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ABSTRACT

Mamba has garnered widespread attention due to its flexible design and efficient
hardware performance to process 1D sequences based on the state space model
(SSM). Recent studies have attempted to apply Mamba to the visual domain by
flattening 2D images into patches and then regarding them as a 1D sequence. To
compensate for the 2D structure information loss (e.g., local similarity) of the
original image, most existing methods focus on designing different orders to se-
quentially process the tokens, which could only alleviate this issue to some extent.
In this paper, we propose a Visual 2-Dimensional Mamba (V2M) model as a com-
plete solution, which directly processes image tokens in the 2D space. We first
generalize SSM to the 2-dimensional space which generates the next state con-
sidering two adjacent states on both dimensions (e.g., columns and rows). We
then construct our V2M based on the 2-dimensional SSM formulation and incor-
porate Mamba to achieve hardware-efficient parallel processing. The proposed
V2M effectively incorporates the 2D locality prior yet inherits the efficiency and
input-dependent scalability of Mamba. Extensive experimental results on Ima-
geNet classification and downstream visual tasks including object detection and
instance segmentation on COCO and semantic segmentation on ADE20K demon-
strate the effectiveness of our V2M compared with other visual backbones.

1 INTRODUCTION

State Space Models (SSM) have recently received sustained attention in natural language processing
(NLP), achieving excellent performance on various tasks because of its efficiency in handling long
sequences (Gu et al., 2021a; 2022; 2021b). Mamba (Gu & Dao, 2024) further equip the conventional
SSMs with the ability to process time-varying input and exquisitely designed hardware acceleration
algorithms, demonstrating the potential to compete with transformers (Kim et al., 2018).

Although convolutional neural networks (CNNs) (He et al., 2016; Liu et al., 2022) and visual trans-
formers (ViTs) (Dosovitskiy et al., 2020; Liu et al., 2021) have consistently dominated computer vi-
sion, recent works applying Mamba to visual data modeling emerges as promising alternatives (Zhu
et al., 2024; Liu et al., 2024b; Huang et al., 2024). To adapt 2D visual data to Mamba with 1D
sequential processing, most existing methods follow ViTs to patchify images into tokens and de-
sign various ordering strategies to incorporate 2D structural prior. For example, Vision Mamba
(Vim) (Zhu et al., 2024) directly flattens images by rows and then employs a bidirectional model-
ing strategy to enhance the latent representation of the model. LocalMamba (Huang et al., 2024)
attempts to preserve the local invariance of images through local scanning and optimal scanning
direction search. However, these works are still constrained in the framework of 1-dimensional
Mamba, which can only approximate the 2D structural modeling of images and inevitably disrupts
the coherence and locality of visual data.

In this paper, we propose a Visual 2-Dimensional Mamba (V2M) model as a complete solution for
2D visual modeling. We directly processes image tokens in the 2D space instead of transforming
them into 1D sequences to adapt to the 1D Mamba, as illustrated in Figure 1. Specifically, we first
generalize the state space model to the 2-dimensional space which generates the next state consid-
ering two adjacent states on both dimensions (e.g., columns and rows). We then construct our V2M
based on the 2-dimensional SSM formulation and incorporate Mamba to achieve hardware-efficient
parallel processing. In addition, considering the non-sequential nature of image tokens, we construct
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Figure 1: Motivation of the proposed V2M method. Previous vision Mambas processed image
tokens with 1D SSM, whereas we extend SSM to a 2D form for more suitable image representation
learning by introducing the prior of enhancing the relevance of adjacent regions for modeling. (h1

i,j

denotes the horizontal state at position (i,j) while h2
i,j is the vertical state at the same position.)

the 2-dimensional state equations starting from all four corners of the image. Our proposed V2M
approach essentially preserves the local similarity and coherence of image representations, and also
inherits the efficiency and input-dependent scalability of Mamba. We conduct extensive experiments
on the ImageNet-1K dataset for classification, similar to previous settings of convolution networks
and vision transformers. Furthermore, we transfer the pretrained models to downstream tasks such
as object detection, instance segmentation, and semantic segmentation to evaluate the transferability
of V2M. We report both the ImageNet classification accuracy and the corresponding metrics of the
downstream tasks for comparison. Experimental results demonstrate the consistent improvements
of our proposed method compared with the Vim baseline, verifying the superiority of V2M (e.g.
+0.4% for Vim on ImageNet-1K).

