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Abstract

Multimodal Large Language Models (MLLMs) have
achieved remarkable performance across vision-language
tasks. Recent advancements allow these models to process
multiple images as inputs. However, the vulnerabilities of
multi-image MLLMs remain unexplored. Existing adversar-
ial attacks focus on single-image settings and often assume
a white-box threat model, which is impractical in many
real-world scenarios. This paper introduces LAMP, a black-
box method for learning Universal Adversarial Perturbations
(UAPs) targeting multi-image MLLMs. LAMP applies an
attention-based constraint that prevents the model from ef-
fectively aggregating information across images. LAMP also
introduces a novel cross-image contagious constraint that
forces perturbed tokens to influence clean tokens, spreading
adversarial effects without requiring all inputs to be modified.
Additionally, an index-attention suppression loss enables a
robust position-invariant attack. Experimental results show
that LAMP outperforms SOTA baselines and achieves the
highest attack success rates across multiple vision-language
tasks and models.

Introduction
Multimodal Large Language Models (MLLMs) like GPT-
4V (Achiam et al. 2023), Gemini (Team et al. 2023),
LLaVA-NeXT (Liu et al. 2024b), and Idefics (Laurençon
et al. 2024) have made significant advancements in visual-
language understanding and generation, particularly for
single-image tasks such as VQA (Antol et al. 2015). A few
open-source models, such as Mantis (Jiang et al. 2024) and
VILA (Lin et al. 2024), extend these capabilities to multi-
image inputs, enabling coreference, comparison, reasoning,
and temporal understanding. These models first learn multi-
modal interactions through pre-training on unlabeled image-
text datasets. They are then fine-tuned using labeled image-
text pairs for various multi-image downstream tasks (Suhr
et al. 2019; Fu et al. 2023; Xiao et al. 2021). Despite their re-
markable performance, the adversarial robustness of multi-
image MLLMs remains unexplored.

Several studies have evaluated the robustness of single-
image vision-language models. Most existing approaches
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Figure 1: An overview of our approach showing superior ef-
fectiveness over traditional methods. Conventional methods
fail when the perturbation is not applied to every image, an
unrealistic setting when the attacker does not have access
to the later inference stage. Our method succeeds even if a
subset of downstream samples includes perturbed samples
since it can affect “green” samples even though they are not
attacked, unlike traditional methods.

(Zhou et al. 2022; Li et al. 2019) focus on white-box at-
tacks, assuming access to gradient information from fine-
tuned models. In practice, however, attackers typically only
have access to public pretrained models and lack knowledge
of downstream models. Gradient-based white-box meth-
ods (Madry et al. 2018) also generate instance-specific
perturbations that generalize poorly and require costly re-



optimization for new inputs.
Although some efforts, such as AdvCLIP (Zhou et al.

2023), have explored this challenge, existing approaches
are often model-specific or lack practical utility due to lim-
ited imperceptibility. Additionally, generating input-specific
adversarial perturbations for multi-image multimodal large
language models (MLLMs) using methods like Madry et al.
(2018) is impractical. A scenario is shown in Fig. 1. Con-
sider an attacker who is posting images on social media
but cannot control which sets of images, how many, or in
what order they are fed into the model. At best, with cur-
rent methods, an attacker can post multiple images with an
attack using existing techniques. However, these attacks are
not learned jointly to have a synergistic effect.

In this paper, we address that limitation by developing
a new multi-image attack that works synergistically under
real-world conditions, where the attacker cannot control how
many attack images are presented to the model or in what
order. Unlike multiple single image attacks, our attack is
explicitly designed to attack multi-image scenarios. Tradi-
tional methods, designed primarily for single-image attacks,
are thus less effective in multi-image contexts, unless all
images in the instance are perturbed. To address this, we
propose a perturbation learning framework capable of car-
rying out effective attacks even when a small subset of per-
turbed images is present within the inference instance. Our
approach is designed to propagate the perturbation effect
across subsequent tokens, allowing the adversarial influence
to persist throughout the model’s generation process, which
enables a successful attack under more realistic constraints.

