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Abstract

The convergence of the conjugate gradient method for solving large-scale and sparse linear
equation systems depends on the spectral properties of the system matrix, which can be
improved by preconditioning. In this paper, we develop a computationally efficient data-
driven approach to accelerate the generation of effective preconditioners. We, therefore,
replace the typically hand-engineered preconditioners by the output of graph neural networks.
Our method generates an incomplete factorization of the matrix and is, therefore, referred to
as neural incomplete factorization (NeuralIF). Optimizing the condition number of the linear
system directly is computationally infeasible. Instead, we utilize a stochastic approximation
of the Frobenius loss which only requires matrix-vector multiplications for efficient training.
At the core of our method is a novel message-passing block, inspired by sparse matrix
theory, that aligns with the objective of finding a sparse factorization of the matrix. We
evaluate our proposed method on both synthetic problem instances and on problems arising
from the discretization of the Poisson equation on varying domains. Our experiments
show that by using data-driven preconditioners within the conjugate gradient method we
are able to speed up the convergence of the iterative procedure. The code is available at
https://github.com/paulhausner/neural-incomplete-factorization.

1 Introduction

Solving large-scale systems of linear equations is a fundamental problem in computing science. Available
solving techniques can be divided into direct and iterative methods. While direct methods, which rely on
computing the inverse or factorizing the matrix, obtain accurate solutions they do not scale well for large-scale
problems. Therefore, iterative methods, which repeatedly refine an initial guess to approach the exact
solution, are used in practice when an approximation of the solution is sufficient (Golub & Van Loan, 2013).

The conjugate gradient method is a classical iterative method for solving equation systems of the form Ax = b
where the matrix A is symmetric and positive definite. Further, the matrix is typically assumed to be sparse
in the sense that it contains few non-zero elements (Carson et al., 2023). Problems of this form arise naturally
in the discretization of elliptical PDEs, such as the Poisson equation, and a wide range of optimization
problems, such as quadratic programs (Pearson & Pestana, 2020; Potra & Wright, 2000). The convergence
speed of the method thereby depends on the spectral properties of the matrix A (Golub & Van Loan, 2013).
Therefore, it is common practice to improve the spectral properties of the equation system by preconditioning
before solving it. Despite the critical importance of preconditioners for practical performance, it has proven
notoriously difficult to find good designs for a general class of problems (Saad, 2003).
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Recent advances in data-driven optimization combine classical optimization algorithms with data-driven
methods. A common approach is replacing hand-crafted heuristics with parameterized functions such as
neural networks that are trained against data (Banert et al., 2024; Chen et al., 2022). In this work, we
combine this methodology with results known from sparse matrix theory by representing the matrix of the
linear equation system as a graph that forms the input to a graph neural network. We then train the network
on a set of training problems to predict suitable preconditioners.

To train our model in a computationally feasible way we are inspired by the incomplete factorization
methods. These methods, which include the popular incomplete Cholesky factorization, compute a sparse
approximation of the Cholesky factor of the matrix A that is applied to precondition the linear system
(Golub & Van Loan, 2013; Scott & Tůma, 2023). However, incomplete factorization methods can suffer
from breakdown, require significant time to compute, and are hard to parallelize on modern hardware (Benzi,
2002; Naumov, 2012). We overcome some of these limitations by introducing a scalable way to compute
efficient preconditioners that do not suffer from breakdown. Our training scheme relies on matrix-vector
multiplications only, which can be implemented efficiently and allows us to train the method on large-scale
problems. Further, we show how to apply common heuristics to control the obtained sparsity pattern of
the learned preconditioner to obtain flexible preconditioning matrices (Saad, 2003).

In contrast to the NeuralPCG model introduced by Li et al. (2023), our model utilizes insights from graph theory
to motivate the underlying computational framework and align it with the training objective. This allows us to
obtain more effective preconditioners – in the sense of reducing the number of iterations for the preconditioned
system – while using a smaller model. Reducing the number of parameters, in turn, leads to a faster inference
time which is critical to amortize the cost of training and applying the neural network. Furthermore, our
method is fully self-supervised while previous data-driven preconditioners rely on the solution of the linear
equation system during training which increases the time required to generate a suitable dataset significantly.

In summary, we introduce (i) a novel GNN architecture and (ii) an efficient way to compute the loss function,
tailored to obtaining effective incomplete factorization preconditioners; finally, (iii) we show how to obtain
flexible sparsity patterns of the output within this framework. Our data-driven method exhibits state-of-the-art
results for data-driven preconditioners and performs on par with the baseline incomplete factorization methods.

2 Background

After introducing the conjugate gradient method, we briefly summarize the basics of graph neural networks
which form the computational backend for our proposed method.

2.1 Conjugate gradient method

The conjugate gradient method (CG) is a well-established iterative method for solving symmetric and
positive-definite (abbreviated spd and denoted by S++

n ) systems of linear equations of the form Ax = b. The
algorithm does not require any matrix-matrix multiplications, making CG particularly effective when dealing
with large-scale and sparse matrices (Saad, 2003). The method creates a sequence of search directions pi

from the corresponding Krylov subspace which are orthogonal with respect to the inner product induced by
the matrix A, i.e. pT

i Apj = 0 for i ̸= j. In other words, the search directions are mutually conjugate to each
other. These search directions are used to update the solution iterate xk. Since it is possible to compute the
optimal step size in closed form for each search direction, the method is guaranteed to converge within n steps
(Shewchuk, 1994). Typically, the initial search direction p0 is chosen as the gradient of the corresponding
quadratic program given by b−Ax0 (Nazareth, 2009). In Algorithm 1 the preconditioned conjugate gradient
method is shown. The original conjugate gradient algorithm can be recovered by setting P = I.

Convergence The convergence of CG to the true solution x⋆ depends on the spectral properties of the
matrix A. Using the condition number κ(A), a linear worst-case bound of the error in the number of taken
CG steps k is given by (Carson et al., 2023)
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∥x⋆ − xk∥A ≤ 2 ∥x⋆ − x0∥A

(√
κ(A)− 1√
κ(A) + 1

)k

. (1)

However, in practice the CG method often converges significantly faster and the convergence also depends on
the distribution of eigenvalues and the initial residual. Clustered eigenvalues hereby lead to faster convergence.
Further, a large condition number does not always imply a slow convergence of the iterative scheme. On the
other hand, a small condition number leads to a fast convergence (Carson et al., 2023). A common approach
to accelerate the convergence is to precondition the linear equation system to improve its spectral properties
leading to faster convergence (Benzi, 2002).

Preconditioning The underlying idea of preconditioning is to compute a cheap approximation of the inverse
of A that is used to improve the convergence properties. A common way to achieve this is to approximate the
matrix P ≈ A with an easily invertible preconditioning matrix P , which allows us to compute the precondi-
tioned search directions for each iteration in line 5 and line 10 of Algorithm 1 efficiently. This constraint can be
achieved by constructing a (block) diagonal preconditioner or finding a (triangular) factorization (Benzi, 2002).

Finding a good preconditioner requires a trade-off between the time required to compute the preconditioner
and the resulting speed-up in convergence (Golub & Van Loan, 2013). The Jacobi preconditioner simply
approximates A with a diagonal matrix. The incomplete Cholesky (IC) preconditioner is a more advanced,
but widely adopted, method. As the name suggests, the idea is to approximate the Cholesky decomposition
of the matrix. The IC(0) preconditioner restricts the non-zero elements in the obtained triangular factor L
to exactly the non-zero elements in the lower triangular part of A. Thus, no fill-ins during the factorization
are allowed. More general versions allow additional fill-ins of the matrix based on the position or the
value of the matrix elements (Benzi, 2002) or allow flexible positions of non-zero elements such as as the
modified incomplete Cholesky (MIC) preconditioner (Lin & Moré, 1999). The chosen amount of fill-in values
determines how well the incomplete factorization approximates the original matrix and dictates how much
the preconditioner accelerates the convergence of the iterative scheme. However, adding more fill-in elements
increases the computational complexity of computing the incomplete factorization. Furthermore, it is desirable
to know the amount of fill-in beforehand to avoid memory allocation problems (Scott & Tůma, 2023).

Finding new preconditioners is an active research area but is often done on a case-by-case basis. Newly devel-
oped methods are often tailor-made for specific problem classes and often do not generalize to new problem
domains. General purpose preconditioners such as incomplete factorization methods and algebraic multigrid ap-
proaches are, nevertheless, popular and sufficiently effective for many problems in practice. Therefore, improve-
ments upon these methods are of great interest for a broad community (Benzi, 2002; Pearson & Pestana, 2020).