2 RELATED WORK

Generic Vision Backbones. Convolutional Neural Networks (CNNs) and Vision Transformers
(ViTs) are the most widely adopted generic backbones in computer vision. Among them, CNNs
leverage shift-invariance for feature extraction for each layer, setting a series of new benchmarks on
numerous visual tasks (He et al., 2016; Liu et al., 2022; Krizhevsky et al., 2012; LeCun et al., 1998;
Szegedy et al., 2015; Simonyan & Zisserman, 2014; Huang et al., 2017). Nevertheless, the introduc-
tion of ViT has changed the landscape of computer vision, shifting the dominance of CNNs as the
backbone to a new paradigm (Dosovitskiy et al., 2020; Liu et al., 2021; Touvron et al., 2021; Carion
et al., 2020; Caron et al., 2021). Specifically, the plain ViT (Chen et al., 2020) divides an image
into multiple patches and linearly embeds these patches as the input sequence for the Transformer
model with positional encoding. Swin Transformer (Liu et al., 2021) introduces hierarchical feature
maps and a self-attention mechanism within local windows, which enables the model to effectively
handle image features at different scales. Transformer-based models are also widely employed in
multimodal tasks due to their versatility in handling data from different modalities.

In addition to CNNs and ViTs, a plethora of sophisticated visual architectures based on Mamba (Gu
& Dao, 2024), have recently emerged in the domain of computer vision (Zhu et al., 2024; Liu et al.,
2024b; Huang et al., 2024; Liu et al., 2024a; Ruan & Xiang, 2024; Yang et al., 2024; Pei et al.,
2024). For example, Vision Mamba (Vim) (Zhu et al., 2024) directly transfers Mamba from NLP
to the visual domain, which does not incorporate significant considerations specifically for visual
data. VMamba (Liu et al., 2024b) addresses these deficiencies through further exploration, utiliz-
ing one-dimensional scans in four distinct directions to simulate the modeling of two-dimensional
images, and adopting a hierarchical structure for feature extraction. LocalMamba (Huang et al.,
2024) further divides the input image into multiple local windows, thereby retaining the local sim-
ilarity of the image to a certain extent. Additionally, PlainMamba (Yang et al., 2024) is designed
with a non-hierarchical structure to enhance feature fusion and modality fusion, whereas EfficientV-
Mamba (Pei et al., 2024) conducts a streamlined and detailed study of the lightweight adaptation of
VMamba. These endeavors harness the high computational and memory efficiency of Mamba, yet
predominantly involve the naive flattening of images input for the original 1-dimensional Mamba
formulation, which compromises the local similarity and coherence of images and thus results in
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suboptimality. On the contrary, we employ 2-dimensional state space equations to model image
features, and thereby effectively incorporates the 2D locality prior, establishing a more rational ap-
plication of Mamba within the realm of computer vision.

State Space Models. State space models (SSMs) represent the output of the system (observation)
as a function of the state of the system and typically assume that the evolution of the system state
over time follows a Hidden Markov Model (HMM). Considering the proficiency in the modeling of
extended sequences, 1-dimensional SSMs have garnered extensive and conspicuous attention within
the domain of natural language processing (Gu et al., 2022; 2021a;b; Gupta et al., 2022; Gu &
Dao, 2024). For example, S4 (Gu et al., 2021a) transforms the SSM into a large 1D convolution
to achieve efficient parallelization and adopts HiPPO matrices as initialization to facilitate memory
storage and prevent gradient explosion or vanishing. S4D (Gu et al., 2022) systematically investi-
gates the parameterization and initialization methods for diagonal state space models. Mamba (Gu
& Dao, 2024) further improves the traditional state space model, enabling it to selectively extract
information based on the input content, combined with a hardware-aware parallel algorithm that
achieves efficient processing.

Several studies have attempted to extend the formulation of the state space models into a 2-
dimensional structure (Kung et al., 1977; Eising, 1978; Kurek, 1985; Hinamoto, 1980). They typi-
cally increase the state dimension in the state space model and perform corresponding state iterative
calculations along each dimension. In computer vision, Baron et al. (Baron et al., 2023) integrates a
2-dimensional state space model into CNN and ViT architectures, implementing it as an additional
layer for the processing of features. Nonetheless, this approach neglects the input-dependent charac-
teristic of SSM, which hampers the capacity of the model for adaptively extracting features from the
input images. In contrast, our proposed V2M generalizes the SSM to the 2-dimensional space which
generates the next state considering two adjacent states on both dimensions, while also preserving
the input-relevant feature of the SSM.