To address these challenges, we propose a novel method
for generating Universal Adversarial Perturbations (UAPs)
that targets black-box models. Our approach learns UAPs
using a pretrained model and attacks various multi-image
MLLMs without prior knowledge of their architectures or
downstream tasks (Fig. 1). In many real-world scenarios
(e.g. an attacker serving poisoned ad images displayed on a
webpage processed by a model), attackers cannot poison all
images or control how many images the model ingests dur-
ing inference. Existing methods assume a single perturbed
image, which does not exploit the unique attack surface
posed in the multi-image setting. Our approach learns UAPs
specifically for these settings by maximizing the dissimilar-
ity between clean and perturbed images. It disrupts attention
weights between them while keeping the pretrained MLLMs
frozen. This ensures that the learned UAPs remain effective
and transferable across different tasks and models. To do so,
first we train UAPs by minimizing the probability of cor-
rect predictions. Next, we enforce dissimilarity constraints
between the hidden states of each decoder layer in the LLM
backbone. We also constrain the dissimilarity of attention
weights using the Pompeiu-Hausdorff distance (Berinde and
Pacurar 2013) to learn attacks which target specific heads.
A fixed number of UAPs may not generalize well to vary-
ing numbers of images during inference. To address this, we
introduce a novel “contagious” objective that encourages a
fixed set of perturbed tokens to focus more on clean tokens
in the self-attention space. This technique allows an attacker
to induce noisy behavior in clean images without knowing

how many perturbations each sample requires. Moreover, we
propose an index-attention suppression constraint to enable
position-invariant attacks tailored to multi-image settings.
The contributions of our works:
• We propose the first adversarial attack targeting multi-

image MLLMs to our knowledge, exploiting the unique
attack surface enabled by multiple inputs. Our attack is
transferable across MLLMs without requiring UAPs tai-
lored to specific downstream models or tasks.

• We introduce a novel method for learning UAPs by lever-
aging the LLM’s self-attention module without optimiz-
ing the MLLM itself by using Pompeiu-Hausdorff dis-
tance (Berinde and Pacurar 2013).

• We propose a novel “contagious” objective that enables
perturbed visual tokens to infect clean tokens, allowing
for the learning of a fixed number of UAPs in multi-
image settings. We also propose an “index-attention sup-
pression” loss, that enables the position-invariant attacks.

• We conduct a comprehensive experimental evaluation
across a wide range of MLLMs, challenging multi-image
benchmark datasets along with VQA and image caption-
ing tasks. Our results demonstrate that our attack method
significantly outperforms SOTA approaches.

Related Work
Multi-Modal Adversarial Attacks. With the increasing
popularity of vision-language models such as CLIP (Rad-
ford et al. 2021), BLIP (Li et al. 2022b), researchers have fo-
cused on assessing their robustness by developing adversar-
ial attack strategies. Xu et al. (2018) demonstrated that iter-
ative pixel-level perturbations can effectively deceive visual
question answering models. Expanding on this, Agrawal
et al. (2018); Shah et al. (2019) introduced attacks target-
ing the textual modality of multimodal models. More recent
approaches, such as Co-Attack (Zhang, Yi, and Sang 2022)
and SGA (Lu et al. 2023), explore joint perturbations across
visual and textual modalities.
Universal Adversarial Attacks. Adversarial attack re-
search has primarily focused on instance-specific methods
in both single-modal (Szegedy et al. 2013; Kim and Ghosh
2019) and multi-modal (Xu et al. 2018; Zhang, Yi, and
Sang 2022) settings under white and black-box assump-
tions. In contrast, universal adversarial perturbations (UAPs)
(Moosavi-Dezfooli et al. 2017; Mopuri, Ganeshan, and Babu
2018) offer a more practical, sample-agnostic alternative.
While UAPs have been widely studied in image (Hayes and
Danezis 2018; Khrulkov and Oseledets 2018) and text (Xue
et al. 2024; Wallace et al. 2019) domains, their applica-
tion to vision-language pretrained (VLP) and multimodal
large language models (MLLMs) remains limited. UAP-
VLP (Zhang, Huang, and Bai 2024) and Doubly-UAP (Kim,
Kim, and Kim 2024) target image-only UAPs through sub-
region optimization and attention manipulation. CPGC-UAP
(Fang et al. 2025) extends UAPs to both modalities using
a generator, while DO-UAP (Yang et al. 2024) employs di-
rect optimization for efficiency but is limited to single-image
inputs. Jailbreak-MLLM (Schaeffer et al. 2025) improves
transferability by attacking MLLM ensembles.



