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ABSTRACT

Video recognition in an open world is quite challenging, as we need to handle
different settings such as close-set, long-tail, few-shot and open-set. By leveraging
semantic knowledge from noisy text descriptions crawled from the Internet, we
focus on the general video recognition (GVR) problem of solving different recog-
nition tasks within a unified framework. The contribution of this paper is twofold.
First, we build a comprehensive video recognition benchmark of Kinetics-GVR,
including four sub-task datasets to cover the mentioned settings. To facilitate the
research of GVR, we propose to utilize external textual knowledge from the Internet
and provide multi-source text descriptions for all action classes. Second, inspired
by the flexibility of language representation, we present a unified visual-linguistic
framework (VLG) to solve the problem of GVR by devising an effective two-stage
training paradigm. Our VLG is first pre-trained on video and language datasets to
learn a shared feature space, and then devises a flexible bi-modal attention head to
collaborate high-level semantic concepts under different settings. Extensive results
show that our VLG obtains the state-of-the-art performance under four settings.
The superior performance demonstrates the effectiveness and generalization ability
of our proposed VLG framework. We hope our work makes a step towards the
general video recognition and could serve as a baseline for future research.

1 INTRODUCTION

Similar to image classification, the existing video recognition tasks are roughly grouped into four
settings: close-set (Kay et al., 2017), long-tail (Zhang et al., 2021), few-shot (Zhu & Yang, 2018) and
open-set (Acsintoae et al., 2021), to mimic the realistic scenarios in practice. With multiple video
benchmarks (Kay et al., 2017; Soomro et al., 2012; Goyal et al., 2017), a number of works (Wang
et al., 2016; Zhang et al., 2021; Zhu & Yang, 2018; 2020; Bao et al., 2021) have been developed to
study video recognition in these diverse scenarios.

Though various video benchmarks and frameworks have been established in the last few years, there
still remain two problems: 1) video datasets in different settings are normally collected from various
data sources and naturally introduce domain bias. They are not suitable for studying general video
representation. It is also inefficient for data organization and storage to use multiple benchmarks
separately in different settings; 2) most works (Feichtenhofer et al., 2016; Carreira & Zisserman,
2017; Tran et al., 2018; Kumar Dwivedi et al., 2019; Shu et al., 2018) focus on addressing individual
settings separately with different frameworks. These separate investigations would ignore the potential
sharing of knowledge among different settings. These problems severely impede the advance in video
recognition as well as its application in the real world. Accordingly, we aim to present a single video
benchmark covering all these settings, and propose a simple framework to handle these different
sub-problems under a unified perspective.

To address the first problem: we build a comprehensive video benchmark to dig into the General
Video Recognition (GVR) problem, namely, covering video recognition under the following four
settings. As shown in the left of Figure 1, this benchmark for GVR can cover a wide range of
settings including close-set, long-tail, few-shot and open-set. Specifically, we curate a general video
recognition benchmark Kinetics-GVR from the Kinetics-400 dataset (Carreira & Zisserman, 2017),
with four sub-settings: Kinetics-Close, Kinetics-LT, Kinetics-Fewshot and Kinetics-Open, to mimic
the video distribution of different scenarios in real-world applications. Our Kinetics-GVR aims to

1



Under review as a conference paper at ICLR 2023

Open-set

NovelKnown

Few-shot

Support

Close-set

All

Long-Tail

Many

Middle
Few

Play Basketball

Just start bouncing the ball, 

standing still at first.

Keep your dribble low to 

control the ball more easily.

Score points by shooting 

the ball through the hoop

Your shots will be accurate 

when you square up

pass to a point guard 

behind the line.

keep your passes quick and 

crisp to move the ball 

around

Figure 1: Video label distribution of different scenarios and different modalities. As shown in
the left, videos in GVR tasks have arbitrary distributions similar to natural data, such as close-set,
long-tail, few-shot and open-set. Most works only focus on coping with one aspect of them, while our
method can use a unified framework to address the GVR task by combining the advantages of video
and text modalities. The right part of the figure provides intuitive explanations for the correspondence
between the videos and text modalities.

provide a solid benchmark to verify the performance of video recognition models under different
video and label distributions.

Since some works (Radford et al., 2021; Jia et al., 2021; Li et al., 2022; Yuan et al., 2021) have
shown the efficacy of using natural language to supervise the visual representation learning, we
intend to draw some extra knowledge (i.e., web text information) into our benchmark to facilitate the
development of GVR. The extra web knowledge is expected to provide new cues for GVR. However,
obtaining the paired text data for each video is prohibitively expensive. As shown in the right of
Figure 1, we observe that there are some connections between the video and text descriptions of
its corresponding category. Specifically, the text descriptions for a specific video category exhibit
some high-level semantic concepts to represent the static characteristics (e.g., scene) in space and
dynamics (e.g., the steps to shooting) in time. In this sense, we hope that the text descriptions of
video categories could also provide useful clues to learn a more general representation for GVR
under different settings. As a result, we also provide abundant text descriptions per-category in our
benchmark to facilitate the research of GVR by crawling from the Internet.

To address the second problem: we develop a unified framework to address general video recognition.
Instead of dealing with each setting of video recognition with different frameworks, the unified
framework would greatly reduce the work of hand-crafted design specific to each setting, and
potentially increase its generalization ability due to the comprehensive consideration of all settings.

We find some recent visual-linguistic representation works, e.g. CLIP (Radford et al., 2021) and
ALIGN (Jia et al., 2021), can learn transferable visual models from natural language supervision, and
show the promising performance on image recognition under different settings. However, there is
still a lack of work to bridge the gap between video and text for general recognition under different
scenarios. Accordingly, we develop a video-language framework for general video recognition,
termed as VLG. VLG could benefit from the visual-linguistic models pretrained on the large-scale
image-text pairs (e.g., CLIP (Radford et al., 2021)), and connect video and text through customized
temporal modeling. Our VLG leverages the rich semantic information of web text descriptions
to guide the spatio-temporal feature learning. Specifically, our method primarily contains four
components: 1) The frame encoder to learn the visual representation for each frame. 2) The temporal
module to model temporal features across frames for video domain adaption; 3) The language encoder
to learn the textual representation for each sentence of category description. 4) The bi-modal attention
head to perform general video recognition under different settings. As text descriptions are directly
collected from the Internet, they may include some noisy information. Thus we design a two-stage
procedure to train our VLG: Stage I is to perform video-language pretraining, adapting the encoders
from the image domain to the video domain to learn a visual-linguistic representation. Stage II
filters out noisy texts and train the bi-modal attention module to produce our final prediction. As
demonstrated in experiments, our proposed VLG can effectively handle GVR under different settings
of close-set, long-tail, few-shot, and open-set.
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In summary, we make the following major contributions. 1) We formulate the task of general video
recognition (GVR) and establish a comprehensive benchmark to fairly test the performance of video
recognition models under different data distributions. The benchmark for general video recognition
based on Kinetics400 (Kay et al., 2017) comprises close-set, long-tail, few-shot and open-set, which
shows different data distribution in practice. 2) To facilitate the research of GVR, we elaborately
collect abundant text descriptions for each category. These extra textual knowledge exhibits more
rich and high-level semantic concepts to represent the characteristics both in time and space, and
contributes to the development of GVR. 3) We develop a unified video-language framework for
general video recognition (VLG), which leverages the extensive web textual knowledge to effectively
handle GVR under our customized two-stage learning strategy 4) Extensive experiments demonstrate
the effectiveness of our VLG on the Kinetics-GVR for general video recognition under four settings.

2 RELATED WORK

Video Representation. Video recognition has made rapid progress from the early hand-craft de-
scriptors (Klaser et al., 2008; Wang et al., 2013) to current deep networks. Deep neural networks
can capture more general spatio-temporal representation from early two-stream networks, 3D-CNNs,
and light-weight temporal modules to current transformer-based networks. Two-stream networks (Si-
monyan & Zisserman, 2014; Wang et al., 2016) used two inputs of RGB and optical flow to separately
model appearance and motion information in videos with a late fusion. 3D-CNNs (Tran et al., 2015;
Carreira & Zisserman, 2017) proposed 3D convolution and pooling to model space and time jointly.
Light-weight temporal modules (Xie et al., 2018; Lin et al., 2019; Li et al., 2020; Liu et al., 2021c)
were designed as powerful plugins to achieve the trade-off between efficacy and efficiency. Recently,
several works (Bertasius et al., 2021; Arnab et al., 2021) try to employ and adapt strong vision
transformers to encode the spatial and temporal features jointly. The aforementioned methods mostly
focus on addressing the video recognition problem only using visual modality in a supervised way,
while ignoring the potentiality of natural language.