Stopping criterion In practice, due to numerical rounding errors, the residual is only approaching but
never reaching zero. Further, the true solution x⋆ is typically not available and therefore, equation (1) can

Algorithm 1 Preconditioned conjugate gradient method (Nocedal & Wright, 1999)
1: Input: System of linear equations A ∈ S++

n , b ∈ Rn, Preconditioner P ≈ A, P ∈ S++
n

2: Output: Solution to the linear equation system x̂⋆

3: Initialize starting guess x0
4: r0 = b−Ax0
5: Solve P y0 = r0 and set p0 = y0
6: for k = 0, 1, . . . , until convergence do
7: ak = ⟨rk,yk⟩/⟨Apk,pk⟩
8: xk+1 = xk + akpk

9: rk+1 = rk − akApk

10: Solve P yk+1 = rk+1
11: βk = ⟨rk+1,yk+1⟩/⟨rk,yk⟩
12: pk+1 = yk+1 + βkpk

13: return xk
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not be used as a stopping criterion for the algorithm either. Instead, the relative residual error ∥r∥2 which is
computed recursively in line 9 of Algorithm 1 is widely adopted (Shewchuk, 1994).

2.2 Graph neural networks

Graph neural networks (GNN) belong to an emerging family of neural network architectures well-suited to
many real-world problems with a natural graph structure (Veličković, 2023). A (directed) graph G = (V,E) is
a tuple consisting of a set of nodes V and directed edges E connecting two nodes in the graph E ⊆ V ×V . We
assign every node v ∈ V a node feature vector xv ∈ Rp and respectively every directed edge eij , connecting
nodes i and j, an edge feature vector zij ∈ Rm.

The widely adopted message-passing GNNs consist of multiple layers updating the node and edge feature
vectors of the graph iteratively using permutation-invariant aggregations over the neighborhoods and learned
update functions (Bronstein et al., 2021). Here, we follow the blueprint presented by Battaglia et al. (2018)
to describe the update functions for a simple message-passing GNN layer. In each layer l of the network
the edge features are updated first by the network computing the features of the next layer l + 1 as

z
(l+1)
ij = ϕ

θ
(l)
z

(
z

(l)
ij ,x

(l)
i ,x

(l)
j

)
, (2)

where ϕ is a parameterized function. The outputs of this function are also referred to as messages. Then,
for each node i ∈ V the features from its neighboring edges, in other words, the incoming messages, are
aggregated using a suitable aggregation function. Typical choices include sum, mean and max aggregations.
Any such permutation-invariant aggregation function is denoted here by ⊕. The aggregation of incoming
messages over the neighborhood N of node i, which is defined as the set of adjacent nodes in the graph
N (i) = {j | (i, j) ∈ E}, is computed as

m
(l+1)
i =

⊕
j∈N (i)

z
(l+1)
ji . (3)

Note that the neighborhood structure is typically kept fixed in GNNs and no edges are added or removed
between the different layers. The final step of the message-passing GNN layer is updating the node features as

x
(l+1)
i = ψ

θ
(l)
x

(
x

(l)
i ,m

(l+1)
i

)
. (4)

The node and edge update functions ϕ and ψ are typically parameterized using neural networks. The
equations (2)–(4) describe the iterative scheme of message passing that is implemented by many popular
GNNs. By choosing a permutation-invariant function in the neighborhood aggregation step (3) and since
the update functions only act locally on the node and edge features, the learned function represented by
the GNN itself is permutation equivariant and can handle inputs of varying sizes (Battaglia et al., 2018).

Many known algorithms share a common computational structure with this message-passing scheme making
GNNs a natural parameterization for learned variants. This correspondence is typically referred to as
algorithmic alignment in the literature (Dudzik & Veličković, 2022).

3 Method

In this section, we formulate the learning problem for a data-driven preconditioner and derive an efficient
loss function. Then, we introduce a problem-tailored GNN architecture, and demonstrate how to extend the
framework to yield flexible sparsity patterns and analyze its complexity.

Learning problem Our final goal is to learn a mapping fθ : S++
n → S++

n that takes an spd matrix A and
predicts a suitable preconditioner P that improves the spectral properties of the system – and therefore also
the convergence behavior of the conjugate gradient method.

In order to ensure convergence, the output of the learned mapping needs to be spd and is in practice often
required to be sparse due to resource constraints. To ensure these properties, we restrict the mapping
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to lower-triangular matrices with strictly positive elements on the diagonal denoted as L+
n and enforce

the same sparsity pattern as the input matrix. We then learn a mapping Λθ : S++
n → L+

n . This can be
achieved by using a suitable activation function and network architecture as discussed later. The matrices
in L+

n are guaranteed to be invertible and the computation thereof is computationally efficient since using
forward-backward substitution requires only O(n2) operations (Golub & Van Loan, 2013). For sparse matrices
the triangular system can often be solved even more efficiently and scales with the number of non-zero
elements (Davis et al., 2016). The parameterized function outputs a factorization of the preconditioning
matrix that can be obtained via

Pθ(A) = Λθ(A)Λθ(A)T, (5)

which is a spd matrix if the diagonal elements of the triangular matrix are strictly positive i.e. Λθ(A) ∈ L+
n

and can be easily inverted. To improve the convergence properties we aim to improve the condition number of
the preconditioned system. However, computing the condition number scales very poorly for large problems
as it requires O(n3) floating-point operations. Therefore, we can not optimize the spectral properties of the
matrix directly. Instead, we are inspired by incomplete factorization methods (Benzi, 2002). These methods
try to find a sparse approximation of the Cholesky factor of the input matrix while remaining computationally
tractable. In order to learn a good approximation model we assume matrices of interest are generated by a
matrix-valued random variable A with an unknown distribution describing the underlying class of problems.

We train our learned preconditioner to approximately solve the matrix factorization optimization problem
with additional sparsity constraints. The training objective for the data-driven model is given by

θ̂ ∈ arg min
θ

EA∼A
[
∥Λθ(A)Λθ(A)T −A∥2

F

]
(6a)

s.t. Λθ(A)ij = 0 if Aij = 0,Λθ(A) ∈ L+
n . (6b)

Equation (6a) aims to minimize the distance between the learned factorization and the input matrix using the
Frobenius norm distance. It is, however, also possible to use a different distance metric instead (Vemulapalli
& Jacobs, 2015). When considering more advanced preconditioners, the no fill-in sparsity constraint (6b) can
be relaxed slightly allowing more non-zero elements in the preconditioner. However, it is desirable that the
required storage for the preconditioner is known beforehand and does not increase too much compared to the
original system (Benzi, 2002).

Scalable training A practical problem with objective (6a) is that we cannot compute the expectation
since we lack access to the distribution of A. On the other hand, we have access to training data
A1,A2, . . . ,An ∼ A, so we consider the empirical counterpart of equation (6) – empirical risk minimization
– where the intractable expected value is replaced by the sample mean which we can optimize using stochastic
gradient descent to obtain an approximation of θ̂.

To enhance computational efficiency we circumvent computing the matrix-matrix multiplication Λθ(A)Λθ(A)T
in the objective, by approximating the Frobenius norm using Hutchinson’s trace estimator (Hutchinson, 1989)

∥B∥2
F = trace(BTB) ≈ wT BT Bw = ∥Bw∥2

2, (7)

where the elements in the vector w are iid normal distributed random variables. By setting B =
Λθ(A)Λθ(A)T −A we obtain an unbiased estimator of the loss which requires only matrix-vector products
(Martinsson & Tropp, 2020). The resulting objective is similar to the loss proposed by Li et al. (2023) but does
not rely on computing the true solution to the problem beforehand, making it computationally more efficient
as it avoids solving linear equation systems before the training. In Appendix D.2, we show that using this
approximation as the loss function leads to similar results as training using the full Frobenius norm as the loss.