Multi-Image Adversarial Attacks. Existing methods take
advantage of MLLM multi-image capability for composite
adversarial attacks. AnyDoor (Lu et al. 2024) shows the
effectiveness of UAPs when attacking randomly selected
frames in a video. Multiple scenario-aware adversarial im-
ages are generated and used as a collaborative adversar-
ial attack in MLAI (Hao et al. 2025). On the other hand,
Broomfield et al. (2024) splits harmful texts into multi-
ple typographic images to leverage multi-image capabili-
ties of MLLMs. Wang et al. (2025) explores multi-modal
in-context attacks by providing few-shot adversarial images
and texts as context. However, none of these methods con-
sider universal adversarial attack methods on subsets of in-
terleaved images in MLLMs.

Problem Setting
Threat Model
Adversary Objective. Given a pretrained MLLM M, our
goal is to learn imperceptible UAPs that can transfer across
different downstream MLLMs and tasks. In this setting,
the target MLLMs, datasets, and downstream tasks remain
unknown during training, and the attacker cannot control
learned text embeddings. For instance, a malicious actor
could serve image-based advertisements containing adver-
sarial noise or post adversarially perturbed images in on-
line comments. When a model processes a webpage con-
taining multiple images, the attack could still be effective
even if the adversary does not control all images or asso-
ciated text. To handle this black-box scenario, we learn ad-
versarial perturbations using a surrogate dataset and model
M. The surrogate multimodal dataset is denoted as Ds =
{(x(i), t(i))}ni=1, where Ds consists of n multimodal sam-
ples. Here, x(i) = {x(i)

j }m(i)

j=1 represents the set of m(i) im-
ages for the i-th sample, and t(i) is the corresponding text
prompt. The objective is to learn imperceptible universal ad-
versarial perturbations δ1, . . . , δk where ∥δk∥∞ ≤ ϵ; ϵ is the
perturbation budget and l∞ denotes the perturbation con-
straint. Here, we attack subset of images in sample m(i),
where k < m(i). We consider a multi-image setting where
a user is expected to provide multiple images when query-
ing a target MLLM. An attacker can use the learned UAPs
to corrupt a subset of the user’s images, misleading multi-
modal models into making incorrect image–prompt associa-
tions and producing erroneous responses at inference.

Adversary Capabilities. In a black-box setting, an ad-
versary has no control over fine-tuned models and does not
know how many images are used per sample during infer-
ence. Traditional perturbation generation methods require
direct access to fine-tuned models and datasets, allowing ad-
versaries to perturb specific target images – an impractical
scenario for MLLMs trained on web-scale data. Our setting
is more realistic, as we aim to learn only a small, fixed num-
ber of universal perturbations that effectively attack multi-
image MLLMs. We assume a black-box scenario where the
adversary has no knowledge of the target model’s architec-
ture or training process. Most importantly, since the number
of images used during inference is unknown, our approach

ensures that perturbing a fixed number of images can still
generate a strong and transferable attack.

Attack Methodology
Our method proposes to learn UAPs using an accessible pre-
trained model, which can then be applied to black-box tar-
get models. We impose a constraint on the language model
head by reducing the probability of the correct token. Addi-
tionally, we introduce a constraint to increase the divergence
between the hidden states of perturbed and clean inputs in
the LLM decoder. We also add a Pompeiu-Hausdorff dis-
tance (Berinde and Pacurar 2013) based constraint between
the clean and perturbed attention weights. Furthermore, we
encourage the model to allocate more attention to perturbed
tokens from clean tokens through a novel ”contagious” ob-
jective and an index-attention suppression objective (Fig. 2).

