
Federated Black-Box Adaptation for Semantic
Segmentation

Jay N. Paranjape
Dept. of Electrical and Computer Engineering

The Johns Hopkins University
Baltimore, USA

jparanj1@jhu.edu

Shameema Sikder
Wilmer Eye Institute

The Johns Hopkins University
Baltimore, USA

S. Swaroop Vedula
Malone Center for Engineering in Healthcare

The Johns Hopkins University
Baltimore, USA

Vishal M. Patel
Dept. of Electrical and Computer Engineering

The Johns Hopkins University
Baltimore, USA

Abstract

Federated Learning (FL) is a form of distributed learning that allows multiple
institutions or clients to collaboratively learn a global model to solve a task. This
allows the model to utilize the information from every institute while preserv-
ing data privacy. However, recent studies show that the promise of protecting
the privacy of data is not upheld by existing methods and that it is possible to
recreate the training data from the different institutions. This is done by utilizing
gradients transferred between the clients and the global server during training or
by knowing the model architecture at the client end. In this paper, we propose
a federated learning framework for semantic segmentation without knowing the
model architecture nor transferring gradients between the client and the server,
thus enabling better privacy preservation. We propose BlackFed - a black-box
adaptation of neural networks that utilizes zero order optimization (ZOO) to
update the client model weights and first order optimization (FOO) to update
the server weights. We evaluate our approach on several computer vision and
medical imaging datasets to demonstrate its effectiveness. To the best of our
knowledge, this work is one of the first works in employing federated learning
for segmentation, devoid of gradients or model information exchange. Code:
https://github.com/JayParanjape/blackfed/tree/master

1 Introduction

With data-driven methods becoming immensely popular in Artificial Intelligence (AI) research and
applications, there has been a surge in data collection and curation across the world. This has, in
turn, led to the development of AI models that require substantial amounts of data to train. Federated
Learning (FL) [34] was developed as a viable approach towards training such models by effectively
harnessing the data collected at different centers across the world. Through FL, it becomes possible for
multiple institutions to collaborate and build a joint model that learns from all of them, while reducing
the burden of collecting more data individually. However, collaborations between different institutions
present a non-trivial challenge due to disparity in data distributions as well as the imperative of
safeguarding data privacy. Consequently, FL aims to jointly learn a shared model that performs well
on data from all participating institutions without exchanging raw data. Various FL approaches have
been proposed in the literature [1, 10, 12, 16, 25, 22, 35, 37, 41, 44, 55, 56, 30, 34, 29, 31]. Among
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Figure 1: Comparison of our method against traditional FL methods. Existing FL methods are
primarily "white-box" as they involve transfer of model weights [34], or gradients[20]. In contrast,
our method only utilizes forward passes to update the client and does not require sharing weights or
gradients, making it a "black-box" model.

these, FedAvg [34] was one of the pioneering FL methods, which proposes training local models at
every center using local data and periodically averaging the local model weights to craft a global
server model. Various subsequent works improve FedAvg by improving the local model updates
[30, 31] or global updates [24, 29].

While FL was primarily proposed for classification tasks, it is also suited for other computer vision
tasks such as segmentation. Generating annotations in segmentation entails creating pixel-level
annotations per image, that are more tedious to label than classification tasks. Consequently, it
is not always possible for a single institution to collect a large amount of data, underscoring the
importance of collaborative efforts. A few approaches have been proposed in the literature for
FL-based segmentation [36, 5, 18, 43, 53, 14]. However, all these methods for segmentation and
classification, while not involving raw data transfer, employ techniques like model information
transfer [34, 30, 36] or gradient transfer [24, 20], as shown in Figure 1. However, recent research
has revealed that these techniques are vulnerable to attacks that can recreate training data from the
participating centers, thus undermining the privacy preserving characteristic of FL [11, 54, 17, 57,
27, 26, 58, 15, 23]. These attacks employ methods like gradient inversion [54, 17, 57] or adapting
model architecture and weights [11]. In this work, we propose a new approach, named BlackFed,
for segmentation using FL that does not involve gradient transfer between the server and the client
and at the same time, passes no knowledge about the client model architecture to the server, thereby
avoiding the necessary conditions for these attacks, as shown in Figure 1. This is done by formulating
the FL learning problem as a distributed learning problem using split neural networks (split-nn) [20]
and combining first order and zero order optimization techniques for training. Our contributions are
as follows:

1. We introduce BlackFed - a black-box algorithm that facilitates distributed learning for
semantic segmentation without transferring model information or gradients between the
client and the server. For this, we formulate the FL problem using split-nn and use first and
zero order optimization for training the server and the clients, respectively.

