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ABSTRACT
Human communication relies on multiple modalities such as verbal
expressions, facial cues, and bodily gestures. Developing compu-
tational approaches to process and generate these multimodal sig-
nals is critical for seamless human-agent interaction. A particular
challenge is the generation of co-speech gestures due to the large
variability and number of gestures that can accompany a verbal
utterance, leading to a one-to-many mapping problem. This paper
presents an approach based on a Feature Extraction Infusion Net-
work (FEIN-Z) that adopts insights from robot imitation learning
and applies them to co-speech gesture generation. Building on the
BC-Z architecture, our framework combines transformer architec-
tures andWasserstein generative adversarial networks. We describe
the FEIN-Z methodology and evaluation results obtained within the
GENEA Challenge 2023, demonstrating good results and significant
improvements in human-likeness over the GENEA baseline. We
discuss potential areas for improvement, such as refining input
segmentation, employing more fine-grained control networks, and
exploring alternative inference methods.
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1 INTRODUCTION
Human communication is a multifaceted process that relies on
various modalities, including verbal expressions, facial cues, and
bodily gestures. Combining these modalities allows us to convey
complex messages and facilitate meaningful interactions [9, 50].
Consequently, the development of machines that can process and
generate these multi-modal signals is crucial to enable seamless
interaction between humans and agents. A key aspect that makes
gesture generation particularly challenging is the existence of multi-
ple valid gestures for a given interaction. Unlike verbal expressions,
which often have a single intended meaning, gestures can convey
different nuances and interpretations, leading to a one-to-many
mapping problem [41]. Capturing this inherent variability and gen-
erating contextually appropriate gestures is a complex task that
requires careful consideration. The importance of gesture genera-
tion extends beyond research to practical applications in real-world
scenarios and virtual environments. In human-robot interaction,
gestures play a crucial role in enhancing communication and fa-
cilitating natural interactions between humans and robotic agents
[56]. Similarly, in virtual reality, realistic and expressive gestures
contribute to immersion and engagement, enabling more intuitive
and compelling experiences [35]. Therefore, the development of
robust and effective gesture-generation methods has great potential
for improving various areas of human-machine interaction.

In this work, we propose the FEIN-Z framework, a combination
of the proposed Feature Extraction Infusion Network (FEIN) and the
zero-shot learning aspect of the BC-Z architecture (Z). Inspired by
recent achievements in robotic imitation learning, we extend the
BC-Z approach [27] intended to generalize robotic manipulation
tasks to unseen problems, to the co-speech gesture generation do-
main. As transformer architectures have shown promising results
in a wide variety of domains [17, 48], including co-speech gesture
generation [38], we replace and extend multiple components of the
original BC-Z approach with a transformer architecture. Gener-
ative adversarial networks (GAN) are widely used in the robotic
and co-speech gesture generation domain [20, 52]. Building upon
the insight gained from recent approaches [52], we propose to use
a Wasserstein generative adversarial networks (WGAN) with a
Wasserstein divergence objective to guide our framework to gener-
ate natural and expressive gestures. The released evaluation results
of the GENEA Challenge 2023 show that our framework outper-
forms the challenge baseline with regard to human-likeness by
a significant margin and ranks in the top half of all evaluated ap-
proaches [31]. In the next sections, wewill first give a brief overview
of the existing work and current achievements of co-speech gesture
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generation (Section 2), before detailing the proposed FEIN-Z archi-
tecture, the individual components, the data processing, and our
training procedure (Section 3). Finally, we will discuss the results of
the performed evaluation (Section 4) and conclude with an outlook
for possible improvements of our work (Section 6).

2 RELATEDWORK
Gesture generation is an area of research that is rapidly progress-
ing. Previous studies have explored various approaches, initially
focusing on rule-based methods [10, 29, 34, 40] and simple com-
putational models [8, 19], and later transitioning to early machine
learning techniques [12, 23]. Currently, data-driven approaches
that integrate multiple modalities are being employed [4, 41, 59],
advancing the field even further.

Initially, gesture generation relied on manually crafted rules,
either directly applied to specific avatars or used in conjunction
with computational models that estimated appropriate gestures
based on accompanying speech [10, 19, 29, 34]. Although these ap-
proaches generally struggled to produce natural and fluent gestures,
they did enable the creation of complex representative gestures
that are challenging to achieve with current data-driven methods
[5, 6, 29, 34].