Adversarial language modeling loss
We apply adversarial perturbations to a subset of images in
an input sequence of an MLLM. Let a sample contain M
images and a corresponding text prompt t. The images are
x1, x2, . . . , xM . We introduce learnable adversarial pertur-
bations δ1, δ2, . . . , δk, constrained by ∥δk∥∞ ≤ ϵ, to gener-
ate perturbed images. The perturbed image, x′

k = xk + δk,
k < M . The final interleaved input sequence is: s =

(x̃′
1, x̃

′
2, x̃3, . . . , x̃m, t̃1, t̃2, . . . , t̃n). Here, x̃′

1, x̃′
2 represents

image tokens’ of adversarial images x′
1 and x′

2 respectively.
x̃3 . . . x̃m are clean image tokens. For brevity, we skipped all
tokens per image. The adversarial language modeling loss is:

Llm
adv = − 1

N

N∑
i=1

log(1− Pθ(ti+1|s1:i)), (1)

where Pθ(ti+1|s1:i) is the predicted probability of the cor-
rect token and N number of tokens in the sequence. Through
the loss, we encourage the model to reduce the likelihood
of correct tokens, increasing the probability of wrong token
generations while optimizing δk keeping the MLLM param-
eters frozen. Note that the summation over batch is omitted
for brevity.

Adversarial hidden states loss
We introduce a loss function to learn the adversarial pertur-
bations that maximize the cosine distance between the hid-
den states across decoder layers and attention heads. Let zadv

l

and zclean
l represent mean hidden state in layer l, averaged

over heads for adversarial and clean inputs, respectively. To
encourage divergence between the adversarial and clean rep-
resentations, our objective is:

Ldec
adv =

1

L

L∑
l=1

cos(zadv
l , zclean

l ) (2)

where L is the total number of decoder layers, and H is
the total number of attention heads per layer. By minimiz-
ing Ldec

adv , we push the adversarial hidden states away from
their clean counterparts across all layers and layer heads.
The similarity is measured by the cosine similarity cos(·, ·).
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Figure 2: An overview of our proposed attack methodology. The input sample shown in the left blue-shaded box is what a
normal user might query an MLLM, while the pink box shows our attack setting, where the attacker adds learned universal
perturbations to two images of the input. The universal perturbations are learned using: a) Adversarial language modeling
loss Llm

adv: reduces likelihood of correct tokens (Option: D), and increases probability of wrong tokens (Options: A, B, C). b)
Adversarial hidden states loss Ldec

adv: encourages divergence between zadv
l,h and zclean

l,h , representing the hidden states of the h-th
attention head in the l-th decoder layer for adversarial and clean inputs. c) Adversarial attention weights loss Lh

adv: maximizes
distance between Āclean

ℓ and Āadv
ℓ , representing head-averaged attention weights in l-th decoder layer for adversarial and clean

inputs. d) Adversarial contagious loss Lctg
adv: encourages clean tokens to place greater attention to noisy image tokens x̃′

1

and x̃′
2 for each A

(l)
:,h, attention weights for head h at layer l (Here {xt} represents all image tokens of image xt for brevity).

And e) Adversarial Index-Attention Suppression loss Lias
adv: suppresses attention from image tokens x1, x2 to text tokens

corresponding to image index t2idx , to encourage image position invariance (Here the input token sequence for multi-image
setting is shown as ‘Image 1: <Image><image></Image>’).

Adversarial attention via relaxed
Pompeiu-Hausdorff distance
Attention weights indicate how tokens contribute to a
model’s internal representations. Adversarial perturbations
modify these patterns; hence, we amplify these changes to
force distinct behaviors between clean and perturbed inputs.

The Pompeiu-Hausdorff distance (Berinde and Pacurar
2013) offers a worst-case measure by quantifying the max-
imum deviation between two sets, i.e. the distributions of
attention weights. It is defined as:

dhd(S1, S2) = max
{
kth sup

s1∈S1

inf
s2∈S2

d(s1, s2), kth sup
s2∈S2

inf
s1∈S1

d(s2, s1)
}

(3)

where d(s1, s2) is a distance metric (e.g. Euclidean or co-
sine) and sup

s1∈S1

inf
s2∈S2

means selecting kth maximum value

in set D1 = min
s2∈S2

d(s1(i), s2), s1(i) ∈ S1 and vice versa.