Visual-Textual Learning. Visual-Textual Pretraining has made great progress on several down-
stream vision tasks. Li & Wang (2020) learned powerful video representation from a large-scale
video-text pairs, with a contrastive learning method of CPD. Miech et al. (2020) proposed a new
learning loss to address misalignments inherent in narrated videos. Akbari et al. (2021) proposed
a framework for learning multimodal representations for unlabeled data. Recently, CLIP (Radford
et al., 2021) and ALIGN (Jia et al., 2021) adopted simple noisy contrastive learning to obtain visual-
linguistic representation from large-scale image-text web data. Some works also focus on a specific
type of downstream tasks by adapting the pretrained image-text representation, e.g. video-text
VQA (Kant et al., 2020; Singh et al., 2019), video-text retrieval (Dong et al., 2021; Liu et al., 2021a).
Wang et al. (2021b); Ju et al. (2021) adopted prompt engineering to reformulate their tasks into
the same format as the pretraining objectives. However, these methods cannot excavate the values
of the noisy text descriptions data from the Internet, leading to an unsatisfactory performance on
real-world applications. To mitigate these issues, Tian et al. (2021) proposed to adopt class-wise
text descriptions for long-tailed image recognition, while our method seeks to learn video-language
representations and further extends the framework to varied video recognition settings.

General Video Recognition (GVR). While GVR has not been defined in the existing literature,
we briefly summarize these sub tasks of GVR: long-tailed classification, few-shot learning and
open-set classification. Long-tailed classification has been extensively studied based on re-sampling
data (Buda et al., 2018; Shen et al., 2016), re-weighting loss (Cao et al., 2019; Wang et al., 2017) and
transferring strategy (Kang et al., 2019; Liu et al., 2019). Specifically, Zhang et al. (2021) proposed
to dynamically sample frames for long-tailed video recognition. As for few-shot video classification,
there has been a wide range of approaches, including key frame representation memory (Zhu & Yang,
2018), adversarial video-level feature generation (Kumar Dwivedi et al., 2019), and networks to
utilize temporal information (Perrett et al., 2021). As for open set video recognition, Shu et al. (2018)
proposed ODN to gradually append new classes to the classification head, and Bao et al. (2021)
incorporated evidential learning for uncertainty-aware video recognition.

Compared with some current visual-linguistic approaches (Wang et al., 2021b; Ju et al., 2021) for
tasks related to video recognition, our method can not only provide a comprehensive video-language
representation to bridge the gap between videos and texts in different cases, but also effectively utilize
noisy web text annotations in practical applications.
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3 KINETICS-GVR

To simulate the real-world video recognition from different scenarios, we build a comprehensive
video recognition benchmark of Kinetics-GVR, consisting of Kinetics-Close, Kinetics-LT, Kinetics-
Fewshot, and Kinetics-Open. Our benchmark is curated from the Kinetics-400 (Kay et al., 2017). To
obtain the text descriptions on labels, we crawl text entries from the Internet.

Kinetics-Close. We adopt the original Kinetics400 (Kay et al., 2017) for close-set setting, which
contains activities in daily life and has around 300k trimmed videos covering 400 categories.

Kinetics-LT. For the long-tailed case, we construct the Kinetics-LT dataset, which is a long-tailed
version of Kinetics400 by sampling a subset following the Pareto distribution (Liu et al., 2019).
Overall, it contains about 34.1K videos from 400 categories, with maximally 930 videos per class
and minimally 5 videos per class. The test set of it is the same as the original version.

Kinetics-Fewshot. In the few-shot setting, we adopt the few-shot version of Kinetics (Zhu & Yang,
2018), which has been frequently used in previous works (Zhu & Yang, 2020; Bishay et al., 2019;
Perrett et al., 2021). In this setup, 100 videos from 100 classes are selected, with 64/12/24 classes
used for train/val/test.

Kinetics-Open. For the open-set case, we split the Kinetics400 into two parts, with 250 categories
for training and the remaining 150 categories for evaluation. Videos in the training set and validation
set are from different categories.

Text descriptions. The text descriptions are mainly crawled from Wikipedia (Wikipedia, 2022) and
wikiHow (wikiHow, 2022). We first use the label as the keyword to search for the best matching
entry. Then, we filter out some irrelated parts of the entries, such as "references", and "bibliography",
etc., to obtain the external text descriptions for each class. In addition, we also append 96 prompt
sentences for each class as basic descriptions, which are generated by filling the pre-set templates,
like ‘a video of a {label}’, with label names.

For more details about these datasets, please refer to the Sec. A of the Appendices.

4 METHOD

We first introduce the architecture of our proposed framework in Sec. 4.1, and then discuss its training
strategy in Sec. 4.2. Finally, we present how to adapt our framework for different tasks in Sec. 4.3.

4.1 OVERVIEW

To effectively connect the video and language such that language concepts can relate to visual
representations for general video recognition, we adopt a transformer-based Siamese network ar-
chitecture (Radford et al., 2021), consisting of a video encoder Φvideo(·) and a language encoder
Φtext(·), to provide the visual representation and linguistic representation respectively. Specially, the
video encoder Φvideo(·) is constructed with a frame encoder Φimg(·) followed by a temporal module
Φtemp(·), which aggregates spatial features obtained from Φimg(·) over the temporal dimension.

As shown in the top of the Figure 2, we first randomly sample a batch of videos V = {Vi}Ni=1, and
the corresponding text sentences T = {Ti}Ni=i, where Vi and Ti are of the same class, N denotes
the batch size, and each video contains F frames V = {Ii}Fi=1. For texts T , they are fed to the
language encoder Φtext(·) to yield text embeddings ET , while for videos V , they are fed to the video
encoder Φvideo(·) to yield video embeddings EV , by extracting frame features with Φimg(·) and then
aggregating features along the temporal dimension with Φtemp(·):

ET
i = Φtext(Ti), EV

i = Φvideo(Vi) = Φtemp({Φimg(I1), ...,Φimg(IF )}). (1)

After that, we use a bi-modal attention head to aggregate the visual and linguistic features and then
obtain the final prediction, as shown in the bottom of Figure 2.

As raw text descriptions crawled from the Internet are noisy, it is necessary to obtain the salient
sentences (namely, clean text descriptions) described in Sec. 4.2. The salient sentences reduce the
impacts of noises for final prediction, which has been demonstrated in experiments in the Sec. D
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Figure 2: The pipeline of VLG. The entire framework has two training stages. In the first stage, video-
language pretraining (VLP) takes both the videos and text descriptions of each category as inputs,
learning to link the two modalities through contrastive learning. In the second stage, embeddings of
salient sentences, determined by the text selection ruler, are fed into the bi-modal attention head to
make final predictions.

of the Appendix. The bi-modal attention head dynamically fuses the video embeddings and text
embeddings of salient sentences based on the attention weights. Specially, given video embedding
EV ∈ RD and salient text embeddings of a certain class ET ∈ RM×D, we first calculate the query
Q̃ ∈ RD, key K̃ ∈ RM×D and value Ṽ ∈ RM×D of the attention operation.

Q̃ = Linear(LayerNorm(EV )), K̃ = Linear(LayerNorm(ET )), Ṽ = ET , (2)

where C is the class number, and M is the maximum number of sentences for each class, correspond-
ing to the number of sampled salient sentences. Next, we adopt an attention operation to gather these
M salient sentence embeddings for G̃ ∈ RD:

G̃ = Softmax(
Q̃K̃T

√
D

)Ṽ . (3)

Then, we perform broadcasting to gather the salient sentences embeddings over all the classes for
G ∈ RC×D, where C is the class number. The final classification probabilities are obtained based on
the video embeddings EV and enhanced text embeddings G:

PV = Softmax(MLP(EV )), PT = Softmax(sim(EV , G)/τ), P = PV + PT , (4)

where P is the classification probability of the video, consisting of two terms, respectively for
classification probability based on video representation PV , and classification probability based on
language representation PT . sim(·, ·) denotes cosine similarity and τ is a learned parameter.

4.2 TRAINING

We train our framework in two stages, namely Video-Language Pretraining (VLP) and Language-
driven GVR Finetune, and design specific loss functions, i.e. Lpre and Lcls, respectively for pretraining
and classification.

Stage I: Video-Language Pretraining. We jointly optimize the language encoder and video encoder
together with the temporal module. The video features would be enclosed to their related category
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descriptions with higher similarity, and pulled away from irrelated sentences. Specially, we use two
contrastive learning NCE losses respectively for video embeddings EV and text embeddings ET :

Ltext=− 1

|V+
i |

∑
Vj∈V

+
i

log
exp(sim(EV

j , ET
i )/τ)∑

Vk∈V exp(sim(EV
k , ET

i )/τ)
, (5)

Lvideo=− 1

|T +
i |

∑
Tj∈T

+
i

log
exp(sim(ET

j , E
V
i )/τ)∑

Tk∈T exp(sim(ET
k , E

V
i )/τ)

, (6)

where Lvideo and Ltext represent the video and language losses respectively. V+
i indicates a subset

of V , where all videos are of the same category with the text Ti. Similarly, all texts in T +
i share the

same class with the video Vi.