2. We suggest a method to reduce the effect of catastrophic forgetting in BlackFed by retaining
client-wise checkpoints in the server.

3. We evaluate the proposed approach on four segmentation datasets and show its effectiveness
as a distributed learning method by showing improvements over individual training.

2 Related Work

Federated Learning for Segmentation: FL for the segmentation tasks was motivated by its
immense application in the medical domain. Consequently, various methods were introduced in this
field [33, 6, 13, 19, 28, 32, 42, 49, 50, 52, 38]. For instance, [32] attempts to learn a model for brain
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tumor segmentation by utilizing data from multiple institutions. FedSM [38] attempts to mitigate the
effect of non-iid nature of the data from different centers on the global server model. However, most
of the approaches for medical segmentation focus on the problem of segmenting out the foreground
from the background (one class problem). There are relatively fewer works in the literature for
multi-class segmentation [14, 36, 5, 18, 43, 53]. FedSeg [36] deals with the class label inconsistency
problem that may be present at the local clients. In other words, it builds a robust system that works
well even when the clients have annotations for only a subset of the classes. FedDrive [14], on the
other hand, sets up various benchmarks for FL algorithms on multi-class datasets like Cityscapes [9].
However, all the existing algorithms require the global server to know the model architecture used in
the clients and thus, these methods are vulnerable to recent attacks [11]. In our work, we develop
an algorithm to perform multi-class segmentation which does not require gradients or client model
sharing.

Split Neural Networks: Split networks [20] were introduced as an alternative to FedAvg-like
techniques which require model sharing. They offer an approach to perform collaborative learning
by splitting a larger network into two segments. The latter segment of the network is shared across
all centers and placed at the global server, while the former part is distributed such that each center
possesses its own sub-network. During training, the clients perform a forward pass using their data
and send the encoded features to the server, which further passes the features to the subsequent
layers in the network. The server and client models are trained using backpropagation, where the
gradients from the first layer of the server model are sent back to each of the clients. Split networks
have mainly been used in the literature for the task of classification, mostly in the medical domain
[20, 40, 47]. Our work marks one of the initial explorations of split learning in the context of semantic
segmentation. Furthermore, split networks are shown to be more robust to reconstruction attacks
which arise from sharing model information [48]. Nonetheless, they remain susceptible to gradient
leakage attacks since there is gradient transfer between the server and the client. In this work, we
formulate the problem of distributed semantic segmentation using split network and introduce a
training algorithm that does not require gradient-sharing.

3 Black-box Adaptation

In the following section, we define the problem of semantic segmentation under the federated setting.
Then, we describe our proposed formulation for the black-box setting and the algorithm.

3.1 Preliminaries

The setting of FL consists of N clients, denoted by Ci, where i ∈ 1, 2, ..., N and a
global server G. Each of the clients has a local dataset, consisting of images Xi ={
xi
j ∈ RH×W×C ; j ∈ {1, 2, ..., ni}

}
and their corresponding ground truth segmentation maps

Yi =
{
yij ∈ RH×W×Nc ; j ∈ {1, 2, ..., ni}

}
. Here, xi

j and yij represent the jth image and its cor-
responding segmentation mask, while ni represents the number of data points in client i and Nc

represents the number of classes in the output. Note that the distributions of the input images vary
among the clients. Each client uses its dataset to learn a function f i : RH×W×C → RH×W×Nc ,
which is parameterized by Θi, that minimizes its local loss function as follows:

argmin
Θi

Li =
1

ni

ni∑
j=1

l(f(xi
j ; Θ

i), yij), (1)

where l denotes the loss per data point. The global server, on the other hand, tries to aggregate the
knowledge of all the clients by fusing the parameters of the individual clients to optimize a joint loss
function as follows:

argmin
Θi

L =
1

N

N∑
i=1

Li. (2)

A commonly used algorithm, called FedAvg [34], proposes a linear combination of client parameters
to optimize the loss function, defined in Eq. 2, as follows:

Θi ←
N∑
i=1

ni∑N
i=1 n

i
Θi. (3)
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However, this formulation requires the server to be aware of the exact model architecture or function
of the client, which can results in data leakage [11].

