containing an answer and an explanation guided by r_i , and
 1102 forms a triple $s_j^i = \langle X_j^i, r_i, Y_j^i \rangle$. From each sample in the training set s_j^i , two types of examples
 1103 were derived: (i) K-example, which predicts Y_j^i given $\langle X_j^i, r_i \rangle$, and (ii) R-example, which predicts
 1104 Y_j^i given only X_j^i . These examples are designed to implicitly enhance abstract reasoning in LLMs
 1105 through the knowledge and reasoning pathways. In the testing set, only the R-example is provided
 1106 for each sample. The statistics of the AbsR benchmark are summarized in Table 3.

1107 The Commonsense benchmark

1108 (Xiong et al., 2023) is a multiple-
 1109 choice question-answering benchmark
 1110 designed to evaluate the
 1111 ability of LLMs to perform complex
 1112 reasoning based on commonsense
 1113 knowledge. Each question in the
 1114 benchmark is associated with five
 1115 candidate answers, only one of which
 1116 is correct. The dataset spans a diverse
 1117 range of domains, including everyday
 1118 scenarios, social interactions, and
 1119 physical phenomena, making it a
 1120 comprehensive testbed for evaluating
 1121 the commonsense reasoning capabilities of LLMs. We summarize the key statistics and characteristics
 1122 of Commonsense in Table 4. For the BBH benchmark (Suzgun et al., 2023), it consists of a curated
 1123 suite of 23 challenging tasks derived from the broader BIG-Bench benchmark (bench authors, 2023).
 1124 These tasks were specifically selected because prior language model evaluations failed to surpass
 1125 the average human-rater performance, making them particularly suitable for assessing the limits of
 1126 current models. The tasks span a wide range of domains, including logical reasoning, mathematical
 1127 problem-solving, and linguistic understanding, requiring models to demonstrate robust reasoning and
 1128 contextual comprehension. BBH focuses on the importance of structured reasoning pathways in
 1129 tackling complex tasks. We summarize the filtering process of BBH in Table 5.

1130 **Reading Comprehension Task** We employ RACE-M (middle school level reading comprehen-
 1131 sion task) and RACE-H (high school level reading comprehension task) (Lai et al., 2017) as our
 1132 benchmarks. RACE is collected from the English exams for middle and high school Chinese students
 1133 in the age range between 12 to 18. RACE consists of nearly 28,000 passages and nearly 100,000
 1134 questions generated by human experts (English instructors), and covers a variety of topics that are
 1135 carefully designed to evaluate the student's ability to understand and reason. The reasoning types of

Table 3: The statistics of AbsR the benchmark.

	Examples	Questions	Generic Facts
Train	18,020	9,010	4,613
Test	844	844	104

Table 4: The statistics of the Commonsense reasoning benchmark.

Dataset	Task Type	Size
oNLI (Bhagavatula et al., 2019)	2 Choices	1,507
CSQA (Talmor et al., 2019)	5 Choices	1,221
COPA (Gordon et al., 2012)	2 Choices	500
e-CARE (Du et al., 2022)	2 Choices	2,122
Social IQa (Sap et al., 2019)	3 Choices	1,935
PIQA (Bisk et al., 2020)	2 Choices	1,838
StrategyQA (Geva et al., 2021)	Yes or No	2,290

⁷<https://platform.openai.com/>

1134

1135

Table 5: Filtering criteria to create the BIG-Bench Hard (BBH) benchmark.

1136

# Tasks	Criteria
209	All BIG-Bench tasks
187	- After filtering out tasks with more than three subtasks
130	- After filtering out tasks with fewer than 103 examples (3 for few-shot, 100 for evaluation)
85	- After filtering out tasks without human-rater baselines
78	- After filtering out tasks that do not use multiple-choice or exact match as the evaluation metric
78	Clean multiple-choice or exact match tasks
36	- After filtering out tasks in which the best reported model beats average reported human-rater score
23	- After filtering out extremely difficult tasks that are outside the scope of this work
23	Remaining tasks = BIG-Bench Hard (BBH)

1144

1145

1146

RACE include word matching, paraphrasing, single-sentence reasoning, multi-sentence reasoning, and insufficient/ambiguous. We summarize the details in Table 6.

1147

1148

1149

Table 6: Statistics of the reading comprehension benchmarks, RACE-H and RACE-M. The values below the Training/Valid/Testing Set are the number of passages and questions in each dataset, respectively. Passage/Question/Option Len denotes the average length of the passages, questions, and options, respectively. Vocab size denotes the number of words in the vocabulary.

1150

1151

1152

1153

Dataset	Training Set	Valid Set	Testing Set	Passage Len	Question Len	Option Len	Vocab Size
RACE-M	6,409/25,421	368/1,436	362/1,436	231.1	9.0	3.9	32,811
RACE-H	18,728/62,445	1,021/3,451	1,045/3,498	353.1	10.4	5.8	125,120

1154

1155

1156

1157

Natural Language Understanding Task For the natural language understanding task, we employ the **Massive Multitask Language Understanding (MMLU) benchmark** (Hendrycks et al.) and the ARC benchmark for evaluation. MMLU is a comprehensive dataset designed to assess the breadth and depth of LLMs’ knowledge and problem-solving abilities. MMLU consists of 57 tasks spanning diverse domains, including STEM (Science, Technology, Engineering, and Mathematics), humanities (e.g., law, philosophy, history), social sciences (e.g., economics, sociology, psychology), and other specialized fields (e.g., medicine, finance). The dataset comprises 15,908 questions, divided into three splits: a dev set with 5 questions per subject for few-shot evaluation, a validation set with 1,540 questions for hyperparameter tuning, and a test set with 14,079 questions, ensuring at least 100 test examples per subject.

