
Under review as a conference paper at ICLR 2024

NERT: IMPLICIT NEURAL REPRESENTATION
FOR TIME SERIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Time series is one of the most fundamental data types in real-world environments
and there have been many different deep-learning models to effectively handle time
series data, ranging from recurrent neural networks to Transformers to differential-
equation-based models. These existing models, however, tend to underperform due
to irregular measurements, sensitivity to hyper-parameters (e.g., a window size),
to name a few. Modeling time series as a continuous-in-time signal via implicit
neural representations (INRs) can be an alternative approach to overcome such
limitations. However, naïve adoptions of existing INR frameworks toward time
series do not yield promising outcomes. To address this, we propose NeRT, a novel
class of INRs tailored to handle time series data; the core ideas are to design a new
coordinate system, to employ learnable Fourier features, and to model periodic and
scale components of time series separately. Thanks to the inherent characteristics
of INRs, our model can learn from both regular and irregular time series in a
continuous-time manner and perform time series forecasting and imputation at
the same time with a single trained model. Moreover, we show that NeRT can be
efficiently parameterized via latent modulation. Through extensive experiments
with real-world and scientific datasets, we demonstrate that NeRT significantly
outperforms baselines including popular INR-based methods and previous time
series models.

1 INTRODUCTION

Time series processing is one fundamental task of machine learning. Since time series can be observed
frequently in our daily life, ranging from stock prices to weather conditions, it is of utmost importance
to process time series data appropriately. Among many tasks related to it, time series forecasting
and imputation are two rudimentary tasks in the field of time series processing: i) many real-world
applications are basically time series forecasting, e.g., weather forecasting, and ii) collected time
series data often accompany missing observations and we need to impute them before processing.

To this end, many different deep-learning (DL) algorithms have been proposed so far. Recurrent
neural networks (RNNs) and their variants (e.g., long short-term memory, or LSTM) (Connor et al.,
1994; Hochreiter & Schmidhuber, 1997; Qin et al., 2017; Lai et al., 2018; Sherstinsky, 2020) have
been (one of) the first DL algorithms for processing time-series data, but are typically limited to
handle regularly-sampled time series. Transformers (Vaswani et al., 2017; Zhou et al., 2021; Wu
et al., 2021; Liu et al., 2021; Wen et al., 2022; Zhou et al., 2022) quickly superseded RNNs thanks
to its higher representation learning capability aided by the self-attention. They, however, typically
share the same limitation with RNNs, reliance on regularly-sampled time-series data, and also require
a large dataset as the model tend to consist of millions of model parameters.

Alternative approaches that are capable of handling irregularly-sampled time series include the
differential equation-based DL paradigm, also known as continuous-time methods. Neural ordinary
differential equations (NODEs) (Chen et al., 2018) and neural controlled differential equations
(NCDEs) (Kidger et al., 2020) are two exemplary works in this line of research. These models can be
lightweight in terms of memory usage, but are likely to be heavyweight in terms of computational
costs and the training/inference time. This is because they require numerically solving the initial value
problems with a time integrator; expensive higher-order ODE solvers, such as the Dormand–Prince
solver (Dormand & Prince, 1980), are typically used for the sake of accuracy.

1

Under review as a conference paper at ICLR 2024

1.0 1.2 1.4 1.6 1.8 2.0

Time
1.5

1.0

0.5

0.0

0.5

1.0

1.5 True
SIREN
FFN

(a) SIREN and FFN

1.0 1.2 1.4 1.6 1.8 2.0

Time
1.5

1.0

0.5

0.0

0.5

1.0

1.5 True
Ours

(b) NeRT (Ours)

1.0 1.2 1.4 1.6 1.8 2.0

Time
1.5

1.0

0.5

0.0

0.5

1.0

1.5 True
Period factor
Scale factor

(c) Periodic/scale factors by NeRT

Figure 1: Preliminary study with a damping oscillatory signal. Extrapolation results (Figures 1
(a)-(b)) and extracted factors during training (Figure 1 (c)). The left side of the solid vertical line
represents the training range, while the right side represents the testing range.

In this paper, to overcome the limitations of the existing time-series methods we propose a method
called implicit Neural Representation for Time series (NeRT) based on the implicit neural represen-
tation (INR) paradigm. The proposed method does not require regularly-sampled data, millions of
model parameters, and numerical computation for training/inference. Moreover, NeRT is free from
the concept of a sliding window (which is common in nearly all existing methods) and, thus, requires
only a single training for performing both forecasting and imputation. To accomplish the goal, NeRT
i) operates on a spatiotemporal coordinate system of multi-variate time-series data, ii) learns a Fourier
feature mapping for the coordinate system, and iii) generates periodic and scale components of time
series. To our knowledge, this is the first work to identify limitations of existing DL models in time
series domain and systematically adopt INRs to time series modeling.

2 WHY INRS? – LIMITATIONS OF EXISTING DL METHODS

In this section, we first discuss the limitations of existing time series modeling approaches, which
motivates us to develop a novel INR-based time-series modeling approach. Here, we identify
four major limitations: L1) difficulties in handling irregular time series, L2) heavy reliance on
the input/output window size, L3) non-existence of unified model for time series forecasting and
imputation, and L4) model scalability, computation/memory-intensive, and insufficient training data.

Firstly, processing irregular time series is one of the most challenging problems to address in the field
of time series processing. The irregularity of time series arises mainly due to i) missing values, ii)
misaligned cycles of variables in multi-variate time-series, iii) event-driven sensing, and so forth.
Some remedies include time series embedding (Kazemi et al., 2019), positional encoding (Vaswani
et al., 2017), padding, or likelihood-based approaches (Mei & Eisner, 2017), which partially resolves
the difficulty at increased cost. The alternative methods, continuous-time models, naturally provides
a formalism to handle irregularly-sampled data (Chen et al., 2018; Kidger et al., 2020), but achieving
high-performance is often challenging (due to the second limitation below).

Secondly, nearly all time-series DL models operate on a sliding window (i.e., reading m past
observations and predicting n observations ahead, where m and n are hyperparameters). The
performance of the models is highly sensitive to those hyperparameters (cf. Appendix B) and also
changing the window sizes requires retraining a model from the scratch.

Thirdly, relevant to the second point, most time series models can only perform a single task. In
other words, for imputation and forecasting, two different models should be trained from scratch.
This is indeed very inefficient considering that time series imputation (interpolation) and forecasting
(extrapolation) typically share many common characteristics.

Lastly, it requires a sufficient amount of data for model training (Shorten & Khoshgoftaar, 2019;
Wen et al., 2020) to extract features/patterns correctly. In real-world scenarios, however, data scarce
scenarios are common, which makes training a time series model challenging; large models are
quickly overfitted and their testing accuracy become mediocre. For instance, Transformer-based time
series models are sometimes surprisingly worse than simple Linear models (Zeng et al., 2022). Also,

2

Under review as a conference paper at ICLR 2024

(a) Time stamp encoding (b) Feature index encoding

Figure 2: Spatiotemporal coordinate construction. Our method to define temporal coordinates
{cti}Ni=1 (Figure 2 (a)) and spatial coordinates {cfj }Mj=1 (Figure 2 (b)).

taking a forward pass of a model could be computation extensive (due to many model parameters in
Transformers and complex numerical integration in continuous-time models).

INRs: INRs learn a continuous representation of a signal, which are collected in discrete measure-
ments, not necessarily sampled in a uniform mesh grid. Being independent on a regularly-sampled
data and learning the continuous signal naturally address difficulties in model training on irregularly
sampled data (not even on a Cartesian system, addressing L1). Also, as INRs learn a mapping from a
coordinate to a signal at that coordinate, training and inference can be performed by providing a set
of coordinates, which enables a sliding-window-less imputation and forecasting (addressing L2 and
L3 simultaneously). Finally, INRs operate on a per-data-instance basis, meaning that one time-series
instance is required to train an INR (addressing L4).

Simply reusing existing INRs, however, results in poor performance even for learning a simple and
noise-less simulated time series data (See Figure 1 for results and Appendix D for setups). We test two
well-known INRs, sinusoidal representation networks (SIRENs) (Sitzmann et al., 2020) and Fourier
feature networks (FFNs) (Tancik et al., 2020), for performing the time series forecasting task, testing
coordinates are selected outside a training region. Both SIREN and FFN are known to learn very
complex (high-frequency) signals (e.g., images with details) by using either the sinusoidal activation
or Fourier features. However, extrapolation capability of such INRs have not been investigated.

3 DESIDERATA FOR INR-BASED MODELING FOR TIME SERIES

Now, we identify some desired characteristics required for INRs in handling time-series data and
based on the identified characteristics we design an efficient and effective INR-based method, called
NeRT, for time series forecasting and imputations.

3.1 SPATIO-TEMPORAL COORDINATE SYSTEMS OF TIME SERIES DATA

Unlike domains of applications where the coordinate system is relatively well-defined (i.e., 2d
Cartesian coordinate systems for images or solutions of partial differential equations, PDEs), multi-
variate time-series modeling needs a new definition of a coordinate system. Given an M -dimensional
multi-variate time series {xi}Ni=1, where xi = x(ti) ∈ ΩM , a naïve way of building INRs is to
directly use the time stamps, ti, as a coordinate and xi as a signal intensity. However, such a
coordinate system is too primitive to properly represent multi-variate time-series data in INRs.

Instead, we propose to manufacture a refined coordinate system, providing fine-granularity in indexing
temporal domain and feature domain (See Figure 2). We interpret the feature domain, i.e., the M -
dimensional space, ΩM , as a spatial domain and, thus, propose a novel spatio-temporal coordinate
system for multi-variate time-series data. In our new proposed coordinate system, a coordinate can be
expressed as {ci := cti, ({c

f
j }Mj=1)}Ni=1, where cti ∈ RDct and cfj ∈ RD

cf . Here, cti and cfj denote
the temporal and the spatial coordinates of ti (i ∈ N) and the j-th feature (j ∈M), respectively.

3

Under review as a conference paper at ICLR 2024

For the temporal coordinate, we apply a simple min-max scaling to put different quantitative values
(year, month, day, etc) into the same numerical scale [Smin, Smax], effectively resolving numerical
issues. For the spatial coordinate, we employ one-hot encoding, which translate an integer index into
one-hot vectors. Unlike images or PDE solutions, the spatial locality in the feature domain is less
clear. Moreover, imposing a certain order based on the integer index is likely to impose undesirable
biases. Thus, we propose to use one-hot encoding, which removes reliance on a specific ordering and
is general enough to represent represent many different multi-variate time series.

3.2 FOURIER FEATURES OF INRS

Fourier features of signals introduce a new angle, interpreting the signals in the frequency domain,
which is known to be effective in time-series modeling. Thus, using Fourier features in the design
of time-series INRs can be evidently beneficial for time-series modeling. Recently proposed INRs,
such as SIRENs and FFNs, also aggressively use Fourier features for modeling signals mainly from
computer vision tasks. Both methods commonly discuss the effectiveness of Fourier features; based
on the neural tangent kernel (NTK) theory (Jacot et al., 2018), they showed that ordinary fully-
connected (FC) networks have spectral biases, i.e., lower-frequency information is learned earlier
than higher-frequency ones, and that using Fourier features alleviates this spectral bias problem.

However, those existing Fourier feature extraction methods are optimized mainly toward images (e.g.,
a hand-tuned frequency in the input layer of SIREN) and they do not show satisfactory performance
for time series (See again Figure 1 and comparisons in the experimental section). We overcome the
limitation by learning a Fourier feature mapping layer (like FFNs but we learn a Fourier mapping
instead of the FFNs’ hand-craft mapping) and utilizing the sinusoidal activation (like SIRENs) — the
details of our model design for NeRT will be described shortly in the next section and our theoretical
analyses justify the appropriateness of our design to time series processing.