This relaxed formulation captures worst-case local discrep-
ancies that may be missed by measures such as KL diver-

gence. In practical terms, we force the model to exhibit
pronounced differences in its internal focus even in regions
where the global distribution might otherwise appear simi-
lar. Note this differs from a simple average sum which dis-
tributes differences across all tokens.

Let Aclean
ℓ,h and Aadv

ℓ,h denote the attention matrices at layer ℓ
and head h for clean and adversarial inputs. We first average
over heads:

Āclean
ℓ =

1

H

H∑
h=1

Aclean
ℓ,h , Āadv

ℓ =
1

H

H∑
h=1

Aadv
ℓ,h (4)

The Hausdorff distance between the averaged weights:

dhd(Ā
clean
ℓ , Āadv

ℓ ) = max
{

sup
ac∈Āclean

ℓ

inf
aa∈Āadv

ℓ

d(ac, aa),

sup
aa∈Āadv

ℓ

inf
ac∈Āclean

ℓ

d(aa, ac)
} (5)



We define the adversarial loss by averaging over all layers:

Lh
adv = − 1

L

L∑
ℓ=1

dhd(Ā
clean
ℓ , Āadv

ℓ ) (6)

Minimizing Lh
adv encourages the model to exhibit signifi-

cantly different internal focus when processing clean versus
adversarial inputs.

Adversarial contagious loss
Adversarial perturbations are typically constrained to spe-
cific image inputs, but their effect can propagate across the
model’s internal representations. We introduce a novel con-
cept of contagious loss, leveraging the idea that adversar-
ial perturbations can influence clean tokens through self at-
tention mechanism. Specifically, in an adversarial sample,
where some images are perturbed and some remain clean,
we encourage the clean tokens to pay more attention to per-
turbed tokens to adopt adversarial characteristics. This idea
helps us to learn a fixed number of adversarial perturbations
without explicitly perturbing all images. For instance, in re-
alistic scenarios at inference time an attacker has no idea of
how many images are fed and how many perturbations are
required. Let L be the number of layers in the model, H be
the number of attention heads in each layer, N represent the
indices of noisy tokens (image tokens), and C represent the
indices of clean tokens (image and text tokens). A(l)

:,h,i,j rep-
resents the attention weight at layer l, head h, which shows
how much clean token i contributes to the perturbed image
token j. We introduce loss to maximize attention weights to
encourage clean image and text tokens to pay higher weights
to noisy image tokens and indicate where the model should
“attend” to.

Lctg
adv = − 1

LH

L∑
l=1

H∑
h=1

∑
i∈C

∑
j∈N

A
(l)
:,h,i,j (7)

Adversarial Index-Attention Suppression Loss
In single-image multimodal adversarial attacks, the input
contains only one image placed at a fixed token position.
Since its location is static, position-dependent reasoning
does not influence the attack’s success; the perturbation only
needs to disrupt image-text alignment.

In contrast, multi-image settings involve interleaved
sequences of text and images, often containing index-
referencing phrases like ‘‘image 1:", ‘‘image
2:", etc. These index tokens provide explicit po-
sitional grounding, enabling the model to associate
specific visual tokens with their corresponding ref-
erences. For example, in a prompt like: “In (image
1: <Image><image></Image>) and (image 2:
<Image><image></Image>), which image shows
a more economically advanced place?”, correct reasoning
requires resolving visual content based on index markers.

In such settings, an adversarial image may only succeed
when placed in a specific slot (e.g., the first image), because
the model learns to associate index tokens (e.g., “1”) with

nearby image tokens via causal attention. Specifically, when
tokens are ordered as t1, t2, . . . , tidx, x1, . . . , xm, . . . , tn,
image tokens x1 . . . xm may attend to their corresponding
index token tidx. This creates a positional vulnerability.

To make attacks robust to image reordering, we propose
a position-invariant adversarial attack that penalizes atten-
tion from image tokens to their associated index tokens dur-
ing perturbation learning. By decoupling image tokens from
their position-specific textual anchors, the attack generalizes
across image positions.