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

The questions in MMLU are designed to require extensive world knowledge and expert-level reasoning, making it a rigorous benchmark for evaluating language models’ generalization across multiple disciplines. We summarize the key statistics and characteristics of the MMLU dataset in Table 7. The **AI2 Reasoning Challenge (ARC)** benchmark (Clark et al., 2018) is a comprehensive dataset designed to assess the ability of language models to answer complex, multi-faceted science questions on scientific reasoning and knowledge integration capabilities. The ARC dataset consists of 7,787 multiple-choice questions derived from grade-school-level science exams, spanning grades 3 through 9. These questions are divided into two subsets: the Easy Set (ARC-E) and the Challenge Set (ARC-C), with the latter containing 2,590 questions that are particularly difficult and require advanced reasoning skills. The Easy Set (ARC-E) comprises 5,197 questions that are relatively straightforward and can often be answered using basic retrieval or word co-occurrence methods. In contrast, the Challenge Set (ARC-C) includes questions that were specifically selected because they could not be correctly answered by retrieval-based algorithms (e.g., Information Retrieval Solver) or word co-occurrence methods (e.g., Pointwise Mutual Information Solver). These questions demand deeper comprehension, reasoning, and the integration of distributed knowledge across multiple sentences or concepts. Each question in the ARC dataset is presented with four answer choices, with less than 1% of questions having either three or five options. The dataset is further partitioned into training, validation, and test splits to

Table 7: Statistics for MMLU, ARC-C, and ARC-e datasets.

Statistics	Train	Dev	Test
MMLU	99,842	1,540	14,079
ARC-C	1,119	299	1,172
ARC-e	2,251	570	2,376

1188 facilitate model development and evaluation. For instance, the Challenge Set includes 1,119 training
 1189 examples, 299 validation examples, and 1,172 test examples. We summarize the key statistics and
 1190 characteristics of the ARC dataset in Table 12.
 1191

1192 **Medical Domain Benchmarks** We use multiple-choice medical questions benchmarks in six
 1193 languages as the representative knowledge-intensive domain, including MedQA (English and Chi-
 1194 nese) (Jin et al., 2021), IgakuQA (Japanese) (Kasai et al., 2023), RuMedDaNet (Qiu et al., 2024),
 1195 FrenchMedMCQA (Labrak et al., 2022), and Head-QA (Vilares & Gómez-Rodríguez, 2019) to
 1196 provide a comprehensive understanding of our KALE. We provide the statistics of each dataset in
 1197 Table 8.
 1198

1200 Table 8: Statistical results for medical multiple-choice questions benchmarks in six languages.
 1201

Dataset	Language	Source	Train	Test
MedQA	English	United States Medical Licensing Examination	10178	1273
MedQA	Chinese	United States Medical Licensing Examination	27400	3426
IgakuQA	Japanese	Japan’s medical licensure exams (2018-2022)	1590	199
RuMedDaNet	Russian	Russian medical judgment question dataset	1052	256
FrenchMedMCQA	French	Professional exams for the French Pharmacy degree	2171	622
Head-QA	Spanish	Exams for positions in the Spanish healthcare	2657	2742

F MORE RESULTS OF KALE ON KNOWLEDGE-INTENSIVE DOMAINS

1219 In Tables 1 and 13, we present the performance of KALE across various downstream tasks. To further
 1220 demonstrate the capabilities of KALE, this section provides its evaluation on several knowledge-
 1221 intensive tasks. Following the same experimental setting of KG-SFT (Chen et al., 2025), we use
 1222 MedQA as the benchmark using LLaMA2 7B as the backbone model. As shown in Table 9, we still
 1223 observe that our proposed KALE significantly outperforms existing state-of-the-art baselines by a
 1224 large margin, which also demonstrates that our KALE can effectively work under the knowledge-
 1225 intensive scenarios.
 1226

1227 Table 9: Experiment results for existing methods on knowledge-intensive domains. The results of the
 1228 mentioned methods are taken from KG-SFT (Chen et al., 2025). We **bold** the best results for each
 1229 dataset.
 1230

Method	MedQA (English)	MedQA (Chinese)	IgakuQA (Russian)	RuMedDaNet (Spanish)	MedMCQA (French)	HeadQA (Japanese)	Average
Vanilla	28.20	28.37	51.17	32.97	12.76	11.10	27.43
COT	37.65	39.01	65.23	40.33	25.08	23.63	38.48
TOG	34.27	28.13	48.42	35.59	12.47	19.61	29.75
KGR	33.15	26.88	47.52	34.74	13.39	17.29	28.83
KAPING	36.39	27.24	54.66	34.98	11.54	15.91	30.45
SFT	33.62	29.33	66.40	35.19	12.67	21.11	32.30
AugGPT	40.29	36.54	62.14	40.70	22.99	27.13	38.30
GPT3Mix	39.35	37.97	66.01	41.50	25.08	26.13	39.34
KG-SFT	41.71	39.31	68.75	44.40	28.45	28.14	41.79
KALE (ours)	45.89	42.77	69.81	45.58	30.39	28.79	43.53

1242
1243 Table 10: Average testing time for each sample on the AbsR dataset for each method (Unit: second)
1244
1245

Backbone Models	Vanilla	CoT	TOG	StructGPT	GraphRAG	KALE (ours)
LlaMa3 8B	7.44	7.91	8.21	7.88	9.08	7.50
Mistral 7B	2.19	3.11	4.97	5.45	10.10	2.11
Qwen2.5 32B	11.20	11.90	11.8	12.8	12.30	11.09
Gemma2 9B	3.73	4.19	4.82	3.98	8.40	3.93
OLMOE 7B	8.33	8.75	10.70	14.60	11.04	8.55
Orca2 7B	3.97	4.33	4.95	7.09	8.20	3.67

1252
1253 G INFERENCE TIME COMPARISON
1254

1255 As mentioned in Section 2.2, KALE is a post-training method designed to enhance the knowledge
 1256 manipulation capabilities of LLMs. **Once the model completes training, KALE maintains identical**
 1257 **autoregressive inference characteristics to vanilla LLMs during the decoding phase, introducing**
 1258 **zero additional temporal overhead and requiring no retrieval operations from external**
 1259 **knowledge bases.** We conduct comparative measurements of average inference latency per sample
 1260 across different methodologies (vanilla LLM, CoT, TOG, StructGPT, GraphRAG, and KALE) using
 1261 an Nvidia A100 GPU (80GB). The quantitative results in Table 10 reveal that KALE achieves nearly
 1262 identical inference speed to vanilla LLMs. At the inference stage, both KALE and Vanilla models
 1263 follow a similar logic: they directly take the instruction and question as input to the LLM. **Therefore,**
 1264 **any observed speed differences between them are primarily attributable to slight variations in**
 1265 **the length of their generated outputs.** There are instances where the Vanilla model’s output length
 1266 is marginally longer than KALE’s, leading to KALE being slightly faster, and vice versa. This minor
 1267 difference in token generation directly impacts the overall inference time. In contrast, RAG-based
 1268 approaches requiring knowledge retrieval and CoT methods with extended prompt sequences incur
 1269 additional computational overhead.