Model architecture Due to the strong connection of graph neural networks with matrices and numerical
linear algebra (Moore et al., 2023), graph neural networks are a natural choice to parameterize the function Λθ.
Furthermore, this allows us to enforce the sparsity constraints (6b) directly through the network architecture
and avoids scalability issues arising in other network architectures since GNNs can exploit the sparse problem
structure through the architecture directly.
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Figure 1: Different representations of the problem matrix A. The classical linear algebra representation as a
matrix (left). The Coates graph representation of the lower-triangular matrix used for the first message-passing
step in each block (middle). The second step is executed on the Coates graph corresponding to the upper
triangular part of the matrix, which can be obtained by flipping the edges of the lower triangular graph
(not shown). The unrolled graph of the message passing resulting in a concatenation of the two directed
graph representations used for the message passing in the graph neural network (right). Color is used to
visualize edge and matrix element correspondence. Diagonal elements are in bold. The node labels in the
graph indicate the corresponding row and column of the matrix.

On a high level, we interpret the matrix A of the input problem as the adjacency matrix of the corresponding
graph. Thus, the nodes of the graph represent the columns/rows – the system is symmetric – of the input
matrix and are augmented with an additional feature vector. The edges of the corresponding graph are the
non-zero elements in the adjacency matrix. This transformation from a matrix to a graph is known as the
Coates graph (Coates, 1959; Grementieri & Galeone, 2022). We use a total of eight node features related to
sparsity structure and diagonal dominance of the matrix A (Cai & Wang, 2019; Tang et al., 2022). For the
details about the network architecture we refer to Appendix C. There are two main issues with directly using
the Coates graph of A for the message-passing scheme: Firstly, even though the input matrix is symmetric
the latent representation of the edges – obtained after updating the input using the message passing scheme
introduced in Section 2.2 – is generally not. Therefore, the matrix obtained after the message passing
scheme is non-symmetric and requires additional care before being transformed into the lower triangular
factorization. The second issue with directly using the Coates graph as input arises from the transformation
of the final edge embedding of the GNN to a lower triangular matrix. This means some edges from the
graph are removed based on the labeling of the nodes. In other words, all edges eij such that i ≤ j are not
included in the transformation of the network output. However, the GNN model that parameterizes the
mapping Λθ is permutation equivariant and, therefore, unable to capture this implicit dependency of node
ordering and output transformation. To overcome these limitations and align our computational framework
to the underlying objective of finding a sparse factorization, we introduce a novel GNN block that replaces
the original Coates graph representation to execute the message-passing steps.

Instead of using the Coates graph representation of matrix A directly as the underlying graph for the message
passing framework, we only use the graph corresponding to the lower triangular graph representation – that is
the Coates graph of tril(A) – to update node and edge features in the graph. This lower triangular structure
directly corresponds to the sparsity pattern of the final output of our model. In other words, instead of
first executing the message-passing steps and then transforming the output to a lower-triangular matrix, we
reverse the order and first apply the lower-triangular transformation and then apply the GNN on the already
transformed matrix. The corresponding Coates graph of the lower-triangular part of A used for message
passing is depicted in the Figure 1.

However, only executing updates with the lower-triangular matrix prevents nodes with a lower label to
obtain information from higher labeled nodes since the corresponding edges in the graph have been removed.
Therefore, in a second step, the message-passing scheme is executed over the upper-triangular part of the
matrix A instead. The edge features between the two consecutive layers are shared, in other words z

(n)
ij = z

(n)
ji .
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After the two message-passing steps are computed, the original matrix A is used to augment the edge features
by introducing skip connections. By changing the graph representation used for message passing, we explicitly
encode the node ordering used in the downstream task into the network architecture. The detailed forward
pass through the network architecture is described in Appendix C.

In order to highlight the connection between classical algorithms and our proposed network architecture,
we consider the unrolled graph obtained from the GNN. This is shown in Figure 1 on the right-hand side.
The unrolled graph is a König graph representation of the message-passing scheme (Doob, 1984). Here,
each column of nodes represents a latent graph representation, starting with the initial graph on the left.
Subsequent steps are obtained by applying the corresponding message-passing step over the edges of the
lower and upper triangular part respectively. The additional dependency on the parameters θ is omitted in
this figure for clarity. The underlying motivation of the message-passing block introduced in the previous
paragraph is that matrix multiplication can be represented in graph format by concatenating the graph
representations of the two factors in König’s graph representation. Each element in the product matrix can
then be computed as the sum of the weights connecting the two corresponding nodes in the concatenated
graphs. The skip connections are introduced as they represent an element-wise addition of the two matrices
(Doob, 1984; Brualdi & Cvetkovic, 2008).

Our model consists of three blocks resulting in a total of six message-passing steps. To enforce the positive
definiteness of the learned preconditioner the final diagonal elements of the output are transformed via

Λθ(A)ii = exp
(

1
2 · z

(N)
ii

)
. (8)

This activation function forces the diagonal elements to be strictly positive. Multiplying the final edge
embedding by the constant term one-half before applying the non-linear activation avoids numerical problems
and, based on our experiments, improves the convergence during training. Due to the connection to
incomplete factorization methods, we refer to our model as neural incomplete factorization (NeuralIF).

Additional fill-ins and droppings Similar to the incomplete Cholesky method with additional fill-ins
(Saad, 2003), processing on the graph can be applied to obtain both static and dynamic sparsity patterns for
the learned preconditioner. Static level of fill-ins can be obtained by adding additional edges to the graph prior
to the message passing during the symbolic phase. This corresponds to relaxing constraint (6b) to allow more
non-zero elements. Adding all remaining edges to the graph is computationally intractable and has limited ap-
plicability to large-scale problems. Therefore, we use heuristics inspired by the level-based fill-ins for incomplete
factorization methods, for example, by allowing all entries corresponding to the sparsity pattern of A2.

To obtain a dynamic sparsity pattern, we add a weighted ℓ1-penalty on the elements in the learned precon-
ditioning matrix ∥Λθ(A)∥1 to the training objective (6a). This encourages the network to produce sparse
outputs (Jenatton et al., 2011). During inference, we drop elements with a small magnitude to obtain an
even sparser preconditioner. This can lead to faster overall solving times since the step to find the search
direction in line 10 of Algorithm 1 scales with the number of non-zero elements in the preconditioner (Davis
et al., 2016). Both of these approaches can also be combined to obtain a learned preconditioner similar to the
dual threshold incomplete factorization (Saad, 1994).

By including additional edges, the forward pass of the GNN becomes computationally more expensive. There-
fore, it is important to avoid increasing the non-zero elements too much to maintain the computational efficiency.
Dropping additional elements, on the other hand, can be achieved with nearly no overhead during inference.

Inference and complexity When the trained model is used during inference to generate preconditioners,
the output Pθ(A) = Λθ(A)Λθ(A)T ≈ A is used within Algorithm 1 to find the preconditioned search direction
requiring only a single forward pass through the model.

For the complexity analysis, we assume that the number of non-zero elements in the sparse matrix A is on
the order of the matrix size i.e. nnz(A) = O(n), which is a common assumption when working with sparse
matrices (Scott & Tůma, 2023). Further, the embedding size of the node and edge features in the hidden
layers is constant and, therefore, omitted from the discussion below.
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The space complexity of the data-driven preconditioner during inference is O(n) as only the non-zero elements
(O(nnz)) in the matrix A as well as the fixed-size node features (O(n)) need to be stored. The time
complexity of the forward pass requires O(nnz) operations for the edge update in equation (2) and O(n)
steps for the node update given by equation (4). Here, a fixed-size neural network processes each node and
edge representation individually. The aggregation step of the messages, given by equation (3), requires each
node to aggregate the incoming edge features from all incident edges. Assuming every node has d neighbors
on average, this leads to a total complexity of O(n · d) = O(nnz) (Blakely et al., 2021). This operation
can be computed efficiently using sparse matrix-vector multiplication or the scatter operation in PyTorch
Geometric (Fey & Lenssen, 2019). Thus, the overall time complexity for the forward pass of the neural
network preconditioner for a sparse matrix A is linear in the number of non-zero elements O(nnz).

The same linear time complexity is achieved by the classical incomplete Cholesky factorization without
fill-ins. Going beyond the zero fill-in analysis conducted here is infeasible for general sparse matrices as it is
highly dependent on the structure of the sparsity pattern (Ghai et al., 2019). In practice the neural network
based implementation benefits from a higher parallelization ability leading to faster wall-clock computation
times compared to highly optimized algorithms as shown in Section 4.2.

The implementation details can be found in Appendix C.