Let A(l) ∈ RH×T×T be the attention weights at layer
l ∈ {1, . . . , L}, with H heads and T tokens. Let I(k) ⊂
{0, . . . , T − 1} denote the image token indices for image k,
and t

(k)
idx the corresponding index token position. The Index-

Attention Suppression Loss is defined as:

Lias
adv =

1

LH

L∑
l=1

H∑
h=1

K∑
k=1

∑
i∈I(k)

A
(l)

h,i,t
(k)
idx

(8)

The final objective is the combination of Eq. 1, 2, 6, 7 and
λ1, λ2, λ3, λ4, λ5 > 0. We refer to it as LAMP:

Ladv = λ1Llm
adv + λ2Ldec

adv + λ3Lh
adv + λ4Lctg

adv + λ5Lias
adv (9)

Experiments
Experimental Setup
Model and Dataset. We use the pretrained Mantis-CLIP
(Jiang et al. 2024) model to learn imperceptible perturba-
tions since the Mantis family is the best performing open
source model for multi-image tasks (Jiang et al. 2024). No-
tably, the parameters of the multimodal model’s image en-
coder and language model are kept frozen. The maximum
context length is set to 8192. We use AdamW with weight
decay and a cosine scheduler, starting with a learning rate
of 10−4 and a decay rate of 0.2. Training is conducted for
20 epochs with a batch size of 128 on 17, 000 samples from
the Mantis Instruct dataset (Jiang et al. 2024). The learned
perturbation has a shape of 336 × 336. For all experiments,
the perturbation budget ϵ is uniformly set to 12/255. All ex-
periments were conducted on A100 GPUs.
Evaluation Benchmarks and Target Models. We experi-
ment on five multi-image benchmark tasks in total– NLVR2
(Suhr et al. 2019), and Qbench (Wu et al. 2024) and 3 held-
out benchmarks: Mantis-Eval (Jiang et al. 2024), BLINK
(Fu et al. 2024), and MVBench (Li et al. 2024). We select
multi-image MLLMs as our target model for querying these
learned UAPs from the pretrained model. The target mod-
els are Mantis-CLIP, Mantis-SIGLIP, Mantis-Idefics2 (Jiang
et al. 2024), VILA-1.5 (Lin et al. 2024), LLaVA-v1.6 (Liu
et al. 2024b), Qwen-VL-Chat (Bai et al. 2023), Qwen-2.5
(Hui et al. 2025), MiniGPT4 (Zhu et al. 2024). We have also
experimented on single image VQA tasks MM-Vet (Yu et al.
2024), LLaVA-Bench (Liu et al. 2023) and multi-image QA
Mantis-Eval (Jiang et al. 2024). We also experimented on the
selection-free VQA (OK-VQA (Marino et al. 2019)) and im-
age captioning MSCOCO (Lin et al. 2014) tasks following
(Liu et al. 2024a).



Setting Avg. Best LAMP ∆
Baseline (%) (%) (pp)

Per Target Model
Mantis-CLIP 51.5 71.9 +20.4
Mantis-SIGLIP 51.6 71.9 +20.3
Mantis-Idefics2 49.2 72.4 +23.2
VILA-1.5 56.1 76.2 +20.1
LLaVA-v1.6 58.5 78.9 +20.4
Qwen-VL-Chat 64.4 79.9 +15.5
Qwen-2.5 62.5 79.4 +16.9

Overall 56.3 75.8 +19.5

Per Dataset
Mantis Eval 59.4 77.7 +18.4
NLVR2 39.4 59.7 +20.3
BLINK 66.9 85.7 +18.8
Q-Bench 52.5 76.0 +23.4
MVBench 63.1 80.0 +16.9

Table 1: Average ASR (%) and absolute improvement of
LAMP over the strongest prior attack. The first block aver-
ages across datasets for each target model; the second block
averages across target models for each dataset. Except for
the shaded row, all are zero-shot cross-model evaluation. We
include complete results in Appendix D. Our model outper-
forms all baselines significantly in all settings.

Evaluation Metrics. We utilize Attack Success Rate (ASR)
as a metric to quantify the effectiveness of the proposed at-
tack and baselines following prior research (Zhang, Huang,
and Bai 2024; Fang et al. 2025; Lu et al. 2023). ASR is cal-
culated as the percentage of adversarial examples that suc-
cessfully deceive the model by generating incorrect outputs.
The higher the ASR, the better the attack performance.