During the beginning of data-driven gesture generation, the
focus was primarily on single modalities, where gestures were
generated based on previous gesture frames [47], textual inputs
[12, 56], or audio-driven inputs [18, 21, 23]. Recent research has
witnessed a notable shift towards the generation of multi-modal
co-speech gestures. This approach integrates gestures with audio,
text, and other input modalities to produce varied and natural ges-
tures. To accomplish this, advanced techniques such as general
adversarial networks (GANs) [3, 41, 52, 54, 55], cyclic functions
[26], glow networks with invertible convolutions [24], variational
autoencoders [38, 46], and deep reinforcement learning have been
used [46]. Recurrent neural networks, specifically Bi-Directional
Long Short-Term Memory (Bi-Directional LSTM) and gated recur-
rent unit (GRU) [13, 25], have demonstrated the ability to generate
natural co-speech gestures [23, 57], with various adaptations of
recurrent architectures still being utilized in recent approaches
[28, 30, 44, 51]. Notably, the incorporation of style embeddings has
facilitated the generation of distinct gesture styles for individual
speakers, thereby enabling diverse variations in gestures that are
tailored to specific styles or speakers [21, 55].

Recent advancements in the field of co-speech gesture generation
can be broadly categorized into two main approaches: retrieval-
based methods and learning-based methods. Retrieval-based meth-
ods involve the creation or learning of predefined sets of gesture
units and employ techniques such as keyword matching, semantic
analysis, and prosody analysis to retrieve corresponding gestures
from a comprehensive database [59]. Conversely, learning-based
methods focus on training models to directly predict co-speech
gestures using paired co-speech gesture data [55]. In recent stud-
ies, some researchers have automated the creation of gesture unit
databases by leveraging training data. These gesture units are then
employed to train deep learning models, enabling the generation
of new and varied co-speech gestures [38]. Both retrieval-based

and learning-based methods have proven to be effective in address-
ing the inherent challenge of one-to-many mapping in co-speech
gestures [11, 32, 44, 55]. Notably, recent work on retrieval-based
methods have even demonstrated superior performance compared
to ground truth gestures [58, 59].

Simultaneously, significant progress has been made in the realm
of reinforcement learning for robot control, particularly in the
utilization of text and visual data as input. Within this context,
text data is commonly employed either as action descriptions or
goal descriptions. Recently, successful approaches have emerged
leveraging large language models (LLMs), which generate suitable
plans for given goals [1] [42] [36]. These approaches harness LLMs
to break down goal descriptions into a sequence of feasible low-
level actions expressed in natural language. Subsequently, the action
descriptions undergo embedding and serve as additional input to
a reinforcement learning model. As an example, PaLM-SayCan
incorporates the BC-Z network [27] to acquire low-level robot
skills by providing visual data of the current state alongside text
descriptions of planned actions.

Both the co-speech gesture generation and reinforcement imita-
tion learning domains share a common goal: to generate elaborate
and complex outputs by acquiring knowledge from a relatively lim-
ited data set. As the imitation learning domain has made significant
progress in minimizing the data requirements for generating com-
plex outputs, we believe that these achievements can be leveraged
in the gesture generation domain. Therefore, we propose our novel
framework, which is built on the foundation of imitation learn-
ing, with the expectation of extending these advances to gesture
generation.