3.2 Proposed Algorithm

Proposed Problem Formulation: In this work, we model the problem of distributed learning using
a split neural network, which takes away the requirement of the server being aware of the client
architecture. In this case, each client learns a function f i : RH×W×C → RH′×W ′×C′

, which is
parameterized by Θi. Similarly, the global server learns a function g : RH′×W ′×C′ → RH×W×Nc ,
which is parameterized by Φ. Thus, the forward pass for a given center is given as follows:

ŷij = g(f(xi
j ; Θ

i); Φ), (4)

where ŷij denotes the predicted segmentation map. Hence, the objective function of a given client is
as follows:

argmin
Θi,Φ

Li, i ∈ {1, 2, ..., N} = 1

ni

ni∑
j=1

l(ŷij , y
i
j ; Θ

i,Φ). (5)

As in the existing FL literature, the goal of our approach is that after training, all clients should benefit
from each other. Hence, during evaluation, given any client, we aim to perform well on data from
other clients as well as its own data, thus showing good generalization. More specifically, we want to
optimize any combination of data and client as follows:

minLik, i ∈ {1, 2, ..., N} , k ∈ {1, 2, ..., N} = 1

ni

ni∑
j=1

l(ŷij , y
i
j ; Θ

k,Φ). (6)

One way to optimize this equation is by attending to every client in a round-robin fashion. This
involves selecting a client, performing the forward pass, as defined in Eq. 4 and then performing
backpropagation to update the server and client using the client loss function defined in Eq. 5.
Performing this operation several times in a round-robin fashion enables the server to learn from all
client sources, and hence, improves the overall performance. We term this method as "White-box
Round-Robin FL", and is similar to the existing methods in the literature [24, 20]. However, recent
works have shown that such a method which involves transfer of gradients between the server and
client can be utilized to regenerate the training data, thus undermining the privacy preservation
principle of FL [54, 23]. Hence, we add one more constraint - i.e. no gradient can flow back from the
server to the client in Eq. 5.

BlackFed Algorithm: To optimize the clients without using gradients, we utilize a ZOO method
called Simultaneous Perturbation Stochastic Approximation with Gradient Correction (SPSA-GC)
[39] which involves perturbing the weights of the client model slightly and approximating a two-sided
gradient based on the change in the loss function due to the perturbations. However, this method was
developed to perform black-box adaptation of pretrained foundation models and hence, expects the
server model to be initialized with good weights, which is not the case in our formulation, making it
non-trivial. To overcome this, we propose to iteratively use an alternating optimization technique,
which factorizes the optimization problem in Eq. 5 into two optimization problems as follows:

argmin
Θi

Li, i ∈ {1, 2, ..., n} = 1

ni

ni∑
j=1

l(ŷij , y
i
j ; Θ

i|Φ),

argmin
Φ

Li, i ∈ {1, 2, ..., n} = 1

ni

ni∑
j=1

l(ŷij , y
i
j ; Φ|Θi).

(7)

During training, we first select a client using the round-robin policy. Next, keeping the server weights
fixed, we train the client weights using SPSA-GC for a few iterations. Next, we fix the client weights
and use a first order optimizer (i.e. Adam-W) to optimize the server for a few iterations. This process
is repeated multiple times. During inference for a client, we simply run the forward pass as described
in Eq. 4 using the final weights of the client and server. The training process is described in Algorithm
1. We refer to this approach as BlackFed v1.
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Algorithm 1 Proposed Algorithm for BlackFed v1
Input: (i) N, number of clients

(ii) c_e, number of epochs to train one client
(iii) s_e, number of epochs to train server
(iv) runs, number of complete round-robin runs n ≥ 0

Output: (i) Φ, server model weights
(ii) Θ, array of client model weights

BlackFed (N, c_e, s_e, runs) Begin:
initialize Φ,Θ
for r = 1,2,...,runs do

for i = 1,2,...,N do
for j = 1,2,...,c_e do

Θ[i]← SPSA-GC(Θ[i]) //Zero order optimization for client
end for
for j = 1,2,...,s_e do

Φ← Φ− ηs
∂Li

∂Φ //First order optimization for server, where ηs is the learning rate
end for

end for
end for
Return: Φ,Θ
End

Reducing the Effect of Catastrophic Forgetting: Since the model at the server is shared among all
the clients and is updated in a round-robin fashion, it may happen that training with the data from a
given client may cause it to unlearn patterns for the previous client. This phenomenon is often called
catastrophic forgetting. This effect is observed in BlackFed v1 especially when the number of clients
increases or if there is a significant change in the data distribution among clients. This causes the
algorithm to perform well on certain clients and poorly on the rest of the clients. To reduce the effect
of catastrophic forgetting, we propose a simple additional step during training with Algorithm 1.
After updating the server weights for a given client during training, we store the updated weights of
the server model in a hashmap indexed by the index of the client. During inference for a given client,
we use the latest weights of the client model and the indexed weights of the server model to perform
the forward pass. Note that the server state is loaded from the hashmap only during inference. During
training, the server still benefits from the data from all clients and updates its weights as well as the
hashmap. This approach is visualized in Figure 2. We refer to this method as BlackFed v2.