To effectively promote our framework for learning to connect the cross-modal information with
limited text corpus, we adopt CLIP (Radford et al., 2021) pretrained model as the teacher model to
distill knowledge for better visual-linguistic representation. To aggregate the frame features along the
temporal dimension, the teacher model replaces the temporal module with the average pooling and
outputs the same dimensions of embeddings as the student model. Their visual-linguistic similarities
are used as soft targets for training weights associated with the student networks by the following
objective:

SV =
exp(sim(EV

i , ET
i )/τ)∑

Vj∈V exp(sim(EV
j , ET

i )/τ)
, ST =

exp(sim(ET
i , E

V
i )/τ)∑

Tj∈T exp(sim(ET
j , E

V
i )/τ)

, (7)

Ldist = −S′
V · logSV − S′

T · logST , (8)
where S and S′ are cosine similarity scores respectively produced by our model and the frozen
CLIP model. With this pretraining stage, our framework can not only learn great video-language
representation, but also reduce the risk of overfitting limited text corpus data. Therefore, we optimize
the video encoder and language encoder via pretraining loss Lpre, defined as a weighted sum of Lvideo,
Ltext and Ldist:

Lpre = α · (Lvideo + Ltext) + (1− α) · Ldist. (9)
Here, α is used to balance Lvideo, Ltext and Ldist, which is set to 0.5 in our experiments.

Stage II: Language-driven GVR Finetune. In order to take advantage of the valid semantic
information and video-language feature, the second stage aims to select the salient sentences by
filtering out the noisy texts, and then finetune the bi-modal attention head with the ground truth label.

To filter out noisy texts, we design a training-free text selection ruler (TSR) after obtaining the text
embeddings, to sample the most discriminative sentences for each category. Specially, we randomly
choose λ videos of each class to construct a video batch V ′. Then, we calculate Ltext between each
sentence and video batch V ′. Finally, we select M sentences with the smallest Ltext for the following
classification. Note that the TSR only needs to perform once at stage II.

To finetune the bi-modal attention head, we adopt two Cross Entropy losses LCE for PV and PT (see
Eq. 4) respectively:

Lcls = LCE(P
V ,y) + LCE(P

T ,y), (10)
where y is the ground truth label.

4.3 VLG FOR GENERAL VIDEO RECOGNITION

In most cases, given a query video and pre-selected text embeddings of salient sentences, we first feed
the query video into the video encoder to obtain video embeddings. Then, the final result is predicted
with the video embeddings and text embeddings of salient sentences through a video-language
attention head. We follow this procedure in both the close-set setting and long-tailed setting. For
the few-shot setting, we use base videos to pretrain the encoders during the first stage. Then, we use
support videos to select salient sentences when combining the linguistic features, or directly use the
video embeddings from VLP for linear probe testing. For the open-set setting, we follow the common
procedure to train the framework, and insert a post-process step, which can be instantiated as the
off-the-shelf open-set procedures (e.g., OpenMax (Bendale & Boult, 2016), Softmax with threshold,
etc.), to recognize the novel videos during inference.
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Table 1: Results on Kinetics-Close. By introducing the class-wise text descriptions, our model
achieves superior performance to the existing approaches. “IN” denotes ImageNet and "K400"
denotes Kinetics400. "-" indicates the numbers are not available for us. "CLIP∗" denotes that the
model is initialized with the weights pretrained on 400M image-text pairs provided in CLIP (Radford
et al., 2021). The total GFLOPs are calculated by the number of views and GFLOPs (per-view).

Method Pretrain Frame Views Top-1 Top-5 GFLOPs Param (M)(per-view)
SlowFast, R101+NL (Feichtenhofer et al., 2019) None 16 10× 3 79.8 93.9 234.0 59.9
MViT-B, 64×3 (Fan et al., 2021) 64 3× 3 81.2 95.1 455.0 36.6
TSM, ResNeXt101 (Lin et al., 2019)

IN-1K
8 10× 3 76.3 - - -

TANet, R152 (Liu et al., 2021c) 16 4× 3 79.3 94.1 242.0 -
TDN, R101 (Wang et al., 2021a) 24 10× 3 79.4 94.4 198.0 88.0
ViViT-L/16x2 (Arnab et al., 2021)

IN-21K

32 4× 3 80.6 94.7 - -
TimeSformer-L (Bertasius et al., 2021) 8 1× 3 80.7 94.7 2380.0 121.4
ViViT-L/16x2 (320) (Arnab et al., 2021) 32 4× 3 81.3 94.7 3992.0 310.8
Swin-L (384) (Liu et al., 2021b) 32 10× 5 84.9 96.7 2107.0 200.0
MViTv2-L (312) (Li et al., 2021b) 40 5× 3 86.1 97.0 2828.0 217.6
ViViT-H/16x2 (Arnab et al., 2021) JFT 32 4× 3 84.8 95.8 - -
TokenLearner 16at18 (L/10) (Ryoo et al., 2021) - 4× 3 85.4 96.3 4076.0 450.0
CLIP-Raw, R50 (Radford et al., 2021)

CLIP∗

8 1× 1 46.2 60.8 52.1 102.0
CLIP-Raw, ViT-B/16 (Radford et al., 2021) 8 1× 1 55.0 67.5 144.0 150.0
CLIP-Close, R50 (Radford et al., 2021) 8 1× 1 68.1 87.7 49.7 115.0
CLIP-Close, ViT-B/16 (Radford et al., 2021) 8 1× 1 78.9 93.5 141.0 106.0
ActionCLIP (ViT-B/16) (Wang et al., 2021b) 16 10× 3 82.6 96.2 563.1 141.7
VLG, R50

CLIP∗

8 1× 1 72.3 90.8 76.7 148.0
VLG, ViT-B/16 8 1× 1 81.8 95.3 148.0 121.0
VLG, ViT-B/16 16 1× 1 82.4 95.8 282.3 121.0
VLG, ViT-B/16 16 4× 3 82.9 96.1 282.3 121.0
VLG, ViT-L/14 8 1× 1 85.5 96.3 650.3 371.0
VLG, ViT-L/14 8 4× 3 86.4 97.0 650.3 371.0

5 EXPERIMENTS

We first introduce the evaluation metrics for different settings in Sec. 5.1, before presenting state-
of-the-art results over all these four benchmarks: Kinetics-Close, Kinetics-LT, Kinetics-Fewshot,
and Kinetics-Open, respectively in Sec. 5.2, Sec. 5.3, Sec. 5.4, and Sec. 5.5. We then present some
representative visualization in Sec. 5.6. More details, such as Experimental Settings and Ablation
Studies, etc., are provided respectively in Sec. C and Sec. D of the Appendix.

5.1 EVALUATION METRICS.

We evaluate the performance of our framework under all of these four benchmarks. Besides the top-1
classification accuracy over all classes, for the long-tailed setting, we also report the accuracy of
three disjoint subsets: many-shot classes (more than 100 training videos in each class), medium-shot
classes (20∼100 training videos in each class), few-shot classes (less than 20 training videos in each
class). For the open-set setting, we use F-measure score as a balance between precision and recall.

5.2 EXPERIMENTS ON KINETICS-CLOSE

In Table 1, we compare our proposed methods with prior methods on Kinetice-Close, i.e. Kinetics400.
There are mainly traditional CNN-based methods, Transformer-based methods and CLIP-based
methods. It can be seen that Transformer-based methods and CLIP-based methods achieve better
performance than traditional methods. Particularly, our models achieve higher accuracy than other
competitors. For example, our method achieves 82.9% top-1 accuracy with ViT-B/16 frame encoder,
which exceeds ActionCLIP, a CLIP-based method, with fewer video views. For a fair comparison,
we further test our 16 frame ViT-B/16 on the val list of ActionCLIP, and our VLG achieves a
higher accuracy performance of 83.5%. Moreover, when using ViT-L/14 as our visual backbone,
our VLG can further achieve a higher accuracy of 86.4%, with lower resolution (224px) and fewer
computational costs than MViTv2-L (312).

To further demonstrate the superiority of the proposed VLG, we propose CLIP-Raw and CLIP-Close
as our baselines on Kinetics-Close to make fair comparisons. CLIP-Raw directly adopts the original
CLIP weights and model with only prompt sentences to validate the accuracy performance, while
CLIP-Close removing language encoder consists of the frame encoder loading CLIP pretrained
weights, temporal module and a linear classifier layer and is finetuned on Kinetics-Close for 100
epochs. One can observe that our method also gets absolute accuracy gain against the baselines with
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Table 2: Results on Kinetics-LT. Traditional Long-tailed methods use the same visual backbone.
CLIP∗ denotes that the model is initialized by the CLIP (Radford et al., 2021) weights. We report the
overall accuracy and the accuracy of three disjoint subsets.

Method Pretrain Backbone Accuracy (%)
Overall Many Medium Few

TSN (Wang et al., 2016)
ImageNet ResNet-50

47.2 59.3 49.4 23.6
TSM (Lin et al., 2019) 46.0 66.3 46.1 17.3
SlowOnly (Feichtenhofer et al., 2019) 44.8 67.7 44.1 14.4
NCM (Kang et al., 2019)

CLIP∗ ResNet-50

41.8 53.0 42.3 24.6
cRT (Kang et al., 2019) 43.7 58.9 43.8 22.3
τ -normalized (Kang et al., 2019) 43.9 63.8 43.1 18.5
LWS (Kang et al., 2019) 45.1 58.6 44.8 27.1
SSD-LT (Li et al., 2021a) 48.3 59.6 49.1 30.0
PaCo (Cui et al., 2021) 50.1 60.1 50.3 35.8
CLIP-Raw (Radford et al., 2021)

CLIP∗ ResNet-50
46.2 48.3 44.8 46.7

CLIP-LT (Radford et al., 2021) 53.4 70.3 53.3 31.1
VLG 60.8 71.7 60.4 47.2
CLIP-Raw (Radford et al., 2021)

CLIP∗ ViT-B/16
55.0 57.1 53.7 55.5

CLIP-LT (Radford et al., 2021) 63.8 79.7 63.8 42.8
VLG 70.7 81.9 69.7 58.3

ResNet-50 (72.3% vs. 68.1% vs. 46.2%) and ViT-B/16 (81.8% vs. 78.9% vs. 55.0%) backbones.
The results are desirable since our framework can take the advantages of the semantic information in
the text descriptions.