4 Results

The overall goal of preconditioning techniques is to reduce total computational time required to solve the
linear equation system up to a given precision (here, we choose 10−6) measured by the residual norm as
described in Section 3. The time used to compute the preconditioner beforehand, therefore, needs to be traded
off with the achieved speed-up through the usage of the preconditioner. We compare the different methods
based on both the time required to compute the preconditioner (P-time) and the time needed to solve the
preconditioned linear equation system using the CG method (CG-time) which is related to the number of
iterations required. However, the type and the sparsity of the obtained preconditioner also influences the
time-per-iteration. For instance in factorized preconditioners the sparse triangular solve method scales with
the number of non-zero elements (Davis et al., 2016) while diagonal preconditioners can be applied in a fully
parallelized fashion. The implementation details for the conjugate gradient method and different baselines
and methods are described in Appendix C.

We consider two different datasets in our experiments. The first dataset consists of synthetically generated
problems where we can easily control the size and sparsity of the generated problem instances. The other
class is motivated by problems arising in scientific computing by discretizing the Poisson PDE on varying
grids using the finite element method. The details for the dataset generation can be found in Appendix A.

For numerical experiments we use a single NVIDIA-Titan Xp with 12 GB memory. For baseline preconditioners,
which are not able to be accelerated directly using GPUs, we use 6 Intel Core i7-6850K @ 3.60 GHz processors
for the computations. The (preconditioned) conjugate gradient method is always run on the CPU to ensure a
fair comparison between the performance of the preconditioners. Both of our models as well as the data-driven
NeuralPCG baseline are trained for a total of 50 epochs. However, convergence can usually be observed
significantly earlier. For the synthetic dataset we use a batch size of 5, while for the problems arising from the
PDE discretization we only use a batch size of 1 due to resource constraints. This leads to a total training time
of 40 minutes for the synthetic dataset and 55 minutes for the PDE dataset for each model. For all training
schemes we utilize early stopping based on the validation set performance as an additional regularization
measure. However, training can be further accelerated by applying different validation strategies and stopping
training once convergence is observed.

Further acceleration of our neural network-based preconditioner can be obtained by batching the problem
instances. This allows parallelization of the computation for the preconditioners leading to a smaller
precomputation overhead. However, to ensure a fair comparison in our experiments, we handle each problem
individually in our experiments.
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4.1 Synthetic problems

The results and statistics about the preconditioned systems from the experiments using the synthetic dataset
of size n = 10 000 with 1% non-zero elements are shown in Table 1. As a baseline, we include the standard
CG implementation without any additional preconditioner. We can see that our learned preconditioner is
significantly faster to compute while maintaining similar performance in terms of reduction in number of
iterations as the incomplete Cholesky (IC) method without additional fill-ins. This makes our approach, in
terms of total solving time, on average ∼ 25% faster than incomplete Cholesky.

Compared to the data-driven NeuralPCG (Li et al., 2023) method, our method is faster to compute during
inference which leads to a smaller P-time, since the number of parameters is significantly smaller. Further, we
are able to reduce the number of required iterations to solve the problem using preconditioned CG significantly
more. In summary, our data-driven approach shows the ability of the learned preconditioner to accelerate the
solving procedure both compared to classical methods and other data-driven preconditioning techniques.

Dynamic sparsity pattern The results for the learned preconditioner with additional sparsity, through
dropping elements by value as described in Section 3, are shown as NeuralIF-sp. Even though the output of
the model contains only around half of the elements compared to the methods without fill-ins, the performance
in terms of iterations does not suffer significantly. This can be exploited within the forward-backward solves
which scale with the number of non-zero elements. Therefore, the overall time to solve the system is on
average shortest using the sparsified NeuralIF preconditioner across all tested preconditioning methods.

Solving times The distribution of total solving times is shown in Figure 2, where each point represents a
single test problem instance that is solved with each respective method. The time shown includes both the
time required to compute the preconditioner (P-time) and the time to run the preconditioned CG method
(CG-time). Overall, the variance of solving time between different problems is small for all considered methods
which is due to the fact that the generated problems are very similar. The Jacobi and incomplete Cholesky
preconditioner are effective for most problems. In comparison, the NeuralPCG method is not able to speed
up the computational time compared to the other preconditioning baselines. We can see that both of our
NeuralIF preconditioners outperform the other preconditioning methods on nearly all problem instances but
similar to other methods exhibit slightly worse performance on a few problem instances.

Eigenvalue distribution In Figure 3, the ordered eigenvalues of the preconditioned linear equation system
for one test problem are shown. Here, we can see that NeuralIF is especially able to reduce large eigenvalues
compared to all the other preconditioners. However, compared to incomplete Cholesky the smaller eigenvalues
of the NeuralIF preconditioned system decrease earlier and the smallest eigenvalue of the system is slightly
smaller. This results in a slightly worse convergence behavior in the limit of our data-driven method.
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Figure 2: Total solving time for each test problem
instance from the synthetic dataset.
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Table 1: Mean results for the synthetic dataset for n = 10 000 with 1% non-zero elements on 100 test instances.
The first column shows the condition number of the preconditioned system L−1AL−T. The second column
lists the preconditioner’s sparsity. Remaining columns list performance-related figures for the preconditioned
conjugate gradient method: the third column lists the computation time for the preconditioner (P-time), the
fourth lists the time for finding the solution and the number of iterations required running the preconditioned
conjugate gradient method (CG-time/Iters.) and the fifth column shows the combined time for computing
the preconditioner and solving the system. All times are in seconds.

Preconditioner Cond. number κ ↓ Sparsity ↑ P-time ↓ CG-time (its.) ↓ Total time ↓
None 60 834.17 - - 2.79 (935.99) 2.79

Jacobi 33 428.86 99.99% 0.005 1.83 (689.82) 1.84
IC(0) 4 707.17 99.49% 0.247 1.16 (260.64) 1.40

NeuralPCG 7 240.72 99.49% 0.123 1.54 (318.86) 1.66
NeuralIF (ours) 4 921.76 99.49% 0.028 1.16 (267.08) 1.19

NeuralIF-sp (ours) 5 581.44 99.77% 0.021 1.01 (286.02) 1.03

Breakdown One inherent limitation of the incomplete Cholesky method is that it suffers from breakdown
in 4% of the synthetic test problems due to the numerical instabilities of the method (Benzi, 2002). These
instances are not included in solving time in Table 1 but are very costly in practice since it requires a restart of
the solving procedure. In contrast, our data-driven approach consistently generates a suitable preconditioner.

4.2 Poisson PDE problems

In the second problem, we are focusing on problems arising from the discretization of Poisson PDEs using
the finite element method. In order to train our learned preconditioner efficiently, we create a subset of small
training problems with matrices of size between 20 000 and 100 000 with up to 500 000 non-zero elements.
The results for these problems are summarized in Table 2. Here, MIC is the modified incomplete Cholesky
method with the same number of non-zero elements as IC(0) but potentially different locations of the non-zero
elements which is determined dynamically (Lin & Moré, 1999). Allowing a more flexible sparsity pattern can
lead to better results but additional pre-computation time is required to determine the position of non-zero
elements. Among all preconditioners without fill-ins, our data-driven method performs best as it is very
efficient to compute and reduces the required iterations vastly.

Additional fill-ins Among the preconditioners with additional fill-ins, the MIC+ preconditioner further
allows additional elements based on the number of non-zero elements in each row of the matrix which improves
the preconditioner at the cost of a more expensive pre-computation time. Our NeuralIF(1) preconditioner is
obtained by allowing non-zero elements in the non-zero locations of the matrix A2 which is a widely-adopted

Table 2: Results for the small Poisson PDE problems from the training distribution using a subset of the
columns shown in Table 1. The first set of method does not use fill-ins while in the second part additional
non-zeros are added based on the position and value of the non-zero elements.

Preconditioner P-time CG-time (its.) Total time
None - 1.72 (856.38) 1.72

Jacobi 0.004 1.01 (466.85) 1.02
IC(0) 0.022 0.51 (166.05) 0.53
MIC 0.029 0.56 (180.94) 0.59

NeuralPCG 0.018 0.57 (189.97) 0.59
NeuralIF(0) (ours) 0.014 0.51 (168.09) 0.52

MIC+ 0.044 0.39 (100.95) 0.43
NeuralIF(1) (ours) 0.030 0.44 (111.37) 0.47
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Figure 4: Pairwise comparison of total solving times (computation time of the precondition and solving time
of the preconditioned linear system) of the NeuralIF preconditioner with the other preconditioners without
fill-ins on the 300 large PDE problem instances. Instances towards the lower right part of the plot indicate
that our method is faster, otherwise the baseline. Note that there are different axis scales for each comparison.

heuristic (Chow, 2000). Here, computing the static sparsity pattern before the message passing requires a
significant amount of time and only minimal performance optimization of our algorithm is implemented.
Therefore, the highly optimized implementation of the modified incomplete Cholesky method performs slightly
better but the learned preconditioner improves significantly due to the added fill-ins compare to the previous
methods without fill-ins.