4 Experiments and Results

Datasets: For evaluating our method, we consider four publicly available datasets, namely (i)
Cityscapes [9] (ii) CAMVID [4], (iii) ISIC [21, 8, 45] and (iv) Polypgen [2]. Cityscapes and
CAMVID are two road-view semantic segmentation datasets with 19 and 32 classes of interest
respectively, collected from multiple cities. In the FL setup, we consider each of the cities as separate
clients. While CAMVID has predefined train, test and validation splits, for Cityscapes, we divide
the data from each client into training, validation and testing splits for that client in a 60:20:20 ratio.
In this manner, we generate 18 clients for Cityscapes and 4 clients for CAMVID. Further details
about the dataset size in each center is provided in the supplementary document. The ISIC dataset
corresponds to a skin lesion segmentation challenge. We generate three clients for this dataset, which
utilize the datasets from ISIC 2016 [21], ISIC 2017 [8] and ISIC 2018 [45], respectively. The data
every year is collected from different centers and hence, has different distribution amongst centers.
Finally, PolypGen is a colon polyp segmentation dataset which was collected from six different
centers. The training, validation and testing splits for each of these were done in a 60:20:20 ratio for
Polypgen whereas they were already provided for ISIC. We visualize the pixel-intensity histograms
of the CAMVID and ISIC datasets to verify different data distributions amongst clients in Figure 3.

Experimental Setup: We use a two-layer convolutional network for modeling f in the client and
DeepLabv3 [7] for modeling g in the server. The number of output channels from the client is kept
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Figure 2: The BlackFed v2 Algorithm. During training, the client is selected in a round-robin fashion.
Then (a) client performs a forward pass using its part of the network (b) Server performs a forward
pass using its part of the network (c) With server weights fixed, client weights updated using ZOO
(d) Keeping client weights fixed, server weights updated using FOO (e) The best server weights are
stored in the hashmap corresponding to client index. During inference, the client performs a forward
pass and calls the server with the output. Server queries the hashmap using the client index and gets
its set of weights, using which the prediction is obtained. Note that there is no gradient transfer, thus
making this a black-box setup.

Figure 3: Pixel Density distribution of (L) the CAMVID Dataset and (R) the ISIC Dataset. Since
majority of ISIC pixels are either 0 or 255 for all centers, these have been omitted for better
visualization. Since each of the clients has a different distribution, data from one client can be
considered as Out-of-Distribution (OOD) for other clients.

as 64. Consequently, we start the DeepLabv3 network in the server from the second layer, which
expects a 64-channel input. During training, we use c_e = 10 and s_e = 10. The server is optimized
using an Adam optimizer and the client is optimized using SPSA-GC. The learning rates of both
the client and the server are set to 10−4, based on validation set performance. The batch size for all
experiments is 8, and all images undergo random brightness perturbation with brightness parameter
set as 2. The images for Cityscapes and CAMVID are resized to 256× 512 to maintain their aspect
ratio, whereas the images for ISIC and Polypgen are resized to 256× 256. All experiments are done
using a single Nvidia RTX A5000 GPU per client and a single Nvidia RTX A5000 GPU at the server.

Results: Given the trained client models and the trained server model, we assess a given client’s
performance with test datasets from its own local data repository and present the mIoU in the "Local"
column. This metric represents the local performance of the model on its own dataset. In addition,
we assess each client on test data from other centers and note down the average mIoU scores in the
Out-of-Distribution ("OOD") column. This metric serves as an estimate of the general performance
of a given client post-training. We consider the latter more important as it can be considered to be
the direct outcome of the FL paradigm. These results are presented in Table 1 for CAMVID and
Cityscapes, and in Table 2 for ISIC and Polypgen. For both tables, in the first row, each client is
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Figure 4: Comparison of our method against individual training. The third and fourth columns denote
testing with the local test data, while the fifth and sixth columns denote OOD testing. Our method
improves OOD performance of clients without harming their local performance.