5.3 EXPERIMENTS ON KINETICS-LT

In Table 2, we can see that our VLG models are superior to conventional vision-based methods with
the same video encoders. Since there are few long-tailed methods specific to videos, we re-implement
and report the performance of some representative image long-tailed methods on Kinetics400-LT,
such as τ -normalized, cRT, NCM, LWS (Kang et al., 2019), PaCo (Cui et al., 2021), and SSD-LT (Li
et al., 2021a), which are all initialized with CLIP pretrained weights. We also add an additional
temporal pooling without introducing any new parameters to aggregate features along the temporal
dimension for them. In addition, we also build CLIP-LT and CLIP-Raw as our simple baseline based
on CLIP to corroborate our method. CLIP-LT is built the same as CLIP-Close.

It can be seen that our proposed method is superior to prior visual-based methods with the same
backbone. For example, using the same ResNet-50 backbone, the overall accuracy of VLG reaches
60.8%, which outperforms SSD-LT by 12.5 points (60.8% vs. 48.3%), and 10.7% better than PaCo
(60.8% vs. 50.1%). Moreover, when compared to CLIP baseline models, the performance of our
method is also promising, which is 7.4% better than the CLIP-LT, and 14.6% better than the CLIP-
Raw (60.8% vs. 53.4% vs. 46.2%). When using ViT-B/16 as the backbone, the overall accuracy of
VLG can further boost up to 70.7%.

5.4 EXPERIMENTS ON KINETICS-FEWSHOT Table 3: Results on Kinetics-Fewshot. Here, CALL

denotes the model is tested on all categories of the cor-
responding dataset. In Kinetics-fewshot, CALL = 400.
"VLG-L" denotes our method with linear probe testing.

Method Backbone K-shot N-way Top-1
CMN (Zhu & Yang, 2018)

ResNet-50

5 5 78.9
TARN (Bishay et al., 2019) 5 5 78.5
ARN (Zhang et al., 2020) 5 5 82.4
VLG-L 5 5 84.6
VLG 5 5 94.0
E-Prompt (Ju et al., 2021) ViT-B/16 5 5 96.4
VLG 5 5 96.9
E-Prompt (Ju et al., 2021) ViT-B/16 5 CALL 58.5
VLG 5 CALL 62.8

Following Ju et al. (2021), we conduct two few-
shot settings: 5-shot-5-way and 5-shot-C-way.

5-shot-5-way. For a fair comparison, this setting
adopts the publicly accessible few-shot splits.
During training, we simply use the base split for
our first pretraining stage, without meta-learning
paradigms. During the evaluation, we report av-
erage results over 200 trials with random sam-
pling on the test split. Table 3 presents the aver-
age top-1 accuracy, and our method clearly achieves significant performance. Following CLIP (Rad-
ford et al., 2021), we directly adopt the linear probe to test the visual representation output from
the video encoder, which obtains 84.6% top-1 accuracy and is higher than the traditional few-shot
learning methods. When combining the linguistic features, the performance can further boost up to
94.0%. We also use the same network settings with textual information following Ju et al. (2021),
and achieve better performance.
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·  The abseiler descends facing downwards 
allowing them to see … (ℒ𝑡𝑒𝑥𝑡 = 4.90)

· They will be able to pull down on the rope to 
arrest the descent …    (ℒ𝑡𝑒𝑥𝑡 = 4.95)

·Charlet originally devised the technique 
during a failed solo attempt … (ℒ𝑡𝑒𝑥𝑡 = 5.33)

·After many attempts, some of them solo, he 
managed to reach the summit … (ℒ𝑡𝑒𝑥𝑡 = 5.34)

G
o
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d

B
ad

……

G
o

o
d

B
ad

·  The outside hitter is the most consistent 
hitter on the team … (ℒ𝑡𝑒𝑥𝑡 = 4.54)

· When the setter digs the ball, the libero is 
typically responsible for the second ball and 
sets to front row attackers …    (ℒ𝑡𝑒𝑥𝑡 = 4.55)

·Move so that the ball is directly in front of 
you … (ℒ𝑡𝑒𝑥𝑡 = 5.35)

·Toss a coin or form an agreement to find out 
who will begin the game … (ℒ𝑡𝑒𝑥𝑡 = 5.38)

……

abseiling

playing volleyball

Figure 3: Visualization of some text descriptions with corresponding Ltext. The values of Ltext
reflect the saliency of these sentences, indicating the effectiveness of our TSR.

5-shot-C-way. We further investigate a more challenging experiment setting, which samples 5 videos
from the training set for each class as the base split, and then directly evaluates the model on the
standard Kinetics400 testing split. For statistical stability, we report the average results over 10 trials
to ensure the reliability of results. It can be seen that our model still obtains a superior performance
(62.8% vs. 58.5%), which is also higher than Ju et al. (2021).

5.5 EXPERIMENTS ON KINETICS-OPEN

Table 4: Results on Kinetics-Open. OLTR and VLG are both
initialized by CLIP weight. With the same backbone, VLG outper-
forms OLTR among all thresholds.

Method Post-process F-measure
thr=0.1 thr=0.2 thr=0.3 thr=0.5 thr=0.7

OLTR, R50 (Liu et al., 2019) Threshold 0.490 0.504 0.513 0.502 0.458
VLG, R50 Threshold 0.610 0.639 0.654 0.610 0.469
VLG, R50 OpenMax 0.616 0.641 0.651 0.614 0.465
VLG, ViT-B/16 Threshold 0.657 0.672 0.694 0.721 0.697
VLG, ViT-B/16 OpenMax 0.694 0.698 0.703 0.699 0.633

Openset video recognition aims to not
only accurately classify known cate-
gories which have appeared in train-
ing, but also recognize unknown cat-
egories which are not seen in training.
Without any other modifications to our
framework, we only adopt softmax
with thresholds and OepnMax (Ben-
dale & Boult, 2016) as a post-process on the prediction logits to obtain the classification results,
as described in Sec. 4.3. In addition, we also re-implement the OLTR with CLIP initialization as
a comparison. As shown in Table 4, we outperform OLTR (Liu et al., 2019) among all different
threshold numbers, indicating the significance of our video-language representation.

5.6 MORE RESULTS AND VISUALIZATIONS

As shown in Figure 3, we present some sentences sampled or filtered out by our TSR. We observe
that our method can learn specific concepts or steps for each class, such as the "pull down on the
rope" for "abseiling" and "libero" for "playing volleyball". The salient sentences commonly contain
these words of specific concepts in the category. More examples are provided in the Appendix.

More results about ablation studies on the effectiveness of our video-language pretraining, CLIP
pretrained weights, bi-modal attention head, temporal module, distillation loss and text selection ruler,
etc., can be found in the Sec. D of the appendix. In addition, we also provide additional visualization
in Sec. F to illustrate the class-level performance improvement on long-tailed videos, examples of
text descriptions, and more samples to show the relationship between videos and texts.

6 CONCLUSIONS

In this paper, we have studied the general video recognition (GVR) under four different settings.
The GVR task enables us to examine the generalization ability of a video recognition model in
real-world applications. To facilitate the research of GVR, we build comprehensive video benchmarks
of Kinetics-GVR containing text descriptions for all action classes. Then, we propose a unified visual-
linguistic framework (VLG) to accomplish the task of GVR. In particular, we present an effective
two-stage training strategy to effectively adapt the image-text representation to video domain for
GVR. Extensive results demonstrate that our VLG obtains the state-of-the-art performance under all
settings on the Kinetics-GVR benchmark. We hope that the datasets and framework will help the
future research in GVR.
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APPENDIX

In this supplementary material, we first provide some details on video splits and text descriptions of
our proposed benchmarks in Sec. A. Then, we summarize the notations used in the paper in Sec. B,
and implementation details in Sec. C. We also provide results of ablation studies and additional
experiments respectively in Sec. D and Sec. E. Finally, we provide more visualization and discuss the
limitation of our method, respectively in Sec. F and Sec. G. We also present the ethic statement and
reproducibility statement of our method in Sec. H and Sec. I respectively.

A BENCHMARK DETAILS

A.1 KINETICS-CLOSE

We directly adopt the original Kinetics400 (Kay et al., 2017) for close-set setting, which contains
activities in daily life and has around 300k trimmed videos covering 400 categories. Because of the
expirations of some YouTube links, some original videos are missing over time. Our copy includes
240436 training videos and 19796 validation videos.