3 MODEL AND METHOD
Our framework builds upon the BC-Z architecture by Jang et al.
[27], which is a flexible imitation learning system that can learn
from both demonstrations and interventions for a given Zero-Shot
task. Similar to our approach, the BC-Z architecture generates its
output in an autoregressive manner. However, given the unique
domain and data characteristics of co-speech gestures, we have
made several modifications to the backbone of the BC-Z architec-
ture to adapt it to our domain. In particular, we replaced the vision
network component of BC-Z with an attention-based network that
takes inputs from each modality (Transformer Network). In addition,
we refined the Feature-wise Linear Modulation (FiLM) network
[43], while retaining the fundamental concept of linear modulation
applied to the previous embedding. We refer to this modified FiLM
architecture as the Feature Extraction Infusion Network (FEIN). Our
framework takes audio, text, and speaker identity information from
both the main agent and the interlocutor as input, alongside ges-
tures from the interlocutor. To incorporate the temporal dimension
of the provided data, we employ positional encoding techniques
proposed by Vaswani et al. [49]. The transformer network receives
audio features, text features, and speaker identity information from
both the main agent and the interlocutor. The FEIN module also
utilizes this data, with the addition of previous 𝑡-gestures from
both the main agent and the interlocutor. The output of the trans-
former network is then combined with features extracted from the
FEIN module. The resulting embedding is further processed by a
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joint-specific Fully Connected Network (FCN). In addition to the
architectural refinements, we utilize a Wasserstein GAN network
with gradient divergence (WGAN-div) to improve the generation
performance of our framework [53]. To enhance the generation
performance of our framework we employ a discriminator with
an FCN consisting of four linear layers, using the leaky ReLU acti-
vation function [39]. Figure 1 gives an overview of our approach.
In the following sections, we will provide a detailed description of
the sub-modules of this framework, including the attention-based
network, FEIN, and the control network.

3.1 Transformer Blocks
The presented framework incorporates a total of four transformer
blocks, each possessing a consistent underlying architecture with
distinct parameters. These blocks comprise a multi-attention head
followed by a feedforward network. To augment the capabilities
of the feedforward network, we have introduced the Swish-Gated
Linear Unit (SwiGLU) activation function [45] into the transformer
blocks. As a result, the output 𝑦 of the transformer blocks can be
computed as follows:

MultiHead(𝑄,𝐾,𝑉 ) = Concat(head1, . . . , head𝑛)𝑊 0 = 𝑥 (1)
𝑓 (𝑥) = Swish(𝑥 ·𝑊1) ⊗ (𝑥 ·𝑊2) (2)

𝑦 = 𝑓 (𝑥) ·𝑊3 (3)

In the above equations, MultiHead denotes the multi-headed atten-
tion layer, Swish represents the swish activation function and𝑊
corresponds to the weights of the linear functions.

3.2 Transformer Network
The BC-Z framework initially relied on visual data, specifically
images, to predict robot actions based on the current context. How-
ever, our specific scenario lacks visual data, therefore requiring
modifications to the original architecture. To address this challenge,
we adopt a transformer network, known for its capacity to model
long-term dependencies within structured input data. Central to
our approach is the integration of audio and text input from both
the main agent and the interlocutor. Particularly, audio and text
data are processed independently. For each input modality, the
framework computes an attention-based embedding, which learns
the information and relationships present within the data. The
individual attention-based embeddings obtained in the preceding
step are then aggregated and passed through an additional multi-
attention mechanism, known as the ’Combined Transformer’. This
combination stage aims to identify and encapsulate important cues
related to the interplay between audio and text data. The resultant
composite embedding effectively captures salient information and
data relationships, forming the fundamental basis for subsequent
processes.

3.3 Feature Extraction Infusion Network (FEIN)
The FiLM network initially used in the BC-Z approach [27] requires
a task description and a human demonstration video as inputs.
However, this approach isn’t directly applicable to our specific
case. Therefore, we designed a novel network architecture that
establishes connections between the current audio-text inputs and
the gestures observed in the previous time window. Our dual goals

were to ensure coherent gesture generation by conditioning on
previous gestures and to inject additional contextual information
into the current context.

To achieve these goals, we use three separate stacks of 1D con-
volutional layers to process the concatenated audio-text data and
gesture information. This approach results in an embedding with
an enriched spatial feature space, effectively capturing important
spatial relationships. For meaningful interplay within these embed-
dings, a multi-head attention mechanism is incorporated. In this
mechanism, the gesture embedding served as both query and value,
while the audio-text embedding acts as the key. The goal of this
attention-based embedding is to learn complex dependencies be-
tween gestures and audio-text data. The resulting attention-based
embedding then traverses two different feed-forward networks.
Each network consisted of two linear layers with SiLU activation
functions to promote non-linearity and information propagation. A
normalization layer completes each network, ensuring consistent
and stable feature representations. This architectural configuration
aims to facilitate the extraction of two essential feature networks:
the 𝛾-network and the 𝛽-network. These networks contain critical
information for the following control model. Within the control
network architecture, the role of the 𝛾-network is to provide timing
information about previous gestures to the embedding. This helps
to maintain gesture consistency across time windows and counter-
act fragmented gestures. On the other hand, the 𝛽-network, due to
its additive nature, provides nuanced details to the embedding. This
feature allows the framework to capture subtle gestures that might
be suppressed by the relatively coarse influence of the 𝛾-network.