Visual Representation Learning. Visual representation learning aims to acquire features that are
capable of encapsulating and portraying the essence of visual data, which are widely harnessed in
a diverse array of visual tasks including image classification, object detection, image segmentation,
pose estimation, and video analysis. Typical settings include pre-training on large datasets (such
as ImageNet) and then fine-tuning on downstream tasks and specific datasets (He et al., 2020; Grill
et al., 2020; He et al., 2022; Zhou et al., 2022; Chen & He, 2021; Khosla et al., 2020; He et al., 2016;
Liu et al., 2021), which can be divided into supervised settings (Khosla et al., 2020; He et al., 2016;
Liu et al., 2021) and unsupervised patterns (He et al., 2020; Grill et al., 2020; He et al., 2022; Zhou
et al., 2022; Chen & He, 2021). Specifically, supervised representation learning utilizes the ground
truth labels of samples as the supervision while unsupervised representation learning constructs a
label-free pretext task to conduct the training procedure, such as contrastive learning (He et al.,
2020; Grill et al., 2020; Chen & He, 2021) and mask image modeling (He et al., 2022; Zhou et al.,
2022). In this paper, we follow the setting of supervised representation learning. We pretrain the
model with ground truth labels on the image classification task and then transfer to object detection,
instance segmentation, as well as instance segmentation for verification of transferability.

3 PROPOSED APPROACH

In this section, we first present general preliminaries of 1-dimensional state space models, Mamba,
and 2-dimensional state space models. Then we elaborate on the implementations of the 2-
dimensional state space models on visual representation learning. Lastly, we provide an overview
of the proposed V2M framework.

3.1 STATE SPACE MODELS FOR VISION

The state space models (SSMs) serve as the foundation for Mamba. However, conventional state
space models exhibit constrained proficiency in the extraction of features from input data, an out-
come attributed to the time-invariant nature of the parameters within the equations. Mamba rectifies
this limitation by integrating time-varying parameters. Concretely, Mamba formulates the projection
parameters (B ∈ RB×L×N ,C ∈ RB×L×N ) and timescale parameter ∆ ∈ RB×L×D in a manner

3
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Figure 2: Comparisons between Mamba, Vim, and V2M: (a) Mamba encodes the text informa-
tion after tokenization with blocks based on 1-dimensional state space models. (b) Vision Mamba
(Vim) employs a straightforward flattening of the input image and then processes it through 1-
dimensional state space model blocks similar to Mamba. (c) Our proposed V2M framework involves
2-dimensional state space models into the encoding blocks without the flattening operations, which
is more appropriate for processing images.

that is intricately linked to the input data x ∈ RB×L×D:

B = sB(x), C = sC(x), ∆ = τ∆(s∆(x) + p), (1)

where s{B,C,∆}(·) denotes the linear projection of the input data, τ∆(·) is the activation function,
and p represents the learnable parameter. Subsequent discretization follows the zero-order hold
(ZOH) technique.

However, the input-specific parameters render Mamba incapable of directly transitioning into a con-
volutional format, thereby precluding parallelization of the training process. Consequently, Mamba
mitigates the decline in training velocity through parallel scanning tailored to hardware capabilities.

Mamba and 1D state space models are more congruent with the modeling of 1D input data. Con-
versely, for image samples, the extension of the state space model into a 2D format constitutes
a more intrinsic method for feature extraction. A classical high-dimensional state space model is
Roesser’s state space model (Kung et al., 1977), which employs multiple hidden states to describe
the high-dimensional features. The 2D form is illustrated as follows:[

h1
i,j+1

h2
i+1,j

]
=

[
A1A2

A3A4

] [
h1
i,j

h2
i,j

]
+

[
B1

B2

]
xi,j , yi,j = [C1,C2]

[
h1
i,j

h2
i,j

]
, hi,j =

[
h1
i,j

h2
i,j

]
, (2)

where the hidden state hi,j ∈ R2N is composed of two sub-states from each axis (horizontal com-
ponent h1

i,j and vertical component h2
i,j), the dimensions of the evolution parameters Ai and the

projection parameters (Bi,Ci) as well as the discretization process are equal to those in the 1D
SSM. In this paper, we employ an input-contextualized discrete 2D SSM to establish the founda-
tional architecture for image backbones.

3.2 2-DIMENSIONAL SSM

The form of the aforementioned 2D state space model is time-invariant, i.e., the evolution param-
eters and projection parameters are independent of the input. However, the transmutation of the
2D SSM into the input-dependent form precludes the direct application of convolutional training
methodologies, and concurrently presents difficulties in leveraging hardware acceleration through
parallel scanning processes. Accordingly, we endeavor to convert the time-varying 2D SSM into an
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equivalent or near-equivalent 1D SSM, subsequently redeploying the parallel scanning methodology
of 1D Mamba for the purpose of expediting the training process.

