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ABSTRACT

Despite the impressive performance of large language models (LLMs) pretrained
on vast knowledge corpora, advancing their knowledge manipulation perfor-
mance—the ability to effectively recall, reason, and transfer relevant knowl-
edge—still remains challenging. Existing methods mainly leverage supervised
fine-tuning (SFT) to enable LLMs to recall task-relevant knowledge by continuing
the training process on labeled datasets. However, we observe that LLMs fine-tuned
via SFT still occasionally exhibit the known&incorrect phenomenon, where LLMs
explicitly possess the relevant knowledge of a given question but cannot effectively
manipulate it to answer correctly. To address this challenge, we propose KALE—a
novel post-training framework that leverages knowledge graphs (KGs) to generate
high-quality relevant rationales and enhance the knowledge manipulation ability
via Knowledge-Aware LEarning. Specifically, KALE first proposes a Knowledge-
Induced (KI) data synthesis method to generate high-quality data rationales, i.e., a
textual reasoning process from each question to the correct answer through external
KGs. Then KALE proposes a Knowledge-Aware (KA) fine-tuning paradigm to
enhance the knowledge manipulation ability of LLMs. Extensive experiments on
eight popular benchmarks across six different LLM backbones demonstrate the
effectiveness of KALE, leading to an accuracy improvement of up to 11.72% and
an average of 4.18%.

1 INTRODUCTION

Standing out as versatile tools with vast knowledge repositories, large language models (LLMs),
such as GPT-4.5 (OpenAI, 2024), Deepseek R1 (Team, 2024b), LlaMA-3 (Touvron et al., 2023),
and Qwen2.5 (Team, 2024d), demonstrate remarkable power and versatility across a wide range of
domains (Zhao et al., 2021; El-Kassas et al., 2021). However, the most capable LLMs also produce
errors, even when the knowledge is explicitly encoded within LLMs, indicating struggles for existing
LLMs to flexibly manipulate task-relevant knowledge during inference (Allen-Zhu & Li, 2024; 2025).

Recently, extensive research efforts have been devoted to boosting LLM knowledge manipulation
performance for downstream tasks. One promising post-training paradigm, Supervised Fine-Tuning
(SFT), has emerged as a new trend, demonstrating superior performance in enhancing the ability of
LLMs on certain downstream tasks (Wei et al., 2022a). The key idea of SFT is to adapt pre-trained
LLMs to specific tasks by conducting the post-training process on labeled datasets, which refines their
parameters to focus on task-relevant features (Zhang et al., 2023). Several endeavors also explored
variations of SFT methods. Dual-stage Mixed fine-Tuning (DMT) (Dong et al., 2023) expands SFT
datasets to achieve a balance between the general and specialized ability. KG-SFT (Chen et al., 2025)
utilizes knowledge graphs (KGs) to filter SFT data to enhance LLMs’ ability on knowledge-intensive
tasks. Extensive studies further demonstrate both the effectiveness (Dong et al., 2023) and versatility
(Xie et al., 2024) of SFT methods.

Albeit with multiple benefits of SFT methods, LLMs fine-tuned via SFT still exhibit the
known&incorrect phenomenon—LLMs possess relevant knowledge but cannot manipulate it
to correctly answer questions. This phenomenon mainly stems from two limitations in the SFT
process: (i) the lack of high-quality textual reasoning data from question to answer. For certain
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Known Fact Checking 

Question: Please determine whether the following statement is correct. You only answer 'yes' or 'no'. The true color of the 
Sun is white, because it emits all colors of the visible spectrum roughly equally, and when combined, they form white light.

Model via SFT Answer: Yes. √ Model via KALE Answer: Yes.√

Q: What is the true color of the Sun?
A) Red. B) Yellow. C) White. D) Blue.

A: The sun appears yellow to the human eye due to the 
scattering of light. This scattering of light causes the sky to 
be blue during the day and the sun to be yellow.

Answer: B) Yellow. 

Vanilla SFT KALE

Q: What is the true color of the Sun?
A) Red. B) Yellow. C) White. D) Blue.

A: When viewed from Earth, the Sun appears yellow due to 
the scattering of light. However, the Sun emits all colors of 
visible light equally. When combined, they create white light.

Answer: C) White.× √

Figure 1: While both post-trained LLMs know relevant knowledge, the LLM via SFT still cannot
recall the knowledge to answer. In contrast, KALE effectively recalls the knowledge and answers
correctly. We use Mistral 7B (Jiang et al., 2023a) as an example, and more cases are in Appendix B.

domains, off-the-shelf reasoning data is scarce, and creating such data needs substantial human effort,
which poses a significant barrier to broader applications of LLMs in downstream domains (Li et al.,
2024) and (ii) the insufficient ability to recall task-relevant knowledge. SFT methods fine-tune
LLMs using labeled datasets, where LLMs learn specific patterns through explicit input-output pairs.
However, LLMs often overly rely on explicit input-output mappings, which restrict their ability to
dynamically retrieve task-relevant knowledge (Luo et al., 2024). As shown in the left part of Figure 1,
despite being explicitly known that the true color of the Sun is white, LLM after SFT still cannot
recall this knowledge to provide a correct answer. As a result, even after a sufficient SFT process,
LLMs still struggle to effectively manipulate task-relevant knowledge to answer correctly for
downstream tasks (Allen-Zhu & Li, 2025).

To address these challenges, we propose a novel post-training framework, namely Knowledge-
Aware LEarning (KALE) to boost LLM’s knowledge manipulation abilities. KALE consists of
two components: (i) knowledge-induced data synthesis (KI) to generate high-quality rationale data
and (ii) knowledge-aware fine-tuning (KA) to enable LLMs to manipulate task-relevant knowledge.
Specifically, for a given Q&A pair, KALE first identifies named entities within the pair and extracts
reasoning paths from question to answer via the proposed multi-path A* algorithm through an external
KG. Then, KALE combines the pair and reasoning paths as input for the LLM to generate rationales
underlying the pair. Finally, rather than learning specific patterns through explicit supervised
input-output pairs, KALE minimizes the KL divergence (Kullback & Leibler, 1951) between LLM
distributions with and without rationales. By doing so, KALE does not require the outputs without
rationales to exactly match those produced with rationales. Instead, KALE encourages the two
distributions to be more aligned, which allows LLMs to more flexibly recall task-relevant knowledge
when rationales are absent during inference.

We summarize our major contributions as follows:

(i) An efficient high-quality SFT data generation method. We propose an autonomous
high-quality SFT data synthesis method to generate text reasoning rationales for each Q&A
pair to improve the comprehensive ability of LLMs in understanding the underlying logic
behind the Q&A questions.

(ii) A flexible knowledge manipulation fine-tuning paradigm. We propose a knowledge-
aware fine-tuning paradigm to encourage LLMs to recall relevant knowledge when answering
questions by aligning distributions of LLMs with and without input rationales.

(iii) Significant Improvement and Versatility. We conduct extensive experiments on eight
different popular downstream benchmarks on six different LLM backbones to demonstrate
the effectiveness of our KALE with a maximum accuracy improvement of 11.72%.
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2 RELATED WORK

2.1 TEXT DATA AUGMENTATION METHODS

With the advent of LLMs, data augmentation has undergone a significant transformation (Ding
et al., 2024). LLMs have shown remarkable abilities in generating high-quality text, which provides
significant advantages in data augmentation tasks (Deng et al., 2023; Fang et al., 2023). AugGPT (Dai
et al., 2023) leverages the generative power of LLMs to rephrase questions in SFT data. GPT3Mix
(Yoo et al., 2021) extends the data augmentation abilities of LLMs by using few-shot prompting
to generate questions semantically similar to the SFT data. StaR (Zelikman et al., 2024) utilizes a
self-taught mechanism to let LLMs provide internal thoughts. While existing data augmentation
methods primarily focus on expanding the data quantity but lack the multi-hop logic rationale, our
KALE can effectively generate textual rationales underlying the Q&A pair.

2.2 KNOWLEDGE GRAPH RETRIEVAL GENERATION METHODS

Knowledge graphs (KGs) offer a complementary way to the unstructured, text-based knowledge
encoded in LLMs (Pan et al., 2024). Recent research has explored the integration of KGs to enhance
the Q&A and reasoning abilities of LLMs. Think-on-Graph (ToG) (Sun et al.) employs an iterative
beam search over a KG to guide the reasoning process of LLMs. KGR (Guan et al., 2024) retrofits
LLM responses with factual statements from KGs. KAPING (Baek et al., 2023) enhances zero-shot
Q&A by appending retrieved facts to LLMs. StructGPT (Jiang et al., 2023b) employs an iterative
reading-then-reasoning framework to reason over structured data. GraphRAG (Edge et al., 2024)
integrates KG traversal to retrieve structured relationships from graph-indexed data. Existing retrieval-
based methods require additional retrieval from a knowledge base during inference, resulting in extra
time overhead. Our KALE, once trained, does not necessitate any additional time consumption
during inference (We provide an average testing time per sample of KALE in Appendix G).

2.3 SFT VARIANTS METHODS

With the rise of LLMs, there is a growing emphasis on using SFT to align LLMs with human
intentions to downstream tasks (Ouyang et al., 2022). Many innovative fine-tuning strategies have
been proposed to enhance the performance and adaptability of LLMs. Dual-stage Mixed fine-Tuning
(DMT) (Dong et al., 2023) proposes to improve the general ability of LLMs, making them more adept
at handling diverse tasks and domains. Self-Distillation Fine-Tuning (SDFT) (Yang et al., 2024) uses
a distilled dataset generated by model itself during the fine-tuning to reduce the catastrophic forgetting
(Kirkpatrick et al., 2017). KG-SFT (Chen et al., 2025) utilizes KGs to filter SFT data to enhance
LLMs’ ability on knowledge-intensive tasks. Existing SFT-based methods learn specific patterns
through explicit input-output pairs, which restricts LLM’s ability to dynamically retrieve task-relevant
knowledge. Our KALE enables more flexible manipulation of task-relevant knowledge.

3 PRELIMINARIES

3.1 NOTATIONS

We denote xins as instructions for downstream tasks, xque as queries, xans as answers and xrats as
rationales. We denote two types of input prompts for the LLMs as follows: one includes the
rationale, represented as (xins, xque, xrats), and the other excludes the rationale, as (xins, xque). Let
Eq = [eq1 , eq2 , eq3 , . . .] denote the question entity list of xque, Ea = [ea1

, ea2
, ea3

, . . .] denote the
answer entity list of xans, and P = [p1,p2,p3, . . .] denote the reasoning path list connecting the
question entity list to the answer entity list, where eqi and eai denote the i-th entity of xque and xans

and pi denotes the i-th path of the reasoning path list P . Let g(e), h(e), and f(e) be the current
accumulated cost, heuristic estimated cost, and total estimated cost for a given entity e, respectively.

3.2 A* ALGORITHM

A* algorithm (Hart et al., 1968) is an extension of the Bellman-Ford algorithm (Bellman, 1958; Ford,
1956; Moore, 1959). Unlike the Bellman-Ford algorithm that propagates through nodes uniformly,
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Knowledge-Induced Data Augmentation (KI) Knowledge-Aware Fine-tuning(KA)

Explanation:

Rationales

Listen…

With Rationales

Training

𝑞ఏ

𝑲𝑳(𝒑𝜽||𝒒𝜽)

1

2 3

4

L
L

M

A Given Question Corresponding Answer Generated Rationales

Question Named Entities

…

One of the Extracted Reasoning Paths

𝑝ఏ 𝑞ఏ, Output Distributions

Without Rationales 𝑝ఏ

External KG (Wikidata)

Input without Rationales Input with Rationales

Answer Named Entities

Figure 2: An overview of KALE. For a given Q&A pair in the training set, the workflow of KALE is
as follows. (1) Perform named entity recognition to extract potential question and answer entities.
(2) Search the reasoning path via the proposed multi-path A* algorithm. (3) Combine the reasoning
path and Q&A pair and generate the corresponding rationale via GPT-4o. (4) Align LLM’s output
distributions for cases with and without the rationale via knowledge-aware fine-tuning.

the A* algorithm prioritizes propagation with a proper heuristic function to reduce the search space:

s(e) = d(estart, e)⊕ h(e, eend), (1)

where ⊕ is a aggregation function, d(estart, e) is the length of current shortest path from start entity
estart to e, and h(e, eend) is a heuristic function estimating the cost from e to target entity eend.