3.4 Control Network
The embedding network, derived from the transformer network,
along with the 𝛾 and 𝛽 networks from the FEIN model, serve as in-
puts for the control network. This network architecture is founded

Table 1: The employed joints and their corresponding cate-
gorizations within the control network

Body part number of joints joints

root 3 b_root
upper body 21 b_spine0, b_spine1,

b_spine2, b_spine3,
b_neck0, b_head

left leg 6 b_l_upleg, b_l_leg
right leg 6 b_r_upleg, b_r_leg
left arm 18 b_l_shoulder, b_l_arm,

b_l_arm_twist, b_l_forearm,
b_l_wrist_twist, b_l_wrist

left hand 48 b_l_pinky1. . .3, b_l_ring1. . .3,
b_l_middle1. . .3, b_l_index1. . .3,

b_l_thumb0. . .3
right arm 18 b_r_shoulder, b_r_arm,

b_r_arm_twist, b_r_forearm,
b_r_wrist_twist, b_r_wrist

right hand 48 b_r_thumb0. . .3, b_r_pinky1. . .3,
b_r_middle1. . .3, b_r_ring1. . .3,

b_r_index1. . .3
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Figure 1: Top: The proposed FEIN model with the convolutional embedder, transformer block, and 𝛾- and 𝛽-FCN. Bottom:
Transformer model with transformer blocks. Right: Control network with convolutional layers and 𝛾 and 𝛽 infusion. All inputs
(Gesture, Text, Audio, Speaker ID) consist of concatenated speaker and interlocutor information. The subscripts (0:99) and
(100:199) denote distinct time windows represented by the input data.

on the framework proposed by Jang et al. [27]. Initially, the em-
bedding undergoes convolutional layer processing, resulting in a
distilled embedding. Subsequently, this distilled embedding is en-
riched through element-wise multiplication with the 𝛾-network
output, which effectively integrates contextual information from
the FEIN module. A subsequent convolutional layer processes the
modulated output, combining information and yielding a trans-
formed embedding. To further infuse the embedding with contex-
tual cues, the transformed embedding is subject to element-wise
addition with the 𝛽-network output. This step augments the embed-
ding with supplementary contextual information. Following a final
convolutional layer, the output is normalized, yielding a vector that
merges current relevant features with essential contextual informa-
tion. This integration is pivotal for generating coherent gestures,
especially when considering the influence of preceding gestures.
This processed vector then progresses through a sequence of fully
connected networks (FCNs), with each FCN generating joint con-
figurations for specific body parts, see Figure 1. This design imparts
fine-grained control over individual body parts, thus facilitating
precise manipulation of the model’s movements. The employment
of independent body-part-specific FCNs allows the framework to
extract distinct features from the shared embedding, enabling a
body-part-specific feature space.

3.5 Loss
The loss functions used in our framework are defined as follows.
For the discriminator, the loss function is given by:

L𝐷𝑤𝑑𝑖𝑣 (x, 𝐷 (z)) = 𝐷𝑖𝑠 (x) − 𝐷𝑖𝑠 (𝐷 (z)) + 𝛿 |∇x̂𝐷𝑖𝑠 (x̂) |𝑝 (4)

Here, 𝐷𝑖𝑠 represents the discriminator function, x represents the
original dataset, and z represents the reconstructed data. The hy-
perparameter 𝛿 controls the magnitude of the divergence penalty.
The first component of the loss, 𝐷𝑖𝑠 (x) − 𝐷𝑖𝑠 (𝐷 (z)), measures
the dissimilarity between the real sample x and the output of our
framework, 𝐷 (z). The second term, 𝛿 |∇x̂𝐷𝑖𝑠 (x̂) |𝑝 , corresponds to
the divergence penalty, which encourages the generated sample
𝐷 (z) to closely resemble the distribution of real data. The generator
loss function is defined as:

L𝐺𝑤𝑑𝑖𝑣 = 𝐷𝑖𝑠 (𝐷 (z)) (5)

This loss function aims to minimize the output of the discriminator,
specifically the evaluation of 𝐷𝑖𝑠 (𝐷 (z)).