A.2 KINETICS-LT

For the long-tailed case, we construct the Kinetics-LT dataset, which is a long-tailed version of
Kinetics400 by sampling a subset following the Pareto distribution (Reed, 2001) similar to ImageNet-
LT (Liu et al., 2019), with 930~5 videos per class from the 400 classes of Kinetics400 dataset. Videos
are randomly selected based on the distribution values of each class, and the 400 classes are randomly
split into 109 many-shot classes, 209 medium-shot classes, and 82 few-shot classes. We randomly
select 20 training videos per class from the original training set as the validation set. The original
validation set of Kinetics400 is used as the testing set in this paper. The dataset specifications are
shown in Figure 4.
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skiing (not slalom or crosscountry)

tap dancing

swimming backstroke
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Figure 4: The dataset statistics of Kinetics-LT.

A.3 KINETICS-FEWSHOT

For the few-shot case, we conduct two kinds of few-shot settings, i.e., 5-shot-5-way and 5-shot-C-
way.

For the 5-shot-5-way setting, we adopt the few-shot version of Kinetics (Zhu & Yang, 2018; 2020),
which has been frequently used to evaluate few-shot video recognition in previous works (Zhu &
Yang, 2018; 2020; Bishay et al., 2019; Zhang et al., 2020; Cao et al., 2020; Perrett et al., 2021). In
this setup, 100 videos from 100 classes are selected, with 64, 12 and 24 classes used for train/val/test.
We conduct 200 trials with random samplings, to ensure the statistical significance.
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Specifically, the train action categories are sampled from: air drumming, arm wrestling, beatboxing,
biking through snow, blowing glass, blowing out candles, bowling, breakdancing, bungee jumping,
catching or throwing baseball, cheerleading, cleaning floor, contact juggling, cooking chicken,
country line dancing, curling hair, deadlifting, doing nails, dribbling basketball, driving tractor, drop
kicking, dying hair, eating burger, feeding birds, giving or receiving award, hopscotch, jetskiing,
jumping into pool, laughing, making snowman, massaging back, mowing lawn, opening bottle,
playing accordion, playing badminton, playing basketball, playing didgeridoo, playing ice hockey,
playing keyboard, playing ukulele, playing xylophone, presenting weather forecast, punching bag,
pushing cart, reading book, riding unicycle, shaking head, sharpening pencil, shaving head, shot
put, shuffling cards, slacklining, sled dog racing, snowboarding, somersaulting, squat, surfing crowd,
trapezing, using computer, washing dishes, washing hands, water skiing, waxing legs, weaving basket.

The val action categories are sampled from: baking cookies, crossing river, dunking basketball,
feeding fish, flying kite, high kick, javelin throw, playing trombone, scuba diving, skateboarding, ski
jumping, trimming or shaving beard.

The test action categories are sampled from: blasting sand, busking, cutting watermelon, dancing
ballet, dancing charleston, dancing macarena, diving cliff, filling eyebrows, folding paper, hula
hooping, hurling (sport), ice skating, paragliding, playing drums, playing monopoly, playing trumpet,
pushing car, riding elephant, shearing sheep, side kick, stretching arm, tap dancing, throwing axe,
unboxing.

For the 5-shot-C-way setting, we follow (Ju et al., 2021) to sample 5 videos from all categories to
construct the training dataset, and measure the performance on the standard validation set, i.e. all
videos from all categories in the validation set of Kinetics400. For statistical significance, we also
conduct 10 random sampling rounds to choose training videos.

A.4 KINETICS-OPEN

For the open-set case, we split the Kinetics400 into two parts, with 250 categories for training and
the remaining 150 categories for evaluation. Videos in the training set and validation set are from
different categories.

Specifically, the train action categories are sampled from: air drumming, answering questions,
applying cream, archery, arm wrestling, arranging flowers, assembling computer, baby waking
up, balloon blowing, bandaging, barbequing, bartending, bee keeping, belly dancing, bending
back, bending metal, biking through snow, blowing glass, blowing nose, blowing out candles,
bookbinding, bouncing on trampoline, breading or breadcrumbing, breakdancing, brush painting,
brushing teeth, bungee jumping, carrying baby, cartwheeling, carving pumpkin, catching or throwing
frisbee, celebrating, changing oil, checking tires, cheerleading, chopping wood, clean and jerk,
cleaning floor, cleaning gutters, cleaning shoes, cleaning toilet, cleaning windows, climbing a
rope, climbing ladder, climbing tree, cooking egg, cooking sausages, counting money, cracking
neck, crossing river, crying, cutting nails, cutting watermelon, dancing charleston, decorating the
christmas tree, digging, disc golfing, diving cliff, doing laundry, doing nails, drinking, drinking beer,
drinking shots, driving car, driving tractor, drumming fingers, dunking basketball, dying hair, eating
cake, eating carrots, eating chips, eating doughnuts, eating hotdog, eating spaghetti, egg hunting,
exercising with an exercise ball, faceplanting, feeding fish, filling eyebrows, flipping pancake, folding
napkins, folding paper, front raises, frying vegetables, garbage collecting, gargling, getting a haircut,
giving or receiving award, golf chipping, golf driving, grinding meat, grooming dog, grooming
horse, headbanging, headbutting, high kick, hitting baseball, hockey stop, holding snake, hopscotch,
hoverboarding, hugging, hula hooping, hurdling, hurling (sport), ice climbing, ice skating, javelin
throw, jetskiing, jogging, juggling fire, juggling soccer ball, jumpstyle dancing, kicking soccer ball,
kissing, krumping, laying bricks, making bed, making pizza, making snowman, making sushi, making
tea, massaging feet, massaging person’s head, mopping floor, motorcycling, moving furniture, opening
present, parasailing, passing American football (in game), peeling apples, petting animal (not cat),
petting cat, picking fruit, planting trees, plastering, playing accordion, playing badminton, playing
bagpipes, playing basketball, playing bass guitar, playing cello, playing chess, playing clarinet,
playing cymbals, playing didgeridoo, playing drums, playing flute, playing guitar, playing harmonica,
playing harp, playing ice hockey, playing keyboard, playing monopoly, playing organ, playing
paintball, playing piano, playing squash or racquetball, playing tennis, playing trombone, playing
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ukulele, playing violin, playing xylophone, pole vault, presenting weather forecast, pull ups, punching
person (boxing), push up, pushing car, pushing wheelchair, reading book, riding camel, riding
mountain bike, riding mule, riding scooter, riding unicycle, rock climbing, roller skating, running on
treadmill, sailing, salsa dancing, sanding floor, scuba diving, setting table, shaking head, shaving legs,
shearing sheep, shining shoes, shooting basketball, shooting goal (soccer), shoveling snow, shredding
paper, sign language interpreting, singing, ski jumping, skiing crosscountry, skiing slalom, skipping
rope, skydiving, slacklining, snatch weight lifting, sniffing, snowboarding, somersaulting, spinning
poi, spraying, springboard diving, squat, stomping grapes, stretching leg, surfing crowd, swimming
breast stroke, swimming butterfly stroke, swing dancing, swinging legs, swinging on something, tango
dancing, tap dancing, tapping guitar, tasting beer, testifying, throwing discus, tobogganing, tossing
coin, training dog, trapezing, trimming or shaving beard, triple jump, unboxing, using computer,
using remote controller (not gaming), using segway, vault, waiting in line, walking the dog, washing
feet, washing hair, water skiing, watering plants, waxing eyebrows, waxing legs, weaving basket,
welding, whistling, windsurfing, wrapping present, wrestling, writing, yawning, zumba.

The validation action categories are sampled from: abseiling, applauding, auctioning, baking
cookies, beatboxing, bench pressing, blasting sand, blowing leaves, bobsledding, bowling, braiding
hair, brushing hair, building cabinet, building shed, busking, canoeing or kayaking, capoeira, catching
fish, catching or throwing baseball, catching or throwing softball, changing wheel, clapping, clay
pottery making, cleaning pool, contact juggling, cooking chicken, cooking on campfire, country line
dancing, crawling baby, curling hair, cutting pineapple, dancing ballet, dancing gangnam style,
dancing macarena, deadlifting, dining, dodgeball, doing aerobics, drawing, dribbling basketball,
drop kicking, eating burger, eating ice cream, eating watermelon, exercising arm, extinguishing
fire, feeding birds, feeding goats, finger snapping, fixing hair, flying kite, folding clothes, getting a
tattoo, golf putting, gymnastics tumbling, hammer throw, high jump, ice fishing, ironing, juggling
balls, jumping into pool, kicking field goal, kitesurfing, knitting, laughing, long jump, lunge, making
a cake, making a sandwich, making jewelry, marching, massaging back, massaging legs, milking
cow, mowing lawn, news anchoring, opening bottle, paragliding, parkour, passing American football
(not in game), peeling potatoes, playing cards, playing controller, playing cricket, playing kickball,
playing poker, playing recorder, playing saxophone, playing trumpet, playing volleyball, pumping
fist, pumping gas, punching bag, pushing cart, reading newspaper, recording music, riding a bike,
riding elephant, riding mechanical bull, riding or walking with horse, ripping paper, robot dancing,
rock scissors paper, scrambling eggs, shaking hands, sharpening knives, sharpening pencil, shaving
head, shot put, shuffling cards, side kick, situp, skateboarding, skiing (not slalom or crosscountry),
slapping, sled dog racing, smoking, smoking hookah, sneezing, snorkeling, snowkiting, snowmobiling,
spray painting, sticking tongue out, stretching arm, strumming guitar, surfing water, sweeping floor,
swimming backstroke, sword fighting, tai chi, taking a shower, tapping pen, tasting food, texting,
throwing axe, throwing ball, tickling, tossing salad, trimming trees, tying bow tie, tying knot (not on a
tie), tying tie, unloading truck, washing dishes, washing hands, water sliding, waxing back, waxing
chest, yoga.