4 METHOD

4.1 KNOWLEDGE-INDUCED DATA SYNTHESIS

Answering a question may require the integration of multiple knowledge fragments. For instance,
for the question "What is the true color of the Sun?" and answer: "White", it involves multiple
knowledge such as: (i) "The Sun emits all colors of visible spectrum," (ii) "The combination of all
visible light produces white light," and (iii) "The intensity distribution of sunlight roughly exhibits
balance when integrated." The fragmented nature of such knowledge in pre-training data creates
challenges for LLMs to manipulate relevant knowledge during inference. In contrast, KGs provide a
way to represent fragmented knowledge into structured and logical correlations. Specifically, it can
be formalized into a reasoning path: "the Sun–emits–>full spectrum light–integrates_into–>white
light," which corresponds to a series of interconnected triples within a KG, including [the Sun,
emits, full-spectrum light] and [full-spectrum light, integrates into, white light]. Building upon the
observation, we propose knowledge-induced data synthesis (KI) to generate rationales.1

Specifically, KALE will first perform named entity recognition separately on the question and the
answer, resulting in the question entity list Eq = {the Sun} and the answer entity list Ea = {white}.
Then, KALE leverages these entities to search for reasoning paths in a KG. Conducting a full breadth-
first search (BFS) from the question entities to the answer entities in a large KG (e.g., Wikidata2) is
time-consuming. For instance, the extraction of reasoning paths from the AbsR’s (Xiong et al., 2024)

1We only generate rationales for the training set. We use this query only to explain our workflows. In testing
(as in Figure 1), we do not perform these steps. KALE does not introduce additional overhead in testing.

2In this paper, we use Wikidata by default as the external KG to extract all reasoning paths. To evaluate the
robustness of KALE to different KGs, we report results using alternative KGs in Appendix M.
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training set requires over one week. Therefore, we propose an efficient multi-path A* algorithm to
extract reasoning paths. It requires less than 4 hours to extract all reasoning paths on the same set.
Specifically, we adopt a small set of anchor entities. For a given entity pair eq and ea in Eq and Ea,
we select k anchor entities by randomly sampling from the m-hop neighbors of the answer entity
ea, thereby extracting a local subgraph around the answer entity. For each anchor, we conduct a
limited 3-step BFS, i.e., a constrained BFS that explores up to three hops from the anchor entity to
pre-compute partial distances, which serve as a lower bound for the remaining path cost in A*.

Formally, let g(e) be the accumulated cost (the number of edges traversed) from start entity to current
entity e and h(e) be the heuristic function estimating the cost from e to the answer entity ea. We
define the priority function as f(e) = g(e) + h(e), where f(e) is the priority value in A*. To ensure
h(e) does not overestimate the actual distance (preserving the admissibility condition of A*), we use
the maximum of anchor-based lower bounds derived from the BFS. Specifically, let {α1, α2, . . . , αk}
be k anchor entities, we pre-compute dist(αi, e) up to depth d; if e is not reachable within d steps,
we set dist(αi, e) =∞. Likewise, we compute dist(αi, ea) for each anchor. Then we let

h(e) = max
1≤i≤k

[
dist(αi, ea) − dist(αi, e)

]+
, (2)

where [x]+ = max(x, 0) ensures non-negative values. Intuitively, if e is already close to the answer
entity compared with αi, this difference is a nontrivial lower bound; otherwise, it contributes zero and
does not lead to overestimation (We prove the admissibility of our multi-path A* via the proposed
heuristic function in Appendix C). This heuristic design is simple yet efficient for reasoning path
retrieval in a large KG. We can also apply KG embedding-based methods (Rossi et al., 2021; Zhu
et al., 2021; 2024) to incorporate semantic information from KG, and we leave it as future work.

To retrieve multiple reasoning paths, we extend the standard A* algorithm by incorporating a
priority queue Q, which stores multiple paths leading to the same entity. Each entry in Q is a tuple
(f(e), g(e), e, pie), where pie is the i-th path from the start entity eq to the current entity e. Algorithm 1
in Appendix D provides the pseudo codes of the overall procedure. After obtaining P , we combine
the Q&A pair and P as input for GPT-4o, prompting it to generate the rationale xrats underlying the
Q&A pair (Appendix J.2 provides prompt details). For example, for the extracted reasoning path,
"the Sun–emits–>full spectrum light–integrates_into–>white light," the rationales are "The Sun emits
light that contains the entire visible spectrum. When these different colors of light are combined, they
create white light." These rationales offer high-quality textual reasoning data from question
to answer, which enables better understanding of the underlying logic and correlations. We
include more examples of reasoning paths and rationales in Appendix K to provide a comprehensive
understanding of KALE.

4.2 KNOWLEDGE-AWARE FINE-TUNING PARADIGM

When confronted with a given question, a typical human response process of answering often involves
retrieving the related experiences and learned knowledge, reasoning based on this knowledge, and
then providing a response (Buckner & Wheeler, 2001; Yadav et al., 2022). Motivated by this,
we propose a simple yet effective learning paradigm called knowledge-aware fine-tuning, which
encourages LLMs to recall relevant knowledge and reason over it before generating a response.

Formally, consider an LLM denoted byM with parameters θ and input xinp = (xins, xque, xans), where
xins denote instructions, xque and xans denotes the Q&A pair. It constructs a conditional probability
for the output xout. We consider two probabilities, which differ in whether rationales are as input:

M(xinp, xout, θ) = −
∑
t

log pθ(xout
t | xinp, xout

<t), (3a)

M(xinp, xrats, xout, θ) = −
∑
t

log qθ(xout
t | xinp, xrats, xout

<t). (3b)

equation 3a represents the classical process of LLM generation, where a given instruction and query
are provided as input, and the LLM produces an output. We aim for the LLM to manipulate learned
knowledge and reason over it. As in equation 3b, we also use the generated rationales xrats as input to
the LLM to enable better recalling knowledge fragments relevant to the question.
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Therefore, we hope that the LLM can automatically complete rationales based on the instruction and
query before generating a response, and we propose knowledge-aware fine-tuning to minimize the
divergence between the two distributions in equation 3a and equation 3b as follows:

L(θ) = E(xinp,xout,xrats)

[
KL

(
pθ(xout

t | xinp, xout
<t)∥qθ(xout

t | xinp, xrats, xout
<t)

)]
, (4)

where KL(·∥·) denotes the KL divergence. We initialize two LLMs: pθ is updated during training,
and qθ is fixed and used solely as an alignment target. The latter represents the distribution with the
input rationales that our KA aims to align. By minimizing the KL divergence in equation 4, KALE
does not require outputs without rationales to exactly match those produced with rationales. Instead,
it encourages the two distributions to align, which enables the LLM to flexibly retrieve task-relevant
knowledge when rationales are absent during inference.

5 EXPERIMENTS

We aim to evaluate the effectiveness of KALE to enhance LLM’s knowledge manipulation ability
and the versatility of KALE. With this desiderata, we divide the experiments into seven parts:

• To demonstrate the superiority and generalizability, we conduct comparative experiments on
eight different benchmarks across six different LLM backbones.

• To investigate the contribution of each component, we conduct the ablation study.
• To provide more insight, we conduct the case study on known&incorrect phenomenon

and ratios of augmented rationales.
• To demonstrate the versatility, we evaluate our KALE on knowledge-intensive domains of

six different languages in Appendix F.
• To analyze KALE’s real-world deployability, we evaluate its the inference time per sample

and sensitivity to hyperparameters in Appendix G and H.
• To provide a comprehensive understanding, we conduct an analysis of generated rationales:

(i) We employ different external KGs to generate reasoning paths in Appendix M.
(ii) We use rationales by other LLMs to demonstrate KALE’s robustness in Appendix Q.

(iii) We prompt LLMs to generate irrelated and contrast rationales in Appendix R.
(iv) We evaluate the quality of the generated rationales in Appendix S.

• To further improve KALE’s performance, we explore combining KALE with SFT in a
sequential manner in Appendix T.

5.1 EXPERIMENT SETUPS

Implementations and Benchmarks. We apply six open-source LLMs scaling from 7B to 32B,
including LlaMA3 8B (Team, 2024c), Mistral 7B (Jiang et al., 2023a), Qwen2.5-32B (Team, 2024d),
Gemma2 9B (Team et al., 2024), OLMOE 7B (Muennighoff et al., 2024), and Orca2 7B (Mitra et al.,
2023). Experiments where the model size is under 32B are conducted on 8 NVIDIA SXM A100
80G GPUs, while for models with 32B size are on 16 NVIDIA SXM A100 80G GPUs. For each
benchmark, the reported performance stems from a model fine-tuned exclusively on the specific
dataset’s training data. We apply tasks for logical reasoning, including AbsR (Xiong et al., 2024),
Commonsense (denote by Common) (Xiong et al., 2023), and Big Bench Hard (BBH) (Suzgun et al.,
2023), reading comprehension including RACE-H and RACE-M (Lai et al., 2017), and natural
language understanding including MMLU (Hendrycks et al.), ARC-c, and ARC-e (Clark et al.,
2018). We use accuracy as the evaluation metric. More details are in Appendix E.

Baseline Methods. We compare thirteen baselines: (i) Vanilla: standalone LLMs without modifi-
cations. (ii) CoT (Wei et al., 2022b): prompting LLMs to generate internal thoughts. (iii) Think-on-
Graph (TOG) (Sun et al.): applying iterative beam search to enhance LLMs’ reasoning ability. (iv)
StructGPT (Jiang et al., 2023b): proposing iterative reading-then-reasoning based on structured data.
(v) GraphRAG (Edge et al., 2024): integrating KG traversal to retrieve structured relationships. (vi)
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Table 1: Results of our KALE using LlaMA3 8B, Mistral 7B, and Qwen2.5 32B as backbone models
(for more results of different backbone models, please see Appendix L). We bold the best results and
underline the suboptimal results for each backbone model.

Backbone Category Method AbsR ARC-c ARC-e Common MMLU BBH RACE-h RACE-m

LlaMA3 8B

Prompt-based Vanilla 62.68 66.79 69.90 58.72 55.88 46.54 53.35 57.02
CoT 63.15 71.67 69.34 54.67 56.83 48.55 54.31 57.02

Retrieval-based
TOG 65.98 69.93 72.23 61.87 56.97 48.81 58.60 59.80
StructGPT 65.35 70.50 73.34 62.32 58.87 49.58 60.03 60.86
GraphRAG 75.83 74.83 75.76 61.51 57.28 55.83 60.89 69.57

SFT-based

SFT 67.77 68.23 71.74 59.79 58.00 45.39 56.17 58.91
SDFT 76.15 74.91 71.44 62.24 58.78 52.37 56.88 61.03
DMT 74.57 70.82 72.84 61.43 59.11 50.14 61.46 60.64
MeanLearn 71.09 72.53 74.53 63.39 58.79 50.61 60.03 61.84
KG-SFT 78.20 73.12 79.55 63.09 58.79 53.68 64.98 62.47

Augmented-based

STaR 69.95 71.50 70.99 58.20 53.41 50.07 61.21 64.32
AugGPT 64.45 72.22 75.29 55.12 56.82 51.90 59.21 60.16
GPT3Mix 68.27 70.57 74.24 61.33 57.79 53.92 61.03 62.67
KALE (ours) 83.62 81.23 86.45 65.69 63.27 57.33 68.61 74.12

Mistral 7B

Prompt-based Vanilla 62.35 52.05 68.31 39.15 37.43 28.68 50.14 55.92
CoT 67.18 58.45 66.08 36.94 43.57 31.60 55.15 58.98

Retrieval-based
TOG 64.60 57.25 70.41 50.78 41.35 31.29 52.20 56.96
StructGPT 65.17 57.94 69.28 46.11 44.94 32.98 55.69 60.10
GraphRAG 68.26 57.76 71.93 48.24 45.53 35.12 57.15 62.60

SFT-based

SFT 68.48 55.89 71.55 44.14 48.86 34.90 57.09 61.00
SDFT 73.82 61.01 73.61 51.84 52.19 34.97 64.32 65.53
DMT 73.22 57.00 72.85 49.71 50.49 35.89 61.64 64.42
MeanLearn 70.97 64.42 71.55 47.83 50.95 35.58 61.06 64.42
KG-SFT 72.39 65.96 72.94 54.55 52.10 34.20 61.15 63.37

Augmented-based

STaR 70.02 57.85 74.53 49.80 41.02 35.89 55.09 59.12
AugGPT 65.28 59.73 72.77 48.24 40.24 33.21 57.75 59.96
GPT3Mix 59.72 61.69 71.93 53.97 39.84 36.04 56.75 60.10
KALE (ours) 76.90 71.59 77.95 59.05 54.21 39.26 67.98 70.06