For behavior cloning, we employ a scaled version of the smoothed
L1 loss, defined as:

𝐿1 =

0.5𝜃 ( 𝑥

𝜃
− 𝑧

𝜃
)2

𝛽
, if |𝑥 − 𝑧 | < 𝛽

𝜃 | 𝑥
𝜃
− 𝑧

𝜃
| − 0.5𝛽, otherwise

(6)

This loss function is applied to the positions 𝑦 and 𝑦, velocities 𝑦′
and 𝑦′, and accelerations 𝑦′′ and 𝑦′′. For this, the gradients are
calculated using the following formula:

𝑓 (𝑦) =
2∑︁

𝑖=0
𝜆𝑖
𝑑𝑖𝑦

𝑑𝑡𝑖
(7)

L𝑏𝑐 = 𝐿1(𝑓 (𝑦𝑖 ), 𝑓 (𝑦𝑖 )) (8)

In these equations, 𝑦 represents the true gestures, while 𝑦 denotes
the predicted gestures. The function 𝑓 (𝑦) calculates the gradients
of the variable or function 𝑦 with respect to time. The superscript
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Figure 2: Box plot visualization for the human-likeness study,
provided by the GENEA Challenge 2023 [31]. Our framework
is labeled SE. Median ratings are shown as red bars (with 0.05
CI) and mean ratings as yellow diamonds (with 0.05 CI). Box
edges indicate the 25th and 75th percentiles. Whiskers cover
95% of ratings for each condition.

𝑖 in 𝑑𝑖𝑦

𝑑𝑡𝑖
indicates the order of the derivative, ranging from 0 to 2.

The 𝜆𝑖 terms are scaling factors applied to the position, velocity,
and acceleration losses.

The term L𝑏𝑐 corresponds to the loss function used for back-
propagation. It is computed as the average of the individual loss
terms 𝐿𝑖 over a dataset of size 𝑁 . Each 𝐿𝑖 measures the dissimilarity
between the calculated gradients 𝑓 (𝑦𝑖 ) and the target gradients
𝑓 (𝑦∗

𝑖
). Together, this loss ensures a temporal consistency of the

generated gestures. The overall loss function used in our frame-
work is a combination of the behavior cloning loss (L𝑏𝑐 ) and the
discriminator loss (L𝐺𝑤𝑑𝑖𝑣

):

L𝑡𝑜𝑡𝑎𝑙 = L𝑏𝑐 + 1𝑛 · 𝜆𝑔L𝐺𝑤𝑑𝑖𝑣
(9)

Here, 1𝑛 (𝑠) is an indicator function defined as:

1𝑛 (𝑠) =
{
1, if 𝑠 % 𝑛 = 0
0, otherwise

(10)

This indicator function is used to determine when to apply the
discriminator loss. The parameter 𝑛 controls the frequency of ap-
plying the discriminator loss, and the scaling factor 𝜆𝑔 adjusts the
relative importance of the discriminator loss compared to the be-
havior cloning loss. By combining these components, the overall
loss function guides the training process to improve the quality and
consistency of the generated gestures.

3.6 Data Processing
The Genea Challenge 2023 provided an adapted version of the
Talking With Hands 16.2M dataset [33], extended to a dyadic set-
ting involving both a speaker and an interlocutor. This dataset en-
compasses various modalities, including 3D full-body gesture data,

audio data, text transcripts, and the speaker ID, all organized sepa-
rately for the speaker and the interlocutor. As part of the challenge,
the data was pre-separated into a training set of 371 sequences, a
validation set of 40 sequences, and a test set of 69 sequences. Each
sequence is approximately 1 minute in length, with a sample rate
of 44100 Hz for the audio data. The gesture data was recorded at 30
frames per second. Since the challenge required the generation of
the speaker for the test set, this data was omitted.