3.3 DECOMPOSITION OF TIME SERIES INTO INTERPRETABLE FACTORS

Decomposing a time series signal into interpretable factors, e.g., seasonality and trend, is a common
practice for improving the performance of models in the field of time series (Cleveland et al., 1990)
(cf. Section 6). Separately predicting them and later combining them into a signal is effective in
improving the time series model accuracy (Hamilton, 2020). We propose a new INR design for
separately modeling the periodic factor and the scale factor and later combining them to reconstruct
time-series signal. This factor-by-factor processing approach alleviates the modeling burden of INRs
for time series. Also, we do not explicitly supervise the learning of the two individual factors; instead
we train NeRT with the original undecomposed time series signal to reduce the training overhead and
implicitly learn the two factors. Our theoretical analysis (cf. Appendix C) shows that learning time
series through NeRT allows effectively extracting periodic factors.

4 MODEL ARCHITECTURE

We describe our proposed INR-based framework (cf. Figure 3), NeRT, for time series forecasting
and imputation. As we intend to learn a time-series signal in a factored form, a periodic factor and a
scale factor, we design an encoder-decoder-type neural network architecture, where (i) the encoders
generate embeddings for input spatiotemporal coordinates, and ii) the decoders take the embeddings
as input and produce a periodic factor and a scale factor, individually. The two factors are then
multiplied to produce the signal at the input coordinate.

4.1 ENCODER

The encoder of NeRT reads the spatiotemporal coordinate defined in Section 3.1; given
{(xi, ti)}Ni=1, we apply scaling and one-hot encoding to obtain the spatiotemporal coordinates
{ci := cti, ({c

f
j }Mj=1)}Ni=1 and feed these coordinates to the encoder.

Embedding of the spatiotemporal coordinate We then use the following FC layers with sinusoidal
activations, i.e., SIREN, for a spatiotemporal coordinate (cti, c

f
j) — we note that this coordinate

4

Under review as a conference paper at ICLR 2024

Figure 3: NeRT architecture. The spatiotemporal coordinate (cti, c
f
j) is converted to periodic/scale

factors through ψt, ψF , and ψf , followed by two decoders ϕs and ϕp to effectively infer the signal
intensity xi,j at the spatiotemporal coordinate.

represents the minimum processing granularity, i.e., j-th feature of xi at time ti:

ψt(c
t
i; θt) := FCLt(ρr(FCLt−1 · · · (ρr(FC1(c

t
i))))),

ψf (c
f
j ; θf) := FCLf (ρr(FCLf−1 · · · (ρr(FC1(c

f
j))))),

(1)

where Lt and Lf mean the number of layers in each module respectively, and ρr is ReLU. Since cfj
is an one-hot vector, one can consider that ψf (c

f
j ; θf) generates an embedding for the one-hot vector.

Learnable Fourier feature mapping The previous two embeddings, ψt and ψf , do not generate
Fourier features and therefore, we use the following method to generate them. In particular, our
method is to learn an optimal Fourier mapping layer (instead of hand-crafted ones):

ψF (c
t
i; θF) := {Am ⊙ sin(ωm · cti,m + δm) +Bm}Dct

m=1, ωm ∼ U(a, b) (2)

where cti,m ism-th value of cti and ⊙ denotes elementwise multiplication. ωm ∈ R1×DψF is them-th
frequency of the Fourier feature ψF , which is sampled from a uniform distribution [a, b]. A learnable
vector Am ∈ R1×DψF indicates the amplitude, initialized to 1. Vectors Bm ∈ R1×DψF , δm ∈
R1×DψF denote the phase shift and the bias respectively, and they are initialized to 0. Optionally, we
can employ an additional FC layer after Eq. 2 to compress the embedding. All together, we use three
types of embeddings, ψt, ψf , and ψF given the spatiotemporal coordinate.

Remark 1 According to the NTK theory (Jacot et al., 2018), our kernel satisfies the stationary
and the shift-invariant properties — therefore, one can consider that the learnable Fourier feature
mapping of NeRT performs a 1D convolution-based processing of time series with a learnable kernel.
In addition, our proposed mapping has an additional property that resorts to the extreme value
theorem to perform time series forecasting, i.e., extrapolation. In other words, ψF is i) continuous,
and ii) confined to the min/max values defined by A.

4.2 DECODER

The proposed decoder architecture separately generates the periodic and the scale factors, denoted ϕp
and ϕs, and multiply them to infer the signal intensity:

ϕp(ψF ⊕ ψf ; θp) := ρs(FCLp(ρs(FCLp−1 · · · (ρs(FC1(ψF ⊕ ψf)))))),

ϕs(ψF ⊕ ψf ⊕ ψt; θs) := FCLs(ρr(FCLs−1 · · · (ρr(FC1(ψF ⊕ ψf ⊕ ψt))))),
(3)

where Lp and Ls are the numbers of layers in the two decoders, ρs is the sinusoidal function, and
⊕ denotes a concatenation of vectors. The output of ϕp and ϕs correspond to x̂period and x̂scale

in Figure 3.We constrain x̂period
i,j ∈ [−1, 1] by using the Sine activation and x̂scale

i,j ∈ R to denote
the inferred periodic and scale factors, respectively. Note that the decoder to infer the periodic
factor, i.e., ϕp, mainly rely on our Fourier feature ψF ; since ψf is the embedding of the spatial
coordinate, only ψF contains the temporal information to infer. The scale decoder reads all available
embeddings for the input coordinate (cti, c

f
j). Our final inference outcome, i.e., the signal intensity,

at the spatiotemporal coordinate is x̂i,j = x̂period
i,j × x̂scale

i,j .

5

Under review as a conference paper at ICLR 2024

The advantages of our design are twofold: i) Our learnable Fourier feature mapping layer is specialized
to extract periodic features according to our NTK-based analysis and, thus, it is a sensible design
to model the periodic factor of the inferred signal intensity based on the Fourier feature and ii) the
periodic and scale factors give us interpretable predictions for time series forecasting and imputation.

4.3 TRAINING ALGORITHM

To train, we employ a regular gradient-based optimizer to minimize a mean-squared error (MSE) loss
over data and predictions such that 1

MN

∑N
i=1

∑M
j=1(xi,j − x̂i,j)

2. Here, we consider M -variate
time-series measured at N temporal collocation points (See Appendix E for a pseudo-code like
algorithm). We emphasize again that the proposed model requires a single model training and use the
same trained model to perform both forecasting and imputation while other existing methods require
training of different models for each task.

For training INRs for multiple time-series instances, we can choose from two different options: a
vanilla mode or a modulated mode. For the modulation, we adopt an idea of latent modulation to our
NeRT in Appendix J. To summarize, in the vanilla mode INRs are trained individually and in the
modulated mode the shared part is trained via a meta-learning algorithm and the instance-specific
part is trained individually.

5 EXPERIMENTS

In this section, we evaluate the performance of NeRT on well-known real-world time series datasets,
which can be further categorized into periodic time series (Fan et al., 2022), and long-term time
series (Zeng et al., 2022). Additionally, to show that the method can be generally applicable to
other domains, we test it to solve partial differential equation (PDE) problems, i.e., 2D-Helmholtz
equations (McClenny & Braga-Neto, 2020), which exhibit periodic behaviors over a spatial domain.

We use MSE for the evaluation metric and conduct the experiments with three different random seeds
and present their mean and standard deviation of evaluation metrics. More detailed descriptions of
experiments and additional analyses such as ablation studies are listed in Appendix.

Experimental environments We implement NeRT and baselines with PYTHON 3.9.7 and PY-
TORCH 1.13.0 (Paszke et al., 2019) that supports CUDA 11.6. The experiments are conducted on
systems equipped with Intel Core-i9 CPUs and NVIDIA RTX A6000, A5000 GPUs.

Baselines for comparison As baseline models, we consider SIREN (Sitzmann et al., 2020) and
FFN (Tancik et al., 2020), the two representative models in the field of INR. For fair comparison, we
set the model sizes to be the same. All models are trained with Adam (Kingma & Ba, 2014) with a
learning rate of 0.001. In addition, we use eight existing time-series models including Transformer-
based and NODE-based models as non-INR baselines (cf. Appendix I). See the full description of
the experimental setup in Appendix F.

5.1 FORECASTING AND IMPUTATION ON REAL-WORLD TIME-SERIES DATA

Now, we compare the performance of NeRT and baselines on real-world periodic and long-term time
series. Experimental results show that the proposed method outperform in both scenarios, even for
the long-term time series, which typically has much weaker periodicity than the periodic time series.

5.1.1 PERIODIC TIME SERIES

Experimental setups For periodic time series experiments, we select four uni-variate time series
datasets, i.e., Electricity, Traffic, Caiso, and NP, which are all famous benchmark datasets used in (Fan
et al., 2022) and are known to have some periodic patterns. To demonstrate the efficacy on learning
the periodic time series, we conduct interpolation and extrapolation tasks on missing blocks, each of
which with a length of 500 observations — for hourly observations, 500 observations correspond
to three weeks. We consider up to three missing blocks, i.e., 9 weeks. Since INR models are able
to solve interpolation and extrapolation simultaneously, both tasks are tested by a single trained

6

Under review as a conference paper at ICLR 2024

Table 1: Experimental results on periodic time series. The experimental results of the same model,
presented on the same row, are from a single training, and the best results are reported in boldface.

Dataset # blocks
Interpolation Extrapolation

SIREN FFN NeRT SIREN FFN NeRT

Electricity

1 0.0200±0.0007 0.0189±0.0021 0.0061±0.0006 0.0256±0.0005 0.0144±0.0009 0.0057±0.0007

2 0.0182±0.0009 0.0144±0.0012 0.0057±0.0005 0.0233±0.0006 0.0142±0.0006 0.0077±0.0019

3 0.0183±0.0004 0.0148±0.0013 0.0056±0.0006 0.0231±0.0001 0.0142±0.0005 0.0088±0.0008

Traffic

1 0.0174±0.0007 0.0140±0.0007 0.0057±0.0002 0.0176±0.0009 0.0113±0.0007 0.0050±0.0002

2 0.0169±0.0003 0.0121±0.0001 0.0062±0.0000 0.0181±0.0004 0.0127±0.0003 0.0057±0.0003

3 0.0169±0.0006 0.0114±0.0001 0.0055±0.0002 0.0185±0.0006 0.0130±0.0002 0.0115±0.0026

Caiso

1 0.0230±0.0008 0.0179±0.0013 0.0047±0.0012 0.0596±0.0018 0.0495±0.0045 0.0131±0.0014

2 0.0206±0.0002 0.0179±0.0012 0.0041±0.0002 0.0427±0.0005 0.0399±0.0017 0.0148±0.0066

3 0.0337±0.0004 0.0326±0.0017 0.0099±0.0007 0.0260±0.0007 0.0196±0.0008 0.0051±0.0008

NP

1 0.0510±0.0005 0.0502±0.0013 0.0149±0.0005 0.0326±0.0014 0.0346±0.0021 0.0235±0.0023

2 0.0464±0.0004 0.0415±0.0002 0.0186±0.0008 0.0329±0.0010 0.0313±0.0015 0.0273±0.0022

3 0.0476±0.0001 0.0431±0.0005 0.0196±0.0006 0.0334±0.0007 0.0304±0.0017 0.0274±0.0030

8700 8800 8900 9000 9100 9200 93000.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

True SIREN

(a) SIREN
8700 8800 8900 9000 9100 9200 93000.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

True FFN

(b) FFN
8700 8800 8900 9000 9100 9200 93000.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

True NeRT

(c) NeRT

9900 10000 10100 10200 10300 10400 10500
0.0

0.2

0.4

0.6

0.8 True SIREN

(d) SIREN
9900 10000 10100 10200 10300 10400 10500

0.0

0.2

0.4

0.6

0.8 True FFN

(e) FFN
9900 10000 10100 10200 10300 10400 10500

0.0

0.2

0.4

0.6

0.8 True NeRT

(f) NeRT

Figure 4: Forecasting and imputation [Top] Imputation results in NP ((a)-(c)), the middle area
between the two solid vertical lines represents a testing block. [Bottom] Forecasting results in Traffic
((d)-(f)), where the area on the right of the solid vertical line represents a testing range.

model. For example, in the experiment with three blocks, it involves two tasks: i) filling empty
non-continuous blocks — in other words, those blocks are scattered in the time domain while each
block is contiguous — and ii) forecasting the last 1,500 observations. Detailed experimental settings
such as the location of the blocks and hyperparameters are described in Appendix H.

