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Abstract The identification of prototypical waveforms, such as sleep spindles and epileptic spikes, is crucial

for the diagnosis of neurological disorders. These prototypical waveforms are usually recurrently presented

in certain brain states, serving as potential biomarkers for clinical evaluations. Convolutional sparse coding

(CSC) approaches have demonstrated strength in identifying recurrent patterns in time-series. However,

existing CSC approaches do not explicitly explore state-specific patterns, making it difficult to identify

state-related biomarkers. To address this problem, we propose state-sensitive CSC to learn state-specific

prototypical waveforms. Specifically, we model signals of a certain state with specific waveforms that only

appear frequently in this state and background waveforms that are independent of states. Based on this,

state-sensitive CSC separates state-specific waveforms from background ones explicitly by incorporating

incoherence constraints into optimizations. Experiments with epilepsy brain signals demonstrate that our

approach can effectively identify prototypical waveforms in pre-ictal states, providing potential biomarkers for

seizure prediction. Our approach provides a promising tool for automatic biomarker candidate identification.

Keywords convolutional sparse coding, prototypical waveforms, state-specific dictionary, biomarker iden-

tification, neural signal processing

1 Introduction

In brain signals, prototypical waveforms can provide meaningful signatures for identifying complex brain
cognitive processes [1–3]. For instance, the alternations of sleep spindles, which are spontaneous 12 to
14 Hz transient oscillations, indicate several disorders such as schizophrenia [4,5], autism [6,7], and mental
retardation [8]. Epileptic spikes [9–11] and high-frequency oscillations (HFO) [12] such as ripples [13] are
highly relevant to epileptic onsets and can assist with seizure prediction and diagnosis. Therefore, the
discovery and identification of these prototypical waveforms aid in detecting prognostic biomarkers for
neurological disorders.

To identify these prototypical waveforms, efforts have been made, including knowledge-based ap-
proaches and data-driven approaches. Traditional knowledge-based approaches usually assume the char-
acteristics of the prototypical waveforms in advance, such as frequency ranges [14] and temporal patterns.
For instance, the most widely used knowledge-based approaches define prototypical waveforms as the high
power activity in time-frequency representations that exceeds a pre-set power threshold and falls within
a predefined frequency range [15, 16]. While more advanced knowledge-based approaches have been
proposed to improve sensitivity to the high power activity by accounting for aperiodic background activ-
ity [17, 18], these methods still rely on several predefined assumptions. Data-driven approaches aim to
reduce the dependence on predefined assumptions by learning prototypical waveforms directly from neural
signals. Typical data-driven approaches include empirical mode decomposition (EMD) [19,20], cycle-by-
cycle analysis [21], and brief amplitude undulation detection (BAU) [22–24], which automatically identify
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prototypical waveforms based on their temporal shapes. As for learning waveforms across channels, meth-
ods based on independent component analysis (ICA) [25], hidden Markov modeling (HMM) [26,27], and
electroencephalogram (EEG) microstates [28, 29] have been utilized to discover waveforms with certain
characteristics in spatial patterns.

Most recently, dictionary learning approaches [30] have demonstrated superior performance in learning
prototypical waveforms. Convolutional sparse coding (CSC) is a specific type of convolutional dictionary
learning [31–33]. The core idea of CSC is to decompose neural signals into combinations of recurrent
shift-invariant patterns as prototypical waveforms, which are activated by the typical neural activity [34]
or featureless background activity that maintains basic functionality [35]. CSC-based approaches have
achieved promising performance in detecting and characterizing prototypical waveforms related to aging
trends [36], auditory and visual stimuli [37].

One limitation of existing CSC-based approaches lies in that, they mostly do not explicitly consider
the specific characteristics of learned waveforms. On the other hand, state-specificity is a notable charac-
teristic of prognostic biomarkers, which implies their frequent appearance only in a certain state. Thus,
it is difficult for existing CSC-based approaches to be directly applied to the biomarker identification due
to their unsatisfactory performance of distinguishing state-specific biomarker candidates from irrelevant
background waveforms. This motivates us to develop novel CSC-based approaches that incorporate state-
specificity explicitly into the process of learning prototypical waveforms, which can provide candidates
for prognostic biomarkers.

To this end, we propose a novel data-driven approach based on CSC, called state-sensitive CSC, for
the automatic identification of state-specific prototypical waveforms. We first propose to model signals of
a particular state with state-specific waveforms that only appear frequently in this state and background
waveforms that are independent of states. Based on this, we further introduce a novel algorithm to
learn state-specific prototypical waveforms, where the separation of state-specific waveforms and back-
ground waveforms is guaranteed explicitly by regularization terms on their incoherence. Quantitative and
analytical results on epilepsy brain signals demonstrate that our approach can provide novel potential
biomarkers for predicting seizure onsets. The main contributions of this paper are summarized as follows.

(1) We propose to model signals with a combination of state-specific waveforms that repetitively appear
only in a certain state and background waveforms that share among multiple states.

(2) We introduce a novel state-sensitive CSC algorithm to learn state-specific prototypical waveforms,
which can serve as a generalizable framework for automatic biomarker candidate identification.

(3) Experiments with epilepsy brain signals demonstrate that our approach can successfully identify
state-specific prototypical waveforms in pre-ictal states, which provide new features for seizure prediction.

2 Related work

2.1 Sparse coding for discriminative dictionary learning

Sparse coding (SC) models signal as a linear combination of waveforms in an overcomplete dictionary.
For the sake of more discriminative representations, two types of SC-based approaches are proposed,
where constraints on sparse codes or waveforms are incorporated into the learning process.

One type of SC-based approaches exploit constraints on sparse codes for discriminability.

For instance, within-group sparse and group-wise sparse constraints [38] are utilized for learning class-
specific and subject-specific waveforms, which effectively reduce the required training samples from the
target subject. Similarly, tree-guided group sparse learning is proposed to select waveforms that are spe-
cific to chosen brain regions with the region spatial constraint on sparse codes. These selected waveforms
are further demonstrated to be potential clinical biomarkers for resting-state fMRI-based schizophrenia
diagnosis [39]. Besides the application in brain signal processing, discriminative dictionary learning and
classifier training based on the sparse codes are unified for face and object recognition [40–42].

The other type of SC-based approaches exploit constraints on waveforms for discrim-

inability. For example, shared and subject-specific dictionary learning (ShSSDL) is proposed to extract
shared and subject-specific waveforms from multisubject fMRI data using the incoherence constraints on
waveforms [43]. Likewise, images are decomposed into shared and category-specific dictionaries, where
category-specific dictionaries are learned under the incoherence regularization terms, to amplify their
originally subtle differences for fine-grained categorization [44]. Moreover, data-driven elements are opti-
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mized with task stimulus curves fixed as predefined elements in the dictionary learning procedure, which
can be applied to inferring discriminative task-related functional networks from fMRI data [45].