Qwen2.5 32B

Prompt-based Vanilla 66.35 75.09 80.10 65.52 80.47 69.01 71.47 76.95
CoT 68.72 76.79 82.07 66.34 81.65 69.79 73.58 77.64

Retrieval-based
TOG 74.64 80.55 84.13 68.63 83.27 72.09 74.12 78.34
StructGPT 74.17 82.43 83.29 71.58 83.41 71.93 75.56 77.92
GraphRAG 75.24 80.20 84.18 69.00 84.85 73.20 75.84 77.37

SFT-based

SFT 72.03 79.61 83.33 67.89 82.82 70.40 73.99 79.39
SDFT 73.34 80.80 84.30 71.25 84.13 71.01 74.59 80.71
DMT 75.24 81.48 86.07 70.43 85.17 73.62 75.72 80.01
MeanLearn 71.09 76.37 84.18 69.12 83.61 72.85 74.64 81.82
KG-SFT 78.91 78.41 84.13 69.62 84.26 72.39 74.80 80.43

Augmented-based

STaR 72.99 83.87 84.60 69.21 85.24 73.16 76.30 80.43
AugGPT 78.91 84.47 86.27 68.96 85.04 71.93 77.16 81.89
GPT3Mix 80.10 85.23 87.33 69.53 85.69 73.47 76.21 80.77
KALE (ours) 91.82 89.93 94.90 75.02 88.59 77.91 81.76 86.70

SFT (Wei et al., 2022a): standalone SFT process. (vii) Self-Distillation Fine-Tuning (SDFT) (Yang
et al., 2024): guiding fine-tuning with a dataset generated by model itself. (viii) Dual-stage Mixed
Fine-tuning (DMT) (Dong et al., 2023): achieving a balance between general and specialized ability.
(ix) MeanLearn (Xiong et al., 2024): teaching LLMs to leverage generic facts. (x) KG-SFT (Chen
et al., 2025): utilizing KGs to filter SFT data to enhance LLMs’ ability. (xi) Self-Taught Reasoner
(STaR) (Zelikman et al., 2024): generating a rationale dataset from a few initials iteratively. (xii)
AugGPT (Dai et al., 2023): using an LLM to rephrase questions in original data. (xiii) GPT3Mix
(Yoo et al., 2021): prompting an LLM to generate similar questions in the SFT data.

5.2 MAIN RESULTS

We conduct experiments using three representative LLMs with varied scales: LlaMA3 8B, Mistral
7B, and Qwen2.5 32B in Table 1. We also provide more results for other three different open-source
LLMs in Table 13, Figures 9, and 10 in Appendix L to demonstrate the versatility of KALE across
different LLMs. From Table 1, we observe that KALE consistently and significantly outperforms
other state-of-the-art baselines across three LLMs by a substantial margin. Notably, for the logical
reasoning task using the AbsR benchmark, KALE achieves a maximum accuracy improvement
of 11.72% when utilizing Qwen2.5 32B as the backbone model. We also observe that traditional
SFT-based and or data augmentation methods yield marginal improvements on downstream tasks,
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Table 2: Results of the ablation study of KALE, using LlaMA3 8B, Mistral 7B, and Qwen2.5 32B as
backbones (We provide more results for the other three backbones in Appendix N).

Backbone Method AbsR ARC-c ARC-e Common MMLU BBH RACE-h RACE-m

LlaMA3 8B
KALEw/o KI 78.91↓4.71 76.79↓4.44 81.65↓4.80 65.52↓0.17 60.09↓3.18 55.21↓2.12 64.15↓4.46 69.50↓4.62
KALEw/o KA 73.93↓9.69 75.26↓5.97 78.70↓7.75 63.06↓2.63 60.74↓2.53 53.68↓3.65 60.03↓8.58 64.76↓9.36
KALE 83.62 81.23 86.45 65.69 63.27 57.33 68.61 74.12

Mistral 7B
KALEw/o KI 71.09↓5.81 66.30↓5.29 65.45↓12.50 57.58↓1.47 52.58↓1.63 36.81↓2.45 64.95↓3.03 66.85↓3.21
KALEw/o KA 65.64↓11.26 63.91↓7.68 63.05↓14.90 56.84↓2.21 49.05↓5.16 35.74↓3.52 62.78↓5.20 64.00↓6.06
KALE 76.90 71.59 77.95 59.05 54.21 39.26 67.98 70.06

Qwen2.5 32B
KALEw/o KI 87.32↓4.50 87.03↓2.90 89.98↓4.92 71.01↓4.01 86.87↓1.72 75.15↓2.76 78.04↓3.72 83.57↓3.13
KALEw/o KA 82.94↓8.88 85.32↓4.61 88.38↓6.52 70.43↓4.59 84.91↓3.68 76.69↓1.22 77.82↓3.94 82.94↓3.76
KALE 91.82 89.93 94.90 75.02 88.59 77.91 81.76 86.70

particularly when applied to larger and more powerful LLMs (e.g., only a 1.39% improvement on the
BBH benchmark when using Qwen2.5 32B). In contrast, KALE delivers a consistent and significant
improvement on larger LLMs. This indicates that as LLMs scale up and become more capable,
SFT-based methods that focus on learning input-output patterns or data augmentation methods that
merely increase the quantity of data are suboptimal to further enhance LLMs. In contrast, KALE
proposes a way to improve LLMs’ ability to manipulate knowledge, which achieves better
results on larger LLMs significantly.

5.3 ABLATION STUDY

To investigate the contribution of each component within KALE, we conduct ablation experiments on
the entire framework. We present the ablation results of KALE using LlaMA3 8B, Mistral 7B, and
Qwen2.5 32B as the three representative backbone models of different structures and scales in Table
2. More Results using the other three backbone models are in Table 13 in Appendix N.

Ablation on Rationale Generation We denote KALE without Knowledge-Induced (KI) data
synthesis as KALEw/o KI. That is, we do not utilize our proposed multi-path A* algorithm to provide
reasoning paths for each Q&A pair. Instead, we directly input the Q&A pair and prompt the LLM
to generate rationales. As shown in Table 2, we observe that using rationales directly generated by
prompting LLMs without reasoning paths leads to a performance degradation. Notably, when using
Mistral 7B as the backbone model, the degradation on the ARC-e dataset reaches 12.50%. This
demonstrates that the extracted reasoning paths effectively capture the thought process from question
to answer, which contributes to the generation of higher-quality rationales.

Ablation on KL Divergence We denote KALE without the Knowledge-Aware (KA) fine-tuning
as KALEw/o KA. That is, we directly apply the rationale data generated through the KG to LLM
using Cross-Entropy loss as the objective function. We observe that aligning LLMs’ outputs with and
without rationales using cross-entropy does not achieve satisfactory results. Specifically, when using
Mistral 7B as the backbone on the ARC-e dataset, KALEw/o KA results in a 14.90% degradation. This
demonstrates the effectiveness of the KL divergence for better knowledge manipulation performance.

5.4 CASE STUDY

Known&incorrect Phenomenon As illustrated in Figure 1, LLMs via SFT still exhibit the
known&incorrect phenomenon. We provide a detailed analysis of six different LLMs after SFT and
KALE (please refer to Appendix O for results of other baselines). We use the known fact checking
process in Figure 1 (please refer to Appendix J for prompt details) to categorize LLMs’ responses
under the precondition that LLMs already possesses relevant knowledge: (i) Known&correct:
LLMs possess the knowledge and correctly answers the question, which indicates a successful
knowledge manipulation. (ii) Known&incorrect: LLMs possess the knowledge yet cannot correctly
answer questions, which indicates an inflexible knowledge manipulation. As shown in the left part of
Figure 3, we observe that SFT models often exhibit the known&incorrect phenomenon. More than
25% of the questions are cases where LLM possesses the knowledge to answer but cannot provide
correct responses. In OLMOE 7B, it reaches 44.1%. In contrast, LLMs via KALE demonstrate
excellent knowledge manipulation ability, with less than 10% known&incorrect issues of questions
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Figure 3: We illustrate two case study results to provide more insights into our KALE. (i)
Known&incorrect phenomenon analysis: following the known fact checking in Figure 1, we
collect cases where LLMs possess the knowledge to answer and analyze the ratios of correct and
incorrect answers provided by LLMs, denoted as known&correct and known&incorrect. (ii) Ratios
of augmented rationales: by setting the data augmentation ratio from 5% to 50%, we explore the
differences between KALE and the SFT under varying data scales. We provide results of LlaMA3
8B, Mistral 7B, and Qwen2.5 32B as the backbones as examples, with more results in Appendix P.

across all LLMs. Notably, for the Qwen2.5 32B model, this proportion dropped to as low as 1.1%.
These results indicate that KALE effectively enhances LLM’s knowledge manipulation ability.

Ratios of Augmented Rationales In real-world applications, data acquisition in certain domains can
be particularly challenging due to privacy concerns, security restrictions, etc. (Rodríguez-Mazahua
et al., 2016). Therefore, we investigate KALE and SFT under limited training data scenarios. Taking
the AbsR dataset as an example, by setting the training data ratio from only 5% to 50%, we provide
the results in the right part of Figure 3. We find that KALE consistently outperforms SFT methods
across all levels of augmented rationales. Moreover, this improvement becomes more significant on
Qwen-2.5 32B, which also demonstrates that our KALE is highly effective on more powerful LLMs.
This highlights the significant potential of KALE for low-data, real-world applications.

6 CONCLUSION

Conclusion In this paper, we propose a novel Knowledge-Aware LEarning (KALE) framework
to enable better knowledge manipulation ability of LLMs. Specifically, KALE consists of (i) a
knowledge-induced data synthesis method to generate high-quality rationales for each Q&A pair
through a structured knowledge graph, and (ii) a knowledge-aware fine-tuning paradigm to enhance
the knowledge manipulation ability of LLMs. Extensive experiments on eight benchmarks and six
open-source models across different scales, ranging from 7B to 32B, demonstrate the superiority of
our KALE, delivering significant, consistent, and generalizable improvements.3

Limitations and Future Work We consider a few limitations and future directions. (i) Current
KALE relies on a structured Q&A dataset to facilitate knowledge-induced data synthesis. For cases
where a Q&A dataset is not available, users can consider employing GPT-4o or other LLMs to
transform a raw corpus into a structured Q&A. We think applying KALE directly to raw data is a
promising direction. (ii) When generating reasoning paths, multi-path A* algorithm is a hard-match
approach. Obtaining vectorized embeddings for similarity-based matching is also an optimization
direction. (iii) In multi-path A*, we empirically sample k anchor nodes for distance estimation. Finer
entity-specific selection (e.g., a neural decision module) may yield better results. (iv) Current KALE
relies on an available KG, which may constrain its applicability in domains where specialized KGs are
scarce. Meanwhile, many areas—including the medical domain—already benefit from community-
maintained Wikidata, whose ongoing expansion enhances its value for diverse applications. We are
further encouraged by advances in the KG community that target automatic construction of domain-
specific KGs: methods like SAC-KG (Chen et al., 2024) show promise in building high-quality KGs.
Such approaches are pivotal for extending KALE to domains where mature KGs are not available.

3More discussions on KALE can be found in Appendix U.
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A MORE RELATED WORKS

A.1 LARGE LANGUAGE MODELS

The advent of pre-trained language models has fundamentally transformed the landscape of natural
language processing (NLP), marking a significant paradigm shift in how language understanding
and generation tasks are approached. The pioneering work of the GPT series (Radford et al.,
2018; Brown et al., 2020b;b) introduced the concept of unsupervised pre-training followed by task-
specific fine-tuning, demonstrating the effectiveness of leveraging large-scale unlabeled text corpora.
This approach was further refined by BERT (Devlin et al., 2018), which introduced bidirectional
context encoding through the masked language modeling objective, achieving state-of-the-art results
across a wide range of NLP benchmarks. Subsequent advancements, such as RoBERTa (Liu et al.,
2019), optimized the pre-training process by removing the next sentence prediction objective and
training with larger batches and more data, leading to improved performance. Megatron-LM then
(Shoeybi et al., 2019) showcased the scalability of these models, leveraging model parallelism to
train significantly larger architectures. More recently, the field has witnessed the emergence of LLMs
that have pushed the boundaries of what is possible in NLP. Models such as LlaMA3 (Team, 2024c;
2023b), ChatGPT (OpenAI, 2020), GPT-4.5 (OpenAI, 2024), PaLM (Team, 2022), Gemini (Team,
2023a), Claude3 (Team, 2024a), and Deepseek V3 (Team, 2024b) have demonstrated remarkable
abilities in both few-shot and zero-shot learning scenarios (Brown et al., 2020a). These models,
often comprising hundreds of billions of parameters, have been pre-trained on diverse and extensive
benchmarks, enabling them to generalize across a wide array of tasks with minimal or no task-specific
fine-tuning. The evolution from earlier models like GPT and BERT to the current generation of
LLMs underscores the importance of scale and the effectiveness of pre-training on large corpora.
These advancements have not only improved performance on traditional NLP tasks but have also
enabled new applications and capabilities, such as conversational agents (Chen et al., 2024), code
generation (Zan et al., 2023; Liu et al., 2025), and complex reasoning tasks (Lv et al., 2024). The
continued development and refinement of these models promise to further enhance their utility and
impact across various domains.