Generalization to larger problems Since real-world problems are often significantly larger than the
training instances, we evaluate our methods also on problem instances of sizes up to 500 000 containing
3 000 000 non-zero elements. Since the problems in the dataset containing large instances are more diverse in
terms of size, number of non-zero elements, and difficulty in solving them compared to the training dataset,
we show a pairwise comparison in Figure 4. Here, we compare the total time it takes to solve the system
using NeuralIF to solving the problem using various other preconditioners. We can see that for the larger
problem instances, the NeuralIF preconditioner performs on par with the IC(0) method and even outperforms
MIC, even though the problems are significantly larger than the training instances showing the generalization
abilities of our method on problems very different from the training domain.

We additionally compare the scaling of NeuralIF with the incomplete Cholesky method in Figure 5. In the
plot, we compare the number of non-zero matrix elements – which strongly correlates with the size of the
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Figure 5: Comparison of the computational time required for the incomplete Cholesky and NeuralIF
preconditioner with respect to the matrix size measure in number of non-zero elements on both the instances
from the training distribution and problem instances outside of the training domain. We are using 600
problem instances from the generated Poisson PDE problems. The generated outputs have by construction
the same number of non-zero elements as the input matrix.
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matrix – with the time that is required to compute the preconditioner (P-time, Figure 5a) as well as the time
required to run the preconditioned conjugate gradient method (Figure 5b).

The results show that our model exhibits a very good size generalization as it is able to produce efficient
preconditioners even for matrices which are a magnitude of size bigger than the training instances. Further,
we can see that the learned preconditioner scales better in terms of P-time for larger matrices than the
incomplete Cholesky method and the variance for the preconditioner computation is decreased.

Additional results for both datasets can be found in Appendix D.

5 Discussion & Limitations

Here, we discuss several limitations and potential improvements with our proposed framework. However, we
emphasize that many of these problems affect all learning-to-optimize methods and are not specific to our
learned preconditioner.

Training To train data-driven preconditioners, we assume that there is a sufficiently large set of problem
instances from of a distribution A that share some similarity. In practice, not all problem domains give rise to
such a distribution. Further, the time invested in the model training needs to be amortized over the speedup
obtained during the inference phase of the learned preconditioner. However, this model training replaces the
otherwise time-consuming manual tuning of preconditioners and is not a specific issue with our method but a
limitation of the general learning-to-optimize framework (Chen et al., 2022). This also motivates following
our self-supervised learning approach since it allows us to train the model on unsolved problem instances.
The trained model can then, in principle, be applied to accelerate solving the training instances making it
easier to amortize the model training.

Convergence While the method works well in our numerical experiments and general convergence is
ensured, no guarantees about the convergence speed can be made and it is likely that for some problem
classes the usage of the learned preconditioner leads to an increase in overall solving time. That said, as seen
in the experiments also classical preconditioners suffer from this problem and our method avoids pitfalls such
as breakdowns in incomplete Cholesky (Benzi, 2002).

Future work A promising future research direction is to learn more flexible sparsity patterns used for
preconditioners alongside the values to fill in. This can be achieved by changing the graph structure used
for message passing but requires additional care due to the combinatorial nature of the problem. Further,
the incomplete factorization loss used to train our model is only a heuristic and not directly related to the
complex convergence behavior of the conjugate gradient method. Extending the approach to directly take
into account the downstream task instead of relying on the heuristic factorization approach has the potential
to further improve the learned preconditioner and lead to faster convergence (Bansal et al., 2023).

6 Related work

Data-driven optimization or “learning-to-optimize (L2O)” is an emerging field aiming to accelerate numerical
optimization methods by combining them with data-driven techniques (Amos, 2023; Chen et al., 2022).
For example, a neural network can be trained to directly predict the solution to an optimization problem
(Grementieri & Galeone, 2022) or replace some typically hand-crafted heuristic within a known optimization
algorithm (Bengio et al., 2021).

L2O using GNNs Graph neural networks have been recognized as a suitable computational backend
for problems in data-driven optimization and linear algebra (Moore et al., 2023). Chen et al. (2023) study
the expressiveness of GNNs with respect to their power to represent linear programs on a theoretical level.
Using the Coates graph representation, Grementieri & Galeone (2022) develop a sparse linear solver for linear
equation systems. They represent the linear equation system as the input to a graph neural network which is
trained to approximate the solution to the equation system directly. However, no guarantees for the solution
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can be obtained. In contrast, our method benefits from the convergence properties of the preconditioned
conjugate gradient method.

Following an AutoML approach, Tang et al. (2022) instead try to predict a good combination of solver and
preconditioner from a predefined list of techniques using supervised training. The NeuralIF preconditioner
instead focuses on further accelerating the existing CG method and does not need any explicit supervision
during training. Sjölund & Bånkestad (2022) use the König graph representation instead to accelerate
low-rank matrix factorization algorithms by representing the matrix multiplication as a concatenation graph
similar to our approach. However, their architecture utilizes a graph transformer while our approach works
in a fully sparse setting. This avoids the scalability issues of transformer architectures and makes it better
suited for large-scale problems.

Data-driven CG Incorporating deep learning into the conjugate gradient method has been utilized in
several ways previously. Kaneda et al. (2023) suggest replacing the search direction in the conjugate gradient
method with the output of a neural network. This approach can, however, not be integrated with existing
solutions for accelerating the CG method and does not allow further improvements through preconditioning.
Furthermore, to ensure convergence all previous search directions need to be saved and the full Gram–Schmidt
orthonormalization needs to be computed in every iteration making it prohibitively expensive.

There have also been some earlier approaches to learning preconditioners for the conjugate gradient method
following similar ideas as our proposed NeuralIF method. Ackmann et al. (2021) use a fully-connected
neural network to predict the preconditioner for climate modeling using a supervised loss. Sappl et al. (2019)
use a convolutional neural network (CNN) to learn a preconditioner for applications in water engineering
by optimizing the condition number directly. However, both of these approaches are only able to handle
small-scale problems and their architecture and training is limited due to their poor scalability compared
to our suggested approach. Utilizing CNN architectures, predicting sparsity patterns for specific types
of preconditioners (Götz & Anzt, 2018) and general incomplete factorizations (Stanaityte, 2020) has also
been suggested previously. In comparison, our learned method is far more general and can be applied to a
significantly larger class of problems. Even though CNNs are widely adopted in the previous approaches,
they are not well-suited to represent the underlying problem given by a matrix in contrast to GNNs. More
recently, learned preconditioners have also been developed in the more general context of the GMRES solver
for non-symmetric and indefinite matrices using graph neural networks (Häusner et al., 2024).

Preconditioning Incomplete factorization methods are a large area of research. In most cases, the aim is to
reduce computational time and memory requirements by ignoring elements based on either position or value.
However, if done too aggressively, the method may break down due to numerical issues and require expensive
restarts. Perturbation and pivoting techniques can mitigate but not completely eliminate such problems (Scott
& Tůma, 2023). In contrast, our method does not suffer from breakdown as the positive-definiteness of the
output is ensured a posteriori. Numerical efficiency can also be improved by reordering to reduce fill-in (for IC(ℓ)
with ℓ > 0) or by finding rows of the matrix that can be eliminated in parallel (Gonzaga de Oliveira et al., 2018).

Chow & Patel (2015) formulate incomplete factorization as the problem of finding a factorization that is
exact on the given sparsity pattern as a feasibility problem that can be solved approximately. In contrast, our
method only approximates the Frobenius norm minimization in equation (6) without enforcing constraints,
which reduces pre-computation times. However, both approaches are quite similar in the sense that both
methods aim to minimize the difference of the sparse factorization and the original matrix. While our
method is using a fully-amortized learned optimization approach to minimize the full Frobenius norm distance
(Amos, 2023), Chow & Patel (2015) directly optimize the residuals of non-zero elements in the approximate
factorization. The latter approach also allows further acceleration using methods from distributed computing
(Anzt et al., 2018) but typically requires highly optimized implementations to achieve competitive results.