trained on its own dataset, independently of others, indicating no collaboration. For this case, while
the client performance on its own test set is high, its general performance suffers. The next two
rows represent our method (BlackFed v1 and v2). Notably, BlackFed v2 generally exhibits better
performance than v1 since it addresses the catastrophic forgetting that occurs during training. The
following three rows represent the expected upper bounds to our performance. "Combined Training"
represents the scenario where raw data can be freely shared and a single model is trained using
the combined data from all clients. "White-box training" represents the case where gradients can
flow freely between the server and the client. Thus, instead of the ZOO optimization, we use FOO
to optimize the client part of the model. Finally, the last three rows represent the performance of
traditional FL using FedAvg, and recent methods like FedPer and FedSeg, where model sharing is
allowed. Here, all the clients follow the same model architecture as the server (DeepLabv3) and the
server can aggregate weights from the client models. All three methods represent a relaxation over
the constraints imposed in our approach, thus acting as an upper bound to the black-box performance.
During training, the client and server models are trained for the same number of epochs per client.
This produces a more uniform distribution of results across centers, in contrast with traditional FL
methods like FedAvg, where the aggregation of weights is weighed by the client dataset size. We
observe that for the Polypgen dataset, BlackFed v1 and v2 perform slightly better or on par with
individual client performance for OOD case. For this case, there is little difference between the
performance of v1 and v2. This behavior may be related to the data distribution of Polypgen and
suggests that BlackFedv2 is not able to correctly avoid the catastrophic forgetting for centers C5 and
C6. However, for rest of the scenarios, we see that v2 significantly outperforms v1 as well as the
individual training cases on OOD mIoU metric. At the same time, the performance on local data does
not suffer significantly as compared to the individual training. Moreover, BlackFed v2 performs on
par with "Combined" and "White-box" Training. All results of BlackFed have a p-value less than
0.001, showing the statistical significance of our black-box approach. The visual comparisons for our
method with the individual training is given in Fig. 4. As can be seen in all four rows, individual
training can lead to overfitting, which harms the general OOD performance. Using our method,
we are able to improve the OOD results across all datasets without significant decrease in the local
results.

Additional Model Architectures While we evaluate a DeepLabv3-based server in our main exper-
iments, we show the effectiveness of our method on additional segmentation architectures. More
specifically, for the CAMVID dataset, we choose UNext [46] and SegFormer [51] as the server
models and present average mIoU results across the test datasets from each client in Table 3. As can
be seen from the table, using our approach can improve the performance over individual training
for all three models. As the model complexity increases from UNext to DeepLab to Segformer, we
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Table 1: mIoU scores for BlackFed v1 and v2 in comparison with individual and FL-based training
strategies for natural datasets. "Local" represents test data from the center. "OOD" represents mean
mIoU on test data from rest of the centers. For FedAvg and Combined Training, just one model is
trained. Hence, its performance is noted only in each of the local test datasets. For Cityscapes, we
only present the average local and OOD performance across centers for brevity. The supplementary
contains an expanded version for Cityscapes.

CAMVID Cityscapes
C1 C2 C3 C4 Average across 18 Centers

Method Local OOD Local OOD Local OOD Local OOD Local OOD

Individual 0.63 0.46 0.83 0.48 0.85 0.65 0.79 0.64 0.50 0.44

BlackFed v1 0.55 0.67 0.79 0.65 0.78 0.68 0.66 0.66 0.71 0.71
BlackFed v2 0.70 0.72 0.78 0.66 0.81 0.70 0.75 0.72 0.75 0.74

Combined Training 0.74 - 0.81 - 0.84 - 0.77 - 0.77 -
White-box Training 0.67 0.73 0.81 0.72 0.80 0.68 0.74 0.70 0.75 0.75

FedAvg [34] 0.64 - 0.76 - 0.84 - 0.76 - 0.79 -
FedSeg [36] 0.71 - 0.79 - 0.83 - 0.77 - 0.81 -
FedPer [3] 0.65 0.57 0.77 0.68 0.82 0.71 0.76 0.66 0.78 0.72

Table 2: mIoU scores for BlackFed v1 and v2 in comparison with individual and FL-based training
strategies for medical datasets. "Local" represents test data from the center. "OOD" represents mean
mIoU on test data from rest of the centers. For FedAvg and Combined Training, just one model is
trained. Hence, its performance is noted only in each of the local test datasets.