Despite the superior performance of learning discriminative dictionaries, these SC-based approaches do
not fully capture the temporal dynamics of prototypical waveforms, which can be important for identifying
prognostic biomarkers that are only present in certain states. Furthermore, waveforms learned by SC are
often duplicated with a time-shift, leading to the redundancy of resultant biomarkers.

2.2 CSC

CSC is widely-used in several areas including audio signal processing [46], biomedical imaging [47], and
computer vision [48, 49]. When applied to brain signal processing, CSC represents these prototypical
waveforms with recurrent shift-invariant patterns, which are activated by independent sparse sources.
For instance, recurrent waveforms within EEG are learned via single-channel ICA with the post-hoc
waveform selection [50]. Alpha-stable CSC is developed to extract meaningful waveforms from signals
contaminated by severe non-Gaussian noises [32]. As for the multi-channel learning, multivariate CSC is
introduced to detect simultaneous waveforms under the rank-1 constraint on sparse sources [33].

To distinguish discriminative waveforms from background ones, additional selections are conducted
after the standard CSC-based dictionary learning. For example, discriminative waveforms are identified
as snippets whose average correntropy-based similarity with others is smaller [51]. This approach is
based on the observation that the amplitude distribution of neuromodulations deviates significantly from
Gaussian, while that of background activity follows a Gaussian distribution. Furthermore, in order to
identify task-related waveforms, post-hoc selections based on driven point processes (DriPP) [37] and
rate of occurrence [36] measure the correlation between waveforms and specific stimuli quantitatively.

Though existing CSC-based approaches can capture temporal dynamics of shift-invariant waveforms
compared with SC-based approaches, their approaches of selecting waveforms are not well-suited for
biomarker identification. Thus, inspired by the success of discriminative dictionary learning via SC, we
propose a novel CSC-based approach, which incorporates state-specificity explicitly into the learning
process.

3 State-sensitive CSC

3.1 Existing brain signal model with CSC

The sparse and repeating occurrence of prototypical waveforms has been deemed to be the feature of brain
dynamics. These ordered patterns bring transient organization to complex and chaotic brain dynamical
systems [52]. In order to learn these recurrent patterns, CSC decomposes brain signals into a mixture of
waveforms, which are activated by independent sparse sources [31, 50, 53].

According to (1), the single-channel and band-passed brain signal, x(t), is assumed as the linear
summation of components reconstructed by waveforms x̂(t) and additive Gaussian noises ǫ(t). The
reconstructed signal x̂(t) is further formulated by sparse impulse responses of distinct waveforms based
on (2).

x(t) = x̂(t) + ǫ(t), (1)

x̂(t) =

w
∑

k=1

nk
∑

i=1

aikdk(t− τ ik) (‖dk‖2 = 1, ∀k). (2)

Here, {dk}
w
k=1 is a dictionary composed of w data-driven waveforms with the unit ℓ2-norm. The i-th

activation of dk is expressed as a phasic event, which is depicted by the projection coefficient aik and the
timing τ ik. nk denotes the number of phasic events that evoke dk. It is worth noting that dk defined by
CSC is irrelevant to the state of x(t).

3.2 Extended brain signal model with state-specific waveforms

Though the model presented in (1) and (2) can extract various prototypical waveforms, differentiat-
ing state-specific waveforms from those generated by background activity remains a challenge for these
methods. This difficulty arises because the decomposition is state-independent, resulting in the waveform
overlap across different states. This overlap may obscure the unique characteristics of a particular state,
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Figure 1 (Color online) Illustration of our extended brain signal model with state-specific waveforms for the task of seizure

prediction.

thereby limiting the use of these waveforms as biomarkers. As a result, this motivates us to develop novel
brain modeling approaches that can account for state-specificity.

To this end, we propose a novel brain model that considers the presence of two different types of
waveforms in signals from a particular state. The first type of waveform is state-specific and occurs
recurrently in a certain state, making it a candidate for a biomarker. The second type is generated
by featureless background activity and is present in all states. By encoding neural signals with these
state-specific waveforms, we can enhance the differences between states and obtain more discriminative
representations.

Mathematically, we denote the single-channel and band-passed signal from a particular state among
the total C states as xc(t), where c ∈ {1, . . . , C}. Then, according to (3), xc(t) can be expressed as
a summation of waveform components x̂c(t) and independent Gaussian noise ǫc(t). x̂c(t) is further
formulated as the sparse activations of state-specific and background waveforms:

xc(t) = x̂c(t) + ǫc(t), (3)

x̂c(t) =

w0
∑

k=1

n
0,c

k
∑

i=1

a
c,i
0,kd

0
k(t− τ

c,i
0,k) +

wc
∑

k=1

nc
k

∑

i=1

aic,kd
c
k(t− τ ic,k) (‖d0k‖2 = 1, ∀k; ‖dck‖2 = 1, ∀k), (4)

where the background (D0) and state-specific (Dc) dictionaries consist of w0 and wc waveforms with
the unit ℓ2-norm, respectively: D0 = {d0k}

w0

k=1 and Dc = {dck}
wc

k=1. The i-th activation of a background

waveform d0k is defined by a non-zero amplitude a
c,i
0,k and timing τ

c,i
0,k. Similarly, the i-th event evoked

by a state-specific waveform dck is represented by a non-zero amplitude aic,k and timing τ ic,k. The total

number of phasic events evoked by d0k and dck are denoted as n0,c
k and nc

k, respectively.
For convenience, we represent the sparse codes of D0 and Dc as sets containing pairs of coefficients

denoting amplitudes and timings: Sc
0 = {(ac,i0,k, τ

c,i
0,k)}

n
0,c

k
,w0

i=1,k=1, Sc = {(aic,k, τ
i
c,k)}

nc
k,wc

i=1,k=1. D and S consist

of all waveforms and their corresponding encoding of signals: D = D0 ∪ {Dc}
C
c=1, S = {Sc

0, Sc}
C
c=1. It is

worth noting that the state-specific waveform dck defined in (4) is relevant to the state c. An example of
the model is illustrated in Figure 1 for the task of seizure prediction.

3.3 Learning state-specific waveforms

To obtain state-specific and background waveforms, we propose an optimization algorithm based on the
model defined in (3) and (4). The main objective of this algorithm is to ensure the state-specificity of
waveforms during the learning process. Therefore, in addition to minimizing the ℓ2-norm error of D0 and
Dc to reconstruct xc and enforcing sparsity of S as in standard CSC, we also introduce constraints on
the self-incoherence and cross-incoherence of waveforms to ensure state-specificity [54].