The state transition equation in Eq. (2) can be expanded as follows:
h1
i,j+1 = A1h

1
i,j +A2h

2
i,j +B1xi,j , (3)

h2
i+1,j = A3h

1
i,j +A4h

2
i,j +B2xi,j . (4)

We expound upon the state transition of the horizontal component as an illustrative example, which
can be decomposed into h1

i,j+1 = (h1
i,j+1)

′
+ (h1

i,j+1)
′′

, detailed as follows:

(h1
i,j+1)

′
= A1h

1
i,j +B1xi,j , (5)

(h1
i,j+1)

′′
= A2h

2
i,j . (6)

We observe that Eq. (5) concurs with the format of the 1D SSM, thus we may seamlessly redeploy
the encoding blocks from the 1D Mamba for computation with the integration of parallel scan-
ning. The trainable parameters are A1 and B1, respectively. Specifically, for the input samples
x ∈ RB×H×W×D, the computational procedure is conducted sequentially by rows. Therefore, we
process each row of features from the input sample as an independent sample for SSM computation,
that is, fusing the B and H dimensions of the input sample, denoted as x

′ ∈ R(BH)×W×D.

Under such circumstances, we utilize the state component values computed via Eq. (5) as new input
values x

′

i,j at the corresponding positions and subsequently recombine them with Eq. (6):

h1
i,j+1 = A2h

2
i,j + Ix

′

i,j . (7)

In Eq. (7), the precise computation of h2
i,j is intertwined with both state components simultaneously.

We thus employ a judicious simplification, restricting the computation of h2
i,j to engage solely with

the vertical aspect of the state, illustrated as follows:

h2
i+1,j = A2h

2
i,j + Ix

′

i,j . (8)

Analysis of the simplification. In terms of computational accuracy, we admit that calculating h2
i,j

with only the vertical component is less precise than using the full component as specified. However,
in Eq. 8, the iterative calculation process of h2

i,j also includes the input term x
′

i,j , which is derived
from Eq. 5 and inherently incorporates modeling information from the horizontal direction. This
term also represents a distinct difference between the horizontal and vertical components. There-
fore, the calculation of h2

i,j only reduces the weight of the horizontal input to some extent without
completely losing all horizontal information, and the network may also strengthen the learning of
the horizontally low-weighted components through the optimization of A2. Additionally, the direct
consequence of this simplification is that it enables the use of hardware optimization algorithms for
1D SSM to achieve acceleration, which facilitates the training process. In the future, we will also
explore methods for performing precise 2D SSM calculations on hardware.

Evidently, Eq. 8 can also correspond to the 1D SSM, requiring only that each column of the input
sample be treated as an individual feature, with B and W dimensions integrated for subsequent
computation, denoted as x

′ ∈ R(BW )×H×D. Note that the projection parameter is set to I, and
the trainable parameters are confined to A2. Then h1

i,j+1 can be directly derived from h2
i,j without

additional computational processes.

Remark. The aforementioned simplified computational process may result in a less precise state
calculation outcome, yet the state variables at each position remain coherent with the 2D SSM,
encompassing both the horizontal and vertical state components simultaneously. Furthermore, the
computation of each state component (i.e., the state transition equation) is intricately intertwined
with the two preceding state components. Therefore, in practical applications, we are only required
to separately endow the row and column features of the input sample with distinct sets of learnable
parameters ( (A1,B1) and (A2, I), respectively) and subsequently conduct individual 1D SSM
processing on them. Additionally, the specific implementation of Eq. (4) is analogous, differing
only in the order of SSM computation for the sample columns and then the sample rows, as well
as the differing learnable parameters. Specially, we present a comparison diagram in Figure 2 to
highlight the differences with previous backbones.
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Figure 3: An overall framework of the proposed V2M approach. We employ the 2D SSM starting
from four directions (upper left, upper right, lower right, and lower left) to conduct feature encod-
ing. Within each V2M block, we initiate the process by calculating the 2D-SSM, subsequently
leveraging a MLP for feature mapping. The output features from the final V2M block are utilized
for classification or downstream heads

3.3 VISUAL 2D MAMBA

The aforementioned implementation of the 2D SSM constitutes our Visual 2D Mamba (V2M)
block. We provide an overall framework of our V2M, illustrated in Figure 3. Given an input
batch x

′ ∈ RB×h×w×c, we first utilize the patch embedder to transform it into two-dimensional
image patches and project to latent dimension, denoted as x ∈ RB×H×W×D, where H/h = W/w
represents the patch size. Considering the non-temporal nature of image data, we commence the
2D SSM computation from the four corners of the image as the starting positions. Concerning the
implementation, we perform four-directional rotations of the embedding of the sample x around the
central point, with respective angles of 0, π/2, π, and 3π/2:

xi = rot(π/2)·i(x), i = 0, 1, 2, 3, (9)
where xi denotes the ith rotted embedding and rotθ(·) denotes rotating the sample by an angle of θ.