Polypgen ISIC
C1 C2 C3 C4 C5 C6 C1 C2 C3

Method Local OOD Local OOD Local OOD Local OOD Local OOD Local OOD Local OOD Local OOD Local OOD

Individual 0.59 0.47 0.73 0.47 0.75 0.59 0.47 0.37 0.45 0.44 0.52 0.48 0.86 0.79 0.85 0.76 0.76 0.84

BlackFed v1 0.59 0.55 0.63 0.51 0.64 0.56 0.55 0.47 0.34 0.53 0.28 0.40 0.84 0.82 0.89 0.80 0.5 0.69
BlackFed v2 0.59 0.56 0.64 0.49 0.65 0.51 0.50 0.47 0.35 0.49 0.26 0.41 0.86 0.80 0.88 0.80 0.77 0.88

Combined Training 0.71 - 0.79 - 0.81 - 0.67 - 0.57 - 0.60 - 0.87 - 0.89 - 0.76 -
White-box Training 0.60 64 0.77 0.59 0.72 0.58 0.61 0.57 0.48 0.62 0.59 0.62 0.56 0.70 0.73 0.66 0.77 0.68

FedAvg [34] 0.68 - 0.78 - 0.83 - 0.61 - 0.54 - 0.64 - 0.87 - 0.87 - 0.78 -

observe a decrease in individual training performance. This trend is reversed for the combined case
where there is more training data. This observation indicates overfitting in the individual case due to
less individual training data. Using our method, we are able to correctly match the performance and
trend of combined training.

5 Ablation Studies

Analysis of the Order of Optimization: In the alternating optimization proposed in Eq. 7, we
choose to first update the client followed by the server. This order is important since it allows us to
store the correct server weights in the hashmap. If the server is trained before the client, we found that
SPSA-GC often gives unstable results and reduces the metric on the validation set after an epoch. This
is corrected only when its the turn of the same client again. Conversely, in the case where the client
is updated first, the server adapts in a stable manner to the client weights since backpropagation is
allowed in the server. Consequently, in the same epoch, we get a higher and more stable performance

Table 3: mIoU for CAMVID dataset with varying model architectures of the global server.

DeepLabv3 Segformer UNext
Method C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

Individual 0.50 0.57 0.69 0.67 0.27 0.36 0.50 0.34 0.36 0.49 0.60 0.51

BlackFed v2 0.72 0.69 0.73 0.72 0.71 0.69 0.73 0.72 0.61 0.53 0.43 0.56
Combined Training 0.74 0.81 0.84 0.77 0.66 0.77 0.77 0.72 0.59 0.67 0.73 0.67
White-box Training 0.72 0.76 0.84 0.76 0.54 0.55 0.58 0.57 0.36 0.49 0.60 0.51
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Table 4: Comparison of client and server-side GFLOPS for different algorithms.

DeepLabv3 GFLOPS Segformer GFLOPS UNext GFLOPS
Method Client Server Client Server Client Server

Centerwise 353.6 - 7.5 - 475.39 -

FedAvg [34] 353.6 353.6 7.5 7.5 475.39 475.39

Ours 26.6 326.98 5.12 2.38 53.13 422.26

Table 5: Average MIoU scores for different training strategies of BlackFed. Optimizing the client
followed by the server improves performance, which is further improved by maintaining the server-
side hashmap.

CAMVID ISIC CityScapes PolypGen
Method Aveg across 3 centers Average across 4 centers Avg across 18 centers Avg across 6 centers

Optimize Server, then client 0.67 0.66 0.53 0.43
Optimize Client, then Server (BlackFed v1) 0.67 0.76 0.53 0.50
Optimize Client, then Server (BlackFed v2) 0.72 0.83 0.74 0.50

for each client, which can be saved in the hashmap for usage during inference. We demonstrate this
empirically by comparing the performance of the two training strategies in Table 5.

Analysis of Computational Cost: For each of the three model architectures, namely DeepLabV3,
UNext and Segformer, we calculate the floating point operations required in a single forward pass at
the institution end. These are shown in Table 4. If the clients were to train individual models with
their local data, they would require running the entire forward pass on their local systems. This is
also the case in existing FL approaches like FedAvg. In the proposed approach, as can be seen from
Row 3 in the table, the client has a significantly reduced load, with the majority of computation being
offloaded to the server. The server uses the respective architectures starting from the second layer,
while all the clients use a two-layer convolution network, with the second convolutional layer being
similar to the first layer of the respective architecture.