Experimental Results
LAMP outperforms by a significant margin across multi-
image benchmarks and models. LAMP is compared with
other baselines e.g. CPGC-UAP (Fang et al. 2025), UAP-
VLP (Zhang, Huang, and Bai 2024), Doubly-UAP (Kim,
Kim, and Kim 2024), Jailbreak-MLLM (Schaeffer et al.
2025). Here, the last two baselines are multimodal base-
lines, and the first two are encoder-decoder baselines.
Additionally, we also compared our method with other
transferability-based methods like (Liu et al. 2024a; Zhao
et al. 2023). These methods are designed to learn univer-
sal adversarial perturbations and can be directly adapted to
our problem. Other methods (Wu et al. 2020; Wei et al.
2022; Xie et al. 2019; Wang et al. 2024) either fully rely
on the output from classifiers or combine feature perturba-
tion with classification loss (Huang et al. 2019; Inkawhich
et al. 2020b,a). Note that we learned UAPs based on the
Mantis-CLIP pre-trained model, and the learned UAPs are
applied across target MLLMs. LAMP achieves 19.5% aver-
age ASR gain across all models and datasets, as shown in
Tab. 1. The specific per-model, per-dataset results are shown
in Appendix D. Here, the optimal number of perturbations
is |δ| = 2.

Defense Method ASR

Qin et al. (2021) LAMP 70.23%
Li et al. (2022a) LAMP 69.21%
Qin et al. (2021) Liu et al. (2024a) 56.33%
Li et al. (2022a) Liu et al. (2024a) 20.21%

Table 2: ASR against blackbox defense strategies on Mantis
Eval dataset and Mantis-CLIP model. Detailed defense re-
sults are provided in Appendix G.

LAMP outperforms single image and multi-image VQA
tasks. In Tab. 4, LAMP outperforms baselines by a sig-
nificant margin on both single-image tasks such as LLaVA
Bench and MM-Vet, as well as multi-image VQA tasks like
Mantis Eval. We also present additional selection free VQA
and image captioning task result in Appendix H
Ablation over loss components. We have evaluated the dif-
ferent combination of the loss function Eq. 9 in Tab. 3. If we
skip Lctg

adv and Lias
adv , the performance of the model signifi-

cantly drops.
Robustness to defense strategy. Following (Liu et al.
2024a), we evaluate the robustness of our attack method
against defense mechanisms designed for different threat
models. PatchCleanser (Xiang and Mittal 2022) is a cer-
tifiable defense against adversarial patch attacks that uses
a double masking strategy to certify predictions. As our
method does not depend on visible patches, PatchCleanser
does not apply to imperceptible attacks like ours. Instead, we
evaluate against query-based defenses, which specifically
detect malicious queries in black-box settings. Tab. 2 shows
that our attack remains robust in the presence defenses.
Complexity analysis and hyperparameter sensitivity. The
attack complexity and hyperparameters ablations are shown
in Appendix I and J.

Loss Datasets

Llm
adv Ldec

adv Lh
adv Lctg

adv Lias
adv Mantis Eval NLVR2 BLINK

✓ ✓ ✓ ✓ ✓ 73.43 52.73 84.86
✓ ✓ ✓ ✓ 70.32 49.33 82.64

✓ ✓ ✓ 67.12 48.56 78.90
✓ ✓ ✓ 67.89 48.10 77.87
✓ ✓ ✓ 67.32 48.34 78.90
✓ ✓ ✓ 68.66 44.35 74.34

Table 3: ASR(%) on three benchmark tasks with different
combination of loss and comparison with LAMP.

Ablations
Perturbation budget vs ASR. We compare the perfor-
mance of ASR for different perturbation budget in Fig. 3a.
Here, the method with “contagious” attack. We observe that
ASR improves significantly with the increasing perturbation
budget. We experiment with ϵ = 12/255 for imperceptibil-
ity, and increasing this value does not significantly improve
ASR, but it compromises imperceptibility.