To measure the similarity between two waveforms di and dj , we define a function corr that considers

any time-shift via convolution: corr(di, dj) = max(di ∗ d̃j), where ∗ denotes the discrete convolution

operator and d̃j is the time-reversed version of dj with a length of L time points. We further define
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Figure 2 (Color online) Framework of our method to learn state-specific waveforms and validate their performance as potential

prognostic biomarkers under the context of seizure prediction.

corr(Di, Dj) to measure the similarity between all pairs of waveforms selected from Di and Dj . For
convenience, we denote D−c as a set containing all dictionaries except Dc.

We then add a regularization term
∑C

c=0 corr(Dc, D−c) to enforce the cross-incoherence ofDc. Without
this constraint, the sparse codes of the background dictionary may be all zeros since signals can be best
reconstructed merely by the state-specific dictionary which contains background waveforms. Moreover, we
also add the term

∑C

c=0 corr(Dc, Dc) to enforce the self-incoherence within Dc, which prevents duplicated
waveforms with time-shifts [55] and stabilizes the resultant waveforms [56]. Therefore, the design problem
can be posed as a least-square optimization with the additional constraints described above:

min
D,S

{

C
∑

c=1

‖xc(t)− g(Sc
0, D0, t)− g(Sc, Dc, t)‖F

+ λw

C
∑

c=1

(|Sc
0|+ |Sc|) + λc

C
∑

c=0

corr(Dc, D−c) + λs

C
∑

c=0

corr(Dc, Dc)

}

s.t. ‖d0k‖2 = 1, ∀k; ‖dck‖2 = 1, ∀c, k. (5)

In this equation, ‖ · ‖F denotes the Frobenius norm. The term |S| indicates the total number of

coefficient pairs in the sparse code S, and the expression
∑C

c=1(|S
c
0| + |Sc|) represents the sparsity

of waveforms. The function g computes the reconstructed signal comprising input waveforms and

their corresponding sparse codes as follows: g(Sc
0, D0, t) =

∑w0

k=1

∑n
0,c

k

i=1 a
c,i
0,kd

0
k(t − τ

c,i
0,k), g(Sc, Dc, t) =

∑wc

k=1

∑nc
k

i=1 a
i
c,kd

c
k(t − τ ic,k). λw, λc, and λs are constant weights of the sparsity, cross-incoherence, and

self-coherence constraints, respectively. The unit ℓ2-norm constraint on each element of D is used to
avoid the trivial solution.

The objective function is not jointly convex over S and D. However, we can optimize sparse codes,
background and state-specific waveforms alternately while fixing resting variables, following strategies
mentioned in [31,44,53]. To ensure state-specificity, we propose to extract background and state-specific
waveforms from different subsets of signals under the constraint of proposed regularization terms. Each
optimizing procedure is explained in detail in this section, and the general framework is depicted in
Figure 2.

3.3.1 Optimizing sparse codes S

To solve for the optimal sparse codes S, we fix all dictionaries D and rewrite the objective function
formulated in (5) as shown below:

min
S

{

C
∑

c=1

‖xc(t)− g(Sc
0, D0, t)− g(Sc, Dc, t)‖F + λw

C
∑

c=1

(|Sc
0|+ |Sc|)

}

. (6)

The resulting objective function is in the standard form of CSC. Thus, efficient algorithms such as
coordinate descent (CD) [48], fast iterative soft-thresholding algorithm (FISTA) [57], and feature sign
search (FSS) [46] can be used to solve for S. In our work, we adopt matching pursuit (MP) [58] due to
its easy implementation and prominent performance.
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3.3.2 Optimizing background waveforms of D0

After obtaining the optimal sparse codes S as described in the previous paragraph, we update the wave-
forms D while keeping S fixed. In order to enforce the separation of state-specific waveforms from
the background ones, we propose to learn these two types of waveforms from different subsets of sig-
nals. Specifically, we first optimize the background waveforms using signals from all states, with the
state-specific waveforms fixed. We then obtain the state-specific waveforms from the signals of the cor-
responding state, after subtracting the background components.

We first formulate the optimization problem for learning D0 as follows:

min
D0

{

C
∑

c=1

‖yc(t)− g(Sc
0, D0, t)‖F + λccorr(D0, D−0) + λscorr(D0, D0)

}

s.t. ‖d0k‖2 = 1, ∀k. (7)

Here, yc(t) denotes the residuals of xc(t) after removing the state-specific components: yc(t) = xc(t) −
g(Sc, Dc, t).

For the practical implementation, we randomly update each background waveform d0k from D0 while
keeping resting ones fixed. Then, we define ykc (t) as the component of yc(t) that is only composed of d0k:

ykc (t) = yc(t)−
∑

j∈{1,...,w0}\k

n
0,c
j
∑

i=1

a
c,i
0,jd

0
j(t− τ

c,i
0,j). (8)

To replace the original corr with the differentiable ˜corr, we first approximate the maximum function
smoothly with LogSumExp (LSE) function. Furthermore, we rewrite the discrete convolution between
di and d̃j as the matrix multiplication between di’s Toeplitz matrix Toe(di) and d̃j . Therefore, ˜corr can

be written as follows: ˜corr(di, dj) = LSE(Toe(di)d̃j). As a result, the problem of solving for a certain
background waveform d0k can be formulated as follows:

min
d0
k







C
∑

c=1

∥

∥

∥

∥

∥

∥

ykc (t)−

n
0,c

k
∑

i=1

a
c,i
0,kd

0
k(t− τ

c,i
0,k)

∥

∥

∥

∥

∥

∥

F

+ λc ˜corr(d0k, D−0) + λs ˜corr(d0k, D0)







s.t. ‖d0k‖2 = 1. (9)

To update the background waveform d0k, we utilize stochastic gradient descent (SGD) in our work.
Since d0k is sparsely activated and for the sake of computational efficiency, we can optimize only with the
patches where d0k is present, following the approach in [31].

3.3.3 Optimizing state-specific waveforms of Dc

Given fixed sparse codes S and a background dictionary D0, the state-specific waveforms from Dc (where
c ∈ {1, . . . , C}) can be optimized by subtracting the background components from xc(t). Let zc(t) denote
the state-specific component of xc(t): zc(t) = xc(t)−g(Sc

0, D0, t). The optimization problem with respect
to Dc is illustrated as follows:

min
Dc

{‖zc(t)− g(Sc, Dc, t)‖F + λccorr(Dc, D−c) + λscorr(Dc, Dc)} s.t. ‖dck‖2 = 1, ∀k. (10)

The elements of Dc can be updated randomly using SGD, following the same procedure as described in
(9).

3.3.4 Implementation details

The overall framework for learning sparse codes and waveforms is shown in Algorithm 1. As discussed
above, we optimize sparse codes, background, and state-specific waveforms alternately until the dictio-
naries converge or the iteration count exceeds a predefined limit. To achieve higher convergence rates,
at each iteration, we randomize the order of dictionary elements for the optimization. Moreover, the
unit-norm regularizations improve the convergence rate by limiting the search space.