For problems arising from elliptical PDEs, multigrid preconditioning techniques have shown to be very
effective. These type of methods utilize the underlying geometric structure of the problem to obtain a
preconditioner (Pearson & Pestana, 2020). Multigrid methods have also been successfully combined with
deep learning techniques (Azulay & Treister, 2022). A potential drawback of this type of preconditioner is,
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however, that the technique is computationally quite expensive compared to other methods and the resulting
preconditioner is typically non-sparse.

7 Conclusions

In this paper we introduce NeuralIF, a novel and computationally efficient data-driven preconditioner for
the conjugate gradient method to accelerate solving large-scale and sparse linear equation systems. Our
method is trained to predict the sparse Cholesky factor of the input matrix following the widespread idea of
incomplete factorization preconditioners (Benzi, 2002). To obtain a computationally efficient loss function, we
derive a stochastic approximation of the Froebnius loss based on Hutchinson’s trace estimator (Hutchinson,
1989). This allows us to train our model using matrix-vector multiplications only which can be efficiently
implemented for the large-sclae sparse matrices.

We use the problem matrix A as an input to a graph neural network, which processes the input and produces
the desired approximate factorization. The network architecture aligns with the objective to minimize the
distance between the learned output and the input matrix A based on insights from graph theory using the
Frobenius norm as a distance measure. Our experiments show that the proposed method is competitive
against general-purpose preconditioners both on synthetic and real-world problems and allows the creation of
both dynamic and static sparsity patterns. Our work shows the large potential of data-driven techniques
in combination with insights from numerical optimization and the usefulness of graph neural networks as a
natural computational backend for problems arising in computational linear algebra (Moore et al., 2023).
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A Dataset details

The (preconditioned) conjugate gradient method is a standard iterative method for solving large-scale systems
of linear equations of the form

Ax = b (9)

where A is symmetric and positive definite (spd) i.e. A = AT and xTAx > 0 for all x ̸= 0. We also write
A ∈ S++

n to indicate that A is a n × n spd matrix (Golub & Van Loan, 2013). The method is especially
efficient when the matrix A is large-scale and sparse since the required matrix-vector products shown in
Algorithm 1 can efficiently exploit the structure of the matrix in this case (Saad, 2003).

In this section, we specify different problem settings leading to distributions A over matrices of the desired
form such that the conjugate gradient method is a natural choice for solving the problem. Given a distribution
we accessing via a number of samples, our goal is to train a model using the empirical risk minimization
objective shown in the main paper to compute an incomplete factorization of a given input and utilize the
resulting output as an effective preconditioner in the CG algorithm.

In total, we are testing our method on two different datasets but vary the parameters used to generate these
datasets. The first problem dataset considers synthetic problem instances. The other test problem arises
in scientific computing where large-scale spd linear equation systems can be obtained naturally from the
discretization of elliptical PDEs.

The size of the matrices considered in the experiments is between n = 10 000 and n = 500 000 for all datasets
in use. Throughout the paper we assume that the problem at hand is (very) sparse and spd. Thus, the
preconditioned conjugate gradient method is a natural choice for all these problems. We ensure that the
matrices are different by using unique and non-overlapping seeds for the problem generation. The datasets
are summarized in Table 3. For the graph representation used in the learned preconditioner, the matrix size
corresponds to the number of nodes in the graph and the number of non-zero elements corresponds to the
number of edges connecting the nodes. In the following, the details for the problem generation are explained
for each of the datasets.

Table 3: Summary of the datasets used with some additional statistics on size of the matrices and the number
of corresponding non-zero elements. Samples refer to number of generated problems in the train, validation
and test set respectively.

Dataset Samples Matrix size Non-zero elements (nnz) Sparsity
Synthetic 1 000/10/100 10 000 ∼ 1 000 000 99%
Poisson - train 750/15/300 20 000 – 150 000 800 000 – 500 000 > 99.9%
Poisson - test -/-/300 100 000 – 500 000 500 000 – 3 000 000 > 99.9%

A.1 Synthetic problem

The set of random test matrices is constructed by choosing a sparsity parameter p which indicates the expected
percentage of non-zero elements in the matrix. It is also possible to specify p itself as a distribution. We choose
the non-zero probability such that the resulting spd matrices which are generated with equation equation (10)
have around 99% total sparsity (therefore the generated problems have 1 million non-zero elements). We then
create the problem by sampling a matrix A with p(Aij = 0) = p and p(Aij |Aij ̸= 0) ∼ N (0, 1). In order to
ensure the final matrix is spd we compute the test sample as

M = AAT + αI (10)

where α ≈ 10−3 is used to ensure the resulting problem is positive definite. The right hand side of the linear
equation system is sampled uniformly b ∼ U [0, 1]n.
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(a) Convex (b) Convex with hole (c) Simple polytope

Figure 6: Coarse sample meshes for each of the three different domain distributions used to generate training
data for the 2-dimensional Poisson PDE problem.

Problems of this form also arise when minimizing quadratic programs since the equation equation (9)
represents the first-order optimality condition for an unconstrained QP (Stellato et al., 2020). Thus, the
problem represented here can be encountered in various settings making it an interesting case study.

A.2 Poisson equation

The Poisson equation is an elliptical partial differential equation (PDE) and one of the most fundamental
problems in numerical computational science (Langtangen & Logg, 2016). The problem is stated as solving
the boundary value problem

−∇2u(x) = f(x) x ∈ Ω (11a)
u(x) = uD(x) x ∈ ∂ Ω (11b)

where f(x) is the source function and u = u(x) is the unknown function to be solved for. By discretizing this
problem using the finite element method and writing it in matrix form a system of linear equations of the
form Lx = b is obtained where the stiffness matrix L is sparse and spd. For large n, this problem therefore
can be efficiently solved using the conjugate gradient method given a good preconditioner.

In order to obtain a distribution A over a large number of Poisson equation PDE problems, we consider a set
of two-dimensional meshes that are generated by sampling from a normal distribution and creating a mesh
based on the sampled points. We consider three different cases for the mesh generation: (a) we form the
convex hull of the sampled points and triangulate the resulting shape, (b) we sample two sets of points and
transform them into convex shapes as before. The second samples have a significantly smaller variance. The
final shape that is used for triangulation is then obtained as the difference between the two samples. Finally,
(c) we generate a simple polytope from the sampled points. An example for each of the generated shapes is
shown in Figure 6.

The sampled meshes are discretized using triangular basis elements with the finite-element method and
refined using the scikit-fem python library (Gustafsson & McBain, 2020). Due to the discretization based on
the provided mesh the size of the generated matrix is variable. Based on the stiffness matrices arising from
the discretized problems the NeuralIF preconditioner is trained.

B Connection to sparse approximate inverse preconditioners

Instead of modeling the preconditioner as a sparse approximation of the factorization of A, as in the incomplete
factorization setting, sparse approximate inverse preconditioners (SPAI) directly approximate the inverse of
A (Scott & Tůma, 2023). In other words, the goal of SPAI preconditioners is finding a matrix M such that
M ≈ A−1 subject to sparsity constraints. Similar to our objective function in equation (6a), the objective of
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SPAI preconditioners is usually also modeled as a Frobenius norm minimization problem

min
M∈S

∥I −MA∥F (12)

where M is restricted to have a predetermined sparsity pattern S (Benzi & Tuma, 1999). The solution to
this problem can be computed efficiently but the output is neither guaranteed to be symmetric nor positive
definite. Instead, the factorization of M can be obtained by reformulating the problem leading to the class of
factorized sparse approximate preconditioners. In this class of methods, the distance between the factorized
preconditioner and the unknown Cholesky factor of A−1 is computed (Benzi et al., 1996; Scott & Tůma, 2023).

Learning the sparse inverse approximation of a matrix directly from data and applying the learned function
as a preconditioner is an interesting direction for future research (Bånkestad et al., 2024).

C Implementation details

In the following, we describe the details of the network architecture our NeuralIF model uses as well as the
details of the model training, testing, and inference. Our method is implemented using PyTorch (Paszke
et al., 2019) and PyTorch Geometric (Fey & Lenssen, 2019).

C.1 Model architecture

Here, we summarize in detail the architecture choices for our NeuralIF preconditioner and provide details on
the implementation and training of the method. In total, our model consists of 1 780 learnable parameters
which is significantly less than previous approaches and allows for a fast inference time.