For our approach, we built upon the preprocessing pipeline es-
tablished by Chang et al. [11], making necessary modifications to
suit our specific requirements. For the audio data, we used multiple
feature extraction techniques to obtain three different features: Mel
Frequency Cepstral Coefficients (MFCC) with 40 dimensions, Mel
Spectrograms with 64 filter banks, and prosody features. All audio
features were computed using a window length of 4096 and a hop
length of 1470. Regarding the text transcripts, we used the FastText
word embedding model [7], which assigns a 300-dimensional vector
representation to each word in the transcript. Since the temporal
duration of each word is known, we generated a vector of size [se-
quence length, 300] containing the corresponding word embedding
vector for each word’s duration. For the gesture data, we trans-
formed the rotation of each body and finger joint in the BVH file
into an exponential map representation [22]. This transformation
resulted in 56 3D body joints for the gesture data.

In the post-processing phase of the gesture output, we performed
two operations. First, we clipped the angle of each generated body
joint to be within the range of the 2nd and 98th percentiles of
the corresponding joint in the training data. This clipping step
ensured that the generated angles remained within a reasonable
range. Afterward, we applied a rolling window calculation over 50
frames to smooth the generated output and improve its temporal
coherence.

3.7 Training procedure
The training procedure incorporates both behavior cloning and the
WGAN architecture. In our setup, the network is responsible for
generating gestures, while the discriminator is used to discriminate
between the generated data and the original data. We chose a batch
size of 128 and a sequence length of 200 frames, which corresponds
to two frame windows: 𝑡−1 := [0−99] and 𝑡0 := [100−199]. For the
optimizer, we use AdamW [37] with a weight decay parameter of
0.01 for both the FEIN network and the discriminator. For the FEIN
model, we select a learning rate of 5𝑒 − 5, while the discriminator
utilizes a learning rate of 1𝑒 − 4. During training, we set the scaling
factor 𝜆𝑔 to 0.05.

The audio and text data used in training comes from 𝑡0, while
the gesture data is sourced from 𝑡−1. After each prediction step, we
optimize the model using the loss function described in 9, and we
optimize the discriminator accordingly using its loss function, as
defined in 4. To prevent the network from consistently outperform-
ing the discriminator and to stabilize the training, we apply the 5
loss only every 𝑛 = 4 steps. In total, we trained our framework for
60 epochs. Every 10 epochs, we computed the validation loss and
used the best-performing model to generate the evaluation data.
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4 EVALUATION
During the training phase of the framework, we conducted a thor-
ough analysis of various framework configurations, experimenting
with different numbers of transformer blocks and parameters. We
also explored frameworks that generated gestures for both the main
agent and the interlocutor, as well as different input data for the
FEIN model. Among these tested frameworks, many did not yield
satisfactory results in terms of generating realistic and coherent
gestures. As a result, we selected the framework proposed in this
study as the most suitable for our purposes.

The main evaluation of the framework was performed along-
side other approaches within the GENEA Challenge 2023. Since
the evaluation of generated co-speech gestures is largely subjec-
tive and objective measures that strongly correlate with subjec-
tive evaluations are lacking [41], the evaluation focused primar-
ily on subjective measures. Three specific aspects were evaluated:
"Human-Likeness", "Appropriateness for Agent Speech", and "Ap-
propriateness for the Interlocutor". To ensure anonymity, all pub-
lished results were anonymized and assigned unique labels. Our
framework was labeled SE.

4.1 Human-Likeness
The results of the Human-Likeness evaluation are shown in Figure
2, illustrating the rating distribution obtained for the different ap-
proaches. Figure 3 highlights the significant differences between
the competitors. Here, our framework receives significantly higher
ratings than the dyadic baseline (BD), the monadic baseline (BM),
as well as the approaches SH, SD, SI, SK, SA, SB, and SC. On

...over condition x, in terms of human-likeness
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Figure 3: Significant differences between all approaches, pro-
vided by GENEA Challenge 2023 [31]. Our framework is la-
beled SE. White indicates that the condition on the y-axis is
rated significantly higher than the one on the x-axis, while
black indicates the opposite (y-rated below x). Gray indicates
no statistically significant difference at a significance level
of 𝛼 = 0.05, after applying the Holm-Bonferroni correction.

the other hand, compared to the natural motion (NA) and the ap-
proaches SG and SF, our framework receives significantly lower
ratings for human-likeness. There were no significant differences in
terms of human-likeness between our approach and the approaches
SJ and SL.