For the sake of computational efficiency, we first divide the band-passed and single-channel input signals
into several trials. Each input variable xc, where c ∈ {1, . . . , C}, represents a trial from a certain state.
State-specific and background waveforms are then extracted from a set of neural signals containing C
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Algorithm 1 State-sensitive CSC algorithm

Require: Band-passed and single-channel brain signals of C states: {xc(t)}
C
c=1; length of waveforms L; weights of sparsity, cross-

incoherence, and self-incoherence constraints λw, λc, and λs; size of background and state-specific dictionaries w0 and {wc}
C
c=1;

time segment length and window overlap ratio of {xc(t)}
C
c=1; maximum number of iterations Niter.

Ensure: Background dictionary D0 = {d0
k ∈ R

L}
w0
k=1

; state-specific dictionaries {Dc = {dc
k ∈ R

L}wc
k=1
}Cc=1.

1: Initialize D0
0 and {D0

c}
C
c=1 with white Gaussian noises, current iteration count it with 0;

2: while values of Dit
0 and {Dit

c }
C
c=1 do not converge ∧ it < Niter do

3: it← it + 1;

4: {Subsection 3.3.1}

5: for c = 1 to C do

6: Optimize sparse codes {Sc
0, Sc} via xc(t) and {Dit−1

0 , Dit−1
c } based on (6) with MP;

7: end for

8: {Subsection 3.3.2}

9: for c = 1 to C do

10: Update yc(t) via xc(t), Sc and Dit−1
c ;

11: end for

12: for k in shuffle({1, . . . , w0}) do

13: for c = 1 to C do

14: Update yk
c (t) via yc(t), S

c
0 and D

it−1
0 based on (8);

15: end for

16: Optimize d0
k via {yk

c (t)}
C
c=1 based on (9) with SGD; update the corresponding element of Dit−1

0 via d0
k;

17: end for

18: Dit
0 ← {d

0
k}

w0
k=1

;

19: {Subsection 3.3.3}

20: for c = 1 to C do

21: Update zc(t) via xc(t), S
c
0 and Dit

0 ;

22: for k in shuffle({1, . . . , wc}) do

23: Update zk
c (t) via zc(t), Sc and Dit−1

c in the same way as (8);

24: Optimize dc
k via zk

c (t) based on (10) with SGD; update the corresponding element of Dit−1
c via dc

k;

25: end for

26: Dit
c ← {d

c
k}

wc
k=1

;

27: end for

28: end while

29: D0 ← Dit
0 , {Dc ← Dit

c }
C
c=1.

trials from C different states. The resultant state-specific or background waveforms are clustering centres
obtained by the modified k-means algorithm proposed in [59].

Main hyper-parameters of Algorithm 1 include the size of background and state-specific dictionaries
{wc}

C
c=0, the weights of the regularization terms on incoherence (λc, λs), the length of waveforms L, the

time segment length of {xc(t)}
C
c=1, and the window overlap ratio of {xc(t)}

C
c=1. Since MP replaces the

sparsity constraint with a fixed constant to control sparsity, the weight λw can be omitted in our study
of hyper-parameters. In the following experiments, we investigate the effect of these hyper-parameters
on the obtained state-specific waveforms. We initialize the waveforms using Gaussian white noises in a
standard way. Alternatively, we can use random chunks of the signal after projecting each signal on a
rank-1 approximation for waveform initialization [33].

3.4 Encoding discriminative features with learned state-specific waveforms

With the resultant waveforms, we encode discriminative features and predict the state of signals to
validate their performance as potential biomarkers. The overall framework is illustrated in Figure 2
under the context of seizure prediction.

A feature space consisting of time points (τ) and amplitudes (a) can be created using the learned sparse
codes [51]. Marked point process (MPP) representation, which allows for the extension of established
point process models, has been utilized for the feature extraction [60, 61]. Since state-specific waveforms
are assumed to occur frequently only in a certain state, we propose to use the occurrence proportion of the
MPP induced by state-specific waveforms as a discriminative feature for detecting state c. Specifically,
the occurrence proportion of Dc is calculated after decomposing signals with Dc and D0, as described
in [61]. Therefore, the discriminative feature is defined as follows:

fc =

∑wc

k=1 n̂
c
k

∑w0

k=1 n̂
0
k +

∑wc

k=1 n̂
c
k

, (11)

where
∑w0

k=1 n̂
0
k and

∑wc

k=1 n̂
c
k represent the total number of phasic events induced by the background

dictionary D0 and state-specific dictionary Dc in a given trial after the decomposition, respectively.
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Based on the discriminative feature fc, the state of signals can be predicted. During the training
phase, a suitable threshold value for fc, γc, is chosen. During the test phase, fc is computed using the
waveforms learned during training. If the resulting value of fc exceeds the predefined threshold γc, the
trial is deemed to be in state c, indicating frequent occurrences of state-specific waveforms.

4 Experiments and results

4.1 Data and settings

4.1.1 Brain signals and preprocessing

We evaluate the performance of our approach in detecting potential prognostic biomarkers with epilepsy
brain signals from the Freiburg iEEG dataset [62, 63]. This dataset contains invasive EEG recordings
sampled at a frequency of 256 Hz from 21 subjects with intractable epilepsy. Considering that sufficient
seizures are required for training, we select 9 subjects solely based on the criterion that the number of
seizure onsets is equal or greater than 5 for our experiments. For each patient, recordings from three
focal and three extra-focal electrode contacts are available. Signals of the three focal electrode contacts
are used for most of our experiments.

Seizure prediction aims to detect the pre-ictal state, which refers to the periods just before the onset
of seizures, to prevent epileptic onsets. The Freiburg dataset contains at least 50-min pre-ictal and 24-h
interictal recordings per patient on average. In our study, we segment the 15 min before seizure onsets
as the pre-ictal state and 60-min discontinuous interictal recordings as the interictal state. Considering
that gamma rhythms are highly relevant to epileptic onsets [64], the single-channel raw signals are first
filtered into the gamma frequency band (30–100 Hz) using a fifth-order Butterworth filter. After that,
they are partitioned into 15-s non-overlapping segments as sets of input trials {xc}

C
c=1.

4.1.2 Train-test split and evaluation metrics

Experiments are carried out on subject-specific seizure prediction via leave-one-out (LOO) validation.
Epilepsy patients exhibit notable inter-individual variability in electrode positions stemming from het-
erogeneity in epileptogenic zones and seizure onset patterns. Consequently, the recorded waveforms
between subjects can differ considerably. Therefore, we utilize signals from the same subject for both
training and testing to maintain the consistency of electrode positions and recorded waveforms. Specifi-
cally, pre-ictal trials related to all but one seizure onset and 80% of interictal trials from a certain subject
are employed in the training phase, while the resting trials from the same subject are utilized for the test.
Pre-ictal trials are assumed as positive samples, while interictal trials are assumed as negative ones. Since
only one onset is present in test trials, the focus of results is on precision, which measures the accuracy
of samples when classified as pre-ictal. The precision is computed as follows: precision = tp

tp+fp , where tp
denotes the number of true positive results, and fp represents the number of false positive results. Note
that the precision presented in our results is averaged over 5 random runs of LOO cross-validation, which
enhances the reliability and robustness of our findings.