Node and edge features In total eight features are used for each node thus xi ∈ R8. The first five
node features listed in Table 4 are implemented following the local degree profile introduced by Cai & Wang
(2019). The dominance and decay features shown in the table are originally introduced by Tang et al. (2022).
Additionally, we use the position of the node in the matrix as the final input feature.

As edge feature, only the scalar value of the non-zero matrix entries are used. In deeper layers of the network,
when skip connections are introduced, the edges are augmented with the original matrix entries. This
effectively leads to having two edge features in these layers: the computed edge embedding of the current
layer z

(l)
ij as well as the original matrix entry aij . However, from these only a one-dimensional output is

computed z
(l+1)
ij as described in the following.

Message passing block At the core of our method, we introduce a novel message passing block which
aligns with the objective of our training. The underlying idea is that matrix multiplication can be represented
in graph form by concatenating the two Coates graph representations as described previously (Doob, 1984).
The pseudocode for the message passing scheme is shown in Algorithm 2. The message passing block consists
of two GNN layers as introduced in Section 3 which are concatenated to mimic the matrix multiplication. To

Table 4: List of node features used in the graph neural network.

Feature name Description
deg(v) Degree of node v
max deg(u) Maximum degree of neighboring nodes
min deg(u) Minimum degree of neighboring nodes
mean deg(u) Average degree of neighboring nodes
var deg(u) Variance in the degrees of neighboring nodes
dominance Diagonal dominance
decay Diagonal decaying
pos The position of the node in the matrix
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Algorithm 2 Pseudo-code for NeuralIF preconditioner.
1: Input: Graph representation of the spd system of linear equations Ax = b.
2: Output: Lower-triangular sparse preconditioner for the linear system which is an incomplete factorization.
3: ▷ NeuralIF preconditioner computation:
4: Compute node features xi shown in Table 4
5: Apply graph normalization
6: Split graph adjacency matrix into index set for the lower and upper triangular parts, L and U .
7: for each message passing block l in 0, 1, . . . , N − 1 do
8: ▷ update using the lower-triangular matrix part
9: z

(l+ 1
2 )

ij ← ϕθl
z,1

(z(l)
ij ,x

(l)
i ,x

(l)
j ) for all (i, j) ∈ L

10: m
(l+ 1

2 )
i ←

⊕(1)
j∈NL(i) z

(l+ 1
2 )

ji

11: x
(l+ 1

2 )
i ← ψθl

e,1
(x(l)

i ,m
(l+ 1

2 )
i )

12: ▷ share the computed edge updates between the layers
13: z

(l+ 1
2 )

ji ← z
(l+ 1

2 )
ij for all (i, j) ∈ L

14: ▷ update using the upper triangular matrix part
15: z

(l+1)
ji ← ϕθl

z,2
(z(l+ 1

2 )
ji , x

(l+ 1
2 )

j , x
(l+ 1

2 )
i ) for all (j, i) ∈ U

16: m
(l+1)
i ←

⊕(2)
j∈NU (i) z

(l+1)
ji

17: x
(l+1)
i ← ψθl

e,2
(x(l)

i ,m
(l+1)
i )

18: if not final layer in the network then
19: ▷ add skip connections
20: z

(l+1)
ij ← [z(l+1)

ji , aji]T for all (j, i) ∈ U
21: else
22: z

(l+1)
ij ← z

(l+1)
ji for all (j, i) ∈ U

23: Apply
√

exp(·)-activation function to final edge embedding of diagonal matrix entries z(N)
ii .

24: Return lower triangular matrix with elements z(N)
ij for i ≤ j.

align the block with our objective, we only consider the edges in the lower triangular part of the matrix in
the first layer (see lines 8–11 in Algorithm 2) while in the second layer of the block only edges from the upper
triangular part of the matrix are used (lines 14–17). However, the same edge embedding for the two steps are
used (line 13). In the final step of the message passing block, we introduce skip connections and concatenate
the edge features in the current layer with the original matrix entries (lines 18–23). Note that, since the
matrix A is symmetric it holds that (i, j) ∈ L⇔ (j, i) ∈ U where U and L are the index set corresponding to
the non-zero elements in the upper and lower triangular matrix.

Here, we denote the updates after the first message passing layer with the superscript (l + 1
2 ) to explicitly

indicate that it is an intermediate update step. The final output from the block is then computed based on
another message passing step which utilizes the computed intermediate embedding. Further, NL(i) denotes
the neighborhood of node i with respect to the edges in the lower triangular part L and NU (i) the ones from
the upper triangular part U respectively which are utilized for the message passing. There are always at least
the diagonal elements in the neighborhood of each node and therefore, the message computation is well defined.

Network design Both the parameterized edge update ϕ and the node update ψ functions in every layer
are implemented using two layer fully-connected neural networks. The inputs to the edge update network ϕ
are formed by the node features of the corresponding edge and the edge features themselves leading to a
total of 8 + 8 + 1 = 17 inputs in the first message passing step and one additional input in later steps. The
edge network outputs a scalar value. For each network, 8 hidden units are used and the tanh activation
function is applied as a non-linearity. To compute the aggregation over the neighborhood ⊕, the mean and
sum aggregation functions are used – respectively in the first and second step of the message passing block –
which is applied component-wise to the set of neighborhood edge feature vectors. The node update function ψ
takes the aggregation of the incoming edge features as well as the current node feature as an input (1 + 8 = 9).
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The NeuralIF model used in the experiments consists of 3 of the message passing blocks introduced in
Section 3. Resulting in a total of six GNN message passing steps with two skip connections from the input
matrix A. Graph normalization prior to the message passing leads to faster overall convergence of the training
process (Cai et al., 2021). Note, that the graph normalization step, that is additionally applied to stabilize
the training, is independent of the graph topology and only operates on the node feature vectors. The forward
pass through the model is described in Algorithm 2.

Network training We are training our model for a total of 50 epochs using a batch size of 5 for the
synthetic problems and 1 for PDE problems. The Adam optimizer with initial learning rate 0.001 is used. Due
to the small batch size and the loss landscape, we utilize gradient clipping to restrict the length of the allowed
update steps and reduce the variance during stochastic gradient descent. While we use the Hutchinson’s trace
estimator with m = 1 during training which allows a full vectorized implementation of the problem loss function.
We compute the full Frobenius norm during the validation phase to avoid overfitting and ensure convergence.
Further, we use early stopping in order to avoid overfitting of the model based on the validation set performance
by using the number of iterations the learned preconditioner takes on the validation data as the target.

C.2 Baseline implementation

Conjugate gradient method The conjugate gradient method is implemented both in the preconditioned
form (as shown in Algorithm 1) and, as a baseline, without preconditioner using PyTorch only relying on
matrix-vector products which can be computed efficiently in sparse format (Paszke et al., 2019). In order to
ensure an efficient utilization of the computed preconditioners, the forward-backward substitution to solve
for the search direction is implemented using the triangular solve method provided in the numml package
for sparse linear algebra (Nytko et al., 2022). The conjugate gradient method is run until the normalized
residual reaches a threshold of 10−6, see Section 3 for details.

Baseline preconditioners The Jacobi preconditioner is due to its computationally simplicity, directly
implemented in PyTorch and scipy using a fully vectorized implementation. It can be seen in the numerical
experiments that the overhead for computing this method is very small compared to the more advanced
preconditioners and does not effect the overall runtime significantly.

The incomplete Cholesky preconditioners and its modified variants with dynamic sparsity patterns and
additional fill-ins are implemented using the highly efficient C++ implementation of ILU++ with provided
bindings to python (Mayer, 2007; Hofreither, 2020). Due to the sequential nature of the computation, it is of
critical importance that the utilized implementation is efficient.

The data-driven NeuralPCG baseline – which uses a simple encoder-decoder GNN architecture – (Li et al., 2023)
is implemented in PyTorch and PyTorch Geometric following a very similar approach to NeuralIF. The hyper-
parameters for the model are chosen as specified in the paper: using 16 hidden units with a single hidden layer
for encoder, decoder and GNN update functions and a total of 5 message passing steps. This results in a total of
10 177 parameters in the model which means the parameter count is over 5 times higher than our proposed ar-
chitecture which makes inference using the NeuralPCG model more expensive as we observe in the experiments.
Due to computational limits, the batch size is reduced during training compared to the original paper.