1270 H MORE RESULTS ON THE HYPERPARAMETER SENSITIVITY EVALUATION OF
1271 KALE
1272

1273 Regarding the sensitivity of KALE to the hyperparameters of each component, we conduct experiments
 1274 to demonstrate its robustness. For all datasets, our default setting involved randomly sampling
 1275 10 anchor entities from their 3-hop neighbors. The consistent superior performance of KALE across
 1276 diverse datasets under these unified parameter settings highlights its general effectiveness.

1277 Moreover, to further investigate KALE’s robustness, we conduct experiments by varying these key
 1278 hyperparameters. As shown in Table 11, we can observe that KALE exhibits robustness to changes in
 1279 both the number of anchor entities and hops for neighbors. This further underscores the practical
 1280 potential and reliability of our KALE framework in real-world applications.

1281
1282 Table 11: Hyperparameter sensitivity evaluation on the number of anchor entities and the hop of
1283 neighbors.
1284

Anchors	Hops	Absr	ARC-c	ARC-e	Common	MMLU	BBH	RACE-h	RACE-m
5	2	82.94	80.03	84.18	66.34	61.79	57.98	68.27	73.33
5	4	84.50	78.50	84.13	63.64	61.33	57.82	66.60	71.73
15	2	82.94	75.09	85.00	64.95	60.03	56.13	65.75	69.64
15	4	85.31	76.19	87.40	65.44	60.68	54.45	65.41	71.03
10 (ori)	3(ori)	83.62	81.23	86.45	65.69	63.27	57.33	68.61	74.12

1296 I AVERAGE STEPS OF EXTRACTED REASONING PATHS
1297
1298

1299 By default, we generate three-hop reasoning paths from questions to answers for
1300 each question-answer pair. If a 3-hop reasoning path cannot reach the answer entity,
1301 we still provide these paths as auxiliary information to facilitate rationale generation
1302 by the LLM. We currently provide the proportion of each hop within the generated
1303 reasoning paths, where '3hop complete' indicates that the three-hop reasoning path successfully
1304 reached the answer, and '3hop partial' indicates that the reasoning path did not reach the answer entity.
1305 As shown in Table 12, we find that most of the reasoning paths can directly lead to the final answer
1306 entity. Specifically, less than 2% of the reasoning paths cannot reach the answer entity. This suggests
1307 that the extracted reasoning paths can effectively elucidate the underlying logic and correlations
1308 between the question and the answer.
1309
1310
1311

Table 12: Statistics of average step in reasoning path on the AbsR dataset.

1-hop	2-hop	3-hop complete	3-hop partial
15.76	54.03	28.27	1.94

1312
1313 J PROMPT TEMPLATES
1314
1315

1316 We list the prompt templates for different tasks to offer more visually intuitive results for each task.
1317 More detailed prompt information for the best performance of each task and dataset can be seen
1318 within the code.
1319

1320 The placeholders Known Fact, Question, Answer, Reasoning Path, Options,
1321 Generic Fact, and Rationales will be filled with the corresponding terms in each example
1322 of corresponding benchmarks.
1323

1324
1325 J.1 PROMPT TEMPLATES FOR KNOWN FACT CHECKING
13261327
1328 Prompt Templates for Known Fact Checking

1329
1330 You are a cautious assistant. You carefully follow
1331 instructions. You are helpful and harmless and you follow
1332 ethical guidelines and promote positive behavior. Question:
1333 Please determine whether the following statement is correct.
1334 You only answer 'yes' or 'no'. Known Fact.
1335
1336

1337 J.2 PROMPT TEMPLATES FOR RATIONALE GENERATION
13381339
1340 Prompt Templates for Rationale Generation

1341
1342 You are a cautious assistant. You carefully follow
1343 instructions. You are helpful and harmless and you follow
1344 ethical guidelines and promote positive behavior. You are
1345 given the question: Question. The corresponding answer is:
1346 Answer. The reasoning paths are: Reasoning Path. Please
1347 provide a detailed explanatory rationale that references
1348 these reasoning paths. If you determine that the reasoning
1349 path is irrelevant to the current QA pair, you may generate
rationales based on your own knowledge.

1350 J.3 PROMPT TEMPLATES FOR MAIN RESULTS

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

Prompt Templates for Main Results

You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior. You are given a question together with a few options, you should give an explanation first and then answer the question. Your response should follow the format like Explanation:
 Answer: Below is the Question and Options: Question
Options

J.4 PROMPT TEMPLATES FOR REASONING TRACE QUALITY EVALUATION

1366

1367

Prompt Templates for reasoning trace quality evaluation

You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior. You are given a rationale for a question. Evaluate the given rationale along five dimensions--Factual Accuracy, Logical Validity, Coherence, Completeness, and Interpretability. For each dimension, output True if the rationale is correct or meets the criterion; otherwise, output False. You should produce a five-element list in the form like [True, True, True, True, True]. Below are the Question Question and the Rationales Rationales.

K EXAMPLES OF GENERATED REASONING PATHS AND RATIONALES

1381

1382

1383

We present extracted reasoning paths alongside the generated rationales for some samples to provide a more intuitive and straightforward understanding of KALE. We select one sample each from the domains of **Science, Medicine, Common Knowledge, Computer Science, Economics, and Art**. For each sample, we provided the extracted reasoning paths and the generated rationales to support a more comprehensive understanding of KALE.

1389

Science Domain Example

Question: what is the true color of the Sun?

Answer Choices:

- A) Red
- B) Yellow
- C) White
- D) Blue

Extracted Reasoning Paths:

the Sun-emits->full spectrum light-integrates_into->white light

Generated Rationales:

The Sun emits light that contains the entire visible spectrum. When these different colors of light are combined, they create white light.

1404
1405

Medicine Domain Example

1406
1407**Question:** Which of the following is a typical symptom of cancer?

1408

Answer Choices:

1409

- A) Weight gain
- B) Persistent fever
- C) Sore muscles
- D) Acne

1410
1411
1412**Extracted Reasoning Paths:**1413
1414
1415

cancer-may cause->decreased resistance-may cause->persistent fever

1416
1417

cancer-may cause->decreased immune function-may cause->persistent fever

1418
1419
1420**Generated Rationales:**1421
1422
1423

The common symptoms that cancer may cause include decreased resistance, which can lead to fever of unknown origin, usually manifested as persistent fever.