A significant limitation of our approach, especially concerning
human-like gesturing, was the lack of finger movement in all of the
generated gestures. Although we trained our framework to produce
output for the finger bones, the resulting gestures consistently ex-
hibited a static finger position. Any changes observed in the finger
bones were primarily intended to prevent the introduction of arti-
facts, rather than to add meaningful information to the generated
gestures.

Another notable issue was the rapid change of poses in our
framework. Although the evaluation only captured footage from
the knees up, to prevent any foot sliding from influencing the eval-
uation, our model consistently exhibited movements that involved
a redistribution of weight in the lower part of the torso. Such move-
ments may have compromised the naturalness of the generated
gestures and led to a lower ranking in the human-likeness evalua-
tion.

4.2 Appropriateness
The results of the speech appropriateness evaluation for the main
agent are depicted in Figure 4a. These ratings indicate the likelihood
of each framework being preferred with matching or mismatching
gestures. Our proposed framework, labeled SE, demonstrates sta-
tistical significance in terms of speech appropriateness compared
to random chance. However, it is notably inferior to framework
SG, which exhibits significantly better performance. Additionally,
there is no significant difference between our framework and the
approaches SJ, SF, SK, SD, SI, SK, SB, SA, and SH in terms of
speech appropriateness. The results of the appropriateness of ges-
tures in response to the interlocutor are presented in Figure 4b.
These ratings reflect the likelihood of each framework being pre-
ferred with matching or mismatching gestures. Our framework
does not exhibit statistical significance compared to random chance
in this aspect. Our model does achieve a significantly higher mean
appropriateness score (MAS) compared to frameworks SG and SH,
and a significantly lower MAS compared to the natural motion
NA. Furthermore, our model does not differ significantly from the
dyadic and monadic baselines, as well as frameworks SA, SB, SL,
SF, SI, SD, SJ, SC, and SK, in terms of appropriateness of gestures
in response to the interlocutor.

The evaluation results presented here show a notable discrepancy
when compared to the results of the human similarity evaluation.
While our framework is able to generate co-speech gestures that
are perceived as more human-like than the baseline used in the
challenge, this does not mean that the generated gestures are per-
ceived as more appropriate for the given context than the baseline.
Although the lack of finger bone information could be a possible
explanation for this, we suggest that it is indicative of a general
problem common to all current approaches to co-speech gesture
generation. Current approaches excel at producing gestures that ap-
pear natural and unobtrusive within a given conversation, which is
already a commendable achievement for human-agent interaction.
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(a) Appropriateness for agent speech
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(b) Appropriateness for the interlocutor

Figure 4: Bar plots visualizing the response distribution in the appropriateness studies, provided by the GENEA Challenge 2023
[31]. Our framework is labeled SE. The blue bar (bottom) represents responses where subjects preferred the matched motion,
the light grey bar (middle) represents tied responses, and the red bar (top) represents responses preferring mismatched motion,
with the height of each bar being proportional to the fraction of responses in each category. Lighter colors correspond to slight
preference, and darker colors to clear preference. On top of each bar is also a confidence interval for the mean appropriateness
score, scaled to fit the current axes. The dotted black line indicates chance-level performance. Conditions are ordered by mean
appropriateness score.

However, this still falls well short of replicating human-to-human
interaction. In human-to-human communication, individuals con-
vey additional meaning through their gestures [14], which is based
on a shared mental model of the current conversation, themselves,
and the conversation partner [15, 16]. With this shared understand-
ing, conversational partners can adapt their gestures to each other
and effectively convey meaningful information. Since our frame-
work, and to the best of our knowledge all other available co-speech
gesture approaches, lacks this essential insight into the conversa-
tion partner, the generated gestures appear highly interchangeable
to any human evaluator.

Table 2: The Fréchet Gesture Distance (FGD) distance for each
ablation modification, calculated both in the feature space
(FGD F-space) and the raw data space (FGD R-space). For both
distances, lower is better.