4.1.3 Hyper-parameter settings

The main hyper-parameters of our approach are set as follows. The length of waveforms, denoted as L,
is set to 50 based on the selected gamma band and sampling frequency. The values of the regularization
coefficients, λc and λs, are chosen to be 0.03 and 0.01, respectively. For convenience, we set the size of all
state-specific dictionaries, {wc}

C
c=1, to be the same: wc(c ∈ {1, . . . , C}) = 2. The size of the background

dictionary, represented as w0, is set to 5. As described in Subsection 4.1.1, the time segment length
and window overlap ratio for {xc(t)}

C
c=1 are selected as 15 s and 0%, respectively. The threshold of the

classifier, γc, for seizure prediction is set to be the 90th percentile of fc extracted from training interictal
trials. We set the maximum number of iterations Niter to 50.

4.2 Comparison with existing CSC-based approaches

In order to evaluate the performance of our state-specific waveforms, we compare their performance on
subject-specific seizure prediction with that of existing CSC-based approaches. The selected CSC-based
approaches are briefly introduced as follows:
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Table 1 Quantitative comparison on prediction precision (%) with existing CSC-based approaches

pat003 pat004 pat005

FE1 FE2 FD1 HR 2 HR 5 TBB1 G A3 G A4 IHB4

CSC 63.53± 3.46 58.98± 1.47 52.59 ± 10.51 77.85 ± 8.25 85.08± 3.41 83.52± 3.12 38.73 ± 15.48 53.29± 8.80 54.38± 11.62

CSC-R 63.02± 5.37 64.30± 4.42 65.10± 3.18 86.44± 2.31 83.86± 3.72 87.59± 0.77 39.01 ± 13.52 53.98± 10.52 45.79 ± 3.85

Ours 76.86± 2.74 77.49± 5.56 78.43± 1.91 84.17 ± 1.97 86.60± 1.43 90.01± 2.48 65.54± 5.71 66.35± 3.54 67.45± 5.41

pat009 pat010 pat017

TBA3 TBB2 TBC4 TLA1 TLB1 TLB2 TBA1 TBA2 TLA1

CSC 78.65± 2.01 76.43± 0.44 74.06± 1.13 83.23 ± 3.39 82.80± 2.70 70.02± 7.17 83.41± 8.81 72.73± 11.38 91.30 ± 2.36

CSC-R 85.45± 4.83 87.64± 4.29 84.28± 4.68 77.43 ± 1.08 83.86± 3.01 73.62± 2.24 96.27± 0.33 97.44± 0.35 96.06± 0.97

Ours 88.52± 0.77 87.47± 1.80 87.36± 4.76 87.73± 1.91 77.29± 2.35 85.56± 1.87 96.51± 0.51 96.15± 0.31 95.75 ± 0.29

pat018 pat020 pat021

G A7 G C5 G E5 G D3 G B4 G A2 TBB1 G E6 TBA3

CSC 43.88± 9.67 33.25± 11.64 38.10 ± 13.02 66.56 ± 4.87 57.26± 4.64 45.08± 7.53 45.27 ± 11.16 65.16± 6.13 70.74 ± 5.59

CSC-R 35.82± 7.63 43.83± 10.29 55.92± 3.99 61.72 ± 6.89 58.10± 4.41 47.38± 8.78 61.60± 6.95 73.87± 9.07 76.64± 2.60

Ours 88.00± 3.06 91.23± 1.91 86.15± 5.77 73.05± 5.23 65.22± 4.04 79.17± 3.49 84.76± 0.51 74.48± 3.91 69.99 ± 4.55

• CSC. The standard CSC learns recurrent shift-invariant waveforms in an unsupervised manner. We
use the MP-SVD algorithm [31] to extract prototypical waveforms from pre-ictal and interictal trials. We
designate the waveforms obtained from pre-ictal trials as the pre-ictal-specific dictionary Dpre-ictal, while
the waveforms obtained from interictal trials form the background dictionary D0.

• CSC-R. One criterion for identifying “task-related” waveforms is an increase in the activation
rate during task-performance [36]. We incorporate this criterion into CSC-R for selecting state-specific
waveforms. CSC-R involves learning waveforms from pre-ictal trials using standard CSC, and then
selecting waveforms with a higher rate of increase in average fpre-ictal from interictal to pre-ictal periods
post-hoc. These selected waveforms form the pre-ictal-specific dictionary, while the background dictionary
consists of resting waveforms learned from pre-ictal trials and all waveforms extracted from interictal
trials.

We choose CSC and CSC-R as the competitor based on the following considerations. First, CSC is a
data-driven method that has demonstrated better performance than the knowledge-based ones due to its
lesser dependence on predefined assumptions. Among these data-driven methods, CSC has emerged as an
efficient tool due to its flexibility in incorporating physical priors [36]. Second, recent CSC-based studies
have focused on “task-related” waveforms, similar to our goal of learning state-specific biomarkers. As
mentioned in Subsection 2.2, these studies conduct additional selections after the standard CSC, of which
CSC-R is a representative one suitable for biomarker detections.

4.2.1 Quantitative results

The average prediction precision of three focal electrode contacts from 9 subjects is presented in Table 1.
The results indicate that our method achieves the highest precision in most cases. Notably, our method
outperforms the baselines by over 10.00% precision on subjects such as pat005, pat018, and pat020,
highlighting the importance of incorporating state-specificity directly into the learning process for iden-
tifying potential biomarkers over learning in an unsupervised manner and with the additional selection.
Additionally, our method achieves precision no worse than 5.00% on average on channels where CSC-R
performs the best. We also observe that CSC-R achieves better precision in most cases compared with
standard CSC, indicating the effectiveness of additional selections based on fc.

4.2.2 Visualization results

To further explore the reasons for our superiority in potential biomarker identification, we conduct visu-
alizations of fc and analyze the correlation between state-specific and background waveforms. Figure 3
presents the results of this analysis for three selected subjects (pat004, pat003, and pat018).