Subsequently, we concatenate the rotated embeddings in accordance with the batch dimension as
the input to the V2D blocks:

z = concat([x0,x1,x2,x3], dim = 0). (10)

The concatenated embeddings will undergo a comprehensive feature extraction process through K
V2M blocks. Within each V2M block, the features that have been modeled by the SSM will be
aggregated in alignment with their original positions prior to rotation, presented as follows: (Note
that we ignore the non-linear activation and the skip connection for brevity.)

zk = SSM2D(z
k), zk = [zki ], zk+1 = Linear(sum[rot2π−(π/2)·i(z

k
i )]), i = 0, 1, 2, 3 (11)

where zk+1 will undergo a similar rotation operation as Eq. (9) before being passed to the subse-
quent V2M block. We proceed to extract the class token from the output of the final V2M block,
which will be passed through a classifier for subsequent supervision.

Efficiency Analysis. We concurrently implement hardware parallel scanning algorithms akin to
those adopted in Mamba, alongside expedited computations facilitated by high-speed SRAM, and a
recomputation method for backpropagation, all of which are orchestrated to uphold the efficiency of
the model in computation and memory storage. In addition, despite the four disparate orientations
of 2D SSM in the proposed V2M framework, the concatenation along the batch dimension preserves
the parallelistic characteristics of the computational process, which fully leverages the computational
advantages of the GPU to forestall severe deterioration in processing speed.

4 EXPERIMENTS

In this section, we conducted a series of comprehensive experiments to assess the efficacy of
our V2M framework. The network was initially pretrained using V2M on the ImageNet-1K
dataset (Russakovsky et al., 2015), after which its performance was assessed across various down-
stream tasks. Moreover, we provided in-depth ablation studies to delve into the intricacies of the
effectiveness of V2M.
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Table 1: Classification results of different visual backbones on ImageNet. († denotes our reproduced
performances under the default settings. * denotes using the pyramid architecture for V2M.)

Method Backbone Image Params (M). FLOPs (G) Top-1
Size Acc (%)

ResNet-18 (He et al., 2016) ConvNet 2242 12 - 69.8
DeiT-T (Touvron et al., 2021) Transformer 2242 6 1.3 72.2
PlainMamba-L1 (Yang et al., 2024) SSM 2242 7 3.0 77.9
EffVMamba-T (Pei et al., 2024) SSM 2242 6 0.8 76.5
EffV2M-T (ours) SSM 2242 6 1.0 76.9
EffVMamba-S (Pei et al., 2024) SSM 2242 11 1.3 78.7
Vim-T† (Zhu et al., 2024) SSM 2242 7 1.5 75.8
V2M-T (ours) SSM 2242 7 1.9 76.2
LocalVim-T (Huang et al., 2024) SSM 2242 8 1.5 76.2
V2M-T + local window (ours) SSM 2242 8 1.8 76.4

ResNet-50 (He et al., 2016) ConvNet 2242 25 - 77.2
RegNetY-4G (Radosavovic et al., 2020) ConvNet 2242 21 4.0 80.0
DeiT-S (Touvron et al., 2021) Transformer 2242 22 4.6 79.9
Swin-T (Liu et al., 2021) Transformer 2242 29 4.5 81.2
PlainMamba-L2 (Yang et al., 2024) SSM 2242 25 8.1 81.6
EffVMamba-B (Pei et al., 2024) SSM 2242 33 4.0 81.8
Vim-S† (Zhu et al., 2024) SSM 2242 26 5.1 80.3
V2M-S (ours) SSM 2242 26 5.9 80.5
LocalVim-S (Huang et al., 2024) SSM 2242 28 4.8 81.2
V2M-S + local window (ours) SSM 2242 28 5.4 81.3
VMamba-T (Liu et al., 2024b) SSM 2242 30 4.9 82.6
V2M-S* (ours) SSM 2242 30 5.4 82.9