Comparisons with the existing INRs First we present the comparisons against the INR baselines,
SIREN and FFN in Table 1, which essentially shows that NeRT outperforms in every task in all
scenarios. Especially for Caiso, NeRT exhibits significantly lower errors both in the interpolation
and extrapolation tasks, which are around a quarter of those of baselines. Notably, NeRT shows
reasonably small MSEs even for extrapolating the last 1,500 observations. Figure 4 visualizes how
three models interpolate in NP (Figures 4 (a)-(c)) and extrapolate in Traffic (Figures 4 (d)-(f)). In
both cases, only NeRT shows good predictions while two other baselines, FFN and SIREN, struggle.
An additional set of experiments with modulated verions of all INRs can be found in Appendix J.

Ablation studies on the spatiotemporal coordinate For all models (SIREN, FFN, and Nert), we
test the effect of the proposed coordinate system. In all three models, using the proposed coordinate
system is critical in achieving better performance, which is reported in Appendix C.2.1.

Ablation studies on Fourier feature mapping We also study the effect of having learnable Fourier
features; the results with learnable or fixed features are reported in Table 4, and demonstrating

7

Under review as a conference paper at ICLR 2024

Linear
DLinear

NLinear
RNN

LSTM
Autoformer

Informer
FEDformer

Latent ODE
Neural CDE

NeRT

96 192 336 720
n

0.10

(a) Electricity

96 192 336 720
n

0.01

0.10

(b) Traffic

96 192 336 720
n

0.10

(c) Caiso

96 192 336 720
n

0.10

(d) NP

Figure 5: Comparisons with time-series baselines for varying n = {96, 192, 336, 720} (output/pre-
diction window size) with a fixed input window size m = 48.

through this experiment that adding only a small number of learnable parameters leads to significant
performance improvement. We discuss the detailed experimental setup and results in Appendix C.2.2.

Comparison with non-INR baselines To provide a more comprehensive assessment, we conduct
experiments comparing NeRT to eight existing time-series models, including popular Transformer-
based baselines. (1) Accuracy: In these experiments, we measure forecasting results by varying
input/output window size, m and n and the full results are reported in Tables 10, 11 and 12 in
Appendix. Figure 5 illustrates the changes in MSE with varying n with m = 48. Notably, NeRT
consistently achieves lower MSE compared to all other baseline models; particularly, the slope
of NeRT MSE is much lower than those of other methods’ MSE. We emphasize that NeRT does
not require retraining while the other methods need to be retrained for varying n. For detailed
experimental setups and results, refer to Appendix I. (2) Computational/memory costs: Table 13 in
Appendix assures that NeRT has advantages in terms of the overall computational/memory efficiency
than the baselines.

5.1.2 LONG-TERM TIME SERIES

Experimental setups We conduct experiments on general real-world long-term time series datasets
to show the scalability of NeRT. The benchmark datasets of the long-term series forecasting task (Wen
et al., 2022) are used for our experiments. Since the periodicity is typically weak in those datasets,
we consider this task is much more challenging. We randomly drop 30%, 50%, and 70% observations
and evaluate the interpolating performance.

Table 2: Long-term time series

Dataset Drop ratio SIREN FFN NeRT

ETTh1

30% 0.1945 0.2522 0.0828

50% 0.2173 0.3407 0.0911

70% 0.2605 0.4256 0.1257

National Illness

30% 0.3502 0.1110 0.0239

50% 0.1716 0.2319 0.0291

70% 0.3564 0.4453 0.0871

Experimental results Due to space reasons, we list the
experiments only with two datasets, ETTh1 and National
Illness, in conjunction with their detailed experimental
settings. Full results are in Appendix K. According to
Table 2, in every drop ratio, NeRT beats other baselines by
a large margin. For example, in ETTh1, NeRT shows an
MSE of 0.0911, while SIREN and FFN shows 0.2173 and
0.3407, respectively. Moreover, in National Illness, NeRT
outperforms other baselines by 489%.

5.2 SCIENTIFIC PROBLEMS - SOLVING PDES

Here, we demonstrate that NeRT can be applied another domain, namely learning solutions of PDEs —
as a matter of fact, PDEs are implicit functions describing dynamics in the spatiotemporal coordinate
system. Thus, we test NeRT on learning the solutions of 2D-Helmholtz equation, which is known to
produce periodic behaviors. We refer readers to Appendix G for details.

We perform extrapolation tasks over the spatial domain, where the model is trained by using a set of
collocation points (x, y) ∈ [1, 1.5]2 and is tested on (x, y) ∈ [1, 2]2\[1, 1.5]2.

8

Under review as a conference paper at ICLR 2024

1.0 1.2 1.4 1.6 1.8 2.0
x

1.0

1.2

1.4

1.6

1.8

2.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) SIREN

1.0 1.2 1.4 1.6 1.8 2.0
x

1.0

1.2

1.4

1.6

1.8

2.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) FFN

1.0 1.2 1.4 1.6 1.8 2.0
x

1.0

1.2

1.4

1.6

1.8

2.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(c) NeRT (Ours)

1.0 1.2 1.4 1.6 1.8 2.0
x

1.0

1.2

1.4

1.6

1.8

2.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(d) Ground truth

Figure 6: Extrapolation task on the 2D-Helmholtz equation. Results of the extrapolation task with
the training range of x ∈ [1, 1.5] and y ∈ [1, 1.5], i.e., the left-lower square, (Figures 6 (a)-(c)) and
the ground-truth solution (Figure 6 (d)).

Experimental results As shown in Figure 6, all three INR-based models have no difficulties in
being overfitted to the training data. However, only the proposed method extrapolates accurately in
the test region, while the other two baselines fail. We provide the analyses of the experimental results
with other activation functions and additional visualizations in Appendix G.

6 RELATED WORK

Implicit neural representations INR approaches, including physics-informed neural networks
(PINN) (Raissi et al., 2019) for solving PDE problems and neural radiance fields (NeRF) (Mildenhall
et al., 2021) for 3D representation, are quickly permeating various fields. In addition, a counter-
measure to the spectral bias (Rahaman et al., 2019) in vanilla multi-layer perceptrons has been
proposed, enabling more sophisticated INR-based representations (Sitzmann et al., 2020). According
to (Tancik et al., 2020), it is shown that the infinitely wide ReLU based neural network with random
Fourier features are equivalent to the shift-invariant kernel method in the perspective of NTK (Jacot
et al., 2018). In the time series domain, there exist INR-based studies on unsupervised anomaly
detection (Jeong & Shin, 2022) and time series forecasting (Woo et al., 2022). However, none has
extensively investigated INRs’ applicability for modeling time-series data.

Decomposition methods used in time series modeling Decomposition methods aim to separate
a time series sample into multiple components, often including a trend, seasonality, and residual
component (Cleveland et al., 1990). These components can then be modeled separately, allowing
for more accurate predictions and insights. There exist various decomposition-based methods that
have been used for time series, ranging from traditional time series models to recent deep learning
models. For example, the wavelet decomposition decomposes time series into different frequency
bands (Percival & Walden, 2000; Wang et al., 2018) and the singular spectrum analysis (SSA)
decomposes time series into a set of eigenvectors to extract various oscillatory patterns which are
interpretable (Vautard & Ghil, 1989; Sulandari et al., 2020).

7 CONCLUSIONS

Due to the strength in learning coordinate-based systems, INR has high potential for various fields in
natural sciences and engineering. However, despite the promising nature of INR, it has been rarely
applied to time series, and no existing unified time series models are based on the INR paradigm.
Therefore, we aim to address the limitations that conventional time series models possess and propose
NeRT which resorts to the advantages of INR to effectively resolve existing challenges in the field.
Based on the INR framework, NeRT effectively learns and predicts time series by separating the
periodic and scale factors. Additionally, we suggest a method for embedding the spatiotemporal
coordinate of multivariate time series. Through this approach, NeRT clearly outperforms existing
INR models and can represent time series more accurately.

9

Under review as a conference paper at ICLR 2024

8 ETHICS STATEMENT

Our model is capable of restoring an incomplete time series sample where some observations are
intentionally removed to protect the privacy, e.g., PhysioNet where 90% of observations are removed
to hide the identification of patients. Therefore, someone can try data restoration using our method,
causing a potential data breach.

9 REPRODUCIBILITY STATEMENT

The provided supplementary materials contain the source code and README.md necessary to
reproduce our experimental environments and the proposed method. Every source code used in our
paper will be made available to contribute to the community.

REFERENCES

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Robert B Cleveland, William S Cleveland, Jean E McRae, and Irma Terpenning. Stl: A seasonal-trend
decomposition. J. Off. Stat, 6(1):3–73, 1990.

Jerome T Connor, R Douglas Martin, and Les E Atlas. Recurrent neural networks and robust time
series prediction. IEEE transactions on neural networks, 5(2):240–254, 1994.

John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae. Journal of
computational and applied mathematics, 6(1):19–26, 1980.

Emilien Dupont, Hyunjik Kim, SM Eslami, Danilo Rezende, and Dan Rosenbaum. From data to
functa: Your data point is a function and you can treat it like one. arXiv preprint arXiv:2201.12204,
2022.

Wei Fan, Shun Zheng, Xiaohan Yi, Wei Cao, Yanjie Fu, Jiang Bian, and Tie-Yan Liu. Depts: deep
expansion learning for periodic time series forecasting. arXiv preprint arXiv:2203.07681, 2022.

James Douglas Hamilton. Time series analysis. Princeton university press, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

Kyeong-Joong Jeong and Yong-Min Shin. Time-series anomaly detection with implicit neural
representation. arXiv preprint arXiv:2201.11950, 2022.

Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet Sahota, Sanjay
Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus Brubaker. Time2vec: Learning a
vector representation of time. arXiv preprint arXiv:1907.05321, 2019.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equations
for irregular time series. Advances in Neural Information Processing Systems, 33:6696–6707,
2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference on
research & development in information retrieval, pp. 95–104, 2018.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dust-
dar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
forecasting. In International conference on learning representations, 2021.

10

Under review as a conference paper at ICLR 2024

Levi McClenny and Ulisses Braga-Neto. Self-adaptive physics-informed neural networks using a
soft attention mechanism. arXiv preprint arXiv:2009.04544, 2020.

Hongyuan Mei and Jason M Eisner. The neural hawkes process: A neurally self-modulating
multivariate point process. Advances in neural information processing systems, 30, 2017.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Donald B Percival and Andrew T Walden. Wavelet methods for time series analysis, volume 4.
Cambridge university press, 2000.

Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, and Garrison Cottrell. A
dual-stage attention-based recurrent neural network for time series prediction. arXiv preprint
arXiv:1704.02971, 2017.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International Conference
on Machine Learning, pp. 5301–5310. PMLR, 2019.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. Advances in neural information processing systems, 32, 2019.

Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm)
network. Physica D: Nonlinear Phenomena, 404:132306, 2020.

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.
Journal of big data, 6(1):1–48, 2019.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in Neural Information
Processing Systems, 33:7462–7473, 2020.