A.5 TEXT DESCRIPTION

The text descriptions are mainly crawled from Wikipedia (Wikipedia, 2022) and wikiHow (wikiHow,
2022). Following Tian et al. (2021), we first use the label name as the keyword to search for the best
matching entry. Then, we filter out some irrelated parts of the entries, such as "references", "external
links", and "bibliography", etc., to obtain the external text descriptions for each class. In addition, we
also append 96 prompt sentences for each class as basic descriptions, which are generated by filling
the pre-set templates, like ‘a video of a {label}’, with label names.

In Figure 7, we display a part of text descriptions collected for our benchmarks. We see that it is
inevitable to include some noisy text descriptions, since these texts are all crawled from the Internet
without fine-grained cleaning. In addition, we also report the detailed statistics of the collected text
descriptions in Table 5. It can be seen that the text quantity of different classes varies significantly.

B NOTATIONS

we summarize the notations used in the paper in Table 6.
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Table 5: Detailed statistics of the text descriptions. where Nmin, Nmax, Nmean, and NMed denote for
minimum, maximum, mean, and median number of sentences of classes respectively. Mmin, Mmax,
Mmean, and MMed denote for minimum, maximum, mean, and median number of words of classes
respectively. LAvg denotes the average number of tokens per sentence.

Datasets Nmin Nmax Nmean NMed Mmin Mmax Mmean MMed LAvg
Kinetics400 7 634 143 99 252 20340 4011 2605 28

Table 6: Summary of notations used in the paper.

Notation Meaning
Φvideo Video encoder
Φtext Language encoder
Φimg(·) Frame encoder
Φtemp(·) Temporal module
V={Vi}Ni=1 A batch of N video samples
T ={Ti}Ni=1 A batch of N text samples
V ={Ii}Fi=1 A video of F frames
ET

i Embeddings of text Ti

EV
i Embeddings of video Vi

sim(·, ·) Similarity function
S Cosine similarity scores produced by our model
S′ Cosine similarity scores produced by the frozen CLIP model
M Number of sampled sentences per class
Ltext Contrastive learning NCE losses for texts
Lvideo Contrastive learning NCE losses for videos
Ldist Distillation loss
Lpred Video-Language pretraining loss
LCE CrossEntropy loss
Lcls Language-driven GVR finetune loss
y Ground truth label

C IMPLEMENTATION DETAILS

Data Pre-processing. If not specified, we use the segment-based input frame sampling strategy (Wang
et al., 2016) with 8 frames. During training, we follow Wang et al. (2021b) to process all frames to
224×224 input resolution. During inference, we resize all frames to 256×256 and center-crop them
to 224×224.

Network Architectures. If not specified, the video encoder adopts the pre-trained CLIP (Radford
et al., 2021) visual encoder (ViT-B/16 (Sharir et al., 2021)) as our frame encoder. For the temporal
module, we use a smaller version of the transformer with 6-layers and 8-head self-attention as default.
To indicate the temporal order, we also add learnable temporal positional encoding onto the frame
features as input. The language encoder also follows that of CLIP (Radford et al., 2021), which is
a 12-layer transformer, and the maximum length of text tokens is set to 77 (including [SOS] and
[EOS] tokens). We initialize the frame encoder and language encoder with pretrained weights of
CLIP (Radford et al., 2021) during the first stage.

Training Hyper-parameters. In our implementation, we always train the models using an
AdamW (Loshchilov & Hutter, 2017) optimizer with the cosine schedule (Loshchilov & Hutter,
2016), a weight decay of 5 × 10−2, and a momentum of 0.9 for 50 epochs. During the first stage,
the size of the mini-batch is set to 16, and α is set to 0.5. The initial learning rate is set to 1× 10−5

for frame encoder and language encoder, and set to 1× 10−3 for the temporal module. During the
second stage, the size of the mini-batch is set to 128. Both encoders are kept frozen, and the only
trainable part is the bi-modal attention head. The learning rate of which is set to 1 × 10−3. The
number of selected sentences per class M is set to 64, and λ is set to 50. We conduct all experiments
on 8 V100 GPUs.
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Table 7: Ablation studies on Kinetics-Close. "Head" denotes the classification head used in stage II,
"Bi-M" denotes the bi-modal attention head, "TSR" denotes the proposed text selection ruler, "RAND"
denotes random selection strategy, and "BASIC" denotes only using basic prompted sentences.

# Pretrain CLIP Fine-tuning Top-1Weights Head Ruler
1 ✓ ✓ Bi-M TSR 81.8
2 - ✓ Bi-M TSR 76.0
3 ✓ - Bi-M TSR 32.6
4 ✓ ✓ FC TSR 79.5
5 ✓ ✓ KNN TSR 79.9
6 ✓ ✓ Bi-M RAND 80.0
7 ✓ ✓ Bi-M BASIC 78.9

Table 8: Ablation studies on the number of layers in the Temporal Module. We evaluate accuracy
on Kinetics-Close and Kinetics-Fewshot with different numbers of layers in temporal module.

(a) Ablation studies of Temporal Module with differ-
ent numbers of layers on Kinetics-Close.

Number of layers 0 1 2 4 6 8
Top-1 Acc 79.8 80.9 81.2 81.4 81.8 80.6

(b) Ablation studies of Temporal Module with differ-
ent numbers of layers on Kinetics-Fewshot.

Number of layers 0 1 2 4 6 8
Top-1 Acc 96.9 96.5 95.6 95.8 96.1 95.2

D ABLATION STUDY

In order to provide a deep analysis of our proposed method, we also conduct ablation studies on the
Kinetics-Close dataset. In these experiments, we use ViT-B/16 as the default backbone. All other
settings remain the same as Sec. C unless specifically mentioned.

VIDEO-LANGUAGE PRE-TRAINING. To examine the effectiveness of our video-language pretrain-
ing (VLP) framework, we remove it by directly performing the finetuning process on the pretrained
weights of CLIP (Radford et al., 2021). As reported in the #1 and #2 of Table 7, the model with VLP
outperforms the one without VLP by 5.8 points on the top-1 accuracy. Such a gap might be attributed
to the difficulties in learning temporal information and semantic inconsistency between videos and
text representation, which can be alleviated by our VLP.

CLIP PRE-TRAINED WEIGHTS. To analyze the influence of CLIP pre-trained weights, we train
our method with randomly initialized weights. Comparing the #1 and #3 of Table 7, we can see that
initializing with CLIP pre-trained weights benefits our approach. This phenomenon is caused by the
limited text corpus for pre-training. There are only 400 class descriptions (about 95K sentences)
for Kinetics400, and it is easy to overfit a video to a specific set of sentences without a pre-trained
linguistic encoder.

BI-MODAL ATTENTION HEAD. We investigate the effectiveness of bi-modal attention head by
comparing it with other recognition heads, including FC (only video-based), and KNN (video-
language based). As reported in #1, #4 and #5 of Table 7, the proposed head performs better than FC
and KNN by 2.3% and 1.9% points respectively. It is notable that, as another bi-modal head, KNN
also works better than FC. These results indicate the superiority of bi-modal attention head and the
power of video-language representation.

SALIENT SENTENCES. We study the significance of the sampled salient sentences by replacing
them with those sampled by "Random" and "Basic" strategies. For "Random", we randomly select M
sentences from text descriptions. For "Basic", we only use the basic prompt sentences as the salient
sentences. As shown in Table 7, the model with TSR (See the #1 of Table 7) outperforms the model
with other strategies on the Top-1 accuracy. It indicates the effectiveness of our TSR to filter out
some noisy sentences.
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Table 9: Effectiveness of Distillation Loss. We evaluate the performance on Kinetics-LT to investi-
gate the effectiveness of distillation loss.

Distill Kind Dataset Backbone 1− α Top-1 Many Medium Few
- Kinetics-LT ResNet-50 0 57.5 70.8 57.2 40.8

Logits Kinetics-LT ResNet-50
0.1 58.4 71.9 58.2 40.7
0.5 60.8 71.7 60.4 47.2
0.9 54.7 64.4 54.4 42.5

Feature Kinetics-LT ResNet-50
0.1 58.1 71.4 58.1 40.7
0.5 59.7 72.2 59.6 43.0
0.9 58.2 71.5 57.6 41.7

Table 10: Ablation studies of text descriptions. "NO TEXT" denotes using no text descriptions
for training, same as the CLIP-Close and CLIP -LT. "BASIC" denotes only using basic prompted
sentences for training, and "FULL" denotes using both basic prompted sentences and crawled text
descriptions for training.

(a) Ablation studies of text descriptions on Kinetics-Close.