ResNet-101 (He et al., 2016) ConvNet 2242 45 - 78.3
ResNet-152 (He et al., 2016) ConvNet 2242 60 - 78.6
RegNetY-8G (Radosavovic et al., 2020) ConvNet 2242 39 8.0 81.7
RegNetY-16G (Radosavovic et al., 2020) ConvNet 2242 84 16.0 82.9
ViT-B/16 (Dosovitskiy et al., 2020) Transformer 3842 86 55.4 77.9
DeiT-B (Touvron et al., 2021) Transformer 2242 86 17.5 81.8
Swin-S (Liu et al., 2021) Transformer 2242 50 8.7 83.2
Swin-B (Liu et al., 2021) Transformer 2242 88 15.4 83.5
PlainMamba-L3 (Yang et al., 2024) SSM 2242 50 14.4 82.3
VMamba-S (Liu et al., 2024b) SSM 2242 50 8.7 83.6
V2M-B* (ours) SSM 2242 50 9.6 83.8

4.1 EXPERIMENTAL SETUP

Datasets. We pretrain our V2M model on the training dataset of ImageNet-1K (Russakovsky et al.,
2015), which comprises 1,280,000 samples across 1,000 distinct categories. The classification per-
formance is verified on the validation set, which consists of 50,000 images. Furthermore, we lever-
age the COCO (Lin et al., 2014) dataset for object detection and instance segmentation, encompass-
ing 118K images for training, 5K for validation, and 40K for testing. The semantic segmentation
task is conducted on ADE20K (Zhou et al., 2019), which comprises 150 detailed semantic cate-
gories, offering 20K, 2K, and 3K images for training, validation, and testing, respectively.

Implementation Details. We adopted Vision Mamba (Vim) (Zhu et al., 2024), LocalMamba (Huang
et al., 2024), and VMamba (Liu et al., 2024b) as our baselines for experimental comparisons, thus
maintaining consistency in our experimental configuration. We provided multiple V2M models
according to their parameters, including V2M-T (Tiny), V2M-S (Small), and V2M-B (Base). Ad-
ditionally, the network architecture encompassed both the plain and pyramid configurations, with
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Table 2: Object detection and instance segmentation results on COCO. (* denotes using the pyramid
architecture for V2M.)

Method Detector Params (M).APbAPb
50APb

75 APmAPm
50APm

75

ResNet-50 (He et al., 2016) MaskRCNN@1x 44 38.2 58.8 41.4 34.7 55.7 37.2
ResNet-101 (He et al., 2016) MaskRCNN@1x 63 38.2 58.8 41.4 34.7 55.7 37.2
ConvNeXt-T (Liu et al., 2022) MaskRCNN@1x 48 44.2 66.6 48.3 40.1 63.3 42.8
ConvNeXt-S (Liu et al., 2022) MaskRCNN@1x 70 45.4 67.9 50.0 41.8 65.2 45.1
ConvNeXt-T (Liu et al., 2022) MaskRCNN@3x 48 46.2 67.9 50.8 41.7 65.0 44.9
ConvNeXt-S (Liu et al., 2022) MaskRCNN@3x 70 47.9 70.0 52.7 42.9 66.9 46.2
Swin-T (Liu et al., 2021) MaskRCNN@1x 48 42.7 65.2 46.8 39.3 62.2 42.2
Swin-S (Liu et al., 2021) MaskRCNN@1x 69 44.8 66.6 48.9 40.9 63.2 44.2
Swin-T (Liu et al., 2021) MaskRCNN@3x 48 46.0 68.1 50.3 41.6 65.1 44.9
Swin-S (Liu et al., 2021) MaskRCNN@3x 69 48.2 69.8 52.8 43.2 67.0 46.1
VMamba-T (Liu et al., 2024b) MaskRCNN@1x 50 47.3 69.3 52.0 42.7 66.4 45.9
V2M-S* (ours) MaskRCNN@1x 50 47.6 69.4 52.2 42.9 66.5 46.3
VMamba-S (Liu et al., 2024b) MaskRCNN@1x 70 48.7 70.0 53.4 43.7 67.3 47.0
V2M-B* (ours) MaskRCNN@1x 70 48.9 70.2 53.6 43.8 67.5 47.1
VMamba-T (Liu et al., 2024b) MaskRCNN@3x 50 48.8 70.4 53.5 43.7 67.4 47.0
V2M-S* (ours) MaskRCNN@3x 50 49.0 70.6 53.5 43.8 67.5 47.2
VMamba-S (Liu et al., 2024b) MaskRCNN@3x 70 49.9 70.9 54.7 44.2 68.2 47.7
V2M-B* (ours) MaskRCNN@3x 70 50.0 70.9 54.8 44.3 68.4 47.8
the latter denoted by *. For image classification, we incorporated a suite of data augmentation
techniques, including random cropping, random horizontal flipping, label smoothing regularization,
mixup (Zhang et al., 2018), and random erasing. We adopted AdamW as the optimizer with a mo-
mentum of 0.9 and a weight decay of 0.05. We set the batch size to 512 and the training epoch to
300. We set the learning rate to 5e−4 with a cosine schedule. The input images of both training and
validation were cropped to 224×224. We reported both top-1 accuracy and FLOPs for evaluation.