Methods FGD F-space ↓ FGD R-space ↓
natural motion 0.00 0.00

w/o transformer 169.93 3334.14
w/o 𝛾-network 84.45 2667.33
w/o 𝛽-network 61.76 1879.82
w/o audio 50.93 965.05
w/o text 43.9 1099.48
w/o main audio 34.98 758.62
w/o inter text 31.26 767.28
w/o main text 29.49 777.91
w/o inter audio 28.54 680.66
original 23.03 533.04

5 ABLATION STUDY
In order to assess the specific contributions of each component
within our proposed framework, we conducted an ablation study.
First, different input configurations were investigated, including
the exclusion of all textual input ("w/o text"), the exclusion of all
audio input ("w/o audio"), and the selective removal of these modal-
ities for the main speaker ("w/o main audio" and "w/o main text")
as well as for the interlocutor ("w/o inter audio" and "w/o inter
text"). Furthermore, different architectural configurations were ex-
plored, including deactivation of the output of the combined trans-
former ("w/o transformer"), deactivation of the 𝛽-network ("w/o
𝛽-network"), and exclusion of the multiplication process involving
the 𝛾-network (referred to as "w/o 𝛾-network"). The distinction in
the generated gestures was measured by using the Fréchet Gesture
Distance (FGD), as defined by Yoon et al. [55], for each modification.
The evaluation of this distance was performed both in the feature
space of the autoencoder network given by the GENEA 2023 chal-
lenge and in the context of the raw data space, similar to Ahuja
et al. [2]. Detailed results are presented in Table 2. We make an
example video of all modifications available online1.

As can be expected, each modification of the framework leads
to an increase in the FGD, both in the feature space and in the
raw data space. In terms of the modality-specific inputs associated
with the interactive partner, all modifications lead to a comparable
increase in the FGD. In particular, the removal of the interlocutor’s
audio produced the smallest change, while the exclusion of the main
speaker’s audio produced the largest change. The complete removal
of both textual and audio information led to a sharp increase in
FGD. Visual inspection of the generated gestures revealed instances
of elaborate but misaligned gestures in cases of audio removal,

1https://vimeo.com/853326587

https://vimeo.com/853326587
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whereas small and infrequent gestures were observed following
text removal.

Looking at the modifications of the architectural configurations,
it becomes clear that the transformermodel has successfully learned
to generate the gestures since the removal leads to strongly de-
graded performance and the largest increase in FGD of all modifi-
cations. Similarly, the removal of the 𝛽 network and the 𝛾 network
leads to a deterioration of the performance. Looking at the visual
results of the 𝛽 network, the gestures still show a natural fluid
movement but are mainly concentrated in front of the chest and do
not show any obvious finger movement. On the other hand, the vi-
sual results from the 𝛾 network show fast, erratic movements of the
hands and upper body, with some unnatural poses. These results
support our intended design choices, with the 𝛾-network focusing
mainly on smoothing the temporal information of the generated
gestures, while the 𝛽-network refines the generated gestures to
allow for more elaborate hand movements.

6 CONCLUSION
Our framework presents a novel approach to co-speech gesture
generation inspired by robotic imitation learning and based on a
behavior cloning architecture. We combine a transformer architec-
ture with a generative adversarial network to create a model that
ranks in the top half of the GENEA Challenge 2023 [31]. Although
the model did not achieve results comparable to natural motion,
we believe that additional training time and more sophisticated
input segmentation could lead to improved results. An effective
strategy may involve the use of only historical data in the FEIN
model to ensure that the input data consists only of aligned gesture,
audio, and text data. In addition, the use of a finer-grained control
network that distinguishes separate body parts, such as hands and
arms, could have the potential to improve the generated gestures.
Increasing the feedback provided by the discriminator model in
later stages of training is another way to improve performance,
as the discriminator shows diminishing returns as training pro-
gresses. Additionally, selectively freezing certain models within our
framework during later stages of training to focus on refining ges-
tures could lead to performance improvements. Similarly, exploring
alternative inference methods, such as predicting one frame at a
time or adjusting the time window, may also help to improve the
capabilities of the framework. In conclusion, we believe that our
architecture demonstrates the potential to generate gestures that
exhibit some human-like characteristics, and we believe that there
are several ways in which our framework could be improved in the
future. Finally, we hypothesize that the integration of frameworks
introduced in multimodal robot learning could further enhance the
performance of future gesture generation models.
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