Winita Sulandari, S Subanar, Muhammad Hisyam Lee, and Paulo Canas Rodrigues. Time series
forecasting using singular spectrum analysis, fuzzy systems and neural networks. MethodsX, 7:
101015, 2020.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in Neural Information Processing
Systems, 33:7537–7547, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Robert Vautard and Michael Ghil. Singular spectrum analysis in nonlinear dynamics, with applications
to paleoclimatic time series. Physica D: Nonlinear Phenomena, 35(3):395–424, 1989.

Jingyuan Wang, Ze Wang, Jianfeng Li, and Junjie Wu. Multilevel wavelet decomposition network
for interpretable time series analysis. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 2437–2446, 2018.

11

Under review as a conference paper at ICLR 2024

Qingsong Wen, Liang Sun, Fan Yang, Xiaomin Song, Jingkun Gao, Xue Wang, and Huan Xu. Time
series data augmentation for deep learning: A survey. arXiv preprint arXiv:2002.12478, 2020.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
Transformers in time series: A survey. arXiv preprint arXiv:2202.07125, 2022.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Deeptime: Deep time-
index meta-learning for non-stationary time-series forecasting. arXiv preprint arXiv:2207.06046,
2022.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. Advances in Neural Information Processing
Systems, 34:22419–22430, 2021.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? arXiv preprint arXiv:2205.13504, 2022.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International Conference
on Machine Learning, pp. 27268–27286. PMLR, 2022.

12

Under review as a conference paper at ICLR 2024

A LIMITATIONS

We encode the spatial coordinate of the multivariate time-series as one-hot vectors and transform the
temporal coordinate using the min-max scaling. In addition to them, better embedding approaches
could be explored as future work.

B DRAWBACK OF WINDOW-BASED TIME SERIES MODELS

0 10 20 30 40 50
Time

0.8

0.6

0.4

0.2

0.0 RNN(100)
RNN(10,000)

LSTM(100)
LSTM(10,000)

True

Figure 7: Visualization of results according to window-
size of existing time series models

Table 3: Experimental results of time-
series models on varying window-sizes

Model 100 10000

RNN 0.5999 0.4478
LSTM 0.6927 1.0530

The commonly used approach in time series models, called shifting window, assumes a fixed window
size. However, this method has several critical drawbacks. First, it requires finding an optimal input
window size. Using a too small window size may result in small and inference time, but the model
sees short patterns and struggles to infer effectively. On the other hand, employing a too large input
window size can enable capturing long-term patterns but at the same time can lead to long training
and inference time. Thus, the window size is a highly sensitive hyperparameter, and finding a balance
between these two settings is a challenging task.

To empirically show how the size of window affects the model in forecasting time series, we compare
results of forecasting 50 future observations by varying the input window size in {100, 10000} with
other conditions fixed. For the experiment, we choose two typical time series models, RNN and
LSTM, and train them for 1,000 epochs on ETTh1. As shown in Table 3, for both RNN and LSTM,
their model predictions show big differences depending on the window size, in terms of MSE. Note
that models with a small window size, i.e., a window size of 100, shows better predictions when using
RNN, while LSTM shows lower MSE when using a longer window size, i.e., a window size of 10000.
The same trend can also be observed in Figure 7. In Figure 7, predicted values exhibit significant
differences. Therefore, the window size is a critical hyperparameter in modeling time series.

13

Under review as a conference paper at ICLR 2024

C THEORETICAL ANALYSES ON INR

C.1 THEORETICAL ANALYSES

The Fourier feature mapping introduced in (Tancik et al., 2020) transforms the input coordinates
using periodic functions, allowing the neural networks to solve the spectral bias in MLPs. This
approach is a simple yet powerful way to address the problem. Moreover, the Fourier feature mapping
exhibits shift-invariant properties from an NTK perspective. Our learnable Fourier feature mapping
enjoys all the advantages of the Fourier feature mapping and moreover, it addresses the difficulty
of finding a task-specific fixed set of frequencies in the Fourier feature mapping since we learn
them as well. As explained in Section 3, NeRT maps the temporal coordinate onto a desired closed
finite interval [Smin, Smax]. Therefore, NeRT can approximate discrete coordinate-based time-series
as continuous function in the closed domain and thus, the extrapolation in the original temporal
coordinate can be somehow considered as an interpolation in the learned coordinate, e.g., everyday
12pm has Smin regardless of year and month. Under these conditions, when coordinates outside
the training range are inputted, the domain of NeRT is converted to the maximum and mimimum
values of ψF by the extreme value theorem. In other words, by Equation 2, NeRT can operate in a
wide range of the temporal coordinate, and this approach works very effectively, especially when
performing extrapolations.

C.2 EMPIRICAL ANALYSES

C.2.1 ABLATION STUDIES ON THE SPATIOTEMPORAL COORDINATE

9900 10000 10100 10200 10300 10400 105000.2

0.0

0.2

0.4

0.6

0.8

1.0
True
SIREN

(a) SIREN (w/o coordinates mapping)
9900 10000 10100 10200 10300 10400 105000.2

0.0

0.2

0.4

0.6

0.8

1.0
True
SIREN

(b) SIREN (coordinates mapping)

9900 10000 10100 10200 10300 10400 105000.2

0.0

0.2

0.4

0.6

0.8

1.0
True
FFN

(c) FFN (w/o coordinates mapping)
9900 10000 10100 10200 10300 10400 105000.2

0.0

0.2

0.4

0.6

0.8

1.0
True
FFN

(d) FFN (coordinates mapping)

9900 10000 10100 10200 10300 10400 105000.2

0.0

0.2

0.4

0.6

0.8

1.0
True
NeRT

(e) NeRT (w/o coordinates mapping)
9900 10000 10100 10200 10300 10400 105000.2

0.0

0.2

0.4

0.6

0.8

1.0
True
NeRT

(f) NeRT (coordinates mapping)

Figure 8: Experimental results of ablation study according to the spatiotemporal coordinates mapping
introduced in Section 3.1. The figures in left column are the results without coordinates mapping and
the figures in right column are the results using coordinates mapping.

As an ablation study, we aim to investigate the impact of the proposed coordinates mapping in
Figure 2 on INR models. The overall experimental setup follows that of section 5.1. To ensure a fair
comparison, we set the model size to be the same across all models. In addition, the initial frequency
w of SIREN and NeRT is fixed at 30, which is known to work well in (Sitzmann et al., 2020). The
results presented in Figure 8(a), (c), (e) correspond to the models trained without a coordinates

14

Under review as a conference paper at ICLR 2024

mapping, where a one-dimensional scaled time-stamp used as input to the model. For the baselines,
SIREN and FFN, it can be observed that they struggle to accurately represent the overall domain,
while NeRT exhibits a more refined representation. However, NeRT still exhibit discrepancies from
the ground truth in extrapolation. As shown in Figure 8(b), (d), (f), which is the result of using
coordinates mapping, it can be observed that INR models can depict time series more accurately
when input coordinates are mapped. In particular, NeRT can even perform sophisticated extrapolation
inference.

C.2.2 ABLATION STUDIES ON LEARNABLE FOURIER FEATURE MAPPING

Table 4: Experimental results of ablation studies on Fourier feature mapping

Dataset
NeRT (Fixed Fourier mapping) NeRT (Learnable Fourier mapping)

Interpolation Extrapolation Interpolation Extrapolation

Electricity 0.0079±0.0015 0.0069±0.0009 0.0061±0.0006 0.0057±0.0007

NP 0.0190±0.0016 0.0313±0.0044 0.0149±0.0005 0.0235±0.0023

To evaluate the effect of learnable Fourier feature mapping, we design experiments comparing its
performance with a fixed Fourier feature mapping. The fixed Fourier feature mapping fixes the
learnable parameters of the learnable Fourier feature mapping described in Equation 2, specifically,
ωm, Am, Bm, and δm. The fixed values are set to be identical to the initial values of the learnable
Fourier feature mapping, as discussed in Section 4.1.

These experiments are conducted on the "one missing block" setting from Table 1. We use electricity
and NP datasets for this evaluation, and the results are summarized in Table 4. As shown in Table 4,
using learnable Fourier mapping in NeRT yields better performance compared to using fixed Fourier
mapping in both interpolation and extrapolation tasks. That is, by adapting learnable factors to Fourier
feature mapping, NeRT successfully learns a set of frequencies that better represents the specific time
series.

15

Under review as a conference paper at ICLR 2024

D ADDITIONAL EXPERIMENTS WITH AN ODE-BASED SYNTHETIC TIME
SERIES

D.1 EXPERIMENTAL SETUPS

To evaluate the effectiveness of our proposed NeRT in an ideal setting without any noise, we conduct
experiments (cf. Figure 1). We use the damped oscillation ODE, which can represent harmonic
and oscillatory motion, as the benchmark dataset. The specific equation and analytic solution are as
follows:

md
d2x

dt2
+ bd

dx

dt
+ kdx = 0,

x(t) = Ade
− bd

2m t cos(ωdt+ φ).

(4)

Equation 4 represents the motion equation that accounts for all the forces acting on the object, where
md denotes the mass of an object, and b and kd are physical constants. We set md = 1, bd = 0
(undamping) or 4 (damping), ωd = 50, and Ad = 10. All experiments employ 1,000 epochs.

D.2 EXPERIMENTAL RESULTS

In this section, we do additional experiments on undamping/damping oscillatory signals. For
each ODEs, we do interpolation, extrapolation, and a mixed task, which do both interpolation and
extrapolation at the same time. Since extrapolation task for a damping oscillatory signal is in the
main paper, we list results for other five experiments, and the results are summarized in Table 5.

Table 5: Additional results with an ODE-based synthetic time series

Task SIREN FFN NeRT

Undamping

Interpolation 96.6879±31.0011 0.0856±0.0445 0.0183±0.0123

Extrapolation 121.8907±23.9423 1.0917±0.7321 0.4109±0.4335

Interp+Extrap 93.3860±38.3511 0.1270±0.0888 0.0336±0.0204

Damping
Interpolation 0.1846±0.0796 0.0017±0.0006 0.0011±0.0008

Interp+Extrap 0.2758±0.1007 0.0034±0.0018 0.0004±0.0002

As shown in Table 5, our proposed NeRT outperforms SIREN and FFN in every task with a big
margin. Visualization of the results can be found in Figures 9, 10, 11, 12, 13

16

Under review as a conference paper at ICLR 2024

1.0 1.2 1.4 1.6 1.8 2.0

Time

10

5

0

5

10

15

20
True SIREN FFN

(a) SIREN and FFN

1.0 1.2 1.4 1.6 1.8 2.0

Time

10

5

0

5

10

15

20
True Ours

(b) NeRT (Ours)

1.0 1.2 1.4 1.6 1.8 2.0

Time

10

5

0

5

10

15

20
True Period factor Scale factor

(c) Periodic/scale factors by NeRT

Figure 9: Interpolation task on an undamping oscillatory signal. Results of interpolation task
with an ODE (Figures 9(a)-(b)) and extracted factors during training (Figure 9(c)). The inside
of the two solid lines is a testing range (t ∈ [1.2, 1.8]) and the outside is a training range (t ∈
[1.0, 1.2], [1.8, 2.0]).

1.0 1.2 1.4 1.6 1.8 2.0

Time

10

5

0

5

10

15

20
True SIREN FFN

(a) SIREN and FFN

1.0 1.2 1.4 1.6 1.8 2.0

Time

10

5

0

5

10

15

20
True Ours

(b) NeRT (Ours)

1.0 1.2 1.4 1.6 1.8 2.0

Time

10

5

0

5

10

15

20
True Period factor Scale factor

(c) Periodic/scale factors by NeRT

Figure 10: Extrapolation task on an undamping oscillatory signal. Results of extrapolation task
with an ODE (Figures 10(a)-(b)) and extracted factors during training (Figure 10(c)). The left side of
the solid line represents the training range (t ∈ [1.0, 1.4]), while the right side represents the testing
range (t ∈ [1.4, 2.0]).