Target Model Method Mantis Eval ↑ MM-Vet ↑ LLaVA Bench ↑

Mantis-CLIP

CPGC-UAP (Fang et al. 2025) 49.23 50.32 45.60
Jailbreak-MLLM (Schaeffer et al. 2025) 44.45 48.21 35.67
Doubly-UAP (Kim, Kim, and Kim 2024) 46.45 50.21 37.67

LAMP 70.32 73.45 68.31

VILA - 1.5

CPGC-UAP 49.23 48.27 43.76
Jailbreak-MLLM (Schaeffer et al. 2025) 15.56 17.24 18.65
Doubly-UAP (Kim, Kim, and Kim 2024) 45.45 49.13 38.74

LAMP 71.32 72.54 67.13

MiniGPT4

CPGC-UAP 45.23 44.75 42.64
Jailbreak-MLLM (Schaeffer et al. 2025) 13.56 12.24 13.65
Doubly-UAP (Kim, Kim, and Kim 2024) 43.34 47.67 36.46

LAMP 69.23 68.54 66.13

Table 4: Performance comparison on benchmark datasets
for single and multi-image VQA tasks.

(a) Perturbation budget vs
ASR

(b) # of perturbation vs ASR

(c) Image count with position
vs ASR

(d) Comparing perturbation
count vs. budget

Figure 3: Impact of different hyperparameters in ASR.

# of perturbations vs ASR. We compare the performance of
ASR for different number of perturbations for Mantis-CLIP
and Mantis-Eval datasets with “contagious” attack Fig. 3b.
We observe that ASR improves significantly when the num-
ber of universal perturbations goes from 1 to 2, but after that,
it does not improve significantly. We argue that, the “conta-
gious” attack impacts the clean images in attention spaces
that help us to gain the similar ASR even number of pertur-
bations more than 2.
Perturbation position vs ASR. We compare the perfor-
mance of ASR with different number of perturbations at dif-
ferent position of interleaved image-text inputs in Fig. 3c.
When the front two images are perturbed the ASR is the
best, the ASR decreases a little as the last two images are
perturbed, and least ASR for first and last image.
Comparing perturbation count vs. budget In Fig. 3d,
when |δ| = 2, we achieve a very high ASR compared to
when |δ| = 1 for all perturbation budget. We can also in-
fer that if |δ| = 2, we can maintain a very ASR in low

budget maintaining the imperceptibility. Quantification of
imperceptibility. To evaluate the imperceptibility of the ad-
versarial perturbations, we adopt perceptual similarity met-
rics, including LPIPS, as detailed in Appendix K. Since
lower LPIPS values correspond to more imperceptibility, our
method (0.021) demonstrates significantly improved stealth
compared to the best-performing baseline (0.068). Interac-
tion between losses. We present interaction between losses
and analysis of ”contagious” losses in Appendix L.

Qualitative analysis

We visualize the effect of our proposed method through at-
tention maps in Fig. 4. For clean images, the downstream
model pays attention to object of the images (distribution
of the yellow dots). However, when the imperceptible per-
turbations are added to the images, the model starts to pay
attention to a different location of the images. We have also
shown position- invariant attack in Appendix E.

a) Clean image b) Clean attention c) Perturbed image d) Perturbed image

    attention

e) Clean image f) Clean attention g) Perturbed image h) Perturbed image

    attention

How many running white compact cars are there in all
images? (A) One (B) Two (C) Three.

Answer with the option’s letter from the given choices
directly. GT: A, Output: B

Figure 4: Attention maps of clean and perturbed images.
Here, two input images and one question. The incorrect an-
swer is in red. Yellow indicates high attention.

Conclusion

In this paper, we investigate to learn UAPs that are ca-
pable of transferring across different target multi-image
MLLMs models, datasets and downstream tasks. We pro-
pose a novel UAP learning method LAMP that incorporates
different constraints exploiting the self attention module of
the LLM backbone. We propose a novel ”contagious” con-
straint that enables an attacker to learn perturbation by in-
fecting the clean tokens through self attention. We also pro-
pose an index-attention suppression objective so that the at-
tack remains position-invariant. We test the proposed meth-
ods across different target MLLMs, downstream tasks, and
promising results demonstrate the superiority of the pro-
posed method.
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