Table 6: Average mIoU scores for
BlackFed v1 and v2 in comparison with
individual and FL-based training strate-
gies.

Number of Client Epochs
Number of Server Epochs 10 20 30 40 50

10 0.71 0.69 0.68 0.69 0.68
20 0.70 0.69 0.69 0.69 0.69
30 0.65 0.68 0.70 0.70 0.66
40 0.71 0.70 0.68 0.70 0.70
50 0.67 0.69 0.70 0.66 0.69

Effect of Client and Server rounds: The BlackFed
algorithm takes in two hyperparameters, namely c_e and
s_e, that determine the number of epochs for training the
client and server, respectively. We conduct experiments
for observing the effect of changing these parameters on
the model performance. We use the CAMVID dataset with
server architecture being DeepLabv3 and note down the
average mIoU score in Table 6 for different values of c_e
and s_e in {10, 20, 30, 40, 50}. Interestingly, we observe
that there was no significant difference in performance by
increasing the number of server epochs or client epochs.
While increasing the server epochs can improve training, it
also makes the server more specific to a given client, thus
reducing average performance. On the other hand, more
ZOO-based iterations marginally improve the model. In this context, ZOO primarily serves to guide
the server towards a more robust minima, resilient to perturbations in client features. Consequently, a
greater number of client epochs does not notably impact model performance.

6 Conclusion

In this work, we introduce BlackFed, an FL algorithm that enables distributed learning without transfer
of gradients or model weights. This characteristic distinguishes our approach as a black-box model
compared to existing FL methods, which can be considered as white-box approaches. Recent research
on attacking FL methods require the knowledge of either the gradients or the model information, thus
rendering BlackFed more resistant to such attacks since gradients or weights are not shared. BlackFed
consists of a global server and multiple clients, each possessing their own data. The server is optimized
using first order optimization while the client weights are updated using zero order optimization in a
round-robin fashion. This introduces the effect of catastrophic forgetting in the network, for which
we propose a simple hashmap-based approach. During training, we store the client weights per server
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so that they can be utilized during inference. With these modifications, our approach demonstrates
superior results compared to non-collaborative training and matches the performance of white-box
methods, despite being a black-box method itself. Extensive experimentation on the natural and
medical domain datasets highlights the effectiveness of BlackFed. Through this endeavor, we aim
to propel research towards the development of better privacy preserving federated learning systems.
Potential directions for future research can include analysis of other policies for selecting client order
during training, and its relation with the disparity in data distribution. One more interesting direction
for future research would be the effect of adversarial attacks using generative models on this method.
Since masks are shared between the client and server, it would be interesting to check if existing
methods are able to recreate client data using them.
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Table 7: Data counts for CAMVID, ISIC and Polypgen datasets

CAMVID ISIC Polypgen

Split C1 C2 C3 C4 C1 C2 C3 C1 C2 C3 C4 C5 C6

Train 24 61 181 103 6009 720 2000 153 180 274 136 124 52
Val 8 16 50 26 2003 180 150 51 60 91 45 42 18
Test 92 24 74 42 2003 379 600 52 61 92 46 42 18

Table 8: Data counts for Cityscapes dataset

Cityscapes

Split C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18

Train 121 67 221 107 59 154 76 173 137 83 69 65 255 137 100 66 99 85
Val 27 15 48 24 13 34 17 38 30 18 15 15 55 30 22 15 22 19
Test 26 14 47 23 13 33 16 37 29 18 15 14 55 29 22 14 21 18

A Centerwise Dataset Information

In this section, we describe the number of data points in the training, validation and testing splits of
each center of each dataset. The center represents the client in FL, where each center is in possession
of data that cannot be shared directly with the other centers or to the public. CAMVID [4] has 4
centers, which are described in Table 7. Cityscapes [9] has 18 centers, which are described in Table 8.
These centers represent the different cities from which the data is collected for these datasets. ISIC
[8, 21, 45] has 3 centers and Polypgen [2]has 4 centers, which represent the different hospitals from
which the data is collected. These results are present in Table 7.

B Centerwise Performance for Cityscapes Dataset

While the average mIoU is presented in the main paper, we also present the centerwise performance
of DeepLabv3-based server for the Cityscapes dataset in Tables 9 and 10. It can be seen from the
tables that individual training performs poorly, the reason being that each of the centers has limited
amount of data. In contrast, our method makes use of data from all clients to improve performance.
Here, we also see that BlackFed v2 performs better than v1 in all cases, thus showing the effectiveness
of the server hashmap in countering catastrophic forgetting. With our approach, the performance
of the model reaches close to the white-box methods, but without sharing any gradients or model
information.