Method Backbone Operation Top-1 Top-5
CLIP-Close

ViT-B/16
NO TEXT 78.9 93.5

VLG BASIC 78.9 94.8
VLG FULL 81.8 95.3

(b) Ablation studies of text descriptions on Kinetics-LT.

Method Backbone Operation Overall Many Medium Few
CLIP-LT

ResNet-50
NO TEXT 53.4 70.3 53.3 31.3

VLG BASIC 57.8 71.4 56.9 35.8
VLG FULL 60.8 71.7 60.4 47.2

TEMPORAL MODULE. We investigate the effectiveness of the temporal module by using different
numbers of layers in the temporal module. As shown in Table 8, the model achieves the highest recog-
nition accuracy on Kinetics-Close with 6 transformer layers in the temporal module. An interesting
phenomenon is that increasing the number of layers in the temporal module leads to a significant
rise in accuracy performance at the beginning, but the accuracy falls when the temporal module has
more than 6 layers. It may be attributed to the overfitting caused by using the transformer with too
many layers. In the few-shot setting, the model achieves the highest recognition accuracy without the
additional temporal module, since there are few videos to feed the data-hungry Transformer layers in
the few-shot case.

DISTILLATION LOSS. To better investigate the effectiveness of distillation loss on reducing the risk
of overfitting caused by limited text corpus. We conduct the ablation study on Kinetics-LT, which
has fewer videos to avoid the influence of excessive visual information, and use ResNet-50 as the
backbone. As shown in Table 9, our method with distillation loss achieves higher performance in
medium-shot, few-shot and overall cases, compared to the one without distribution loss. It indicates
that the distillation loss helps the model learn better video-language representation with limited data.

To further study the influence of distillation in the pre-training stage, we try to use the pre-trained
CLIP model as the teacher model to distill the video and language encoder of our model at the feature
level, in addition to the logits distillation. As shown in Table 9, both feature distillation and logits
distillation with α of 0.5 can improve the performance in many-shot, medium-shot, few-shot and
overall cases. And our method achieves the highest performance on Kinetics-LT when using logits
distillation with the loss weight α of 0.5.

TEXT DESCRIPTIONS. We study the significance of our collected text descriptions by replacing
them with "Using no sentences" operation and "Only using basic prompted sentences" operation, both
in Kinetics-Close and Kinetics-LT. As shown in Table 10, using the extra class-wise text description
crawled from Wiki and Wikihow can significantly improve the performance in both Kinetics-Close
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Table 11: Ablation studies of loss terms. We investigate the effectiveness of the two terms in Eq. 4
by adopting three operations: "only PV ", "only PT ", and "both PV and PT ".

(a) Ablation studies of loss terms on Kinetics-Close.

Method Backbone Operation Top-1 Top-5

VLG ViT-B/16
Only PV 79.5 94.7
Only PT 80.7 95.1

PV and PT 81.8 95.3

(b) Ablation studies of loss terms on Kinetics-LT.

Method Backbone Operation Overall Many Medium Few

VLG ResNet-50
Only PV 56.9 73.2 57.1 34.7
Only PT 59.8 67.2 60.2 48.8

PV and PT 60.8 71.7 60.4 47.2

Table 12: Ablation studies of different splitting strategies. "RAND" denotes using the original
splits in our Kinetics-LT, which are randomly chosen. "GOOGLE" denotes using the splits sorted by
the number of entries in Google search.

Method Backbone Operation Overall Many Medium Few

VLG ResNet-50 RAND 60.8 71.7 60.4 47.2
GOOGLE 61.2 71.4 62.7 44.2

and Kinetics-LT. Specifically, in the few-shot classes of Kinetics-LT, one can observe that VLG with
both basic prompted sentences and crawled text description gets absolute accuracy gain against VLG
with only basic prompts and VLG without text descriptions (47.2% vs. 35.8% vs. 31.3%). It indicates
the validity of text descriptions from the Internet, and effectiveness of leveraging abundant semantic
knowledge to make up for the lack of video data.

LOSS TERMS IN STAGE II. In Eq. 4, the first term PV is based on the video-only embedding EV ,
and the second term PT is based on the enhanced text embedding G. The first term adopts the MLP
to obtain the classification probability, and the second term calculates the cosine similarity between
the video-only embedding EV and the enhanced text embedding G. To study the effectiveness of
these two terms, we add experiments by adopting the first term, the second term, or both in the close
set and long-tailed set.

It can be seen in Table 11 that in the close set, the model with both of the two terms performs better
than the others, indicating the power of video-language representation when given abundant training
data. In the long-tailed case, the model with only PV performs well in the "Many" case but performs
poorly in the "Few" case, while the model with only PT performs well in the "Few" case but performs
poorly in the "Many" case. By contrast, the model with both of the two terms serves as the trade-off
without sacrificing too much performance for all cases, and further improves the overall accuracy for
the long-tailed datasets. Therefore, we hold that both the two terms are necessary.

E ADDITIONAL EXPERIMENTS

RE-SPLITTING THE CLASSES. To demonstrate the rationality of label splitting in our Kinetics-LT,
we adopt another strategy to re-split the classes according to their number of entries in Google search.
As shown in the Table 12, there are no apparent changes in the recognition results, indicating the
rationality of our label splitting in the long-tailed case.

EXPERIMENTS ON UCF-101 To further demonstrate the transferability of VLG, we also conduct
experiments on UCF-101. We compare our proposed methods with prior methods on UCF-101, and
it can be seen in Table 13 that our model can achieve significant performance on this dataset.
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Table 13: Results on UCF-101. We report the average accuracy over three splits on UCF-101, CLIP∗

denotes that the model is initialized by the CLIP (Radford et al., 2021) weights. K400 and K600 are
used to denote Kinetics400 and Kinetics600 respectively.

Method Pretrain Backbone Frame Views Top-1 Top-5
TSN (Wang et al., 2016)

ImageNet+K400

ResNet-50 16 - 91.1 -
STM (Jiang et al., 2019) ResNet-50 16 - 96.2 -
S3D-G (Xie et al., 2018) - - - 96.8 -

FASTER32 (Zhu et al., 2020) - 32 8× 1 96.9 -
STAM-32 (Sharir et al., 2021) ViT-B/16 32 - 97.0 -
R(2+1)D (Tran et al., 2018) - - - 97.3 -
D3D (Stroud et al., 2020) ImageNet+K600 ResNet-101-NL 50 - 97.1 -

VLG CLIP∗+K400 ViT-B/16
8 1× 1 96.2 99.6

16 1× 1 96.3 99.7
16 4× 3 96.5 99.7

VLG CLIP∗+K400 ViT-L/14
8 1× 1 97.3 99.8

16 1× 1 97.6 99.9
16 4× 3 97.7 99.9

F VISUALIZATION

F.1 VISUALIZATION OF PERFORMANCE

We use a radar chart to summarize the results across all regimes in Figure 5. The shape and area of the
radar chat can serve as the total result to quantify the effectiveness and generalization ability of our
method. We compare our method with current state-of-the-art methods in the radar chat, indicating
the superiority of VLG over all settings.

F.2 CLASS-LEVEL PERFORMANCE IMPROVEMENT

In Figure 6, we visualize the class-level performance improvement on Kinetics-LT, which is measured
by the absolute accuracy gains of our method against the baseline, both of which use ViT-B/16 as
the visual backbone. We observe that there are more gains in the few-shot classes, indicating the
introduced text descriptions can help mitigate the long-tailed problem.

F.3 VISUALIZATION OF TEXT CORPUS

In this section, we provide some visualization of the collected text corpus in Figure 7. It can be
seen that these texts contain not only some noisy information within them, but also some static
characteristics, dynamic evolution, and logical definition of the corresponding categories.

F.4 MORE EXAMPLES OF SALIENT SENTENCE

To intuitively demonstrate the effectiveness of our text selection ruler (TSR), we provide more
sentences reserved or dropped by our TSR of different categories in Figure 8. We observe that our
method can sample useful texts or filter out the useless ones.

G LIMITATION

Although our VLG achieves superior performance on multiple general video recognition settings,
it still needs a two-stage training paradigm and cannot be end-to-end trained. To tackle this, we
can apply reinforcement learning with reward functions (Lin et al., 2022; Meng et al., 2020) or
gumbel-softmax tricks (Jang et al., 2016) to further improve the non-differentiable text selection parts.
In addition, it might be difficult to crawl suitable descriptions of labels from Wiki or WikiHow for
subtle actions, like "Put the glass on top of the table". Probably, it needs to participle phrases and
crawl definitions from some dictionary websites as supplementary to improve the text descriptions.
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Figure 5: Radar chat to measure the performance across all regimes. It can be seen that our
method outperforms current state-of-the-art methods for all settings.

H ETHIC STATEMENT

We use open datasets in our experiments following their licensing requirements. Our models may
be subject to biases and other possible undesired mistakes, depending on how they are trained in
reality. We didn’t focus on potential negative impacts, because this work was not mainly designed for
applications with potential negative impacts. As a recognition framework, it may be used for any
related applications, just similar to many other general methods. But with proper usage, the proposed
method could be beneficial to society.