The results obtained from the model are similar to the one presented by Li et al. (2023). However, in our
experiments we observed a higher pre-computation time which can be explained by the fact that different
hardware acceleration is used. Further, in our experiments different sparsity patterns with more non-zero
elements and larger matrices are used showing the poor computational scaling of the NeuralPCG model
for large problem instances. In terms of resulting number of conjugate gradient iterations, our experiments
match the results from the paper.

Compute To avoid overhead due to the initialization of the CUDA environment, we run a model warm-up
with a dummy input, before running inference tests with our model. The (preconditioned) conjugate gradient
method – including the sparse forward-backward triangular solves for the utilized preconditioner – is run on
a single-thread CPU. The learned preconditioner is computed using a single NVIDIA-Titan Xp GPU.
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D Additional Results

Here, we present additional results and extensions of the baseline NeuralIF preconditioner presented in this
paper. We both describe how to include reordering into the learned preconditioner as well as show more
in-depth results. In Section D.2, we conduct an ablation study, probing the different loss functions proposed
to train the learned preconditioner. Finally, we show the convergence behavior of the PCG algorithm for the
different preconditioners and compare the performance with sparse direct methods.

D.1 Matrix reordering

It is possible to directly combine our learned preconditioner with existing reordering methods. Classical
reordering schemes such as COLMAD are executed in the symbolic phase before obtaining the values for
the non-zero elements in the preconditioner (Gonzaga de Oliveira et al., 2018). Since our message passing
scheme implicitly takes into account the ordering of the nodes, the nodes can simply be relabeled prior to
running the forward pass of the neural network which influences the split into lower and upper triangular
matrices that are used for the message passing. This ordering could also be learned alongside the values to
fill in which is an interesting area for future research.

D.2 Comparison of loss functions

In this section, we compare the different loss functions proposed to train the learned preconditioner. Computing
the condition number as proposed in Sappl et al. (2019) as a loss function, is computationally infeasible in
our approach since the underlying problems are large-scale compared to the problems encountered in the
previous work. For the matrices used in our experiments, computing the condition number in the forward
process is often computationally very expensive and therefore, the approach is omitted. We compare instead
the full Frobenius norm as a loss as shown in objective (6a) and the stochastic approximation we suggest
using Hutchinson’s trace estimator as shown in equation (7).

Our loss is self-supervised and thus it is sufficient to have access to the problem data Ai, bi but not the
solution vector xi. This saves significant time in the dataset generation. Further, it allows us to train a
preconditioner on an existing dataset without solving all problems beforehand or even applying the learned
preconditioner on the training data. The full Frobenius loss is also self-supervised but requires a matrix-matrix
multiplication which leads to a large memory consumption and expensive forward and backward computation
leading to longer training times. Further, matrix-vector multiplications are significantly easier to optimize
and build a cornerstone of the CG algorithm allowing for example matrix-free implementations.

The stochastic and full Frobenius loss functions are compared in Table 5. We are training all models for
20 epochs and use a batch size of 1 on the synthetic dataset. Thus, the number of parameter updates in
the training for all models is the same. Using the full Frobenius norm as a loss function is significantly
more computationally expensive compared to the stochastic approximation and, further, requires significantly
more memory which means we can not apply it to large-scale problems. Training a model for 20 epochs with
the full loss takes roughly 5 hours, while using the stochastic approximation or supervised loss, training is
finished in around 30 minutes without decreasing the obtained preconditioner performance. Further, the

Table 5: Comparison of NeuralIF preconditioner performance on the synthetic problem set trained using
different loss functions. The validation loss for both training loss functions is the Frobenius norm distance
given in equation (6a). Time-per-epoch lists the training time for one epoch of training data (consisting of
1 000 samples), using a batch size of 1, in seconds.

Loss function Validation Loss ↓ Time-per-epoch ↓
Frobenius 324.2 850
Stochastic 325.7 90
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Figure 7: Comparison of the training and validation loss for the Forbenius norm minimization and the
stochastic approximation of the loss proposed by us. Here, we only compare the loss functions based on
iteration count, not the actual time required to run the model training.

reduced memory consumption allows us to increase the batch size in other experiments leading to an even
larger speedup in training time and additional variance reduction during the training process.

Even though we use a stochastic approximation to train our model, the validation loss computed as the full
objective does not increase significantly. Both the training loss and the validation loss for the different loss
functions are compared in Figure 7. Even though the variance for the stochastic approximation is significantly
higher as expected, the validation performance of the two loss functions is nearly identical. One explanation
for this is that the noise in the stochastic gradient descent method is already very large influencing the
optimization procedure. Further, the added noise might help prevent overfitting on the training samples
leading to a better performance of the stochastic loss in terms of validation loss.

D.3 PCG convergence

Here, additional results for the synthetic dataset are shown. Notably, Figure 8 shows the convergence of
the different (preconditioned) CG runs on a single problem instance from the synthetic dataset where both
the residual – which is also used as a stopping criterion – and the usually unavailable distance between the
true solution and the iterate are shown. Further, for each problem the worst-case bound depending on the
condition number κ(A) from equation (1) is displayed. We can see that the distance to the true solution is
bounded by the theoretical κ(A)-bound and monotonically decreasing. The residual itself does not need to
be decreasing and often increases in the first few iterations in our experiments.

The distribution of the eigenvalues of the linear equation system – shown in Figure 3 in the main paper
for this problem instance – directly influence the convergence behavior of the method. However, as it is
commonly observed in the CG method, the κ(A)-bound only describes the convergence behavior locally
and overall, the algorithm converges significantly faster than the worst-case bound (Carson et al., 2023).
We can, however, observe that the better conditioning still improves the convergence significantly and the
obtained speedup is proportional to the speedup obtained in the worse-case bound making the condition
number – at least for the problem instances considered in this dataset – a good measure for the performance
of the conjugate gradient method. Further, we can see that our learned NeuralIF preconditioner is especially
effective in the beginning of the CG algorithm and is able to outperform IC(0) for the first 100 iterations
showing a significantly different convergence behaviour in this region.
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Figure 8: Convergence of the different preconditioned linear systems on a synthetic problem instance.

D.4 Comparison with sparse direct solvers

Here, we compare the performance of the (preconditioned) conjugate gradient method with applying sparse
direct solvers to the problem instances (Scott & Tůma, 2023). We are using the sparse Cholesky decomposition
with GPU support of the CHOLMOD routine available from the SuiteSparse package with the Python
interface provided by cholespy. We apply the supernodal factorization strategy and use nested dissection
reordering to the matrix (Nicolet et al., 2021; Chen et al., 2008).

Synthetic problems For the synthetic dataset the average time to solve each problem using the direct
solver is 91 seconds which is significantly longer than the conjugate gradient based solvers presented in
Table 1. This is due to the fact that no structured sparsity in the problems is present that can be efficiently
exploited during the symbolic-solving phase due to the construction of the problems. Therefore, using
iterative methods is far superior in this case even though the performance of the CG method is not tuned.

Poisson problems In contrast, problems arising from the discretization using the finite-element method
are well known to be efficiently solvable using sparse direct methods due to their inherent sparsity structure.
However, by taking domain knowledge into account it is possible to accelerate the CG solver further using
the popular multigrid methods which constructs the preconditioner based on the properties of the problem
domain as previously discussed.
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The average time to solve the problems from the small Poisson dataset is 0.45 seconds which is slightly
faster than the preconditioners without any additional fill-ins but on par with the additional results shown
in Table 2. For the larger problem instances, the direct method scales slightly better in our experiments
requiring an average time of 2.7 seconds to solve the problem instances. In comparison, the best solver using
the conjugate gradient method requires an average of 4.4 seconds (IC) and 4.5 seconds (NeuralIF) respectively
over all problem instances. Thus, overall the difference between the two implementations is not huge but
sparse direct solvers using GPU show a slightly better scaling in our experiments.

Note, however, that the numerical comparison presented here between the different methods is in favor of
the sparse direct solvers. While different preconditioner are evaluated using the same solver implementation,
it makes sense to compare the timing between the different preconditioning techniques even though the
solver itself is not optimized for performance. Further, as described in Section D.1 additional techniques such
as reordering of rows and columns can be applied to obtain better preconditioners by applying additional
heuristics. These techniques are already integrated into the sparse direct solvers applied here. The full
implementation of the sparse direct solver is optimized in a low-level language while our CG method is
executed in Python, leading to slower solving times.
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