Subsection 3.4 mentions that test epileptic signals are classified based on the activation rate of state-
specific waveforms from Dpre-ictal. Therefore, pre-ictal signals are supposed to be higher in fc, which
suggests the higher activation rate of pre-ictal-specific waveforms. Figure 3(a) demonstrates a comparison
of the frequency distribution of fc using waveforms extracted by CSC, CSC-R, and our method. Our
method and CSC-R exhibit a more significant differentiation in the distribution of fc than standard CSC
for pat004. When comparing our performance with CSC and CSC-R on the other two selected subjects,



Wang P L, et al. Sci China Inf Sci May 2024, Vol. 67, Iss. 5, 152401:10

0.0

1.0

0.8

0.6

0.4

0.2

0.0   0.2   0.4   0.6   0.8   1.0
0.0

1.0

0.8

0.6

0.4

0.2

0.0   0.2   0.4   0.6   0.8   1.0

1

3

5

7

1 3 5 7 9 11 13

C
S

C
D

p
re

-i
ct

al

O
u
rs

D
p

re
-i

ct
al

D
p

re
-i

ct
al

D
p

re
-i

ct
al

D
p

re
-i

ct
al

D
p

re
-i

ct
al

0.8

0.6

0.4

0.2

0

0.0

1.0

0.8

0.6

0.4

0.2

0.0   0.2   0.4   0.6   0.8   1.0

Feature f
c

Feature f
c

Feature f
c

Feature f
c

Feature f
c

Feature f
c

Feature f
c

Feature f
c

Feature f
c

Pre-ictal
Interictal

Pre-ictal
Interictal

precision=97.56%

p-value=1.31e-13
precision=96.77%

p-value=9.79e-105

precision=72.73%

p-value=0.16

1
2
3
4

1 2 3 4 5 6 7 8 9 10

0.8

0.6

0.4

0.2

0.1

0.2

0.3

0.4

0.5

CSC CSC-R

0.0

0.5

0.4

0.3

0.2

0.1

0.0   0.2   0.4   0.6   0.8   1.0

p
at

0
0
4

pat004 pat003 pat018

F
ra

ct
io

n

p
at

0
0
3

F
ra

ct
io

n

F
ra

ct
io

n
F

ra
ct

io
n

F
ra

ct
io

n
F

ra
ct

io
n

F
ra

ct
io

n

F
ra

ct
io

n

p
at

0
1
8

F
ra

ct
io

n

0.0

0.5

0.4

0.3

0.2

0.1

0.0   0.2   0.4   0.6   0.8   1.0

0.5

0.4

0.3

0.2

0.1

0.0
0.0   0.2   0.4   0.6   0.8   1.0

0.0

0.5

0.4

0.3

0.2

0.1

0.0   0.2   0.4   0.6   0.8   1.0
0.0

0.5

0.4

0.3

0.2

0.1

0.0   0.2   0.4   0.6   0.8   1.0
0.0

0.5

0.4

0.3

0.2

0.1

0.0   0.2   0.4   0.6   0.8   1.0

(a) (b)

1

3

5

7

1 3 5 7 9 11 13

1.0

0.8

0.6

0.4

0.2

1
2
3
4

1 2 3 4 5 6 7 8 9 10

0.9
0.7
0.5

CSC Ours CSC OursCSC Ours

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

A
v
er

ag
e 

co
rr

el
at

io
n

A
v
er

ag
e 

co
rr

el
at

io
n

A
v
er

ag
e 

co
rr

el
at

io
n

1

3

5

7

1 3 5 7 9 11 13

1.0

0.8

0.6

0.4

0.2

0

1
2
3
4

1 2 3 4 5 6 7 8 9 10

D
0

D
0

D
0

D
0

D
0

D
0

1.0
0.8
0.6
0.4
0.2

0.1

0.2

0.3

0.4

0.5
Pre-ictal
Interictal

precision=84.00%

p-value=1.30e-3

Pre-ictal
Interictal

precision=45.45%

p-value=0.99

Pre-ictal
Interictal

precision=97.78%

Pre-ictal
Interictal

precision=78.57%

p-value=0.05

Pre-ictal
Interictal

precision=84.62%

Pre-
Interi

Pre-ictal
Interictal
Pre-Pre-
Interi

precision=98.36%

p-value=3.69e-125

p-value=7.65e-5

p-value=1.18e-15

Pre-ictal
Interictal
Pre-
Interi

Ours

Figure 3 (Color online) Results of the visualization analysis performed on three selected subjects (pat004, pat003, and pat018).

(a) Distribution of fc computed on test pre-ictal and interictal trials using waveforms extracted by three different methods: CSC,

CSC-R, and our method. Each figure includes the corresponding prediction precision and the p-value of one-tailed t-test conducted

on fc between test pre-ictal and interictal trials. (b) Correlation matrix visualization and violin plots of the average correlation

between output Dpre-ictal and D0 learned by CSC and our method during one training. The correlation value displayed in the

violin plot represents the average correlation between output Dpre-ictal and D0 learned from a set of input trials.

we find that our distribution peaks are the most distant, giving rise to the highest prediction precision.
It is worth noting that CSC-R demonstrates reverse peaks in the distribution of pat018, indicating the
instability of the additional selection based on average increase rates. These observations suggest that
the background waveforms can obscure the distribution differences of fc between pre-ictal and interictal,
and our method improves the prediction precision by boosting these differences.

The correlations between the learned Dpre-ictal and D0 are computed using the function corr, and the
further investigation on the correlations is carried out to understand the superior performance of our
state-specific waveforms. Figure 3(b) depicts part of the correlation matrix and the distribution of the
average correlation between state-specific and background waveforms. Bright patches that signify great
similarities are present in all correlation matrixes of CSC. In contrast, no obvious bright patches are
visible in the visualization of our correlation matrixes. Consequently, these results confirm the existence
of background waveforms that appear randomly throughout all states. Additionally, the visualization
suggests that our method captures the background waveforms, which indicates the successful separation
of state-specific prototypical waveforms from background ones. Similarly, the violin plots displayed in the
last column of Figure 3(b) show that the average correlation of CSC is generally higher than ours. This
trend demonstrates the existence of background waveforms and highlights the advantage of identifying
potential prognostic biomarkers via state-specific waveforms.

4.3 Post analysis on learned state-specific waveforms

Besides examining the performance of pre-ictal-specific waveforms in seizure prediction, post analysis
is conducted to interpret these state-specific waveforms. Specifically, we perform experiments on state-
specific waveforms across different frequency bands and channels to better understand the characteristics
of our learned potential biomarkers.

4.3.1 Exploring learned waveforms in different frequency bands

The raw iEEG recordings are typically divided into several classical frequency bands, namely theta (4–
8 Hz), alpha (8–12 Hz), beta (13–30 Hz), and gamma (30–100 Hz). In our experiment, we merge the
theta and alpha bands to form a new frequency band, which we refer to as “alpha+theta”. The analytical
results of our learned waveforms from various frequency bands are summarized in Figures 4(a) and (c),
and Figure 5.