A.2 CLASSIC TEXT DATA AUGMENTATION METHODS

Data augmentation has long been a foundational research area in natural language processing (NLP),
aimed at enhancing the quality and diversity of training data to improve model generalization and
performance. Traditional data augmentation techniques have predominantly focused on character-
level and word-level modifications. An example is Easy Data Augmentation (EDA) (Wei & Zou,
2019), which employs straightforward yet effective strategies such as random insertion, random
swapping, random deletion, and synonym replacement to introduce variability into the benchmark
(Belinkov & Bisk, 2018; Coulombe, 2018; Wang et al., 2023b). These methods, while computationally
efficient, are often limited in their ability to generate semantically coherent and contextually rich
variations, particularly at higher linguistic levels such as sentences or documents.

A.3 CHAIN-OF-X APPROACHES IN LLMS

The ability of LLMs to decompose complex problems into a series of intermediate steps and generate
internal reasoning processes, known as Chain-of-Thought (CoT) prompting (Wei et al., 2022b),
represents a significant advancement in enhancing their reasoning capabilities. The CoT approach
emulates human problem-solving strategies by breaking down intricate problems into smaller, more
manageable components. This step-by-step reasoning process allows LLMs to focus on each segment
individually, reducing errors and improving logical coherence in their responses (Wang et al.).
Moreover, CoT explicitly encourages models to articulate their thought processes, which not only
facilitates debugging and refinement of the model’s reasoning but also significantly enhances the
interpretability of its outputs. As a result, responses generated through CoT are often more accurate,
logically consistent, and contextually relevant compared to those produced by models that directly
generate final answers without revealing intermediate cognitive steps. The success of CoT has inspired
a series of follow-up works that extend its principles to other chain-of-X methods, further broadening
its applicability and effectiveness. For instance, chain-of-explanation (Huang et al., 2023) focuses on
generating detailed explanations to justify the reasoning process, while chain-of-knowledge (Wang
et al., 2023a) emphasizes the integration of external knowledge to enrich the model’s responses.
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Known Fact Checking 

Question: Please determine whether the following statement is correct. You only answer 'yes' or 'no'. Nutrient-enriched 
flakes often contain color enhancers that bring out pigmentation in goldfish.

Model via SFT Answer: Yes. √ Model via KALE Answer: Yes.√

Q: What is a benefit of feeding goldfish with nutrient-
enriched flakes?
A) It enhances the color of the goldfish.  B) It increases the 
tank's water pH level.  C) It cleans the tank water.  D) It has 
increased the lifespan of goldfish

A: D) It has increased the lifespan of goldfish. Nutrient-
enriched goldfish flakes provide the necessary nutrients 
and vitamins that help support the overall health and 
growth of the goldfish, potentially increasing their lifespan. 
Enhancing the color is not related to nutritional value of 
flakes.

Vanilla SFT KALE

Q: What is a benefit of feeding goldfish with nutrient-
enriched flakes?
A) It enhances the color of the goldfish.  B) It increases the 
tank's water pH level.  C) It cleans the tank water.  D) It has 
increased the lifespan of goldfish

A: A): nutrient-enriched flakes often contain carotenoids, 
which enhance the coloration. B): flakes do not affect the 
pH level. C): flake do not clean the water. D): nutrition 
contributes to the health of goldfish. However, the lifespan 
of goldfish is affected by may factors. The feed itself does 
not directly extend the lifespan. Thus, the answer is A.× √

Figure 4: An example of known&incorrect phenomenon comparison using LlaMA3 8B as the
backbone model.

More recently, chain-of-verification (Dhuliawala et al., 2023) has been proposed to enhance the
reliability of LLMs by prompting them to draft initial responses, plan verification questions, answer
those questions, and generate a final verified response. This iterative verification process reduces
the likelihood of misunderstandings or errors in the model’s reasoning. Another notable extension
is Chain-of-Knowledge (Zhang et al., 2024), which elicits LLMs to generate explicit pieces of
knowledge evidence in the form of structured triples. This approach is inspired by human cognitive
behaviors, where individuals often draw mind maps or knowledge maps as reasoning evidence before
addressing complex questions. By structuring knowledge in this way, LLMs can better organize and
utilize information, leading to more informed and accurate responses.

B MORE CASES OF THE Known&incorrect PHENOMENON

In Figure 1, we present a comparative analysis of the known&incorrect phenomenon of models
fine-tuned after SFT and KALE, using Mistral-7B as the backbone model. In this section, we further
extend the investigation by providing more known&incorrect phenomenon comparisons across
LlaMA3 8B, Qwen2.5 32B, Gemma2 9B, OLMOE 7B, and Orca2 7B on various domains to
comprehensively demonstrate the efficacy of our proposed KALE. As illustrated in Figures 4, 5,
6, 7, and 8, we still find that that models fine-tuned after SFT still exhibit the known&incorrect
phenomenon, wherein the models cannot properly recall and apply acquired knowledge to answer
correctly despite possessing the relevant knowledge. In contrast, LLMs fine-tuned after KALE
demonstrate a better ability to effectively manipulate relevant knowledge to generate correct answers.
These results also demonstrate that our KALE effectively strengthens LLMs’ knowledge manipulation
ability.

C PROOF OF ADMISSIBILITY OF THE PROPOSED MULTI-PATH A*
ALGORITHM

In this section, we show that our proposed heuristic estimated cost in equation 2 is admissible,i.e.,
h(e) ≤ dist(e, eg) for any node e, which means that our proposed multi-path A* algorithm can find
the best solution. We resort to the triangle inequality property of the distance metric dist(x, y). For
any three nodes A,B,C, the triangle inequality states:

dist(A,C) ≤ dist(A,B) + dist(B,C) (5)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Known Fact Checking 

Question: Please determine whether the following statement is correct. You only answer 'yes' or 'no'. Nutrient-enriched 
flakes often contain color enhancers that bring out pigmentation in goldfish.

Model via SFT Answer: Yes. √ Model via KALE Answer: Yes.√

Q: What is a benefit of feeding goldfish with nutrient-
enriched flakes?
A) It enhances the color of the goldfish.  B) It increases the 
tank's water pH level.  C) It cleans the tank water.  D) It has 
increased the lifespan of goldfish

A: D) It has increased the lifespan of goldfish. Nutrient-
enriched goldfish flakes provide the necessary nutrients 
and vitamins that help support the overall health and 
growth of the goldfish, potentially increasing their lifespan. 
Enhancing the color is not related to nutritional value of 
flakes.

Vanilla SFT KALE

Q: What is a benefit of feeding goldfish with nutrient-
enriched flakes?
A) It enhances the color of the goldfish.  B) It increases the 
tank's water pH level.  C) It cleans the tank water.  D) It has 
increased the lifespan of goldfish

A: A): nutrient-enriched flakes often contain carotenoids, 
which enhance the coloration. B): flakes do not affect the 
pH level. C): flake do not clean the water. D): nutrition 
contributes to the health of goldfish. However, the lifespan 
of goldfish is affected by may factors. The feed itself does 
not directly extend the lifespan. Thus, the answer is A.× √

Figure 5: An example of known&incorrect phenomenon comparison using Qwen2.5 32B as the
backbone model.

Known Fact Checking 

Question: Please determine whether the following statement is correct. You only answer 'yes' or 'no'. Bananas grow on 
plants in a way that their fruit points upward, defying gravity. This is known as "negative geotropism," where the fruits grow 
away from the pull of gravity.

Model via SFT Answer: Yes. √ Model via KALE Answer: Yes.√

Q: Which direction do bananas grow on the plant?
A) Downward. B) Upward. C) Horizontally. D) 

Underground.

A: Bananas grow in bunches from a central stem. The 
bunch itself emerges from the plant's "pseudostem," which 
is actually a collection of tightly wrapped leaf sheaths, not a 
true woody stem like a tree. Considering the weight of the 
fruit and the structure of the plant, we can deduce that the 
growth direction is downward.
Answer: A) Downward. 

Vanilla SFT KALE

Q: Which direction do bananas grow on the plant?
A) Downward. B) Upward. C) Horizontally. D) 

Underground.

A: Bananas grow on a plant called a banana tree, which is 
a large herb. The fruit grows in clusters called bunches, 
and the bananas themselves grow upward. This happens 
because bananas have a natural tendency for "negative 
geotropism“, meaning they grow against the force of gravity, 
seeking sunlight.
Answer: B) Upward. × √

Figure 6: An example of known&incorrect phenomenon comparison using Gemma2 9B as the
backbone model.

Let us consider an arbitrary landmark αi from the set {αi}ki=1. Applying the triangle inequality with
A = αi, B = e, and C = eg , we have:

dist(αi, eg) ≤ dist(αi, e) + dist(e, eg) (6)

Rearranging Equation equation 6, we obtain:

dist(αi, eg)− dist(αi, e) ≤ dist(e, eg) (7)

Now, let Xi = dist(αi, eg) − dist(αi, e). The term in the heuristic function involving αi is
[Xi]

+ = max(Xi, 0). We consider two cases for the value of Xi:

1. Case 1: Xi < 0, due to the non-negative property of the distance, we have:

[dist(αi, eg)− dist(αi, e)]
+ = 0 ≤ dist(e, eg)
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Known Fact Checking 

Question: Please determine whether the following statement is correct. You only answer 'yes' or 'no'. When onions are cut, 
their cells rupture and release enzymes that convert sulfur-containing compounds into volatile sulfuric gases. These gases 
react with the moisture in the eyes, forming mild sulfuric acid, which irritates the eyes and triggers tear production.

Model via SFT Answer: Yes. √ Model via KALE Answer: Yes.√

Q: Why do onions make you cry?
A) Acidic juice irritates eyes. B) Enzymes release sulfuric 
gas. C) Pollen triggers allergies. D) Natural defense against 
cutting.

A: Onions make you cry primarily because of their acids.  
The acids are released when you cut the onion, and these 
acids quickly diffuses into the air and into your eyes, which 
are moist, causing a burning sensation and tearing. This is 
a natural defense mechanism of the onion to deter 
predators from eating it.
Answer: A) Acidic juice irritates eyes. 

Vanilla SFT KALE

Q: Why do onions make you cry?
A) Acidic juice irritates eyes. B) Enzymes release sulfuric 
gas. C) Pollen triggers allergies. D) Natural defense against 
cutting.

A : When an onion is cut, its cells are damaged. This 
damage allows enzymes within the onion to mix with sulfur-
containing amino acids. Alliinase helps synthase acts on 
these sulfenic acids to produce a sulfur-containing gas. 
When it reaches eyes, it stimulates the lachrymal glands, 
causing them to produce tears to flush away the irritant.
Answer: B) Enzymes release sulfuric gas.× √

Figure 7: An example of known&incorrect phenomenon comparison using OLMOE 7B as the
backbone model.

Known Fact Checking 

Question: Please determine whether the following statement is correct. You only answer 'yes' or 'no'. Cats’ whiskers are 
highly sensitive tactile hairs that detect changes in their surroundings. Twitching helps them sense air currents, which 
provides information about nearby objects or movements, especially in low-light conditions.

Model via SFT Answer: Yes. √ Model via KALE Answer: Yes.√

Q: Why do cats’ whiskers twitch?
A) To measure the width of spaces. B) To detect air 
currents. C) For balance. D) To communicate emotions.

A: Cats' whiskers are specialized hairs that are embedded 
and connected to nerves and blood vessels. They serve 
multiple sensory functions.  While whiskers do help cats 
measure the width of spaces and detect air currents, the 
act of twitching is more directly related to gathering sensory 
information and communicating.
Answer: D) To communicate emotions.

Vanilla SFT KALE

Q: Why do cats’ whiskers twitch?
A) To measure the width of spaces. B) To detect air 
currents. C) For balance. D) To communicate emotions.