1.0 1.2 1.4 1.6 1.8 2.0

Time

10

5

0

5

10

15

20
True SIREN FFN

(a) SIREN and FFN

1.0 1.2 1.4 1.6 1.8 2.0

Time

10

5

0

5

10

15

20
True Ours

(b) NeRT (Ours)

1.0 1.2 1.4 1.6 1.8 2.0

Time

10

5

0

5

10

15

20
True Period factor Scale factor

(c) Periodic/scale factors by NeRT

Figure 11: Interpolation and Extrapolation task on an undamping oscillatory signal. Results of
interpolation and extrapolation tasks with an ODE (Figures 11(a)-(b)) and extracted factors during
training (Figure 11(c)). The training range are t ∈ [1.0, 1.2], [1.5, 1.8], and the testing range are
t ∈ [1.2, 1.5], [1.8, 2.0].

17

Under review as a conference paper at ICLR 2024

1.0 1.2 1.4 1.6 1.8 2.0

Time
1.5

1.0

0.5

0.0

0.5

1.0

1.5 True
SIREN
FFN

(a) SIREN and FFN

1.0 1.2 1.4 1.6 1.8 2.0

Time
1.5

1.0

0.5

0.0

0.5

1.0

1.5 True
Ours

(b) NeRT (Ours)

1.0 1.2 1.4 1.6 1.8 2.0

Time
1.5

1.0

0.5

0.0

0.5

1.0

1.5 True
Period factor
Scale factor

(c) Periodic/scale factors by NeRT

Figure 12: Preliminary study with a damping oscillatory signal. Results of interpolation task with
an ODE (Figures 12(a)-(b)) and extracted factors during training (Figure 12(c)). The inside of the
two solid lines represents the testing range (t ∈ [1.2, 1.8], while the outside represents the training
range (t ∈ [1.0, 1.2], [1.8, 2.0]).

1.0 1.2 1.4 1.6 1.8 2.0

Time
1.5

1.0

0.5

0.0

0.5

1.0

1.5 True
SIREN
FFN

(a) SIREN and FFN

1.0 1.2 1.4 1.6 1.8 2.0

Time
1.5

1.0

0.5

0.0

0.5

1.0

1.5 True
Ours

(b) NeRT (Ours)

1.0 1.2 1.4 1.6 1.8 2.0

Time
1.5

1.0

0.5

0.0

0.5

1.0

1.5 True
Period factor
Scale factor

(c) Periodic/scale factors by NeRT

Figure 13: Preliminary study with a damping oscillatory signal. Results of interpolation and ex-
trapolation tasks with an ODE (Figures 13(a)-(b)) and extracted factors during training (Figure 13(c)).
The training range are t ∈ [1.0, 1.2], [1.5, 1.8], and the testing range are t ∈ [1.2, 1.5], [1.8, 2.0].

E ALGORITHM

To provide detailed explanations of the training process of NeRT, we present the following training
Algorithm 1.

Algorithm 1 Training of the proposed method

/* Training */
Training datasets: M -dimensional multi-variate time series sequence {(xi, ti)}Ni=1

Input: A set of training sampled spatiotemperal coordinate: {cti, ({c
f
j }Mj=1)}Ni=1

Initialize the parameters of NeRT {θt, θF , θf , θs, θp}
for epoch = 1 to ep do

Compute forward pass: x̂i,j((cti, c
f
j); {θt, θF , θf , θs, θp})

Compute MSE: (x̂i,j − xi,j)
2

Compute backward pass and update the parameters
Compute the validation error with validation data

end for
Output: Optimal parameters of NeRT (Lowest validation error)

18

Under review as a conference paper at ICLR 2024

F DETAILED DESCRIPTION OF DATASETS

F.1 2D-HELMHOLTZ EQUATION

The 2D Helmholtz equation, used in Section 5.2, is a differential equation utilized for modeling wave
and electromagnetic phenomena. We experiment with the condition of the Equation 5 and are able to
directly obtain the analytical solution u(x, y) = sin(a1πx) sin(a2πy).

F.2 TIME SERIES DATASETS

Table 6: Dataset statistics. Max. length (resp. Min. length) is the longest (resp. shortest) timestamp
length among the timestamps of the features in the samples.

Dataset
Periodic time series Long-term time series

Electricity Traffic Caiso NP ETTh1 ETTh2 National Illness

Frequency hourly hourly hourly hourly hourly hourly weekly

Start date 2012-01-01 2008-01-02 2013-01-01 2013-01-01 2016-07-01 2016-07-01 2002-01-01

End date 2015-01-01 2009-03-31 2021-06-30 2020-12-31 2018-06-26 2018-06-26 2020-06-30

features 1 1 1 1 7 7 7

Max. length 26,304 10,560 74,079 70,120 17,420 17,420 966

Min. length 26,271 10,512 41,547 70,076 17,420 17,420 966

Experiments on time series datasets consists of two parts: i) periodic time series, and ii) long-term
time series. We use four datasets used as benchmark datasets in (Fan et al., 2022) for the periodic
time series task and three datasets from (Wen et al., 2022) for the long-term time series task. As
shown in table 6, in order to show how NeRT predicts in various scenarios, we choose datasets with a
wide range of length and frequency, including both uni-variate and multi-variate datasets. Detailed
descriptions of datasets are as follows:

• Periodic time series
– Electricity contains hourly records of electricity consumption from 2012 to 2014.
– Traffic consists of hourly data from the sensors in San Francisco freeways, providing

information on the road occupancy rates between 2015 and 2016.
– Caiso comprises hourly actual electricity load series in various zones across California

from 2013 to 2021.
– NP contains a collection of hourly energy production volume from 2013 to 2020 in

several European countries.
• Long-term time series

– ETTh1 and ETTh2 (Zhou et al., 2021) are hourly collected ETT (Electricity Trans-
former Temperature) datasets from July 2016 to July 2018.

– National Illness is a weekly collected medical dataset from the Centers for Disease
Control and Prevention of the United States. It contains the information of patients
with influenza-like illness spanning from 2002 to 2021.

19

Under review as a conference paper at ICLR 2024

G DETAILED EXPERIMENTAL RESULTS ON 2D HELMHOLTZ EQUATION

The 2D Helmhotz equations are used as a benchmark problem in (McClenny & Braga-Neto, 2020).
The form of the PDE is as follows:

∂2u(x, y)

∂x2
+
∂2u(x, y)

∂y2
+ k2u(x, y)− q(x, y) = 0

q(x, y) = (−(a1π)
2 − (a2π)

2 + k2) sin(a1πx) sin(a2πy)

(5)

where k is a constant, and q(x, y) is a source term. NeRT and baselines are trained to predict the
solution u at a given location (x, y). Unlike the multi-variate time series, u is uni-variate, so NeRT
uses only ψt as its encoder — we feed the raw coordinate (x, y) instead of cti.

1.0 1.2 1.4 1.6 1.8 2.0
x

1.0

1.2

1.4

1.6

1.8

2.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) ReLU

1.0 1.2 1.4 1.6 1.8 2.0
x

1.0

1.2

1.4

1.6

1.8

2.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) Tanh

1.0 1.2 1.4 1.6 1.8 2.0
x

1.0

1.2

1.4

1.6

1.8

2.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(c) SIREN

1.0 1.2 1.4 1.6 1.8 2.0
x

1.0

1.2

1.4

1.6

1.8

2.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(d) FFN

1.0 1.2 1.4 1.6 1.8 2.0
x

1.0

1.2

1.4

1.6

1.8

2.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(e) NeRT (Ours)

1.0 1.2 1.4 1.6 1.8 2.0
x

1.0

1.2

1.4

1.6

1.8

2.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(f) ReLU

1.0 1.2 1.4 1.6 1.8 2.0
x

1.0

1.2

1.4

1.6

1.8

2.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(g) Tanh

1.0 1.2 1.4 1.6 1.8 2.0
x

1.0

1.2

1.4

1.6

1.8

2.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(h) SIREN

1.0 1.2 1.4 1.6 1.8 2.0
x

1.0

1.2

1.4

1.6

1.8

2.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(i) FFN

1.0 1.2 1.4 1.6 1.8 2.0
x

1.0

1.2

1.4

1.6

1.8

2.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(j) NeRT (Ours)

Figure 14: Detailed experimental results

Table 7: Experimental resultes of Helmholtz equations

Epoch ReLU Tanh SIREN FFN NeRT

1,000 1.8735±1.1729 0.2966±0.0719 0.8535±0.2780 0.3456±0.0187 0.0042±0.0010

10,000 52.1329±0.0719 3.7004±2.5366 0.3260±0.0114 0.3109±0.0173 0.0014±0.0008

In the extension of Experiment 5.2, to provide more comprehensive analysis, we increase the number
of epochs and add a baseline. Figures 14(a)-(e) represent the results after training for 1,000 epochs,
while Figures 14(f)-(g) depict the results after training for 10,000 epochs. Furthermore, keeping all
hyperparameters and model sizes the same, we add baselines by changing the activation function
to ReLU and Tanh. This is depicted in the first and second columns of Figure 14. As shown in
Figures 14(a) and (b), models using ReLU and Tanh activation functions struggle even to learn the
training range. On the other hand, all INR models demonstrate successfully precise learning of the
training range (x ∈ [1.0, 1.5], y ∈ [1.0, 1.5]) within just 1,000 epoch. When training is extended to
10,000 epochs, all models managed to learn the training range, but only NeRT successfully predict
the test range (x ∈ [1.5, 2.0], y ∈ [1.5, 2.0]).

20

Under review as a conference paper at ICLR 2024

H EXPERIMENTS ON PERIODIC TIME SERIES

H.1 DETAILED EXPERIMENTAL SETUPS

Block 1 Block Block 3 Block 2 Block 1Block 2Block 3

: Interpolation block : Extrapolation block : Validation block: Training block

Figure 15: Experimental setup on periodic time series.

Table 8: Best hyperparameter configurations in the periodic time series task

ωinit ωinner dim(ψt) dim(ψF) dim(hp) dim(hs)

Electricity 5.0 1.0 30 30 10 30

Traffic 10.0 1.0 30 10 50 10

Caiso 10.0 1.0 10 30 50 10

NP 3.0 3.0 30 30 10 30

We design the experiment using the first 10 samples, each of which consists of 12 blocks (cf.
Figure 15), from each dataset and conduct an experiment to fill in the values of missing blocks. In
a sample, we perform both the interpolation and the extrapolation tasks. Detailed locations and
constructions are summarized in Figure 15. As shown in Figure 15, in a sample there are three
interpolation blocks colored in red, three extrapolation blocks colored in blue, one validation block
colored in green, and the remaining yellow parts represent the training dataset. Each block has a
length of 500, and the missing blocks for each task, as specified as "# blocks" in Table 1, are as
follows:

• # blocks = 1 means that we perform the interpolation and extrapolation tasks for Block 1.

• # blocks = 2 means that we perform the interpolation and extrapolation tasks for Block 1
and Block 2.

• # blocks = 3 means that we perform the interpolation and extrapolation tasks for Block 1,
Block 2 and Block 3.

A validation block is not used for training in every task, and used for the purpose of validation. Each
model is trained for 2,000 epochs.

For hyperparameters, we set Smax to 1 and for the fair comparison, we use similar model sizes for
all methods and share the frequencies across the models. There are two frequencies used as hyperpa-
rameters, ωinit and ωinner. ωinit is used in our learnable Fourier feature mapping and corresponds to
b in Equation 2. ωinner denotes the frequency of the sinusoidal function ρs inn Equation 3. For the
number of layers, we set Lt, Lf and Ls to 2, and Lp to 5. The best hyperparameter configurations
of NeRT in the periodic time series task are summarized in Table 8. We use an additional FC layer
after Equation 2 and let hp and hs be the hidden vectors of the period and scale decoders, respectively.