The precision of subject-specific prediction across different frequency bands is presented in Figure 4(a).
The quantitative results reveal that state-specific waveforms extracted from the gamma frequency band
outperform those from the other two frequency bands for most subjects. This is consistent with the
findings of previous studies [65], which have demonstrated that increased gamma connections in epileptic
tissue can differentiate it from healthy tissue.
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Figure 4 (Color online) (a) Subject-specific prediction precision using state-specific waveforms extracted from different frequency

bands. (b) Average subject-specific prediction precision of SOZ and non-SOZ across nine chosen subjects. (c) Boxplots showing the

peak frequency distributions of waveforms from Dpre-ictal and D0 learned by our method from different frequency bands. Results

marked with “**” and “****” indicate that the p-values obtained from the unpaired one-tailed t-test are below 1e−2 and 1e−4,

respectively. (d) The two-dimensional correlation representation of state-specific waveforms identified in SOZ and non-SOZ in one

training. The waveforms on the right-hand side of the panel are the visualization of each cluster centre.

To conduct a thorough examination of the changes in characteristics of waveforms from interictal to
pre-ictal periods, we compare the peak frequency distribution of state-specific waveforms from Dpre-ictal

with that of background waveforms from D0 during a certain training. Figure 4(c) displays the boxplots
for three selected subjects (pat004, pat009, and pat018). Each plot consists of boxes that span between
the first and third quartiles (Q1 and Q3), lines at the median, and whiskers that extend to the highest and
lowest data points. The differences in the distributions are statistically significant for all three subjects
in the gamma band. In contrast, for pat018, the distributions of Dpre-ictal are similar to those of D0 in
the alpha+theta and beta frequency bands. Furthermore, trends of constant, increasing, and decreasing
peak frequencies from state-specific to background waveforms are observed, making it challenging to dif-
ferentiate potential prognostic biomarkers solely based on the peak frequency. Overall, these observations
suggest that changes in peak frequency are most pronounced in the gamma frequency band and are in
line with previous findings that gamma rhythms are related to epileptic seizure onsets [64].

To further explore the correlation in high-frequency components between the obtained dictionaries and
original signals, we first calculate the difference in the peak frequency distribution between waveforms
from the pre-ictal-specific dictionary Dpre-ictal and those from the shared dictionaryD0. We also calculate
the difference in power spectral densities between pre-ictal and interictal trials using Welch’s method.
Both differences are computed within the gamma frequency band and scaled to a range between 0 and
1. Figure 5 shows the scaled differences in peak frequency distributions and power spectral densities for
selected subjects pat003, pat005, pat009, and pat020. The former difference correlates strongly with the
latter, suggesting that the distinguishing features of the state-specific waveforms arise from shifts in the
high-frequency content of the original signals across different states.

4.3.2 Exploring learned waveforms in different channels

The seizure onset zone (SOZ) [66,67] refers to as the region in the brain where epileptic seizures originate.
In this experiment, we aim to figure out whether the position of the channel affects the characteristics
of detected potential prognostic biomarkers. The primary outcomes of the study are summarized in
Figures 4(b) and (d), and Figure 6.

Initially, we compare the average subject-specific prediction precision of SOZ with that of non-SOZ. As
demonstrated in Figure 4(b), the state-specific waveforms obtained from SOZ exhibit similar prediction
precision to those derived from non-SOZ in most subjects. This observation indicates that state-specific
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Figure 6 (Color online) Portion of results from post analysis conducted on state-specific waveforms obtained from SOZ and non-

SOZ. (a) Comparison on the average fc values between interictal, pre-ictal, and ictal trials of SOZ and non-SOZ for all subjects

and two selected subjects. (b) The detailed changes in fc from interictal to pre-ictal, and ictal trials in a single channel located

inside and outside the SOZ, respectively, for pat003 and pat010. The interictal and pre-ictal trials are disjointed in the figure,

whereas the pre-ictal and ictal trials are contiguous.

waveforms exist in both SOZ and non-SOZ.

To evaluate the similarity between state-specific waveform patterns from SOZ and non-SOZ, we employ
dimensionality reduction techniques to directly represent these waveforms from the same subject. Specif-
ically, based on the default value of 2 for wc, we cluster the state-specific waveforms across channels into
two clusters via the modified k-means algorithm [59]. We then compute the correlation of each waveform
with resultant cluster centers using the function corr and obtain the two-dimensional representation. The
finding, as shown in Figure 4(d) for three representative subjects (pat003, pat005, and pat009), demon-
strates that the state-specific waveforms present in SOZ and non-SOZ exhibit similar patterns. This
observation indicates that these similar waveforms coexist in both regions. The diversity of state-specific
waveforms shown on the right side of the figure indicates the subject-specificity of seizure prediction, a
finding consistent with prior researches [68, 69].

In order to ascertain the co-existence of potential biomarkers in both SOZ and non-SOZ, more exper-
iments are conducted to examine the changes in their activation proportions during interictal, pre-ictal,
and ictal trials. The results displayed in Figure 6(a) indicate that the average fc of the SOZ and non-
SOZ exhibits similar trends. Across all subjects, there is a substantial increase in the average fc from
interictal to pre-ictal trials, indicating that the detected waveforms are specific to the pre-ictal periods.
Interestingly, the average fc remains high in ictal trials despite the lack of such trials in the training
phase, suggesting the frequent occurrence of pre-ictal-specific waveforms in ictal trials as well. The de-
tailed changes of two selected subjects (pat003 and pat010) are illustrated in Figure 6(b), which reveal
sustained low fc in interictal signals, followed by a sharp increase in fc during pre-ictal periods, and
sustained high fc in ictal signals. These observations are consistent with the trends observed in the
percentages of time occupied by ripples, as depicted in Figure 3 of [13].
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Figure 7 (Color online) (a) Comparison of prediction precision between our method and a formulation without the cross-

incoherence or self-incoherence regularization term for each subject. (b) Comparison of average precision performance between

our method and a formulation without the cross-incoherence or self-incoherence regularization term. The results marked with “**”

indicate significant differences based on paired one-way analysis of variance (ANOVA).

4.4 Effect of hyper-parameter settings

As delineated in Subsection 3.3.4, our approach uses a set of hyper-parameters. These hyper-parameters
include the weights of incoherence regularization terms (λs, λc), the size of the background dictionary
w0, the size of the state-specific dictionary {wc}

C
c=1, the length of waveforms which is measured in units

of time points and denoted by L, the time segment length and the window overlap ratio of {xc(t)}
C
c=1.

To investigate the effect of hyper-parameters to the performance of our approach, we conduct a thorough
experiment on each parameter based on the prediction precisions of nine selected subjects, while fixing
the other hyper-parameters.