As for object detection and instance segmentation, we adopted the MMDetection (Chen et al., 2019)
codebase for evaluation. We employed Mask R-CNN detector (He et al., 2017) with both 1x and
3x training schedules, similar to VMamba. We reported AP with different settings for comparison.
Additionally, we equipped the pretrained models with UPerNet (Xiao et al., 2018) for semantic
segmentation using the MMSegmentaion (Contributors, 2020) codebase. We applied AdamW with
a learning rate of 6e−5 and a weight decay of 0.01. We adopted a learning schedule of 160k reported
mIoU for comparison. All our experiments were performed on 8 RTX 3090 GPUs.

4.2 MAIN RESULTS

Image Classification on ImageNet. We provided the evaluation results of V2M on ImageNet
classification in Table 1. The comparative methods include convolutional networks (ConvNets),
transformer-based models, and the SSM baselines. We observe that SSM-based methods exhibit
comparative superiority over ConvNets and transformer-based models under comparable parame-
ters. For example, our proposed V2M-T achieved a 6.4% increase in Top-1 accuracy compared
to ResNet-18 and a 4.0% improvement over DeiT-T. Furthermore, V2M-S* outperforms ResNet-
50, RegNetY-4G, and DeiT-S, with respective increases of 5.7%, 2.9%, and 3.0% in Top-1 accu-
racy. In addition to ConvNets and transformer-based models, V2M also demonstrates a certain
performance improvement across both the tiny and small model parameter configurations in com-
parison to the adopted baselines, registering a 0.4%/0.2%/0.3% enhancement in the tiny model and
a 0.2%/0.1%/0.2% improvement in the small model compared with Vim/LocalMamba/VMamba,
respectively. The experimental results verify the effectiveness of the proposed V2M framework,
which indicates that the adaptive modeling process of image data through 2D SSM is more suitable
compared to the straightforward flattening of images with the 1D SSM modeling.
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Table 3: Semantic segmentation results on ADE20K. (* denotes using the pyramid architecture.)

Method Segmentor Image size Params (M). mIoU (SS) mIoU (MS)
Swin-T (Liu et al., 2021) UperNet@160k 5122 60 44.4 45.8
Swin-S (Liu et al., 2021) UperNet@160k 5122 81 47.6 49.5
Vim-T (Zhu et al., 2024) UperNet@160k 5122 13 41.0 -
V2m-T (ours) UperNet@160k 5122 13 41.4 42.0
Vim-S (Zhu et al., 2024) UperNet@160k 5122 46 44.9 -
V2M-S (ours) UperNet@160k 5122 46 45.1 46.1
LocalVim-T (Huang et al., 2024) UperNet@160k 5122 36 43.4 44.4
V2M-T + local window (ours) UperNet@160k 5122 36 43.5 44.6
LocalVim-S (Huang et al., 2024) UperNet@160k 5122 58 46.4 47.5
V2M-S + local window (ours) UperNet@160k 5122 58 46.6 47.7
VMamba-T (Liu et al., 2024b) UperNet@160k 5122 62 47.9 48.8
V2M-S* (ours) UperNet@160k 5122 62 48.2 49.0
VMamba-S (Liu et al., 2024b) UperNet@160k 5122 82 50.6 51.2
V2M-B* (ours) UperNet@160k 5122 82 50.8 51.3

Table 4: Performances on long sequences. (LS
denotes finetuning with long sequences.)
Method Image Size Params (M). Top-1 Acc
Vim-T 2242 7 75.8
Vim-T (LS) 2242 7 78.3
V2M-T 2242 7 76.2
V2M-T (LS) 2242 7 78.8
Vim-S 2242 26 80.3
Vim-S (LS) 2242 26 81.4
V2M-S 2242 26 80.5
V2M-S (LS) 2242 26 82.0

Table 5: Computation speed of V2M. (TP de-
notes the throughput.)