1424

Common Knowledge Domain Example

1425
1426**Question:** What do people use to absorb extra ink from a fountain pen?1427
1428
1429**Answer Choices:**

1430

- A) shirt pocket
- B) calligrapher's hand
- C) desk drawer
- D) blotter

1431
1432
1433**Extracted Reasoning Paths:**

extra ink-absorbed by->absorbent paper-also is->blotter fountain pen-produces->excess ink- absorbed by->blotter

1434

Generated Rationales:1435
1436
1437
1438

A blotter is a piece of special absorbent paper. People use it to press against fresh ink from a fountain pen to soak up any excess, which prevents smudging and helps the ink dry faster.

1439

Computer Science Domain Example

1440
1441**Question:** Which protocol secures data for websites (padlock in the address bar)?

1444

Answer Choices:

1445

- A) HTTP
- B) FTP
- C) HTTPS
- D) SMTP

1446

Extracted Reasoning Paths:1447
1448
1449
1450websites-secure transport->TLS-implemented as->HTTPS
websites-handle->sensitive data-requires->encryption-provided by->HTTPS

1451

Generated Rationales:1452
1453
1454
1455
1456
1457

Modern websites handle sensitive user data that requires encryption to prevent interception. HTTPS (Hypertext Transfer Protocol Secure) is the solution; it is essentially the HTTP protocol layered on top of a secure encryption protocol, TLS (Transport Layer Security).

1458
1459

Economics Domain Example

1460
1461**Question:** If demand increases while supply remains constant, what happens to the equilibrium price?

1462

Answer Choices:

1463

- A) Lower equilibrium price
- B) Stays the same
- C) Higher equilibrium price
- D) Becomes zero

1464

Extracted Reasoning Paths:

1465

demand-shifts right->demand curve-causes->higher equilibrium price

1466

Generated Rationales:

1467

A rightward shift in the demand curve, with supply held constant, leads to a higher equilibrium price. This occurs because at the original price, a shortage is created, causing buyers to compete and bid the price upward to a new equilibrium.

1468

1469

Art Domain Example

1470

1471

Question: The technique of dramatic light-dark contrast in painting is called:

1472

Answer Choices:

1473

- A) Impasto
- B) Fresco
- C) Chiaroscuro
- D) Sfumato

1474

Extracted Reasoning Paths:

1475

painting-contrast of->light and dark-technique named->chiaroscuro

1476

painting-modeling of form->using dramatic light-a key feature of->chiaroscuro

1477

Generated Rationales:

1478

Chiaroscuro is the technique in painting that uses strong, dramatic contrasts between light and dark. Artists employ this method not only to create a sense of volume for modeling three-dimensional subjects, but also to produce a powerful, theatrical mood.

1479

1480

L MORE RESULTS OF DIFFERENT BACKBONE MODELS

1481

As mentioned in Section 5.2, we select LLaMA3 8B, Mistral 7B, and Qwen2.5 32B as representative models in Table 1. In this section, to further demonstrate the generalization and versatility of KALE, we also conducted experiments on several popular open-source LLMs, including Gemma2 9B, OLMOE-1B-7B, and Orca2 7B. As shown in Table 13, we can still observe that our KALE method significantly outperforms existing baselines on these backbone models as well. This further demonstrates the effectiveness of our KALE approach. We also present radar charts for each backbone model to provide a more intuitive performance comparison in Figures 9 and 10. The effectiveness of our KALE across various popular open-source models further demonstrates its strong versatility and generalization capabilities.

1482

1483

M MORE RESULTS OF APPLYING DIFFERENT KGs TO EXTRACT RATIONALES

1484

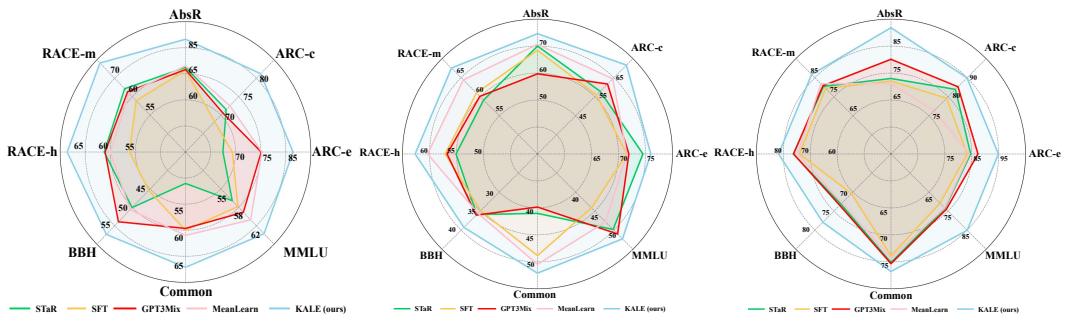
1485

In the main experiments, we used Wikidata as the default KG for extracting reasoning paths. To further evaluate the robustness of KALE under different, smaller-scale KGs, we additionally extracted

1512

1513 Table 13: More results of our KALE using Gemma2 9B, OLMOE 7B, and Orca2 7B as backbone
1514 models. We **bold** the best results and underline the suboptimal results for each backbone model.