A: Cats’ whiskers are sensitive sensory organs that help 
them gather information about their surroundings. Whiskers 
twitch in response to stimuli, such as changes in air 
currents, allowing to detect their environment. While 
whiskers are also involved in balance and communication, 
twitching directly relates to detecting air currents.
Answer: B) To detect air currents.× √

Figure 8: An example of known&incorrect phenomenon comparison using Orca2 7B as the backbone
model.

2. Case 2: Xi ≥ 0, from Eq.equation 7, we know that dist(αi, eg)−dist(αi, e) ≤ dist(e, eg).
Therefore:

[dist(αi, eg)− dist(αi, e)]
+ ≤ dist(e, eg)

In both cases, for any anchor αi (1 ≤ i ≤ k), we have shown that:
[dist(αi, eg)− dist(αi, e)]

+ ≤ dist(e, eg) (8)
The heuristic function h(e) is defined as the maximum of these terms over all i:

h(e) = max
1≤i≤k

[
dist(αi, eg)− dist(αi, e)

]+
Since each term [dist(αi, eg) − dist(αi, e)]

+ is less than or equal to dist(e, eg), their maximum
must also be less than or equal to dist(e, eg). Thus,

h(e) ≤ dist(e, eg) (9)
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This inequality holds for any node e. Therefore, our proposed multi-path A* algorithm is
admissible, which means that for any node, our proposed multi-path A* algorithm can find the
best solution.

D PSEUDO CODE OF THE PROPOSED MULTI-PATH A*

In Section 4.1, we introduce our multi-path A* algorithm, which efficiently extracts inference paths
from question entities to answer entities. Here, we provide the algorithm pseudo code in Algorithm 1.

Algorithm 1 Pseudo code for Multi-path A* algorithm
Input: Start node eq , target node ea, maximum number of paths m and maximum search depth d

1: Initialize priority queue Q with (f(e), g(e), e, pie)
2: Initialize reasoning path and visited list P,V ← [], []
3: while Q ≠ ∅ and |P| < m do
4: Dequeue the element with the smallest f(e) from Q
5: Append e into V
6: if e = ea then
7: Append pie into P
8: continue ▷ Find Reasoning Path
9: end if

10: if g(e) > d then
11: continue ▷ Path exceeds maximum search depth
12: end if
13: for each neighbor n of e do
14: if n ∈ path then
15: continue ▷ Avoid cycles
16: end if
17: Obtain g(n)← g(e) + 1
18: Compute f(n) and h(n) via Equations equation 1 and equation 2
19: Enqueue (f(n), g(n),n, pie + [n]) into Q
20: end for
21: end while
Output: Reasoning path list P

E MORE DETAILS OF BENCHMARKS AND EXPERIMENT SETUPS

E.1 IMPLEMENTATION DETAILS

In our implementation details, we conduct fine-tuning on all evaluated benchmarks across 3 epochs
with a consistent batch size of 16, utilizing NVIDIA A100 GPUs (80 GB) for computational process-
ing. The computational resources are allocated based on model scale, with 8 GPUs employed for the
7B and 8B parameter models, while the larger 32B parameter models use 16 GPUs to accommodate
their increased computational demands during the fine-tuning process. For all answer entities ea,
we choose 10 anchor entities randomly sampled from their 3-hop neighbors. To guarantee stable
and reproducible results, we utilize greedy decoding by setting the temperature parameter to 0 in
all experiments. The optimization process employs a peak learning rate of 3e-5, implemented in
conjunction with a learning rate warmup strategy that gradually increases the learning rate over
the initial 1% of training iterations to ensure stable convergence. We set the maximum truncated
length as 2048 for all the benchmarks. We apply deepspeed4 to accelerate the training process. We
implement our approach based on PyTorch 2.5.15 and Huggingface’s Transformers6. For the training
code of KALE, we modified the training scripts based on LLaMAFactory (Zheng et al., 2024). We are
committed to providing the source code of our approach, if accepted. During testing, for all models,

4https://www.deepspeed.ai/
5https://pytorch.org/
6https://github.com/huggingface/transformers
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we follow MeanLearn (Xiong et al., 2024) to use the same system prompt for a fair comparison: "You
are a cautious assistant. You carefully follow instructions. You are helpful and harmless, and you
follow ethical guidelines and promote positive behavior. You are given a question together with a few
options. You should give an explanation first and then answer the question." More details for the best
performance of each task and benchmark can be seen within our code.

E.2 BENCHMARK DETAILS

Table 3: The statistics of AbsR the benchmark.
Examples Questions Generic Facts

Train 18,020 9,010 4,613
Test 844 844 104

For more details of benchmarks, we list
below all the benchmarks used in logi-
cal reasoning, reading comprehension,
and natural language understanding, re-
spectively, by KALE as follows. Logical
Reasoning Task we employ AbsR (Xiong
et al., 2024), Commonsense (Xiong et al.,
2023), and Big Bench Hard (BBH) (Suz-
gun et al., 2023) as our evaluation benchmarks. Specifically, the AbsR benchmark was constructed
using GPT-4 (gpt-4-1106-preview)7 as the primary data annotator, following (Chen et al.,
2024; Zheng et al., 2023). For each generic fact ri, GPT-4 was prompted to generate samples
Si = {si1, . . . , simi

| 1 ≤ mi ≤ 3} in diverse scenarios. Each sample sij consists of a question Xi
j

with multiple options, a response Y i
j containing an answer and an explanation guided by ri, and

forms a triple sij = ⟨Xi
j , ri, Y

i
j ⟩. From each sample in the training set sij , two types of examples

were derived: (i) K-example, which predicts Y i
j given ⟨Xi

j , ri⟩, and (ii) R-example, which predicts
Y i
j given only Xi

j . These examples are designed to implicitly enhance abstract reasoning in LLMs
through the knowledge and reasoning pathways. In the testing set, only the R-example is provided
for each sample. The statistics of the AbsR benchmark are summarized in Table 3.

Table 4: The statistics of the Commonsense reasoning bench-
mark.

Dataset Task Type Size
αNLI (Bhagavatula et al., 2019) 2 Choices 1,507
CSQA (Talmor et al., 2019) 5 Choices 1,221
COPA (Gordon et al., 2012) 2 Choices 500
e-CARE (Du et al., 2022) 2 Choices 2,122
Social IQa (Sap et al., 2019) 3 Choices 1,935
PIQA (Bisk et al., 2020) 2 Choices 1,838
StrategyQA (Geva et al., 2021) Yes or No 2,290

The Commonsense benchmark
(Xiong et al., 2023) is a multiple-
choice question-answering bench-
mark designed to evaluate the
ability of LLMs to perform complex
reasoning based on commonsense
knowledge. Each question in the
benchmark is associated with five
candidate answers, only one of which
is correct. The dataset spans a diverse
range of domains, including everyday
scenarios, social interactions, and
physical phenomena, making it a
comprehensive testbed for evaluating
the commonsense reasoning capabilities of LLMs. We summarize the key statistics and characteristics
of Commonsense in Table 4. For the BBH benchmark (Suzgun et al., 2023), it consists of a curated
suite of 23 challenging tasks derived from the broader BIG-Bench benchmark (bench authors, 2023).
These tasks were specifically selected because prior language model evaluations failed to surpass
the average human-rater performance, making them particularly suitable for assessing the limits of
current models. The tasks span a wide range of domains, including logical reasoning, mathematical
problem-solving, and linguistic understanding, requiring models to demonstrate robust reasoning and
contextual comprehension. BBH focuses on the importance of structured reasoning pathways in
tackling complex tasks. We summarize the filtering process of BBH in Table 5.

Reading Comprehension Task We employ RACE-M (middle school level reading comprehen-
sion task) and RACE-H (high school level reading comprehension task) (Lai et al., 2017) as our
benchmarks. RACE is collected from the English exams for middle and high school Chinese students
in the age range between 12 to 18. RACE consists of nearly 28, 000 passages and nearly 100, 000
questions generated by human experts (English instructors), and covers a variety of topics that are
carefully designed to evaluate the student’s ability to understand and reason. The reasoning types of

7https://platform.openai.com/
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Table 5: Filtering criteria to create the BIG-Bench Hard (BBH) benchmark.
# Tasks Criteria

209 All BIG-Bench tasks
187 - After filtering out tasks with more than three subtasks
130 - After filtering out tasks with fewer than 103 examples (3 for few-shot, 100 for evaluation)

85 - After filtering out tasks without human-rater baselines
78 - After filtering out tasks that do not use multiple-choice or exact match as the evaluation metric

78 Clean multiple-choice or exact match tasks
36 - After filtering out tasks in which the best reported model beats average reported human-rater score
23 - After filtering out extremely difficult tasks that are outside the scope of this work

23 Remaining tasks = BIG-Bench Hard (BBH)

RACE include word matching, paraphrasing, single-sentence reasoning, multi-sentence reasoning,
and insufficient/ambiguous. We summarize the details in Table 6.

Table 6: Statistics of the reading comprehension benchmarks, RACE-H and RACE-M. The values
below the Training/Valid/Testing Set are the number of passages and questions in each dataset,
respectively. Passage/Question/Option Len denotes the average length of the passages, questions, and
options, respectively. Vocab size denotes the number of words in the vocabulary.

Dataset Training Set Valid Set Testing Set Passage Len Question Len Option Len Vocab Size

RACE-M 6,409/25,421 368/1,436 362/1,436 231.1 9.0 3.9 32,811
RACE-H 18,728/62,445 1,021/3,451 1,045/3,498 353.1 10.4 5.8 125,120

Natural Language Understanding Task For the natural language understanding task, we employ
the Massive Multitask Language Understanding (MMLU) benchmark (Hendrycks et al.) and the
ARC benchmark for evaluation. MMLU is a comprehensive dataset designed to assess the breadth
and depth of LLMs’ knowledge and problem-solving abilities. MMLU consists of 57 tasks spanning
diverse domains, including STEM (Science, Technology, Engineering, and Mathematics), humanities
(e.g., law, philosophy, history), social sciences (e.g., economics, sociology, psychology), and other
specialized fields (e.g., medicine, finance). The dataset comprises 15, 908 questions, divided into
three splits: a dev set with 5 questions per subject for few-shot evaluation, a validation set with 1, 540
questions for hyperparameter tuning, and a test set with 14, 079 questions, ensuring at least 100 test
examples per subject.

Table 7: Statistics for MMLU, ARC-C, and
ARC-e datasets.

Statistics Train Dev Test
MMLU 99,842 1,540 14,079
ARC-C 1,119 299 1,172
ARC-e 2,251 570 2,376

The questions in MMLU are designed to require ex-
tensive world knowledge and expert-level reasoning,
making it a rigorous benchmark for evaluating lan-
guage models’ generalization across multiple disci-
plines. We summarize the key statistics and char-
acteristics of the MMLU dataset in Table 7. The
AI2 Reasoning Challenge (ARC) benchmark (Clark
et al., 2018) is a comprehensive dataset designed to
assess the ability of language models to answer com-
plex, multi-faceted science questions on scientific
reasoning and knowledge integration capabilities. The ARC dataset consists of 7, 787 multiple-choice
questions derived from grade-school-level science exams, spanning grades 3 through 9. These ques-
tions are divided into two subsets: the Easy Set (ARC-E) and the Challenge Set (ARC-C), with the
latter containing 2, 590 questions that are particularly difficult and require advanced reasoning skills.
The Easy Set (ARC-E) comprises 5, 197 questions that are relatively straightforward and can often be
answered using basic retrieval or word co-occurrence methods. In contrast, the Challenge Set (ARC-
C) includes questions that were specifically selected because they could not be correctly answered by
retrieval-based algorithms (e.g., Information Retrieval Solver) or word co-occurrence methods (e.g.,
Pointwise Mutual Information Solver). These questions demand deeper comprehension, reasoning,
and the integration of distributed knowledge across multiple sentences or concepts. Each question
in the ARC dataset is presented with four answer choices, with less than 1% of questions having
either three or five options. The dataset is further partitioned into training, validation, and test splits to
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facilitate model development and evaluation. For instance, the Challenge Set includes 1, 119 training
examples, 299 validation examples, and 1, 172 test examples. We summarize the key statistics and
characteristics of the ARC dataset in Table 12.

Medical Domain Benchmarks We use multiple-choice medical questions benchmarks in six
languages as the representative knowledge-intensive domain, including MedQA (English and Chi-
nese) (Jin et al., 2021), IgakuQA (Japanese) (Kasai et al., 2023), RuMedDaNet (Qiu et al., 2024),
FrenchMedMCQA (Labrak et al., 2022), and Head-QA (Vilares & Gómez-Rodríguez, 2019) to
provide a comprehensive understanding of our KALE. We provide the statistics of each dataset in
Table 8.