H.2 ADDITIONAL EXPERIMENTAL RESULTS

We conduct periodic time series experiments on two numerical methods, Linear (linear interpolation)
and Cubic (cubic interpolation), and report the results in Table 9. As shown in Table 9, NeRT beats
two numerical methods. We compare NeRT to Linear and Cubic only for the interpolation task, since
those numerical methods are not able to extrapolate.

21

Under review as a conference paper at ICLR 2024

Additionally, in Figures 16, 17, 18, and 19, we show the visualizations of the remaining datasets’
interpolation and extrapolation results that are not included in the main paper. In Figures 16 and 18,
we show the results at the best epoch, i.e., the lowest validation error, and in Figures 17 and 19, we
show results at the last epoch, i.e., after 2,000 epochs. NeRT avoids overfitting to training data in
both cases while other two baselines are significantly overfitted to training data and fail in the testing
range.

In Figure 20, we propose how the periodic and scale factors of NeRT work in the periodic time series
interpolation and extrapolation tasks. Figures 20 (a)-(d) correspond to the interpolation task and
Figures 20 (e)-(h) correspond to the extrapolation task.

Table 9: Additional experimental results on periodic time series. The best results are reported in
boldface.

Dataset # blocks
Interpolation

Linear Cubic NeRT

Electricity

1 0.0126 61.4654 0.0061±0.0006

2 0.0155 47.4215 0.0057±0.0005

3 0.0182 41.9424 0.0056±0.0006

Traffic

1 0.0220 4.4286 0.0057±0.0002

2 0.0191 3.0941 0.0062±0.0000

3 0.0191 4.1447 0.0055±0.0002

Caiso

1 0.0223 8.8545 0.0047±0.0012

2 0.0171 6.3525 0.0041±0.0002

3 0.0171 6.4894 0.0099±0.0007

NP

1 0.0426 1.3798 0.0149±0.0005

2 0.0477 2.2489 0.0186±0.0008

3 0.0454 3.8557 0.0196±0.0006

22

Under review as a conference paper at ICLR 2024

3200 3300 3400 3500 3600 3700 3800 39000.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

True SIREN

(a) SIREN (Electricity)
3200 3300 3400 3500 3600 3700 3800 39000.10

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

True FFN

(b) FFN (Electricity)
3200 3300 3400 3500 3600 3700 3800 39000.10

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

True NeRT

(c) NeRT (Electricity)

1200 1300 1400 1500 1600 1700 1800 1900
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 True SIREN

(d) SIREN (Traffic)
1200 1300 1400 1500 1600 1700 1800 1900

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 True FFN

(e) FFN (Traffic)
1200 1300 1400 1500 1600 1700 1800 1900

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 True NeRT

(f) NeRT (Traffic)

6900 7000 7100 7200 7300 7400 7500 76000.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

True SIREN

(g) SIREN (Caiso)
6900 7000 7100 7200 7300 7400 7500 76000.10

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

True FFN

(h) FFN (Caiso)
6900 7000 7100 7200 7300 7400 7500 76000.10

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

True NeRT

(i) NeRT (Caiso)

Figure 16: Interpolation results on missing intervals at the lowest validation error checkpoint.
Interpolation results in Electricity (Figures 16 (a)-(c)), in Traffic (Figures 16 (d)-(f)), and in Caiso
(Figures 16 (g)-(i)). The space between the two solid lines represents the testing range, while the
outer two parts represent the training range.

3200 3300 3400 3500 3600 3700 3800 39000.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

True SIREN

(a) SIREN (Electricity)
3200 3300 3400 3500 3600 3700 3800 39000.10

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

True FFN

(b) FFN (Electricity)
3200 3300 3400 3500 3600 3700 3800 39000.10

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

True NeRT

(c) NeRT (Electricity)

1200 1300 1400 1500 1600 1700 1800 1900
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 True SIREN

(d) SIREN (Traffic)
1200 1300 1400 1500 1600 1700 1800 1900

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 True FFN

(e) FFN (Traffic)
1200 1300 1400 1500 1600 1700 1800 1900

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 True NeRT

(f) NeRT (Traffic)

6900 7000 7100 7200 7300 7400 7500 76000.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

True SIREN

(g) SIREN (Caiso)
6900 7000 7100 7200 7300 7400 7500 76000.10

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

True FFN

(h) FFN (Caiso)
6900 7000 7100 7200 7300 7400 7500 76000.10

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

True NeRT

(i) NeRT (Caiso)

Figure 17: Interpolation results on missing intervals after the last epoch. Interpolation results in
Electricity (Figures 17 (a)-(c)), in Traffic (Figures 17 (d)-(f)), and in Caiso (Figures 17 (g)-(i)). The
space between the two solid lines represents the testing range, while the outer two parts represent the
training range.

23

Under review as a conference paper at ICLR 2024

25600 25700 25800 25900 26000 26100 26200 26300
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 True SIREN

(a) SIREN (Electricity)
25600 25700 25800 25900 26000 26100 26200 26300

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 True FFN

(b) FFN (Electricity)
25600 25700 25800 25900 26000 26100 26200 26300

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 True NeRT

(c) NeRT (Electricity)

49100 49200 49300 49400 49500 49600 49700 498000.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

True SIREN

(d) SIREN (Caiso)
49100 49200 49300 49400 49500 49600 49700 498000.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

True FFN

(e) FFN (Caiso)
49100 49200 49300 49400 49500 49600 49700 498000.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

True NeRT

(f) NeRT (Caiso)

69400 69500 69600 69700 69800 69900 70000 701000.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
True SIREN

(g) SIREN (NP)
69400 69500 69600 69700 69800 69900 70000 701000.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
True FFN

(h) FFN (NP)
69400 69500 69600 69700 69800 69900 70000 701000.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
True NeRT

(i) NeRT (NP)

Figure 18: Extrapolation results on missing intervals at the lowest validation error checkpoint.
Extrapolation results in Electricity (Figures 18 (a)-(c)), in Caiso (Figures 18 (d)-(f)), and in NP
(Figures 18 (g)-(i)). The right area after the solid vertical line is a testing range.

25600 25700 25800 25900 26000 26100 26200 26300
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 True SIREN

(a) SIREN (Electricity)
25600 25700 25800 25900 26000 26100 26200 26300

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 True FFN

(b) FFN (Electricity)
25600 25700 25800 25900 26000 26100 26200 26300

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 True NeRT

(c) NeRT (Electricity)

49100 49200 49300 49400 49500 49600 49700 498000.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

True SIREN

(d) SIREN (Caiso)
49100 49200 49300 49400 49500 49600 49700 498000.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

True FFN

(e) FFN (Caiso)
49100 49200 49300 49400 49500 49600 49700 498000.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

True NeRT

(f) NeRT (Caiso)

69400 69500 69600 69700 69800 69900 70000 701000.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
True SIREN

(g) SIREN (NP)
69400 69500 69600 69700 69800 69900 70000 701000.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
True FFN

(h) FFN (NP)
69400 69500 69600 69700 69800 69900 70000 701000.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
True NeRT

(i) NeRT (NP)

Figure 19: Extrapolation results on missing intervals after the last epoch. Extrapolation results in
Electricity (Figures 19 (a)-(c)), in Caiso (Figures 19 (d)-(f)), and in NP (Figures 19 (g)-(i)). The right
area after the solid vertical line is a testing range.

24

Under review as a conference paper at ICLR 2024

3200 3300 3400 3500 3600 3700 3800 3900
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75 True Period factor Scale factor

(a) Electricity (Interpolation)
1200 1300 1400 1500 1600 1700 1800 1900

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4 True Period factor Scale factor

(b) Traffic (Interpolation)

6900 7000 7100 7200 7300 7400 7500 7600

1.0

0.5

0.0

0.5
True Period factor Scale factor

(c) Caiso (Interpolation)
8700 8800 8900 9000 9100 9200 9300

0.2

0.4

0.6

0.8

1.0

1.2

1.4 True Period factor Scale factor

(d) NP (Interpolation)

25600 25700 25800 25900 26000 26100 26200 263000.0

0.5

1.0

1.5

2.0

2.5

3.0
True Period factor Scale factor

(e) Electricity (Extrapolation)
9900 10000 10100 10200 10300 10400 10500

0.0

0.2

0.4

0.6

0.8

1.0

1.2 True Period factor Scale factor

(f) Traffic (Extrapolation)

49100 49200 49300 49400 49500 49600 49700 49800

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

True Period factor Scale factor

(g) Caiso (Extrapolation)
69400 69500 69600 69700 69800 69900 70000 70100

1.5

1.0

0.5

0.0

0.5

1.0 True Period factor Scale factor

(h) NP (Extrapolation)

Figure 20: Periodic and Scale factors trained on periodic time series. Interpolation results
(Figures 20 (a)-(d)), where the space between the two solid lines represents the testing range, while
the outer two parts represent the training range, and extrapolation results (Figures 20 (e)-(h)), where
right area after the solid vertical line is a testing range.

25

Under review as a conference paper at ICLR 2024

I ADDITIONAL COMPARISON WITH TIME-SERIES BASELINES

I.1 EXPERIMENTAL SETUPS

In this section, we conduct comprehensive analyses between our model and existing time-series
baselines to support the necessity of adapting INR specifically to time series data (cf. Section 2).
We use four datasets used in Section 5.1, and we have meticulously arranged the experimental setup
in the subsequent manner for the purpose of this study. To be specific, we compare the forecasting
performance by varying the input window size m of {48, 96, 192} and the output window size n of
{96, 192, 336, 720}, following the overall experimental configuration of (Zeng et al., 2022). For each
data sample, we fix the total length to 2,880 with a train size of 1,440 and a validation and test sizes
of 720. To assess the model performance, we use mean-squared error (MSE) of the test range at the
epoch where the best MSE on the validation range is achieved.

Baselines To evaluate the performance of NeRT, we compare it with eight existing time-series
baselines. As representatives of traditional time series models, we use RNN and LSTM as baselines.
Additionally, we compare NeRT against models in the long-term time series forecasting domain,
including Linear-based models, i.e., Linear, DLinear, and NLinear from (Zeng et al., 2022), and
Transformer-based baselines, i.e., Autoformer (Wu et al., 2021), Informer (Zhou et al., 2021), and
FEDformer (Zhou et al., 2022). Furthermore, we employ Latent ODE (Rubanova et al., 2019) and
Neural CDE (Kidger et al., 2020) as Neural ODE-based models.

Training methodological differences between NeRT and other baselines Existing time-series
baselines are highly sensitive to varying input and output window sizes (cf. L2 of Section 2)), so
they need repeated experiments for each window size change. In contrast, since our NeRT operates
independently of window size, we need to train NeRT only once for each dataset. During the single
training, NeRT makes a single set of predictions for all 720 points, and then calculate MSEs for all
the output window sizes of 96, 192, 336, and 720, respectively.

I.2 EXPERIMENTAL RESULTS

We summarize experimental results of time series forecasting depending on the input/output window
sizes in Tables 10, 11, and 12. Note that while other time series baselines are trained individually
for each combination of the input/output window sizes, NeRT employs only a single model for each
dataset. As shown in the tables, NeRT consistently shows the best MSE regardless of the dataset
and window size. On top of that, the results of the baselines are highly affected by the input/output
window sizes (cf. Appendix B), making hard to choose an appropriate window size setting. Figure 21
depicts how MSE changes as n varies, with m fixed to 96 and 192. In every case, NeRT shows the
lowest MSE with the lowest slope, compared to other baselines. Additionally, Figure 22 shows how
the models predict n values given the input window size m on the Traffic dataset, where n = 96 and
m = 48 in this setting.