Backbone	Category	Method	AbsR	ARC-c	ARC-e	Common	MMLU	BBH	RACE-h	RACE-m
Gemma2 9B	Prompt-based	Vanilla	52.49	79.95	88.89	57.66	53.56	48.93	73.13	78.62
		CoT	67.54	81.06	86.91	61.43	57.35	53.37	71.07	79.32
	Retrieval-based	TOG	72.04	79.27	81.65	63.06	59.31	51.53	75.99	79.53
		StructGPT	59.24	83.28	86.87	59.30	61.40	57.98	<u>79.87</u>	81.27
		GraphRAG	64.57	<u>85.07</u>	84.13	<u>65.00</u>	<u>62.53</u>	<u>60.89</u>	76.80	81.69
	SFT-based	SFT	61.37	81.06	89.06	58.97	55.26	51.38	74.93	80.78
		SDFT	75.83	82.42	90.91	60.85	57.67	55.37	74.19	81.20
		DMT	<u>77.13</u>	81.83	<u>91.12</u>	62.00	56.69	53.22	76.99	83.01
		MeanLearn	72.04	80.20	89.90	63.06	58.98	57.36	75.53	81.20
		KG-SFT	74.76	80.20	88.26	64.54	59.37	55.06	77.16	82.73
	Augmented-based	STaR	76.66	77.22	84.43	60.20	54.54	56.60	75.53	81.55
		AugGPT	59.60	82.34	81.86	53.73	55.26	58.89	78.88	83.33
		GPT3Mix	59.72	75.43	88.22	64.29	61.01	55.83	79.07	<u>83.98</u>
	KALE (ours)		81.52	88.57	94.70	68.63	65.32	65.49	83.30	87.74
OLMOE 7B	Prompt-based	Vanilla	49.88	62.03	65.99	44.06	38.73	35.73	57.18	65.74
		CoT	51.06	63.13	67.34	45.62	39.91	36.66	59.46	64.83
	Retrieval-based	TOG	54.50	64.42	69.82	47.26	40.89	38.34	60.35	67.75
		StructGPT	56.87	65.70	71.12	51.60	41.61	40.64	60.03	69.63
		GraphRAG	57.82	60.75	71.25	50.61	43.50	41.56	60.66	68.04
	SFT-based	SFT	53.31	63.91	68.52	49.14	40.43	37.58	59.18	69.63
		SDFT	59.95	65.52	70.16	50.61	42.78	38.65	59.06	67.84
		DMT	60.43	66.04	70.83	51.26	42.36	39.57	61.18	68.45
		MeanLearn	<u>71.09</u>	66.30	67.80	<u>54.55</u>	<u>44.21</u>	43.10	60.03	72.42
		KG-SFT	61.26	66.41	70.58	52.66	43.17	38.04	61.09	65.25
	Augmented-based	STaR	59.24	66.12	71.04	50.36	43.76	41.41	<u>62.84</u>	66.04
		AugGPT	61.73	66.55	71.54	52.00	43.76	<u>43.40</u>	60.98	70.19
		GPT3Mix	62.20	<u>67.06</u>	<u>72.60</u>	53.23	43.50	42.02	60.26	<u>75.48</u>
	KALE (ours)		81.99	72.78	74.60	58.25	46.96	45.88	64.35	75.84
Orca2 7B	Prompt-based	Vanilla	61.37	68.34	70.75	47.67	44.09	37.27	72.36	75.49
		CoT	67.77	70.90	77.40	50.86	43.77	39.20	72.58	75.84
	Retrieval-based	TOG	59.60	73.89	75.72	62.24	51.14	42.94	73.41	74.09
		StructGPT	65.17	67.66	77.95	53.40	45.40	46.01	76.01	78.41
		GraphRAG	67.06	69.97	78.87	54.71	50.75	47.70	<u>76.02</u>	75.77
	SFT-based	SFT	63.98	71.33	76.56	48.24	52.90	47.70	73.33	76.88
		SDFT	76.66	72.53	75.72	52.33	52.25	46.63	73.99	75.14
		DMT	75.24	73.55	77.15	51.27	52.63	48.31	73.41	77.30
		MeanLearn	77.01	<u>77.22</u>	<u>86.57</u>	66.50	53.04	35.58	73.36	<u>78.76</u>
		KG-SFT	78.91	72.44	78.87	52.42	54.00	48.93	74.01	76.90
	Augmented-based	STaR	71.68	75.00	81.57	64.53	45.85	44.33	75.33	77.30
		AugGPT	61.73	73.89	80.05	53.89	47.81	44.32	75.24	78.55
		GPT3Mix	69.79	74.58	79.67	54.46	50.75	45.25	75.53	77.51
	KALE (ours)		83.41	78.16	88.51	69.62	61.20	50.77	78.62	80.02

1559 Figure 9: KALE achieves state-of-the-art performance on a broad range of scientific optimization
1560 tasks compared with existing methods, using LlaMA3 8B, Mistral 7B, and Qwen2.5 32B as backbone
1561 models, respectively.1562 reasoning paths from alternative KGs and generated corresponding rationales. Specifically, we
1563 employed DBpedia (Auer et al., 2007) and ConceptNet (Speer et al., 2017) to extract reasoning paths,
1564 based on which we generated rationales for training. We used LLaMA3-8B as the backbone model.

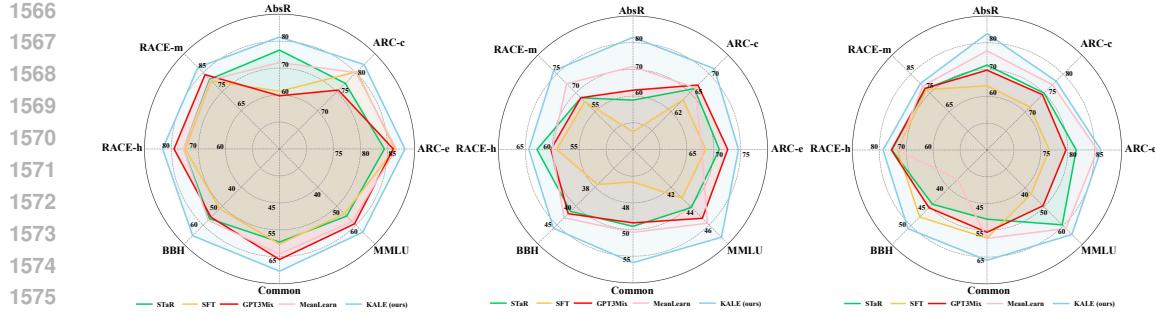


Figure 10: KALE achieves state-of-the-art performance on a broad range of scientific optimization tasks compared with existing methods, using Gemma2 9B, OLMOE 7B, and Orca2 7B as backbone models, respectively.

Table 14: Results comparison of KALE using different KGs to extract reasoning path using Llama3 8B as the backbone model.

	AbsR	ARC-c	ARC-e	Common	MMLU	BBH	RACE-h	RACE-m
KALE_{DBpedia}	80.81	77.89	83.77	60.07	61.28	58.00	65.58	68.73
KALE_{ConceptNet}	79.93	81.54	84.19	62.03	61.06	55.94	66.93	71.17
KALE_{Wikidata}	83.62	81.23	86.45	65.69	63.27	57.33	68.61	74.21

Table 15: More results of the ablation study of our KALE, using Gemma2 9B, OLMOE 7B, and Orca2 7B as the backbone models.