Table 8: Statistical results for medical multiple-choice questions benchmarks in six languages.
Dataset Language Source Train Test
MedQA English United States Medical Licensing Ex-

amination
10178 1273

MedQA Chinese United States Medical Licensing Ex-
amination

27400 3426

IgakuQA Japanese Japan’s medical licensure exams
(2018-2022)

1590 199

RuMedDaNet Russian Russian medical judgment question
dataset

1052 256

FrenchMedMCQA French Professional exams for the French
Pharmacy degree

2171 622

Head-QA Spanish Exams for positions in the Spanish
healthcare

2657 2742

F MORE RESULTS OF KALE ON KNOWLEDGE-INTENSIVE DOMAINS

In Tables 1 and 13, we present the performance of KALE across various downstream tasks. To further
demonstrate the capabilities of KALE, this section provides its evaluation on several knowledge-
intensive tasks. Following the same experimental setting of KG-SFT (Chen et al., 2025), we use
MedQA as the benchmark using LlaMA2 7B as the backbone model. As shown in Table 9, we still
observe that our proposed KALE significantly outperforms existing state-of-the-art baselines by a
large margin, which also demonstrates that our KALE can effectively work under the knowledge-
intensive scenarios.

Table 9: Experiment results for existing methods on knowledge-intensive domains. The results of the
mentioned methods are taken from KG-SFT (Chen et al., 2025). We bold the best results for each
dataset.

Method MedQA MedQA IgakuQA RuMedDaNet MedMCQA HeadQA Average
(English) (Chinese) (Russian) (Spanish) (French) (Japanese)

Vanilla 28.20 28.37 51.17 32.97 12.76 11.10 27.43
COT 37.65 39.01 65.23 40.33 25.08 23.63 38.48
TOG 34.27 28.13 48.42 35.59 12.47 19.61 29.75
KGR 33.15 26.88 47.52 34.74 13.39 17.29 28.83
KAPING 36.39 27.24 54.66 34.98 11.54 15.91 30.45

SFT 33.62 29.33 66.40 35.19 12.67 21.11 32.30
AugGPT 40.29 36.54 62.14 40.70 22.99 27.13 38.30
GPT3Mix 39.35 37.97 66.01 41.50 25.08 26.13 39.34
KG-SFT 41.71 39.31 68.75 44.40 28.45 28.14 41.79

KALE (ours) 45.89 42.77 69.81 45.58 30.39 28.79 43.53
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Table 10: Average testing time for each sample on the AbsR dataset for each method (Unit: second)

Backbone Models Vanilla CoT TOG StructGPT GraphRAG KALE (ours)

LlaMa3 8B 7.44 7.91 8.21 7.88 9.08 7.50
Mistral 7B 2.19 3.11 4.97 5.45 10.10 2.11
Qwen2.5 32B 11.20 11.90 11.8 12.8 12.30 11.09
Gemma2 9B 3.73 4.19 4.82 3.98 8.40 3.93
OLMOE 7B 8.33 8.75 10.70 14.60 11.04 8.55
Orca2 7B 3.97 4.33 4.95 7.09 8.20 3.67

G INFERENCE TIME COMPARISON

As mentioned in Section 2.2, KALE is a post-training method designed to enhance the knowledge ma-
nipulation capabilities of LLMs. Once the model completes training, KALE maintains identical
autoregressive inference characteristics to vanilla LLMs during the decoding phase, introduc-
ing zero additional temporal overhead and requiring no retrieval operations from external
knowledge bases. We conduct comparative measurements of average inference latency per sample
across different methodologies (vanilla LLM, CoT, TOG, StructGPT, GraphRAG, and KALE) using
an Nvidia A100 GPU (80GB). The quantitative results in Table 10 reveal that KALE achieves nearly
identical inference speed to vanilla LLMs. At the inference stage, both KALE and Vanilla models
follow a similar logic: they directly take the instruction and question as input to the LLM. Therefore,
any observed speed differences between them are primarily attributable to slight variations in
the length of their generated outputs. There are instances where the Vanilla model’s output length
is marginally longer than KALE’s, leading to KALE being slightly faster, and vice versa. This minor
difference in token generation directly impacts the overall inference time. In contrast, RAG-based
approaches requiring knowledge retrieval and CoT methods with extended prompt sequences incur
additional computational overhead.

H MORE RESULTS ON THE HYPERPARAMETER SENSITIVITY EVALUATION OF
KALE

Regarding the sensitivity of KALE to the hyperparameters of each component, we conduct experi-
ments to demonstrate its robustness. For all datasets, our default setting involved randomly sampling
10 anchor entities from their 3-hop neighbors. The consistent superior performance of KALE across
diverse datasets under these unified parameter settings highlights its general effectiveness.

Moreover, to further investigate KALE’s robustness, we conduct experiments by varying these key
hyperparameters. As shown in Table 11, we can observe that KALE exhibits robustness to changes in
both the number of anchor entities and hops for neighbors. This further underscores the practical
potential and reliability of our KALE framework in real-world applications.

Table 11: Hyperparameter sensitivity evaluation on the number of anchor entities and the hop of
neighbors.

Anchors Hops Absr ARC-c ARC-e Common MMLU BBH RACE-h RACE-m

5 2 82.94 80.03 84.18 66.34 61.79 57.98 68.27 73.33
5 4 84.50 78.50 84.13 63.64 61.33 57.82 66.60 71.73

15 2 82.94 75.09 85.00 64.95 60.03 56.13 65.75 69.64
15 4 85.31 76.19 87.40 65.44 60.68 54.45 65.41 71.03

10 (ori) 3(ori) 83.62 81.23 86.45 65.69 63.27 57.33 68.61 74.12
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I AVERAGE STEPS OF EXTRACTED REASONING PATHS

Table 12: Statistics of average step in reasoning path on
the AbsR dataset.

1-hop 2-hop 3-hop complete 3-hop partial

15.76 54.03 28.27 1.94

By default, we generate three-hop reason-
ing paths from questions to answers for
each question-answer pair. If a 3-hop rea-
soning path cannot reach the answer entity,
we still provide these paths as auxiliary in-
formation to facilitate rationale generation
by the LLM. We currently provide the pro-
portion of each hop within the generated
reasoning paths, where ’3hop complete’ indicates that the three-hop reasoning path successfully
reached the answer, and ’3hop partial’ indicates that the reasoning path did not reach the answer entity.
As shown in Table 12, we find that most of the reasoning paths can directly lead to the final answer
entity. Specifically, less than 2% of the reasoning paths cannot reach the answer entity. This suggests
that the extracted reasoning paths can effectively elucidate the underlying logic and correlations
between the question and the answer.

J PROMPT TEMPLATES

We list the prompt templates for different tasks to offer more visually intuitive results for each task.
More detailed prompt information for the best performance of each task and dataset can be seen
within the code.

The placeholders Known Fact , Question , Answer , Reasoning Path , Options ,
Generic Fact , and Rationales will be filled with the corresponding terms in each example
of corresponding benchmarks.

J.1 PROMPT TEMPLATES FOR KNOWN FACT CHECKING

Prompt Templates for Known Fact Checking

You are a cautious assistant. You carefully follow
instructions. You are helpful and harmless and you follow
ethical guidelines and promote positive behavior. Question:
Please determine whether the following statement is correct.
You only answer ’yes’ or ’no’. Known Fact.

J.2 PROMPT TEMPLATES FOR RATIONALE GENERATION

Prompt Templates for Rationale Generation

You are a cautious assistant. You carefully follow
instructions. You are helpful and harmless and you follow
ethical guidelines and promote positive behavior. You are
given the question: Question. The corresponding answer is:
Answer. The reasoning paths are: Reasoning Path. Please
provide a detailed explanatory rationale that references
these reasoning paths. If you determine that the reasoning
path is irrelevant to the current QA pair, you may generate
rationales based on your own knowledge.
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J.3 PROMPT TEMPLATES FOR MAIN RESULTS

Prompt Templates for Main Results

You are a cautious assistant. You carefully follow
instructions. You are helpful and harmless and you follow
ethical guidelines and promote positive behavior. You are
given a question together with a few options, you should give
an explanation first and then answer the question. Your
response should follow the format like Explanation: ___
Answer: ___ Below is the Question and Options: Question
Options

J.4 PROMPT TEMPLATES FOR REASONING TRACE QUALITY EVALUATION

Prompt Templates for reasoning trace quality evaluation

You are a cautious assistant. You carefully follow
instructions. You are helpful and harmless and you follow
ethical guidelines and promote positive behavior. You
are given a rationale for a question. Evaluate the given
rationale along five dimensions--Factual Accuracy, Logical
Validity, Coherence, Completeness, and Interpretability.
For each dimension, output True if the rationale is
correct or meets the criterion; otherwise, output False.
You should produce a five-element list in the form like
[True,True,True,True,True]. Below are the Question Question
and the Rationales Rationales.

K EXAMPLES OF GENERATED REASONING PATHS AND RATIONALES

We present extracted reasoning paths alongside the generated rationales for some samples to provide
a more intuitive and straightforward understanding of KALE. We select one sample each from the
domains of Science, Medicine, Common Knowledge, Computer Science, Economics, and Art.
For each sample, we provided the extracted reasoning paths and the generated rationales to support a
more comprehensive understanding of KALE.

Science Domain Example

Question: what is the true color of the Sun?
Answer Choices:
A) Red
B) Yellow
C) White
D) Blue
Extracted Reasoning Paths:
the Sun-emits->full spectrum light-integrates_into->white
light
Generated Rationales:
The Sun emits light that contains the entire visible
spectrum. When these different colors of light are combined,
they create white light.
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Medicine Domain Example

Question: Which of the following is a typical symptom of
cancer?
Answer Choices:
A) Weight gain
B) Persistent fever
C) Sore muscles
D) Acne
Extracted Reasoning Paths:
cancer-may cause->decreased resistance-may cause->persistent
fever
cancer-may cause->decreased immune function-may
cause->persistent fever
Generated Rationales:
The common symptoms that cancer may cause include decreased
resistance, which can lead to fever of unknown origin,
usually manifested as persistent fever.

Common Knowledge Domain Example

Question: What do people use to absorb extra ink from a
fountain pen?
Answer Choices:
A) shirt pocket
B) calligrapher’s hand
C) desk drawer
D) blotter
Extracted Reasoning Paths:
extra ink-absorbed by->absorbent paper-also is->blotter
fountain pen-produces->excess ink- absorbed by->blotter
Generated Rationales:
A blotter is a piece of special absorbent paper. People use
it to press against fresh ink from a fountain pen to soak
up any excess, which prevents smudging and helps the ink dry
faster.

Computer Science Domain Example

Question: Which protocol secures data for websites (padlock
in the address bar)?
Answer Choices:
A) HTTP
B) FTP
C) HTTPS
D) SMTP
Extracted Reasoning Paths:
websites-secure transport->TLS-implemented as->HTTPS
websites-handle->sensitive data-requires->encryption-provided
by->HTTPS
Generated Rationales:
Modern websites handle sensitive user data that requires
encryption to prevent interception. HTTPS (Hypertext
Transfer Protocol Secure) is the solution; it is essentially
the HTTP protocol layered on top of a secure encryption
protocol, TLS (Transport Layer Security).
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Economics Domain Example

Question: If demand increases while supply remains constant,
what happens to the equilibrium price?
Answer Choices:
A) Lower equilibrium price
B) Stays the same
C) Higher equilibrium price
D) Becomes zero
Extracted Reasoning Paths:
demand-shifts right->demand curve-causes->higher equilibrium
price
Generated Rationales:
A rightward shift in the demand curve, with supply held
constant, leads to a higher equilibrium price. This occurs
because at the original price, a shortage is created,
causing buyers to compete and bid the price upward to a new
equilibrium.

Art Domain Example

Question: The technique of dramatic light-dark contrast in
painting is called:
Answer Choices:
A) Impasto
B) Fresco
C) Chiaroscuro
D) Sfumato
Extracted Reasoning Paths:
painting-contrast of->light and dark-technique
named->chiaroscuro
painting-modeling of form->using dramatic light-a key feature
of->chiaroscuro
Generated Rationales:
Chiaroscuro is the technique in painting that uses strong,
dramatic contrasts between light and dark. Artists employ
this method not only to create a sense of volume for modeling
three-dimensional subjects, but also to produce a powerful,
theatrical mood.