I REPRODUCIBILITY STATEMENT

We report the necessary details to reproduce the experimental results in Sec. C, including network
architectures, training hyperparameters, and dataset processing steps. We will also release our code
in the future.
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Figure 6: Absolute accuracy score of our method over the baseline on Kinetics-LT. Our method
enjoys more performance gains in classes with fewer video samples.
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• When you play the piano, cup your hands as though you're holding an egg and press the keys with the tips of your fingers – not the pads.

• Playing with flat fingers is an easy habit to get into, but it will make it difficult to play faster and more complicated music later on.

• Holding a small stress ball as you play can help guide your finger placement when you're just getting started. ……

playing piano

• Curl your right hand towards the strings over the sound hole. Stick your index finger out a little so you’re pointing perpendicular to the strings. 

• The neck refers to the thinner, longer portion of the ukulele. Turn the ukulele so that the neck points away from you to the left.

• The frets are the horizontal metal bars that separate notes and chords. Rest your left thumb on top of the topmost fret. ……

playing ukulele

• Do asanas from each type of pose in the following order: standing poses, inversions, backbends, and forward bends.

• Add a twisting asana to neutralize and stretch your spine between backbends and forward bends if you like.

• Make sure to start with easier asanas and move on to more difficult poses as you master basic ones. ……

yoga

• Water skiing (also waterskiing or water-skiing) is a surface water sport in which an individual is pulled behind a boat or a cable ski installation over a body of water …

• The sport requires sufficient area on a stretch of water, one or two skis, a tow boat with tow rope, two or three people (depending on local boating laws), and …

• Water skiers can start their ski set in one of two ways: wet is the most common, but dry is possible. ……

water skiing

• Waste collection also includes the curbside collection of recyclable materials that technically are not waste, as part of a municipal landfill diversion program.

• It is the transfer of solid waste from the point of use and disposal to the point of treatment or landfill.

• Waste collection is a part of the process of waste management. ……

garbage collecting

• Make two dots above the flame for the eyes. Make four to five dots below the flame to make the mouth.

• A snowman is an anthropomorphic snow sculpture often built in regions with sufficient snowfall. 

• Make sure that the tip of the flame is pointing upwards, towards the eyes. ……

making snowman

• Juggling balls, or simply balls,  are a popular prop used by jugglers, either on their own—usually in sets of three or more—or in combination with other props …

• Beanbags are the most common type of juggling ball.  Juggling beanbags are typically constructed with an outer shell made from …

• A juggling ball refers to any juggling object that is roughly spherical in nature. ……

juggling balls

• A chip is a tactical shot in golf where the player lifts the ball into the air. Once the ball hits the ground, a proper chip will result in a long roll …

• Chipped shots are perfect if your ball is buried in the grass or if you're trying to navigate a downhill slope …

• Keep your arms back and your chest up throughout the course of your swing ……

golf chipping

• Windsurfing is a surface water sport that is a combination of surfing and sailing. It is also referred to as “sailboarding” and “boardsailing” …

• A sailboard is powered and controlled by the coordinated movements of the sail about its uni-joint and of the sailor around the board …

• Remember that when starting the daggerboard, it should be down at all times. ……

windsurfing 

• You can choose one or more places to train. Some good places are Roblox, Builderman and Shedletsky's places …

• Swordsmanship or sword fighting refers to the skills of a swordsman, a person versed in the art of the sword …

• Every sword fighter has a unique style while at fighting, you should see and explore what's yours! ……

sword fighting 

Figure 7: Examples of text descriptions crawled from Wikipedia and wikiHow for Kinetics400.
Both useful and redundant information can be found in these text corpus.
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· First, apply a moisturizer with SPF, choosing a 

moisturizer suited for skin type. (ℒ𝑡𝑒𝑥𝑡 = 5.04)

· When applying cream blush, always use a 

smaller amount at first. (ℒ𝑡𝑒𝑥𝑡 = 5.07)

· If you really want your cheeks to pop, then you 

can choose a blush in any color. (ℒ𝑡𝑒𝑥𝑡 = 5.11)

applying cream

……

·A clip of the applying cream. (ℒ𝑡𝑒𝑥𝑡 = 6.02)

·A clip of a applying cream. (ℒ𝑡𝑒𝑥𝑡 = 6.07)
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· Bow hunting differs markedly from hunting 

with firearms, as distance between hunter and 

prey must be much shorter … (ℒ𝑡𝑒𝑥𝑡 = 4.63)

· Early recreational archery societies included 

the Finsbury Archers and the Ancient Society of 

Kilwinning Archers … (ℒ𝑡𝑒𝑥𝑡 = 4.65)

·two most common forms of a non-mechanical 

release are split-finger … (ℒ𝑡𝑒𝑥𝑡 = 5.51)

·Stabilizers can reduce noise ... (ℒ𝑡𝑒𝑥𝑡 = 5.56)

……

archery
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blasting sand · The abrasive is metered into the blast hose and 

conveyed by the compressed gas through the 

blast nozzle. (ℒ𝑡𝑒𝑥𝑡 = 4.60)

· Inexpensive abrasive blasting systems and 

cabinets use ceramic nozzles. (ℒ𝑡𝑒𝑥𝑡 = 4.60)

·A video of the blasting sand. (ℒ𝑡𝑒𝑥𝑡 = 5.27)

·A video of one blasting sand. (ℒ𝑡𝑒𝑥𝑡 = 5.28)

·A film of a blasting sand. (ℒ𝑡𝑒𝑥𝑡 = 5.30)

……

capoeira
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· Criminals and war lords used capoeiristas

as body guards and assassins. (ℒ𝑡𝑒𝑥𝑡 = 4.32)

· Because capoeira was often used against the 

colonial guard, the colonial government in Rio 

tried to suppress the martial art… (ℒ𝑡𝑒𝑥𝑡 = 4.34)

·Other hiding places for the weapons included 

hats and umbrellas. (ℒ𝑡𝑒𝑥𝑡 = 5.12)

·After it both resume normal play. (ℒ𝑡𝑒𝑥𝑡 = 5.21)

……

G
o

o
d

B
ad

bee keeping · beekeepers may monitor their colonies carefully 

in spring and watch for the appearance of queen 

cells. (ℒ𝑡𝑒𝑥𝑡 = 4.23)

· Apart from the honey stored within the central 

brood frames, the bees store honey in combs

above … (ℒ𝑡𝑒𝑥𝑡 = 4.27)

……

·Eva Crane. (ℒ𝑡𝑒𝑥𝑡 = 4.83)

·Since the 20th century that has …(ℒ𝑡𝑒𝑥𝑡 = 4.85)
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cheerleading
· Along with this, cheerleaders usually perform at 

pep rallies, and bring school spirit to other 

students. (ℒ𝑡𝑒𝑥𝑡 = 4.25)

· Cheerleading is an activity in which the 

participants (called cheerleaders) cheer for their 

team as a form of encouragement. (ℒ𝑡𝑒𝑥𝑡 = 4.26)

·The ATCI is held every year ... (ℒ𝑡𝑒𝑥𝑡 = 4.91)

·Louis on March 5, 2006. (ℒ𝑡𝑒𝑥𝑡 = 4.92)

……
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· Kits are available for home trampolines that 

provide a retaining net around trampoline and 

prevent users from bouncing over (ℒ𝑡𝑒𝑥𝑡 = 4.65)

· A trampoline is a device consisting of a piece of 

taut, strong fabric stretched between a steel 

frame using many coiled springs … (ℒ𝑡𝑒𝑥𝑡 = 4.68)

·No documentary evidence has been found to 

support it.. (ℒ𝑡𝑒𝑥𝑡 = 4.92)

……

bouncing on trampoline
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· Belly dance drew men in droves to burlesque 

theaters, and to carnival and circus lots. (ℒ𝑡𝑒𝑥𝑡 =
4.40)

· The costume or bedlah (referring to the bra, belt 

and skirt), of Egyptian Oriental dancers has also 

had the distinction as being … (ℒ𝑡𝑒𝑥𝑡 = 4.42)

·A video of a belly dancing. (ℒ𝑡𝑒𝑥𝑡 = 4.92)

·In the late 1960s and early 1970s many dancers 

began teaching. (ℒ𝑡𝑒𝑥𝑡 = 4.93)

……

belly dancing

Figure 8: More visualization of text descriptions with corresponding Ltext. The values of Ltext
reflect the saliency of these sentences, indicating the effectiveness of our proposed TSR.

25


	Introduction
	Related Work
	Kinetics-GVR
	Method
	Overview
	Training
	VLG for General Video Recognition

	Experiments
	Evaluation Metrics.
	Experiments on Kinetics-Close
	Experiments on Kinetics-LT
	Experiments on Kinetics-Fewshot
	Experiments on Kinetics-Open
	More Results and Visualizations

	Conclusions
	Benchmark Details
	Kinetics-Close
	Kinetics-LT
	Kinetics-Fewshot
	Kinetics-Open
	Text Description

	Notations
	Implementation Details
	Ablation Study
	Additional Experiments
	Visualization
	Visualization of Performance
	Class-level Performance Improvement
	Visualization of Text Corpus
	More Examples of Salient Sentence

	Limitation
	Ethic Statement
	Reproducibility Statement