Computational cost In Table 13, we describe models’ computational complexity in terms of time
and memory (cf. L4 of Section 2). We report the complexity for all window combinations of the
baselines individually, whereas with the NeRT’s capacity to provide results for all combinations at
once using a single model, we report the training complexity of the single NeRT model. The results
in Table 13 correspond to an input window size of 96, and each value represents the complexity
required during the training of a single data sample. For NeRT, we record the average time/memory
complexity needed to train a single data sample, with the values in parentheses indicating the total
complexity required for training a single model.

As shown in Table 13, the total memory complexity of NeRT is notably smaller than the memory
complexity of all RNN/Transformer/Neural ODE-based models when training just one data sample.
This reduction in complexity ranges from being 5.5 times smaller to as much as 1,730 times smaller
and in certain instances, it is even smaller than those of Linear-based models. For the time complexity,
NeRT outperforms Transformer/Neural ODE-based models, but it is slower than Linear/RNN-
based models. In summary, considering the forecasting results from Tables 10, 11, and 12, NeRT
demonstrates significant forecasting performance improvements, approximately 2 to 5 times better

26

Under review as a conference paper at ICLR 2024

than existing time-series models, while still maintaining a sufficiently fast training time complexity
and memory complexity similar to Linear-based models.

Linear
DLinear

NLinear
RNN

LSTM
Autoformer

Informer
FEDformer

Latent ODE
Neural CDE

NeRT

96 192 336 720
n

0.10

(a) Electricity (m = 96)

96 192 336 720
n

0.01

(b) Traffic (m = 96)

96 192 336 720
n

0.10

(c) Caiso (m = 96)

96 192 336 720
n

0.10

(d) NP (m = 96)

96 192 336 720
n

0.10

(e) Electricity (m = 192)

96 192 336 720
n

0.01

0.10

(f) Traffic (m = 192)

96 192 336 720
n

0.10

(g) Caiso (m = 192)

96 192 336 720
n

0.10

(h) NP (m = 192)

Figure 21: Comparisons with time-series baselines for varying n = {96, 192, 336, 720} (output/pre-
diction window size) with a fixed input window size m = 96 ((a)-(d)) and m = 192 ((e)-(h)).

Table 10: Comparision with time-series baselines (m = 48)

Dataset n
Linear-based RNN-based Transformer-based Neural ODE-based INR-based

Linear DLinear NLinear RNN LSTM Autoformer Informer FEDformer Latent ODE Neural CDE NeRT (Ours)

Electricity

96 0.0671 0.0556 0.0329 0.0387 0.0495 0.0555 0.0485 0.0387 0.0673 0.0333 0.0174
192 0.0747 0.0629 0.0351 0.0411 0.0514 0.0544 0.0610 0.0392 0.0856 0.0390 0.0186
336 0.0843 0.0689 0.0387 0.0444 0.0547 0.0520 0.0641 0.0460 0.1500 0.0403 0.0196
720 0.1461 0.1326 0.0482 0.0890 0.1601 0.0741 0.1003 0.0668 0.1565 0.0720 0.0196

Traffic

96 0.0278 0.0240 0.0215 0.0191 0.0229 0.0395 0.0412 0.0290 0.0349 0.0192 0.0086
192 0.0275 0.0225 0.0202 0.0179 0.0192 0.0368 0.0362 0.0329 0.0528 0.0194 0.0078
336 0.0303 0.0249 0.0219 0.0201 0.0224 0.0325 0.0410 0.0315 0.0460 0.0208 0.0090
720 0.0446 0.0418 0.0289 0.0297 0.0377 0.0652 0.0670 0.0439 0.1036 0.0320 0.0097

Caiso

96 0.0989 0.0843 0.0448 0.0556 0.0671 0.0551 0.0917 0.0455 0.1088 0.0501 0.0236
192 0.0972 0.0799 0.0450 0.0607 0.0647 0.0539 0.1322 0.0410 0.1538 0.0533 0.0262
336 0.1154 0.0927 0.0548 0.0658 0.0711 0.0683 0.0824 0.0602 0.1841 0.0573 0.0293
720 0.2106 0.1948 0.0808 0.1276 0.2431 0.1471 0.1876 0.1467 0.3257 0.1103 0.0324

NP

96 0.1114 0.1085 0.0690 0.0697 0.0790 0.0784 0.0703 0.0598 0.1060 0.0562 0.0370
192 0.1007 0.0980 0.0795 0.0649 0.0814 0.0733 0.0803 0.0747 0.1522 0.0562 0.0409
336 0.1072 0.1035 0.0932 0.0606 0.0794 0.0860 0.0727 0.0849 0.1465 0.0669 0.0413
720 0.2223 0.2217 0.1414 0.1292 0.2534 0.1073 0.0984 0.0820 0.3414 0.1120 0.0478

27

Under review as a conference paper at ICLR 2024

Table 11: Comparision with time-series baselines (m = 96)

Dataset n
Linear-based RNN-based Transformer-based Neural ODE-based INR-based

Linear DLinear NLinear RNN LSTM Autoformer Informer FEDformer Latent ODE Neural CDE NeRT (Ours)

Electricity

96 0.0374 0.0257 0.0214 0.0382 0.0496 0.0430 0.0450 0.0432 0.0468 0.0320 0.0174
192 0.0433 0.0293 0.0269 0.0406 0.0503 0.0533 0.0620 0.0451 0.0723 0.0380 0.0186
336 0.0470 0.0329 0.0306 0.0439 0.0544 0.0476 0.0556 0.0490 0.1064 0.0395 0.0196
720 0.0853 0.0670 0.0376 0.0890 0.1601 0.0723 0.0917 0.0585 0.1726 0.0716 0.0196

Traffic

96 0.0167 0.0108 0.0133 0.0190 0.0228 0.0420 0.0297 0.0353 0.0328 0.0186 0.0086
192 0.0148 0.0103 0.0120 0.0178 0.0191 0.0381 0.0293 0.0363 0.0265 0.0186 0.0078
336 0.0166 0.0115 0.0134 0.0200 0.0223 0.0277 0.0375 0.0404 0.0439 0.0202 0.0090
720 0.0280 0.0221 0.0196 0.0298 0.0377 0.0649 0.0871 0.0515 0.0792 0.0316 0.0097

Caiso

96 0.0498 0.0343 0.0284 0.0566 0.0663 0.0569 0.1112 0.0511 0.0611 0.0478 0.0236
192 0.0487 0.0368 0.0274 0.0594 0.0658 0.0490 0.1086 0.0458 0.0900 0.0515 0.0262
336 0.0557 0.0400 0.0346 0.0647 0.0700 0.0634 0.1268 0.0757 0.1249 0.0557 0.0293
720 0.1138 0.0983 0.0644 0.1273 0.2432 0.1279 0.1296 0.1413 0.2397 0.1086 0.0324

NP

96 0.0767 0.0693 0.0464 0.0687 0.0807 0.1133 0.0787 0.0584 0.0903 0.0541 0.0370
192 0.0879 0.0790 0.0626 0.0650 0.0828 0.0868 0.0961 0.0766 0.1152 0.0635 0.0409
336 0.0847 0.0757 0.0607 0.0604 0.0794 0.0885 0.0663 0.0825 0.1084 0.0646 0.0413
720 0.1185 0.1126 0.0806 0.1290 0.2534 0.1056 0.1136 0.1173 0.1424 0.1090 0.0478

Table 12: Comparision with time-series baselines (m = 192)

Dataset n
Linear-based RNN-based Transformer-based Neural ODE-based INR-based

Linear DLinear NLinear RNN LSTM Autoformer Informer FEDformer Latent ODE Neural CDE NeRT (Ours)

Electricity

96 0.0312 0.0217 0.0193 0.0374 0.0493 0.0481 0.0609 0.0453 0.0489 0.0349 0.0174
192 0.0358 0.0268 0.0241 0.0398 0.0499 0.0433 0.0527 0.0445 0.0624 0.0403 0.0186
336 0.0370 0.0290 0.0281 0.0435 0.0542 0.0476 0.0626 0.0507 0.0634 0.0414 0.0196
720 0.0474 0.0327 0.0313 0.0886 0.1602 0.0771 0.0951 0.0683 0.2029 0.0714 0.0196

Traffic

96 0.0114 0.0099 0.0105 0.0191 0.0228 0.0410 0.0330 0.0335 0.0335 0.0197 0.0086
192 0.0105 0.0096 0.0092 0.0178 0.0191 0.0272 0.0371 0.0450 0.0268 0.0192 0.0078
336 0.0108 0.0101 0.0096 0.0198 0.0222 0.0306 0.0360 0.0405 0.0387 0.0204 0.0090
720 0.0180 0.0132 0.0141 0.0299 0.0377 0.0634 0.0756 0.0467 0.1163 0.0310 0.0097

Caiso

96 0.0443 0.0348 0.0273 0.0550 0.0676 0.0604 0.1342 0.0464 0.0951 0.0469 0.0236
192 0.0488 0.0378 0.0274 0.0597 0.0678 0.0554 0.1082 0.0583 0.0828 0.0506 0.0262
336 0.0528 0.0428 0.0317 0.0638 0.0725 0.0577 0.1183 0.0592 0.0971 0.0553 0.0293
720 0.0642 0.0528 0.0523 0.1270 0.2431 0.1048 0.1533 0.1234 0.2253 0.1077 0.0324

NP

96 0.0743 0.0670 0.0448 0.0672 0.0786 0.0976 0.0709 0.0602 0.0852 0.0535 0.0370
192 0.0912 0.0855 0.0589 0.0661 0.0834 0.0905 0.0729 0.0675 0.1579 0.0645 0.0409
336 0.0995 0.0928 0.0606 0.0611 0.0797 0.0842 0.0724 0.0881 0.1261 0.0652 0.0413
720 0.0960 0.0882 0.0711 0.1282 0.2530 0.1214 0.1254 0.1029 0.2017 0.1079 0.0478

Table 13: Computational cost with m at 96. Each value is measured during training one data sample.
For NeRT, since it is not trained for each window combination, we report the average cost required
for training one sample, with total amount in the parentheses.

Complexity n
Linear-based RNN-based Transformer-based Neural ODE-based INR-based

Linear DLinear NLinear RNN LSTM Autoformer Informer FEDformer Latent ODE Neural CDE NeRT

Time (sec)

96 0.0333 0.0449 0.0353 0.0864 0.0951 0.9343 0.8525 9.3507 15.0144 9.9457

192 0.0329 0.0446 0.0347 0.0886 0.0929 1.0673 0.7802 9.4309 17.2511 9.9699 0.2345

336 0.0320 0.0443 0.0338 0.0898 0.0930 1.2836 0.9100 10.7392 20.3422 9.8612 (2.8151)

720 0.0202 0.0275 0.0226 0.0335 0.0387 0.9745 0.7102 7.7706 9.6910 5.7095

Memory (MB)

96 1.0757 1.1816 1.0991 54.2866 92.9487 888.9063 504.9854 2254.0459 24.2246 9.6597

192 1.1519 1.3169 1.1753 54.3799 93.0425 1292.9297 679.2822 2252.9355 26.4951 9.6597 0.1318

336 1.2769 1.5303 1.3003 54.5508 93.2148 1768.7114 908.2749 2890.7788 29.9116 9.9468 (1.5820)

720 1.4126 1.8643 1.4292 46.4707 78.8481 2735.4766 1273.8496 3913.7681 33.2192 8.7642

28

Under review as a conference paper at ICLR 2024

0 20 40 60 80 100 120 140
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 X True y Pred y

(a) Linear

0 20 40 60 80 100 120 140
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 X True y Pred y

(b) DLinear

0 20 40 60 80 100 120 140
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 X True y Pred y

(c) NLinear

0 20 40 60 80 100 120 140
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 X True y Pred y

(d) RNN

0 20 40 60 80 100 120 140
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 X True y Pred y

(e) LSTM

0 20 40 60 80 100 120 140
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 X True y Pred y

(f) Autoformer

0 20 40 60 80 100 120 140
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 X True y Pred y

(g) Informer

0 20 40 60 80 100 120 140
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 X True y Pred y

(h) FEDformer

0 20 40 60 80 100 120 140
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 X True y Pred y

(i) Latent ODE

0 20 40 60 80 100 120 140
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 X True y Pred y

(j) Neural CDE

0 20 40 60 80 100 120 140
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 X True y Pred y

(k) NeRT (ours)

Figure 22: Forecasting task on Traffic. We set m to 48 and n to 96. The left side of the solid line
represents the input window, while the right side represents the output window.