L MORE RESULTS OF DIFFERENT BACKBONE MODELS

As mentioned in Section 5.2, we select LlaMA3 8B, Mistral 7B, and Qwen2.5 32B as representative
models in Table 1. In this section, to further demonstrate the generalization and versatility of
KALE, we also conducted experiments on several popular open-source LLMs, including Gemma2
9B, OLMOE-1B-7B, and Orca2 7B. As shown in Table 13, we can still observe that our KALE
method significantly outperforms existing baselines on these backbone models as well. This further
demonstrates the effectiveness of our KALE approach. We also present radar charts for each backbone
model to provide a more intuitive performance comparison in Figures 9 and 10. The effectiveness of
our KALE across various popular open-source models further demonstrates its strong versatility and
generalization capabilities.

M MORE RESULTS OF APPLYING DIFFERENT KGS TO EXTRACT RATIONALES

In the main experiments, we used Wikidata as the default KG for extracting reasoning paths. To
further evaluate the robustness of KALE under different, smaller-scale KGs, we additionally extracted
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Table 13: More results of our KALE using Gemma2 9B, OLMOE 7B, and Orca2 7B as backbone
models. We bold the best results and underline the suboptimal results for each backbone model.

Backbone Category Method AbsR ARC-c ARC-e Common MMLU BBH RACE-h RACE-m

Gemma2 9B

Prompt-based Vanilla 52.49 79.95 88.89 57.66 53.56 48.93 73.13 78.62
CoT 67.54 81.06 86.91 61.43 57.35 53.37 71.07 79.32

Retrieval-based
TOG 72.04 79.27 81.65 63.06 59.31 51.53 75.99 79.53
StructGPT 59.24 83.28 86.87 59.30 61.40 57.98 79.87 81.27
GraphRAG 64.57 85.07 84.13 65.00 62.53 60.89 76.80 81.69

SFT-based

SFT 61.37 81.06 89.06 58.97 55.26 51.38 74.93 80.78
SDFT 75.83 82.42 90.91 60.85 57.67 55.37 74.19 81.20
DMT 77.13 81.83 91.12 62.00 56.69 53.22 76.99 83.01
MeanLearn 72.04 80.20 89.90 63.06 58.98 57.36 75.53 81.20
KG-SFT 74.76 80.20 88.26 64.54 59.37 55.06 77.16 82.73

Augmented-based

STaR 76.66 77.22 84.43 60.20 54.54 56.60 75.53 81.55
AugGPT 59.60 82.34 81.86 53.73 55.26 58.89 78.88 83.33
GPT3Mix 59.72 75.43 88.22 64.29 61.01 55.83 79.07 83.98

KALE (ours) 81.52 88.57 94.70 68.63 65.32 65.49 83.30 87.74

OLMOE 7B

Prompt-based Vanilla 49.88 62.03 65.99 44.06 38.73 35.73 57.18 65.74
CoT 51.06 63.13 67.34 45.62 39.91 36.66 59.46 64.83

Retrieval-based
TOG 54.50 64.42 69.82 47.26 40.89 38.34 60.35 67.75
StructGPT 56.87 65.70 71.12 51.60 41.61 40.64 60.03 69.63
GraphRAG 57.82 60.75 71.25 50.61 43.50 41.56 60.66 68.04

SFT-based

SFT 53.31 63.91 68.52 49.14 40.43 37.58 59.18 69.63
SDFT 59.95 65.52 70.16 50.61 42.78 38.65 59.06 67.84
DMT 60.43 66.04 70.83 51.26 42.36 39.57 61.18 68.45
MeanLearn 71.09 66.30 67.80 54.55 44.21 43.10 60.03 72.42
KG-SFT 61.26 66.41 70.58 52.66 43.17 38.04 61.09 65.25

Augmented-based

STaR 59.24 66.12 71.04 50.36 43.76 41.41 62.84 66.04
AugGPT 61.73 66.55 71.54 52.00 43.76 43.40 60.98 70.19
GPT3Mix 62.20 67.06 72.60 53.23 43.50 42.02 60.26 75.48

KALE (ours) 81.99 72.78 74.60 58.25 46.96 45.88 64.35 75.84

Orca2 7B

Prompt-based Vanilla 61.37 68.34 70.75 47.67 44.09 37.27 72.36 75.49
CoT 67.77 70.90 77.40 50.86 43.77 39.20 72.58 75.84

Retrieval-based
TOG 59.60 73.89 75.72 62.24 51.14 42.94 73.41 74.09
StructGPT 65.17 67.66 77.95 53.40 45.40 46.01 76.01 78.41
GraphRAG 67.06 69.97 78.87 54.71 50.75 47.70 76.02 75.77

SFT-based

SFT 63.98 71.33 76.56 48.24 52.90 47.70 73.33 76.88
SDFT 76.66 72.53 75.72 52.33 52.25 46.63 73.99 75.14
DMT 75.24 73.55 77.15 51.27 52.63 48.31 73.41 77.30
MeanLearn 77.01 77.22 86.57 66.50 53.04 35.58 73.36 78.76
KG-SFT 78.91 72.44 78.87 52.42 54.00 48.93 74.01 76.90

Augmented-based

STaR 71.68 75.00 81.57 64.53 45.85 44.33 75.33 77.30
AugGPT 61.73 73.89 80.05 53.89 47.81 44.32 75.24 78.55
GPT3Mix 69.79 74.58 79.67 54.46 50.75 45.25 75.53 77.51

KALE (ours) 83.41 78.16 88.51 69.62 61.20 50.77 78.62 80.02
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Figure 9: KALE achieves state-of-the-art performance on a broad range of scientific optimization
tasks compared with existing methods, using LlaMA3 8B, Mistral 7B, and Qwen2.5 32B as backbone
models, respectively.

reasoning paths from alternative KGs and generated corresponding rationales. Specifically, we
employed DBpedia (Auer et al., 2007) and ConceptNet (Speer et al., 2017) to extract reasoning paths,
based on which we generated rationales for training. We used LLaMA3-8B as the backbone model.
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Figure 10: KALE achieves state-of-the-art performance on a broad range of scientific optimization
tasks compared with existing methods, using Gemma2 9B, OLMOE 7B, and Orca2 7B as backbone
models, respectively.

Table 14: Results comparison of KALE using different KGs to extract reasoning path using Llama3
8B as the backbone model.

AbsR ARC-c ARC-e Common MMLU BBH RACE-h RACE-m
KALEDBpedia 80.81 77.89 83.77 60.07 61.28 58.00 65.58 68.73
KALEConceptNet 79.93 81.54 84.19 62.03 61.06 55.94 66.93 71.17
KALEWikidata 83.62 81.23 86.45 65.69 63.27 57.33 68.61 74.21

Table 15: More results of the ablation study of our KALE, using Gemma2 9B, OLMOE 7B, and
Orca2 7B as the backbone models.

Backbone Method AbsR ARC-c ARC-e Common MMLU BBH RACE-h RACE-m

Gemma2 9B
KALEw/o KI 76.54↓4.98 84.47↓4.10 92.17↓2.53 65.52↓3.11 61.14↓4.18 61.35↓4.14 80.02↓3.28 84.26↓3.48
KALEw/o KA 73.22↓8.30 78.41↓10.16 90.32↓4.38 66.99↓1.64 63.42↓1.90 60.12↓5.37 78.70↓4.60 82.66↓5.08
KALE 81.52 88.57 94.70 68.63 65.32 65.49 83.30 87.74

OLMOE 7B
KALEw/o KI 78.91↓3.08 69.80↓2.98 73.23↓1.37 56.51↓1.74 40.89↓6.07 43.25↓2.63 62.92↓1.43 70.26↓5.58
KALEw/o KA 74.17↓7.82 68.26↓4.52 70.92↓3.68 55.28↓2.97 44.35↓2.61 42.48↓3.40 60.26↓4.09 69.22↓6.62
KALE 81.99 72.78 74.60 58.25 46.96 45.88 64.35 75.84

Orca2 7B
KALEw/o KI 79.68↓3.73 76.37↓1.79 84.18↓4.33 67.81↓1.81 58.59↓2.61 48.31↓2.46 74.96↓3.66 77.99↓2.03
KALEw/o KA 77.61↓5.80 75.43↓2.73 82.49↓6.02 65.52↓4.10 54.41↓6.79 45.86↓4.91 73.16↓5.46 75.91↓4.11
KALE 83.41 78.16 88.51 69.62 61.20 50.77 78.62 80.02

As shown in Table 14, We observe that our KALE model exhibits relatively robust performance
across different KGs. This implies a strong potential for KALE to generalize to various KGs in
complex real-world datasets, thereby demonstrating its significant applicability in practical scenarios.

N MORE RESULTS OF ABLATION STUDY

In Section 5.3, we report the results of the ablation study using LlaMA3 8B, Mistral 7B, and Qwen2.5
32B as the backbone model. In this section, we will further present the results using Gemma2
9B, OLMOE 7B, and Orca2 7B as backbone models to obtain more insights into the individual
components constituting KALE across various backbone models. As illustrated in Tables 15, we still
observe that the absence of each component within KALE leads to a decline in performance across
diverse domains for almost all applied backbone models in all tested benchmarks, which further
demonstrates that KALE organically integrates the knowledge-induced data synthesis method and
knowledge-aware fine-tuning into a unified framework as well. We still observe that the absence of
knowledge-aware fine-tuning (KALEw/o KA) leads to a more significant decline in accuracy, which
further demonstrates the importance of effectively implicit knowledge learning.
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O MORE RESULTS OF KNOWN&INCORRECT PHENOMENON ON DIFFERENT
BASELINES

As mentioned in Section 5.4, models fine-tuned using vanilla SFT still exhibit a serious known-
incorrect phenomenon. In this section, we provide more analysis of the known-incorrect phenomenon
to include additional baselines involving the training of LLMs. As shown in Table 16, we observe
that our KALE consistently achieves the best results in knowledge manipulation analysis. If the
model possesses relevant knowledge, KALE exhibits the lowest known&incorrect rate. Specifically,
on Qwen-2.5 32B, KALE demonstrates only a 1.07% known&incorrect rate. This further indicates
that KALE effectively enhances LLMs’ knowledge manipulation ability in downstream tasks.

Table 16: Experiment results on the AbsR benchmark in six LLM backbones range for the knowledge
manipulation analysis. We bold the best results for each method.

Category Method LlaMA3 8B OLMOE 7B Qwen2.5 32B Gemma2 9B Mistral 7B Orca2 7B

Known&Correct

SFT 34.95 39.33 48.34 41.11 50.12 47.88
SDFT 56.28 47.87 53.00 58.89 54.03 55.57
DMT 56.64 44.91 65.17 61.85 51.78 57.35
Meanlearn 48.43 59.12 60.19 48.93 56.52 59.12
KG-SFT 59.83 50.36 67.06 55.33 59.36 62.90
STaR 48.93 45.97 58.41 51.09 56.75 59.60
AugGPT 47.27 45.97 65.76 43.48 43.01 48.93
GPT3Mix 54.15 48.34 62.90 42.30 43.84 56.52
KALE 82.94 79.86 87.56 77.01 71.09 75.00

Known&Incorrect

SFT 28.43 44.08 27.49 35.55 29.50 35.90
SDFT 19.87 12.08 20.73 16.79 19.79 21.09
DMT 17.93 15.52 10.07 15.28 21.44 17.89
Meanlearn 22.75 11.97 10.90 23.11 14.45 17.89
KG-SFT 18.37 10.90 11.85 19.43 13.03 16.00
STaR 21.02 13.27 14.58 24.76 13.27 12.08
AugGPT 17.18 15.76 13.15 16.12 22.27 12.80
GPT3Mix 14.12 13.86 17.20 17.42 15.88 13.27
KALE 4.15 2.37 1.07 2.13 7.7 8.06

P MORE RESULTS OF SFT AND KALE WITH VARYING RATIOS OF TRAINING
DATA
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Figure 11: Results of different ratios of aug-
mented rationales on SFT and KALE on
Gemma2 9B, OLMOE 7B, and Orca2 7B,
respectively.

In Section 5.4, we utilized LlaMA3 8B, Mistral 7B,
and Qwen2.5 32B as backbone models to investigate
the performance of models trained with the SFT and
KALE methods on downstream tasks under varying
ratios of training rationales.

In this section, we provide additional results using
other LLMs as backbone models, including Gemma2
9B, OLMOE 7B, and Orca2 7B. As shown in Figure
11, we observed that KALE demonstrated superior
performance on downstream tasks even when only
a small proportion of rationales was used for train-
ing. Specifically, the improvement of the OLMOE
model can reach over 20% on low-data scenarios.
These findings highlight the effectiveness of KALE
in low-resource scenarios, which also impies a great
potentials of our KALE for scenarios with limited
high-quality data.