Backbone	Method	AbsR	ARC-c	ARC-e	Common	MMLU	BBH	RACE-h	RACE-m
Gemma2 9B	KALE _{w/o KI}	76.54 _{±4.98}	84.47 _{±4.10}	92.17 _{±12.53}	65.52 _{±13.11}	61.14 _{±4.18}	61.35 _{±4.14}	80.02 _{±3.28}	84.26 _{±3.48}
	KALE _{w/o KA}	73.22 _{±8.30}	78.41 _{±10.16}	90.32 _{±4.38}	66.99 _{±11.64}	63.42 _{±11.90}	60.12 _{±5.37}	78.70 _{±4.60}	82.66 _{±5.08}
	KALE	81.52	88.57	94.70	68.63	65.32	65.49	83.30	87.74
OLMOE 7B	KALE _{w/o KI}	78.91 _{±3.08}	69.80 _{±2.98}	73.23 _{±1.37}	56.51 _{±1.74}	40.89 _{±6.07}	43.25 _{±2.63}	62.92 _{±1.43}	70.26 _{±5.58}
	KALE _{w/o KA}	74.17 _{±7.82}	68.26 _{±4.52}	70.92 _{±3.68}	55.28 _{±2.97}	44.35 _{±2.61}	42.48 _{±3.40}	60.26 _{±4.09}	69.22 _{±6.62}
	KALE	81.99	72.78	74.60	58.25	46.96	45.88	64.35	75.84
Orca2 7B	KALE _{w/o KI}	79.68 _{±3.73}	76.37 _{±1.79}	84.18 _{±4.33}	67.81 _{±1.81}	58.59 _{±2.61}	48.31 _{±2.46}	74.96 _{±3.66}	77.99 _{±2.03}
	KALE _{w/o KA}	77.61 _{±5.80}	75.43 _{±2.73}	82.49 _{±6.02}	65.52 _{±4.10}	54.41 _{±6.79}	45.86 _{±4.91}	73.16 _{±5.46}	75.91 _{±4.11}
	KALE	83.41	78.16	88.51	69.62	61.20	50.77	78.62	80.02

As shown in Table 14, We observe that our KALE model exhibits relatively robust performance across different KGs. This implies a strong potential for KALE to generalize to various KGs in complex real-world datasets, thereby demonstrating its significant applicability in practical scenarios.

N MORE RESULTS OF ABLATION STUDY

In Section 5.3, we report the results of the ablation study using LlaMA3 8B, Mistral 7B, and Qwen2.5 32B as the backbone model. In this section, we will further present the results using Gemma2 9B, OLMOE 7B, and Orca2 7B as backbone models to obtain more insights into the individual components constituting KALE across various backbone models. As illustrated in Tables 15, we still observe that the absence of each component within KALE leads to a decline in performance across diverse domains for almost all applied backbone models in all tested benchmarks, which further demonstrates that KALE organically integrates the knowledge-induced data synthesis method and knowledge-aware fine-tuning into a unified framework as well. We still observe that the absence of knowledge-aware fine-tuning (KALE_{w/o KA}) leads to a more significant decline in accuracy, which further demonstrates the importance of effectively implicit knowledge learning.

1620 O MORE RESULTS OF KNOWN&INCORRECT PHENOMENON ON DIFFERENT 1621 BASELINES 1622

1623 As mentioned in Section 5.4, models fine-tuned using vanilla SFT still exhibit a serious known-
 1624 incorrect phenomenon. In this section, we provide more analysis of the known-incorrect phenomenon
 1625 to include additional baselines involving the training of LLMs. As shown in Table 16, we observe
 1626 that our KALE consistently achieves the best results in knowledge manipulation analysis. If the
 1627 model possesses relevant knowledge, KALE exhibits the lowest *known&incorrect* rate. Specifically,
 1628 on Qwen-2.5 32B, KALE demonstrates only a 1.07% *known&incorrect* rate. This further indicates
 1629 that KALE effectively enhances LLMs’ knowledge manipulation ability in downstream tasks.
 1630

1631 Table 16: Experiment results on the AbsR benchmark in six LLM backbones range for the knowledge
 1632 manipulation analysis. We **bold** the best results for each method.
 1633

Category	Method	LlaMA3 8B	OLMOE 7B	Qwen-2.5 32B	Gemma2 9B	Mistral 7B	Orca2 7B
Known&Correct	SFT	34.95	39.33	48.34	41.11	50.12	47.88
	SDFT	56.28	47.87	53.00	58.89	54.03	55.57
	DMT	56.64	44.91	65.17	61.85	51.78	57.35
	Meanlearn	48.43	59.12	60.19	48.93	56.52	59.12
	KG-SFT	59.83	50.36	67.06	55.33	59.36	62.90
	STaR	48.93	45.97	58.41	51.09	56.75	59.60
	AugGPT	47.27	45.97	65.76	43.48	43.01	48.93
Known&Incorrect	GPT3Mix	54.15	48.34	62.90	42.30	43.84	56.52
	KALE	82.94	79.86	87.56	77.01	71.09	75.00
	SFT	28.43	44.08	27.49	35.55	29.50	35.90
	SDFT	19.87	12.08	20.73	16.79	19.79	21.09
	DMT	17.93	15.52	10.07	15.28	21.44	17.89
	Meanlearn	22.75	11.97	10.90	23.11	14.45	17.89
	KG-SFT	18.37	10.90	11.85	19.43	13.03	16.00
Known&Incorrect	STaR	21.02	13.27	14.58	24.76	13.27	12.08
	AugGPT	17.18	15.76	13.15	16.12	22.27	12.80
	GPT3Mix	14.12	13.86	17.20	17.42	15.88	13.27
	KALE	4.15	2.37	1.07	2.13	7.7	8.06

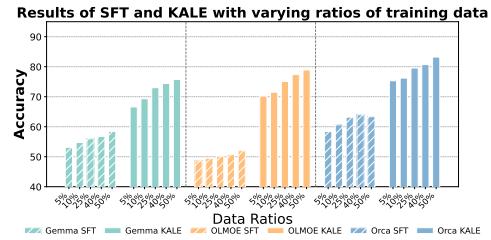
1649 P MORE RESULTS OF SFT AND KALE WITH VARYING RATIOS OF TRAINING 1650 DATA 1651

1652 In Section 5.4, we utilized LlaMA3 8B, Mistral 7B,
 1653 and Qwen-2.5 32B as backbone models to investigate
 1654 the performance of models trained with the SFT and
 1655 KALE methods on downstream tasks under varying
 1656 ratios of training rationales.
 1657