4.4.1 Effect of incoherence regularization terms

An ablation experiment is conducted to verify the effectiveness of regularization terms. Our method is
compared with a formulation without the cross-incoherence or self-incoherence regularization term. As
shown in Figure 7(a), our method outperforms the other two methods in terms of prediction precision
for all chosen subjects. On average, our method performs at least 5.00% better than both methods, and
this result is found to be statistically significant by one-way ANOVA as illustrated in Figure 7(b). These
findings demonstrate the usefulness of our proposed cross-incoherence and self-incoherence regularization
terms in improving the prediction precision.

We further investigate the impact of the regularization terms by varying their weights. In this study, we
set the value of λc to three times that of λs, namely λc = 3λs, to focus more on the incoherence between
different dictionaries. The remaining hyper-parameters are set to the following constants: w0 = 5,
{wc}

2
c=1 = 2, and L = 50. The time segment length and the window overlap ratio are set to 15 s and

0%, respectively. The value of λs is varied from 0 to 0.1 and the resulting precision values are presented
in Figure 8(a). Our analysis reveals that the optimal value for λs is 0.01, which highlights the efficacy of
incoherence regularization terms in improving the performance of our learned waveforms.

4.4.2 Effect of dictionary sizes and waveform lengths

The size of the dictionary is a crucial hyper-parameter in convolutional dictionary learning, as it directly
impacts the quality of the learned representations. In this experiment, we conduct evaluations on the
sizes for background and state-specific dictionaries, denoted by w0 and {wc}

2
c=1, respectively. We begin

by analyzing the optimal size of the background dictionary w0, with the remaining hyper-parameters set
to the constants mentioned above. As shown in Figure 8(b), the background dictionary with 5 waveforms
demonstrates the best precision performance. We also find that a background dictionary with insufficient
or excessive waveforms leads to loss or redundancy in representation. A similar result is obtained for the
size of state-specific dictionaries, which are set to the same size for convenience. From Figure 8(c), we
find the optimal size of the state-specific dictionaries to be 2.

Considering a sampling frequency of 256 Hz and the frequency range of interest being the gamma
frequency band (30–100 Hz), the length of waveforms is constrained to fall within the range of 25 to 100
time points. Based on the results shown in Figure 8(d), it is found that 50-time-point-long waveforms,
which correspond to about 200 ms, offer the richest information for epilepsy.
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Figure 8 (Color online) Effect of several hyper-parameters on the prediction precision of our approach. (a) The weight of the

regularization term λs; (b) the size of the background dictionary w0; (c) the size of the state-specific dictionaries wc; (d) the length

of waveforms L; (e) the window overlap ratio; (f) the time segment length.

4.4.3 Effect of window overlap ratios and time segment lengths

Experiments are conducted by varying the window overlap ratio from 0% to 20%, as well as the time
segment length from 5 to 25 s. To ensure a fair comparison, we simultaneously change the time segment
lengths for training and testing. As illustrated in Figure 8(e), the prediction precision is robust over
different selections of window overlap ratios for most subjects. For subjects pat005 and pat020, a higher
overlap ratio tends to decrease the precision. This could be because noise repeats across adjacent windows,
weakening the impact of state-specific waveforms. As shown in Figure 8(f), most subjects achieve similar
or better performance as time segment length increases. A possible explanation for this is that longer
time segments may capture more stable state-specific patterns.

4.5 Discussion

While experimental results demonstrate the superior performance of our state-specific waveforms in
seizure prediction, it is important to acknowledge the limitations of our proposed method.

Firstly, alternative feature extraction and optimization methods can be explored. In order to detect
a certain state, we extract features based on the occurrence proportion of state-specific waveforms. Al-
though we present one method for encoding signals with state-specific waveforms, there may be other
methods for feature extraction in point processes that could be applied to our proposed framework. Thus,
further investigations are warranted to explore alternative approaches to feature extraction that can fully
capture the latent complexity of the neural signals and enhance the representation of neural signals to
improve the accuracy of biomarker identification. Similarly, alternative optimization methods could also
be suitable. For instance, we could implement the iterative optimization process with an autoencoder
based on neural networks, similar to the fast iterative shrinkage thresholding algorithm (FISTA) [70].
Such autoencoders apply the shrinkage to gradient-based updates at each iteration, and the waveforms
can be obtained with their convolutional kernels.

Secondly, due to space constraints, we only validate our approach for potential epileptic biomark-
ers. However, it should be noted that our proposed approach has the potential to be extended to learn
state-specific waveforms as potential prognostic biomarkers for other neurological disorders. For instance,
distinctive sharp beta waveforms are observed in invasive motor cortex recordings from Parkinson’s dis-
ease patients [71, 72]. Likewise, disrupted sleep spindles with decreased amplitudes and durations have
the potential to serve as an effective biomarker for the Alzheimer’s disease [73]. Moreover, the increase
in waveform complexities observed when the brain transitions from anesthesia to wakefulness may assist
in diagnosing disorders of consciousness [74, 75]. Due to the state-sensitivity of these waveforms, our
approach holds great potential for detecting them as biomarkers. From a clinical perspective, monitoring
changes in these waveforms across different states offers a more sensitive method for disease tracking [76].
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Additionally, the identification of state-specific waveform alterations can provide valuable insights for
personalized treatment strategies. Finally, comparing waveforms before and after therapy across dif-
ferent states allows for a comprehensive assessment of treatment efficacy and can help guide treatment
adjustments if needed. Therefore, further studies can focus on fully elucidating the potential clinical
applications of these learned state-specific waveforms.

Finally, it should be noted that our proposed framework only utilizes single-channel input trials, which
implies that the spatial information of channels is not considered in the current implementation. This may
lead to a loss of valuable information, especially in cases where the prognostic biomarkers are distributed
across different brain regions. In order to fully capture the spatial characteristics of the prognostic
biomarkers, it is necessary to investigate the latent relationship of MPP representations across channels.
One potential solution is to explore multivariate point process models that incorporate spatial dependency
across different channels [77, 78]. Such models could enable us to extract more informative features and
identify potential biomarkers that are specific to certain brain regions or networks. Therefore, future
studies should focus on incorporating spatial information into the framework and exploring the potential
of multivariate models in improving the accuracy and reliability of potential prognostic biomarkers.

5 Conclusion

In this study, we propose a novel CSC-based approach to learn state-specific waveforms from brain signals
as candidates for prognostic biomarkers. The core of this approach is to incorporate the state-specificity
explicitly into the modeling and learning process. Based on the model formulation with state-specific
and background waveforms, a novel state-sensitive CSC algorithm is introduced to learn these waveforms.
Quantitative and analytical results on epilepsy brain signals demonstrate that our approach can effectively
identify state-specific prototypical waveforms in pre-ictal states, which can potentially be biomarkers for
seizure prediction. Overall, our study provides a novel automatic tool for identifying potential prognostic
biomarkers via learning state-specific waveforms, which has the potential to be extended to diverse
diagnostic predictions and clinical decision-making.
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