Q MORE RESULTS OF RATIONALES GENERATED BY DIFFERENT LLMS

In our main experiments, we utilize GPT-4.0 to generate rationales for each sample. We choose
GPT-4.0 due to its exceptional performance in generating high-quality rationales, as it has demon-
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Table 17: Experiment results on the AbsR benchmark in six LLM backbones range from different
data ratios. We bold the better results for each backbone model.

LlaMA3 8B Mistral 7B Qwen2.5 32B Gemma2 9B OLMOE-1B-7B Orca2 7B

% Data SFT KALE SFT KALE SFT KALE SFT KALE SFT KALE SFT KALE

5% 63.98 74.88 63.03 66.35 67.06 82.78 53.12 66.60 48.58 70.22 58.39 75.31
10% 65.17 75.32 63.86 67.28 67.65 85.53 54.73 69.31 49.53 71.49 60.63 76.20
25% 65.76 78.31 65.40 67.79 67.89 86.01 55.98 73.00 50.19 75.07 63.17 79.55
40% 66.35 81.89 66.23 70.38 68.48 89.36 56.75 74.39 50.71 77.38 63.99 80.69
50% 66.94 82.93 66.94 74.11 69.31 90.22 58.44 75.75 52.01 78.91 63.35 83.21

strated impressive results on numerous understanding and reasoning tasks. To demonstrate the
generalizability of our KALE, we also incorporate two popular open-source LLMs—i.e., DeepSeek
V3 and LLaMA3.1-70B-Instruct—for rationale generation and apply LLaMA3 8B as the backbone
model. The results in Table 18 indicate that training on rationales generated by LLaMA3 70B and
DeepSeekV3 still yields performance that significantly surpasses vanilla methods and achieves results
comparable to those derived from GPT-4.0-generated rationales. This demonstrates that KALE is
relatively robust to rationales generated by different LLMs, highlighting its effectiveness for
practical applications.

Table 18: Results of KALE for rationales generated by different LLMs.
Method AbsR ARC-c ARC-e Common MMLU BBH RACE-h RACE-m
Vanilla 62.68 66.79 69.90 58.72 55.88 46.54 53.35 57.02
KALE_DeepSeek V3 82.70 81.48 86.70 64.70 62.25 58.13 64.69 71.03
KALE_Llama3 70B 78.91 77.56 84.05 63.72 60.03 54.45 65.52 69.78
KALE_GPT-4o (Original) 83.62 81.23 86.45 65.69 63.27 57.33 68.61 74.12

R MORE RESULTS OF DIFFERENT TYPES OF GENERATED RATIONALES

To further investigate whether the model genuinely benefits from meaningful knowledge or merely
from the presence of any rationale, we generate two sets of modified rationales based on the original
reasoning paths:

• KALEirrelated: We instruct GPT-4o to generate factually irrelevant rationales to the reason-
ing paths.

• KALEcontrast: We instruct GPT-4o to generate rationales that are factually contrasting to
the reasoning paths.

We denote our original method as KALEori and present the comparative results in Table 19. The
performance obtained using irrelevant or contrasting rationales is significantly lower than that of
KALEori. This demonstrates the effectiveness of our knowledge-induced data synthesis, confirming
that the model truly benefits from high-quality, factually accurate, and logically coherent rationales.

Table 19: Comparion of KALE on different types of generated rationales.
AbsR ARC-c ARC-e Common MMLU BBH RACE-h RACE-m

KALEirrelated 65.05 64.76 66.20 56.18 54.21 47.55 50.03 54.11
KALEcontrast 59.60 59.64 63.56 51.84 52.25 42.48 51.11 48.96
KALEori 83.62 81.23 86.45 65.69 63.27 57.33 68.61 74.12

S REASONING TRACE QUALITY EVALUATION OF GENERATED RATIONALES

We incorporate a reasoning trace quality metric to evaluate the quality of the generated rationales
to provide more insight into our KALE. We assess rationale quality across five critical dimensions:
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Factual Accuracy, Logical Validity, Coherence, Completeness, and Interpretability (Lee &
Hockenmaier, 2025). Each dimension is evaluated as a binary classification task. Following the
"LLM-as-a-judge" paradigm (Zheng et al., 2023), we utilize GPT-5 for this assessment. As shown in
Table 20, we use the AbsR dataset as an example and find that rationales generated via our KALE
exhibit strong performance across all five dimensions, which further validates the effectiveness of
KALE.

Table 20: Reasoning trace quality evaluation for rationales on the AbsR dataset via GPT-4o.
Factual Accuracy Logical Validity Coherence Completeness Interpretability

98.82 97.63 99.53 100.00 99.64

T MORE RESULTS OF COMBINING SFT WITH KALE

We also conduct an additional experiment using Llama3 8B as the backbone model. We compare two
approaches: our original KALE method (denoted as KALEori) and a sequential approach where the
model is first fine-tuned with SFT and then further trained with KALE (denoted as KALEjoint)

As shown in Table 21, we find that while combining SFT first with KALE (KALEjoint) yields
improvements only on some datasets. This presents a promising avenue for future work to thoroughly
explore the optimal integration of KALE with existing post-training methods to achieve more
consistent and significant performance enhancements for specific downstream domains.

Table 21: Comparison results of combining SFT with KALE pipeline using Llama3 8B as the
backbone model.

AbsR ARC-c ARC-e Common MMLU BBH RACE-h RACE-m
KALEjoint 80.21 82.25 84.18 61.34 60.42 53.22 67.98 72.91
KALEori 83.62 81.23 86.45 65.69 63.27 57.33 68.61 74.12

U MORE DISCUSSIONS ON KALE

U.1 WHAT NAMED ENTITY RECOGNITION METHOD IS EMPLOYED IN KALE, AND DOES IT
HAVE ANY TAILORED DESIGNS?

Given the relative maturity of named entity recognition (NER), we do not elaborate on it in the main
text. Considering the need for rapid deployment and ease of implementation, we utilized the SpaCy
open-source library for the NER component. Moreover, we employ noun phrase extraction from the
NLTK library to retain some non-named yet significant nouns in given Q&A pairs. We also reference
the entity list from Wikidata for entity recognition. We also think that other specific optimized NERs
are promising to improve KALE.

U.2 WHY IS THE A* ALGORITHM EMPLOYED FOR KNOWLEDGE-INDUCED DATA SYNTHESIS
INSTEAD OF THE NAÏVE BFS ALGORITHM?

In knowledge-induced data synthesis, we select the A* algorithm over the naïve BFS based on
algorithmic efficiency. The A* algorithm guides the search direction by incorporating a heuristic
function h(n), which significantly reduces the exploration scope. Particularly in large-scale KGs
such as Wikidata, employing BFS to identify reasoning paths often requires days of computation. As
mentioned in Section 4.1, the extraction of reasoning paths from the AbsR’s training set requires
over one week. Therefore, we propose an efficient multi-path A* algorithm to extract reasoning
paths. It requires less than 4 hours to extract all reasoning paths on the same set. Consequently, we
adopt the A* algorithm as a scalable and efficient solution for reasoning path search.
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U.3 IS IT POSSIBLE FOR SOME REASONING PATHS TO NOT REACH THE ANSWER ENTITY?

During the process of extracting reasoning paths, instances may arise where the hop between the
question entity and the answer entity exceeds the predefined threshold m. Nevertheless, the statistical
data on the ABS dataset, as in Table 12, indicates that less than 2% of the 3-hop inference paths are
unable to reach the answer entity. This suggests that employing 3-hop inference paths is a highly
effective approach for extracting relevant information from the question to the answer. In such cases,
we utilize the partial reasoning path that can be extracted-the path from the question entity to its
neighboring entities within three hops—as enriched information for input. The ablation study results
in Tables 2 and 15 further demonstrate the simplicity and effectiveness these types of reasoning paths.

U.4 IF THE KG CONTAINS ERRORS THAT LEAD TO INCORRECT REASONING PATHS, WOULD
GPT-4O GENERATE WRONG RATIONALES?

(i) Owing to Wikidata’s factually accurate, high-quality, community-driven, and dynamically growing
character, extracted reasoning paths contain negligible factual or logical errors. This motivates
us to generate high-quality rationales via large-scale Wikidata. (ii) To address potential errors in
the rationale generation, we leverage GPT’s in-context learning (ICL) by incorporating specific
instructions in the prompt. This allows for a filtering and correction mechanism to be implicitly
applied during reasoning. As shown in Appendix J.2, we instruct LLM to generate rationales by
referring to the provided reasoning path: however, if the given reasoning path is irrelevant to the QA,
generate a rationale based on your own knowledge. This instruction helps that incorrect information
is reduced. We empirically observe that utilizing the in-context learning ability is simple yet effective
to reduce the error propagation with great domain robustness. A promising future work is to enable
double-check mechanism with multiple state-of-the-art LLMs.

U.5 WHAT IS THE REASON FOR CHOOSING THE KL DIVERGENCE AS THE LOSS FUNCTION?

The selection of KL divergence is due to its ability to quantify the difference between two probability
distributions. It encourages the model to compress the information contained in the rationale into its
parameters θ. By forcing the two distributions to align, the model must “internalize” the information
from the rationale xrats into its parameters θ, such that it can perform well even when xrats is
unavailable (e.g., at test time). This minimization process implicitly guides the model to capture
the underlying structure of the data, thereby facilitating the learning of meaningful representations
without explicit supervision. Furthermore, KL divergence is essentially composed of entropy and
cross-entropy. The knowledge-aware learning module in KALE can be viewed as a distillation
process, designed to enhance the knowledge manipulation capabilities of LLMs during the testing
phase, where rationale input is unavailable. The addition of KL divergence is intended to enable
the model to dynamically retrieve the task-relevant knowledge it has already mastered, which
improves its knowledge manipulation capability. We also believe that a theoretical analysis of
KALE, especially the KL divergence part, could lead to a deeper understanding of our KALE. We
agree that this is a promising direction for future work.

V LLM USAGE

We used a large language model (LLM)–based writing assistant for grammar and wording improve-
ments on draft text. The LLM did not generate research ideas, claims, proofs, algorithms, code,
figures, or analyses, and it did not have access to any non-public data. During rationale generation, we
use LLMs to transfer reasoning path into rationales. All edits suggested by the LLM were manually
reviewed and either accepted or rewritten by the authors, who take full responsibility for the final
content. The LLM is not an author of this paper.

34


	Introduction
	Related Work
	Text Data Augmentation Methods
	Knowledge Graph Retrieval Generation Methods
	SFT Variants Methods

	Preliminaries
	Notations
	A* Algorithm

	Method
	Knowledge-induced Data Synthesis
	Knowledge-aware Fine-tuning Paradigm

	Experiments
	Experiment Setups
	Main Results
	Ablation Study
	Case Study

	Conclusion
	More Related Works
	Large Language Models
	Classic Text Data Augmentation Methods
	Chain-of-X Approaches in LLMs

	More Cases of the Known&incorrect Phenomenon
	Proof of Admissibility of the Proposed Multi-path A* Algorithm
	Pseudo code of the Proposed Multi-path A*
	More Details of Benchmarks and Experiment Setups
	Implementation Details
	Benchmark Details

	More Results of KALE on Knowledge-intensive Domains
	Inference Time Comparison
	More results on the Hyperparameter sensitivity evaluation of KALE
	Average Steps of Extracted Reasoning Paths
	Prompt Templates
	Prompt Templates for Known Fact Checking
	Prompt Templates for Rationale Generation
	Prompt Templates for Main Results
	Prompt Templates for reasoning trace quality evaluation

	Examples of generated reasoning paths and rationales
	More Results of Different Backbone Models
	More results of applying different KGs to extract rationales
	More Results of Ablation Study
	More Results of Known&Incorrect Phenomenon on Different Baselines
	More Results of SFT and KALE with Varying Ratios of Training Data
	More results of rationales generated by different llms
	More results of different types of generated rationales
	reasoning trace quality evaluation of generated rationales
	More results of Combining SFT with KALE
	More Discussions On KALE
	What named entity recognition method is employed in KALE, and does it have any tailored designs?
	Why is the A* algorithm employed for knowledge-induced data synthesis instead of the naïve BFS algorithm?
	Is it possible for some reasoning paths to not reach the answer entity?
	If the KG contains errors that lead to incorrect reasoning paths, would GPT-4o generate wrong rationales?
	What is the reason for choosing the KL divergence as the loss function?

	LLM Usage