1658 In this section, we provide additional results using
 1659 other LLMs as backbone models, including Gemma2
 1660 9B, OLMOE 7B, and Orca2 7B. As shown in Figure
 1661 11, we observed that KALE demonstrated superior
 1662 performance on downstream tasks even when only
 1663 a small proportion of rationales was used for training.
 1664 Specifically, the improvement of the OLMOE
 1665 model can reach over 20% on low-data scenarios.
 1666 These findings highlight the effectiveness of KALE
 1667 in low-resource scenarios, which also implies a great
 1668 potentials of our KALE for scenarios with limited
 1669 high-quality data.
 1670

1671 Q MORE RESULTS OF RATIONALES GENERATED BY DIFFERENT LLMS 1672

1673 In our main experiments, we utilize GPT-4.0 to generate rationales for each sample. We choose
 1674 GPT-4.0 due to its exceptional performance in generating high-quality rationales, as it has demon-
 1675



1676 Figure 11: Results of different ratios of aug-
 1677 mented rationales on SFT and KALE on
 1678 Gemma2 9B, OLMOE 7B, and Orca2 7B,
 1679 respectively.

1674
 1675 Table 17: Experiment results on the AbsR benchmark in six LLM backbones range from different
 1676 data ratios. We **bold** the better results for each backbone model.

% Data	LlaMA3 8B		Mistral 7B		Qwen2.5 32B		Gemma2 9B		OLMOE-1B-7B		Orca2 7B	
	SFT	KALE	SFT	KALE	SFT	KALE	SFT	KALE	SFT	KALE	SFT	KALE
5%	63.98	74.88	63.03	66.35	67.06	82.78	53.12	66.60	48.58	70.22	58.39	75.31
10%	65.17	75.32	63.86	67.28	67.65	85.53	54.73	69.31	49.53	71.49	60.63	76.20
25%	65.76	78.31	65.40	67.79	67.89	86.01	55.98	73.00	50.19	75.07	63.17	79.55
40%	66.35	81.89	66.23	70.38	68.48	89.36	56.75	74.39	50.71	77.38	63.99	80.69
50%	66.94	82.93	66.94	74.11	69.31	90.22	58.44	75.75	52.01	78.91	63.35	83.21

1683
 1684 strated impressive results on numerous understanding and reasoning tasks. To demonstrate the
 1685 generalizability of our KALE, we also incorporate two popular open-source LLMs—i.e., DeepSeek
 1686 V3 and LLaMA3.1-70B-Instruct—for rationale generation and apply LLaMA3 8B as the backbone
 1687 model. The results in Table 18 indicate that training on rationales generated by LLaMA3 70B and
 1688 DeepSeekV3 still yields performance that significantly surpasses vanilla methods and achieves results
 1689 comparable to those derived from GPT-4.0-generated rationales. **This demonstrates that KALE is**
 1690 **relatively robust to rationales generated by different LLMs, highlighting its effectiveness for**
 1691 **practical applications.**

1693
 1694 Table 18: Results of KALE for rationales generated by different LLMs.

Method	AbsR	ARC-c	ARC-e	Common	MMLU	BBH	RACE-h	RACE-m
Vanilla	62.68	66.79	69.90	58.72	55.88	46.54	53.35	57.02
KALE_DeepSeek V3	82.70	81.48	86.70	64.70	62.25	58.13	64.69	71.03
KALE_Llama3 70B	78.91	77.56	84.05	63.72	60.03	54.45	65.52	69.78
KALE_GPT-4o (Original)	83.62	81.23	86.45	65.69	63.27	57.33	68.61	74.12

1700
 1701 R MORE RESULTS OF DIFFERENT TYPES OF GENERATED RATIONALES
 1702

1703 To further investigate whether the model genuinely benefits from meaningful knowledge or merely
 1704 from the presence of any rationale, we generate two sets of modified rationales based on the original
 1705 reasoning paths:

1706

- 1707 • KALE_{irrelated}: We instruct GPT-4o to generate factually irrelevant rationales to the reasoning paths.
- 1708
- 1709 • KALE_{contrast}: We instruct GPT-4o to generate rationales that are factually contrasting to
 1710 the reasoning paths.

1711
 1712 We denote our original method as KALE_{ori} and present the comparative results in Table 19. The
 1713 performance obtained using irrelevant or contrasting rationales is significantly lower than that of
 1714 KALE_{ori}. This demonstrates the effectiveness of our knowledge-induced data synthesis, confirming
 1715 that the model truly benefits from high-quality, factually accurate, and logically coherent rationales.

1716
 1717 Table 19: Comparison of KALE on different types of generated rationales.

	AbsR	ARC-c	ARC-e	Common	MMLU	BBH	RACE-h	RACE-m
KALE _{irrelated}	65.05	64.76	66.20	56.18	54.21	47.55	50.03	54.11
KALE _{contrast}	59.60	59.64	63.56	51.84	52.25	42.48	51.11	48.96
KALE_{ori}	83.62	81.23	86.45	65.69	63.27	57.33	68.61	74.12

1723
 1724 S REASONING TRACE QUALITY EVALUATION OF GENERATED RATIONALES
 1725

1726 We incorporate a reasoning trace quality metric to evaluate the quality of the generated rationales
 1727 to provide more insight into our KALE. We assess rationale quality across five critical dimensions:

1728
 1729 **Factual Accuracy, Logical Validity, Coherence, Completeness, and Interpretability** (Lee &
 1730 Hockenmaier, 2025). Each dimension is evaluated as a binary classification task. Following the
 1731 "LLM-as-a-judge" paradigm (Zheng et al., 2023), we utilize GPT-5 for this assessment. As shown in
 1732 Table 20, we use the AbsR dataset as an example and find that rationales generated via our KALE
 1733 exhibit strong performance across all five dimensions, which further validates the effectiveness of
 KALE.

1734
 1735 Table 20: Reasoning trace quality evaluation for rationales on the AbsR dataset via GPT-4o.
 1736

Factual Accuracy	Logical Validity	Coherence	Completeness	Interpretability
98.82	97.63	99.53	100.00	99.64

1740
 1741 T MORE RESULTS OF COMBINING SFT WITH KALE
 17421743
 1744 We also conduct an additional experiment using Llama3 8B as the backbone model. We compare two
 1745 approaches: our original KALE method (denoted as $KALE_{ori}$) and a sequential approach where the
 1746 model is first fine-tuned with SFT and then further trained with KALE (denoted as $KALE_{joint}$)
1747
 1748 As shown in Table 21, we find that while combining SFT first with KALE ($KALE_{joint}$) yields
 1749 improvements only on some datasets. This presents a promising avenue for future work to thoroughly
 1750 explore the optimal integration of KALE with existing post-training methods to achieve more
 1751 consistent and significant performance enhancements for specific downstream domains.
1752
 1753 Table 21: Comparison results of combining SFT with KALE pipeline using Llama3 8B as the
 1754 backbone model.