Method Param (M). TP. (img/s) Top-1 Acc
Vim-T 7 1624 75.8
V2M-T 7 1311 76.2
Vim-S 26 733 80.3
V2M-S 26 551 80.5
VMamba-T 30 1508 82.6
V2M-S* 30 1189 82.9
VMamba-S 50 796 83.6
V2M-B* 50 602 83.8

Table 6: Effect of 2D SSM directions with V2M-
T and Vim-T. (UL=Upper Left, UR=Upper Right,
LL=Lower Left, LR=Lower Right)

Direction V2M-T Acc Vim-T Acc
UL 75.2 75.1
UL + LR 75.9 75.8
UL + LR + UR 75.9 -
UL + LR + UR + LF 76.2 75.9

Transfer Learning on Object Detection and
Instance Segmentation. We evaluated the
transferability of V2M on the COCO dataset,
including object detection and instance seg-
mentation tasks. The experimental results are
presented in Table 2. Consistent with the im-
age classification on ImageNet, the SSM-based
models demonstrate superior performances on
object detection and instance segmentation
tasks compared to transformer-based counterparts with equivalent model parameters. Moreover,
compared with the corresponding baselines, the proposed V2M method exhibits certain advantages
in both object detection and instance segmentation. Specifically, V2M-S* outperforms VMamba by
0.3 box AP and 0.2 mask AP under 1x schedule, which demonstrates the superior generalization
ability of the representations learned by V2M.

Transfer Learning on Semantic Segmentation. We provided the semantic segmentation perfor-
mances on ADE20K in Table 3. The comparative backbones include ResNet-50, ResNet-101, Con-
vNeXts, and Swin Transformers. We observe that V2M achieves consistent improvements over
these backbones under approximate parameters. Furthermore, V2M-S* surpasses the VMamba-T
baseline by 0.3 mIoU (SS), demonstrating the effectiveness of the proposed framework.

4.3 EXPERIMENTAL ANALYSIS

Effect of Modeling Directions of the 2D SSM. Our proposed V2M method undergoes 2D SSM
modeling in four directions, and thus we assess the impact of different directions on model per-
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Classifier

(a) Mean Pooling

Classifier

(b) Edge Class Token

Classifier

(c) Middle Class Token

Class Token

Top-1 Acc

cba

76.276.0
75.5

Figure 4: Arrangements of the class token. (a) Obtaining a class token through feature mean pooling.
(b) Adding an additional row and column of class tokens at the edge of the image and adopting the
corner token for subsequent classification. (c) Adding an additional row and column of class tokens
at the middle of the image and adopting the center token for subsequent classification.

formance. Specifically, we individually attempted modeling in 1, 2, 3, and 4 different directions,
and subsequently tested the classification performance on ImageNet. The comparison results are
illustrated in Table 6. We discern that the performance of V2M on the classification task ascends
incrementally with the increase of modeling directions, culminating in optimal outcomes upon the
integration of modeling across all four directions.

Performance on Long Sequences. We tested the performance of V2M on long sequences by re-
ferring to the settings of Vim (Zhu et al., 2024), presented in Table 4. Specifically, our V2M-T
model achieves an accuracy of 78.8% compared to 78.3% by Vim-T in the long sequence setting for
ImageNet-1K, while V2M-S further reached an accuracy of 82.0% as opposed to 81.4% by Vim-S.
This demonstrates the effectiveness of the V2M framework on long sequence data.

Computation Speed. We present the computation speed of V2M compared with the baselines in
Table 5. We admit that V2M may slow down the model to a certain extent, which is a limitation of
V2M and corresponds to the increase in FLOPs as we have illustrated in Table 1. However, V2M
also enhances the classification performance on the ImageNet-1K dataset. We will further optimize
the speed of V2M in the future.

Arrangements of Classification. Diverging from the Vim baseline, our proposed V2M performs 2D
SSM modeling by independently correlating the features of rows and columns without the flattening
of the entire image patch. Consequently, we are unable to merely append a solitary class token
for subsequent classification tasks. To address this limitation, we present three viable solutions,
including obtaining the class token through feature mean pooling, augmenting the image with an
additional row and column of class tokens at the edge, and incorporating a row and column of class
tokens at the middle of the image, shown in Figure 4. We observe that the third scheme yields a
commendable performance and is thus designated as the default setting.

5 CONCLUSION

In this paper, we have presented a visual 2-dimensional mamba (V2M) framework for effective im-
age representation learning. We have employed the 2D SSM for the modeling process of images,
thereby preserving the inherent prior of local invariance within the images. We have concurrently
performed 2D SSM modeling in four directions to enhance the representational capacity of the
model considering the non-temporal nature of the input images. We have conducted a series of ex-
periments that encompass classification and various downstream tasks, including object detection,
instance segmentation, and semantic segmentation, to assess the effectiveness of our framework.
Experimental results have demonstrated the superior classification as well as transferability perfor-
mances of the proposed V2M framework.

Limitations. The implementation of 2D SSM modeling in four directions within each V2M block
necessitates a compromise in speed. Future research will concentrate on both software and hardware
algorithm optimizations to mitigate this drawback.
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