Table 9: mIoU scores for BlackFed v1 and v2 in comparison with individual and FL-based training
strategies for Cityscapes. "Local" represents test data from the center. "OOD" represents mean mIoU
on test data from rest of the centers. For FedAvg and Combined Training, just one model is trained.
Hence, its performance is noted only in each of the local test datasets.

C1 C2 C3 C4 C5 C6 C7 C8 C9

Method Local OOD Local OOD Local OOD Local OOD Local OOD Local OOD Local OOD Local OOD Local OOD

Individual 0.61 0.57 0.61 0.58 0.64 0.52 0.55 0.50 0.35 0.39 0.39 0.39 0.51 0.39 0.33 0.39 0.55 0.52

BlackFed v1 0.76 0.72 0.67 0.71 0.77 0.71 0.75 0.71 0.66 0.70 0.74 0.71 0.71 0.71 0.66 0.72 0.70 0.70
BlackFed v2 0.78 0.74 0.71 0.74 0.81 0.74 0.77 0.74 0.70 0.73 0.76 0.74 0.75 0.73 0.66 0.75 0.71 0.72

Combined Training 0.82 - 0.71 - 0.82 - 0.78 - 0.74 - 0.78 - 0.76 - 0.67 - 0.74 -
White-box Training 0.79 0.74 0.71 0.75 0.81 0.75 0.78 0.75 0.70 0.74 0.78 0.75 0.74 0.74 0.66 0.76 0.73 0.76

FedAvg [34] 0.85 - 0.75 - 0.84 - 0.80 - 0.74 - 0.80 - 0.78 - 0.70 - 0.76 -

15



Table 10: mIoU scores for BlackFed v1 and v2 in comparison with individual and FL-based training
strategies for Cityscapes. "Local" represents test data from the center. "OOD" represents mean mIoU
on test data from rest of the centers. For FedAvg and Combined Training, just one model is trained.
Hence, its performance is noted only in each of the local test datasets.

C10 C11 C12 C13 C14 C15 C16 C17 C18

Method Local OOD Local OOD Local OOD Local OOD Local OOD Local OOD Local OOD Local OOD Local OOD

Individual 0.49 0.45 0.62 0.57 0.58 0.54 0.38 0.39 0.41 0.39 0.56 0.50 0.38 0.39 0.66 0.55 0.37 0.39

BlackFed v1 0.69 0.71 0.74 0.70 0.68 0.71 0.68 0.71 0.74 0.69 0.73 0.68 0.65 0.66 0.69 0.70 0.72 0.70
BlackFed v2 0.72 0.73 0.77 0.73 0.71 0.73 0.72 0.74 0.78 0.73 0.78 0.74 0.74 0.73 0.80 0.73 0.76 0.74

Combined Training 0.74 - 0.80 - 0.74 - 0.73 - 0.81 - 0.79 - 0.77 - 0.82 - 0.78 -
White-box Training 0.73 0.76 0.79 0.75 0.72 0.75 0.71 0.76 0.78 0.75 0.79 0.75 0.72 0.74 0.81 0.75 0.78 0.75

FedAvg [34] 0.76 - 0.80 - 0.75 - 0.74 - 0.82 - 0.83 - 0.77 - 0.84 - 0.81 -
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Answer: [Yes]
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Guidelines:
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made in the paper.
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
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by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
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provided in the main paper.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
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(d) We recognize that reproducibility may be tricky in some cases, in which case
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
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Answer: [Yes]
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reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: While the code will be released along with pretrained models, we have
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that is necessary to appreciate the results and make sense of them.
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Answer: [Yes]
Justification: All results of BlackFed have a p-value less than 0.001, showing statistical
significance.
Guidelines:
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of the mean.
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of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Provided in the experiment setup
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
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Answer: [Yes]
Justification: all guidelines followed.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Introduction discusses about our method’s positive impacts. There are no
apparent negative impacts.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
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from (intentional or unintentional) misuse of the technology.
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strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No risk posed by the work.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Justification: We use public datasets that have been cited in the paper.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Code will be released post review and the novel algorithm is described in the
paper.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]
Justification: The study does not involve crowdsourcing or human subjects.
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human subjects.
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