	AbsR	ARC-c	ARC-e	Common	MMLU	BBH	RACE-h	RACE-m
$KALE_{joint}$	80.21	82.25	84.18	61.34	60.42	53.22	67.98	72.91
$KALE_{ori}$	83.62	81.23	86.45	65.69	63.27	57.33	68.61	74.12

1758
 1759 U MORE DISCUSSIONS ON KALE
 17601761 U.1 WHAT NAMED ENTITY RECOGNITION METHOD IS EMPLOYED IN KALE, AND DOES IT
 1762 HAVE ANY TAILORED DESIGNS?1763
 1764 Given the relative maturity of named entity recognition (NER), we do not elaborate on it in the main
 1765 text. Considering the need for rapid deployment and ease of implementation, we utilized the SpaCy
 1766 open-source library for the NER component. Moreover, we employ noun phrase extraction from the
 1767 NLTK library to retain some non-named yet significant nouns in given Q&A pairs. We also reference
 1768 the entity list from Wikidata for entity recognition. We also think that other specific optimized NERs
 1769 are promising to improve KALE.
1770
 1771 U.2 WHY IS THE A* ALGORITHM EMPLOYED FOR KNOWLEDGE-INDUCED DATA SYNTHESIS
 1772 INSTEAD OF THE NAÏVE BFS ALGORITHM?1773
 1774 In knowledge-induced data synthesis, we select the A* algorithm over the naïve BFS based on
 1775 algorithmic efficiency. The A* algorithm guides the search direction by incorporating a heuristic
 1776 function $h(\mathbf{n})$, which significantly reduces the exploration scope. Particularly in large-scale KGs
 1777 such as Wikidata, employing BFS to identify reasoning paths often requires days of computation. As
 1778 mentioned in Section 4.1, the extraction of reasoning paths from the AbsR's training set **requires**
 1779 **over one week**. Therefore, we propose an efficient multi-path A* algorithm to extract reasoning
 1780 paths. It requires **less than 4 hours** to extract all reasoning paths on the same set. Consequently, we
 1781 adopt the A* algorithm as a scalable and efficient solution for reasoning path search.

1782 U.3 IS IT POSSIBLE FOR SOME REASONING PATHS TO NOT REACH THE ANSWER ENTITY?
1783

1784 During the process of extracting reasoning paths, instances may arise where the hop between the
1785 question entity and the answer entity exceeds the predefined threshold m . Nevertheless, the statistical
1786 data on the ABS dataset, as in Table 12, indicates that less than 2% of the 3-hop inference paths are
1787 unable to reach the answer entity. This suggests that employing 3-hop inference paths is a highly
1788 effective approach for extracting relevant information from the question to the answer. In such cases,
1789 we utilize the partial reasoning path that can be extracted—the path from the question entity to its
1790 neighboring entities within three hops—as enriched information for input. The ablation study results
1791 in Tables 2 and 15 further demonstrate the simplicity and effectiveness these types of reasoning paths.
1792

1793 U.4 IF THE KG CONTAINS ERRORS THAT LEAD TO INCORRECT REASONING PATHS, WOULD
1794 GPT-4O GENERATE WRONG RATIONALES?
1795

1796 (i) Owing to Wikidata’s factually accurate, high-quality, community-driven, and dynamically growing
1797 character, extracted reasoning paths contain **negligible** factual or logical errors. This motivates
1798 us to generate high-quality rationales via large-scale Wikidata. (ii) To address potential errors in
1799 the rationale generation, we leverage GPT’s in-context learning (ICL) by incorporating specific
1800 instructions in the prompt. This allows for a filtering and correction mechanism to be implicitly
1801 applied during reasoning. As shown in Appendix J.2, we instruct LLM to generate rationales by
1802 referring to the provided reasoning path: *however, if the given reasoning path is irrelevant to the QA,*
1803 *generate a rationale based on your own knowledge.* This instruction helps that incorrect information
1804 is reduced. We empirically observe that utilizing the in-context learning ability is simple yet effective
1805 to reduce the error propagation with great domain robustness. A promising future work is to enable
1806 double-check mechanism with multiple state-of-the-art LLMs.
1807

1808 U.5 WHAT IS THE REASON FOR CHOOSING THE KL DIVERGENCE AS THE LOSS FUNCTION?
1809

1810 The selection of KL divergence is due to its ability to quantify the difference between two probability
1811 distributions. It encourages the model to compress the information contained in the rationale into its
1812 parameters θ . By forcing the two distributions to align, the model must “internalize” the information
1813 from the rationale \mathbf{x}^{rats} into its parameters θ , such that it can perform well even when \mathbf{x}^{rats} is
1814 unavailable (e.g., at test time). This minimization process implicitly guides the model to capture
1815 the underlying structure of the data, thereby facilitating the learning of meaningful representations
1816 without explicit supervision. Furthermore, KL divergence is essentially composed of entropy and
1817 cross-entropy. The knowledge-aware learning module in KALE can be viewed as a distillation
1818 process, designed to enhance the knowledge manipulation capabilities of LLMs during the testing
1819 phase, where rationale input is unavailable. **The addition of KL divergence is intended to enable**
1820 **the model to dynamically retrieve the task-relevant knowledge it has already mastered, which**
1821 **improves its knowledge manipulation capability.** We also believe that a theoretical analysis of
1822 KALE, especially the KL divergence part, could lead to a deeper understanding of our KALE. We
1823 agree that this is a promising direction for future work.
1824

1825 V LLM USAGE
1826

1827 We used a large language model (LLM)—based writing assistant for grammar and wording improve-
1828 ments on draft text. The LLM did not generate research ideas, claims, proofs, algorithms, code,
1829 figures, or analyses, and it did not have access to any non-public data. During rationale generation, we
1830 use LLMs to transfer reasoning path into rationales. All edits suggested by the LLM were manually
1831 reviewed and either accepted or rewritten by the authors, who take full responsibility for the final
1832 content. The LLM is not an author of this paper.
1833

1834
1835