29

Under review as a conference paper at ICLR 2024

J ADDITIONAL COMPARISON WITH MODULATED INR ON UNSEEN SAMPLES

Table 14: Comparison with Modulated INRs

Dataset Task Modulated SIREN Modulated FFN Modulated NeRT
(scale)

Modulated NeRT
(scale and period)

Electricity
Imputation 0.1840 0.0355 0.0322 0.0315

Forecasting 0.1844 0.0188 0.0161 0.0149

Traffic
Imputation 0.0457 0.0067 0.0009 0.0040

Forecasting 0.0373 0.0116 0.0042 0.0091

Caiso
Imputation 0.0306 0.0390 0.0375 0.0264

Forecasting 0.0869 0.0907 0.0663 0.0629

NP
Imputation 0.0361 0.0257 0.0224 0.0229

Forecasting 0.0238 0.0449 0.0441 0.0166

J.1 LATENT MODULATION

Fundamentally, a single INR model tends to overfit to a single data sample, making it challenging to
represent unseen data samples effectively. To overcome this limitation, recently developed modulation
techniques involve i) sharing model parameters and ii) learning sample-specific parameters, enabling
INR models capable of representing various data samples. In particular, the latent modulation,
introduced in (Dupont et al., 2022), is one of the most effective training methods for INRs to infer
unseen samples after learning multiple samples — we strictly follow this training method in this
subsection. It is a meta-learning-based modulation approach that allows the representation of diverse
data samples by adding an additional learnable bias to each shared MLP layer and for each sample,
the biases in all the MLP layers are changed — at the end, all data samples can be somehow learned
by the combination of the shared MLP parameters and the sample-specific additional biases. By
adopting this concept to all INR-based models used in the paper, which are SIREN, FFN, and NeRT,
they are able to predict values of unseen samples.

J.2 EXPERIMENTAL SETUPS

To ensure a fair comparison, NeRT, SIREN, and FFN all employ the same latent modulation approach.
The baselines, referred to as modulated SIREN and modulated FFN, are SIREN and FFM models
with latent modulation applied to all layers except the first and last. In the case of modulated NeRT,
we propose two variants. Firstly, latent modulation is applied to both the scale decoder and the
periodic decoder of vanilla NeRT, denoted Modulated NeRT (scale). Secondly, we apply latent
modulation exclusively to the scale decoder, denoted Modulated NeRT (scale and period).

The datasets used in the experiments are the periodic time-series datasets discussed in Section 5.1,
and the experiments are conducted in an environment identical to that described in Appendix H. The
dimensionality of the modulation vector remains consistent at 256 throughout the training of all
models. Additionally, testing is carried out on unseen block of unseen samples that are not part of the
training process. Both imputation and forecasting tasks are simultaneously inferred within a single
model.

J.3 EXPERIMENTAL RESULTS

All experimental results are summarized in Table 14, and it can be observed that modulated NeRTs
outperform the modulated INR baselines significantly across all benchmark datasets. Particularly, for
Traffic dataset, Modulated NeRT (scale) exhibits MSE values that are approximately one-seventh the
magnitude of the baseline for interpolation and half the magnitude for extrapolation. Consequently,
NeRT shows its scalability to unseen samples with commendable performance.

30

Under review as a conference paper at ICLR 2024

K EXPERIMENTS ON LONG-TERM TIME SERIES

K.1 DETAILED EXPERIMENTAL SETUPS

Table 15: Hyperparameters of long-term time series

Smax Drop ratio ωinit ωinner dim(ψt) dim(ψF) dim(hp) dim(hs)

ETTh1 100

30% 5.0 1.0 50 30 200 10

50% 5.0 3.0 30 30 100 50

70% 10.0 3.0 30 30 100 30

ETTh2 100

30% 5.0 1.0 10 30 200 10

50% 5.0 3.0 30 30 100 50

70% 10.0 3.0 10 30 50 30

National Illness 1

30% 5.0 1.0 50 10 100 10

50% 5.0 3.0 30 50 30 10

70% 10.0 3.0 10 10 10 10

For fair comparison, we share ωinit and ωinner and employ similar model sizes and across the tested
models. We note hyperparameter configurations used in long-term time series experiments in Table 15.
In terms of the number of layers in NeRT, we set Lt, Lf and Ls to 2, and Lp to 5.

K.2 ADDITIONAL EXPERIMENTAL RESULTS

Table 16: Full table on long-term time series. The best results are reported in boldface.

Drop ratio Linear Cubic SIREN FFN NeRT

ETTh1

30% 0.0892 0.1268 0.1945±0.0030 0.2522±0.0392 0.0828±0.0028

50% 0.1178 0.1662 0.2173±0.0216 0.3407±0.0133 0.0911±0.0097

70% 0.1978 0.2902 0.2605±0.0082 0.4256±0.0199 0.1257±0.0056

ETTh2

30% 0.0407 0.0655 0.1010±0.0075 0.1863±0.0113 0.0344±0.0020

50% 0.0473 0.0847 0.0723±0.0021 0.2351±0.0138 0.0423±0.0022

70% 0.0596 0.1250 0.0964±0.0024 0.3178±0.0460 0.0575±0.0001

National Illness

30% 0.0266 0.0248 0.3502±0.0210 0.1110±0.0059 0.0239±0.0109

50% 0.0567 0.0484 0.1716±0.0376 0.2319±0.0737 0.0291±0.0048

70% 0.0902 0.0876 0.3564±0.0202 0.4453±0.0442 0.0871±0.0257

We report the full experimental results of Table 2 in Table 16. As shown in Table 16, our NeRT
shows the lowest MSE in every dataset, regardless of the drop ratio. For example, NeRT shows an
MSE of 0.1257 in ETTh1 with a drop ratio of 70%, while baselines exhibit errors from 0.1978 in
minimum to 0.4256 in maximum. Figures 23, 24, and 25 show how models learn and represent the
spatiotemporal coordinates of ETTh1, ETTh2, and National Illness, respectively. In those figures,
the top row ((a)-(c)) distinguishes the training and the testing sets in the learned coordinate systems
where the X-axis refers to the temporal information and the Y-axis is the spatial information. While
training, models only see the white-colored coordinates, i.e., training samples, and then predict values
in the black-colored coordinates, i.e., validating and testing samples. Other rows are the results of the
first 50 timestamps by each method in each dataset. Unlike other baselines, NeRT successfully learns
the spatial coordinate systems to embed features and accurately represents the temporal pattern in
each feature. Surprisingly, NeRT demonstrates remarkable predictions even in extreme scenarios with
a drop ratio of 70%, and it maintains its performance well compared to other baselines in challenging
situations, i.e., high drop ratios.

31

Under review as a conference paper at ICLR 2024

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

(a) Coordinate (70%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

(b) Coordinate (50%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

(c) Coordinate (30%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

0.5

0.0

0.5

1.0

1.5

2.0

(d) SIREN (70%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

0.5

0.0

0.5

1.0

1.5

2.0

(e) SIREN (50%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

0.5

0.0

0.5

1.0

1.5

2.0

(f) SIREN (30%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

0.5

0.0

0.5

1.0

1.5

2.0

(g) FFN (70%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

0.5

0.0

0.5

1.0

1.5

2.0

(h) FFN (50%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

0.5

0.0

0.5

1.0

1.5

2.0

(i) FFN (30%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

0.5

0.0

0.5

1.0

1.5

2.0

(j) NeRT (70%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

0.5

0.0

0.5

1.0

1.5

2.0

(k) NeRT (50%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

0.5

0.0

0.5

1.0

1.5

2.0

(l) NeRT (30%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

0.5

0.0

0.5

1.0

1.5

2.0

(m) Ground truth

Figure 23: Experimental results of long-term time series (ETTh1). In (a)-(c), white (resp. black) cells
mean training (resp. validating/testing) samples.

32

Under review as a conference paper at ICLR 2024

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

(a) Coordinate (70%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

(b) Coordinate (50%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

(c) Coordinate (30%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

1.0

0.5

0.0

0.5

1.0

(d) SIREN (70%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

1.0

0.5

0.0

0.5

1.0

(e) SIREN (50%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

1.0

0.5

0.0

0.5

1.0

(f) SIREN (30%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

1.0

0.5

0.0

0.5

1.0

(g) FFN (70%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

1.0

0.5

0.0

0.5

1.0

(h) FFN (50%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

1.0

0.5

0.0

0.5

1.0

(i) FFN (30%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

1.0

0.5

0.0

0.5

1.0

(j) NeRT (70%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

1.0

0.5

0.0

0.5

1.0

(k) NeRT (50%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

1.0

0.5

0.0

0.5

1.0

(l) NeRT (30%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

1.0

0.5

0.0

0.5

1.0

(m) Ground truth

Figure 24: Experimental results of long-term time series (ETTh2). In (a)-(c), white (resp. black) cells
mean training (resp. validating/testing) samples.

33

Under review as a conference paper at ICLR 2024

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

(a) Coordinate (70%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

(b) Coordinate (50%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

(c) Coordinate (30%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

2.0

1.5

1.0

0.5

0.0

0.5

1.0

(d) SIREN (70%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

2.0

1.5

1.0

0.5

0.0

0.5

1.0

(e) SIREN (50%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

2.0

1.5

1.0

0.5

0.0

0.5

1.0

(f) SIREN (30%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

2.0

1.5

1.0

0.5

0.0

0.5

1.0

(g) FFN (70%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

2.0

1.5

1.0

0.5

0.0

0.5

1.0

(h) FFN (50%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

2.0

1.5

1.0

0.5

0.0

0.5

1.0

(i) FFN (30%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

2.0

1.5

1.0

0.5

0.0

0.5

1.0

(j) NeRT (70%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

2.0

1.5

1.0

0.5

0.0

0.5

1.0

(k) NeRT (50%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

2.0

1.5

1.0

0.5

0.0

0.5

1.0

(l) NeRT (30%)

0 10 20 30 40 50
Time

0

1

2

3

4

5

6

7

Fe
at

ur
e

2.0

1.5

1.0

0.5

0.0

0.5

1.0

(m) Ground truth

Figure 25: Experimental results of long-term time series (National Illness). In (a)-(c), white (resp.
black) cells mean training (resp. validating/testing) samples.

34

	Introduction
	Why INRs? – limitations of existing DL methods
	Desiderata for INR-based modeling for time series
	Spatio-temporal Coordinate systems of time series data
	Fourier features of INRs
	Decomposition of time series into interpretable factors

	Model Architecture
	Encoder
	Decoder
	Training algorithm

	Experiments
	Forecasting and imputation on real-world time-series data
	Periodic time series
	Long-term time series

	Scientific problems - solving PDEs

	Related work
	Conclusions
	Ethics statement
	Reproducibility statement
	Limitations
	Drawback of window-based time series models
	Theoretical analyses on INR
	Theoretical analyses
	Empirical analyses
	Ablation studies on the spatiotemporal coordinate
	Ablation studies on learnable Fourier feature mapping

	Additional experiments with an ODE-based synthetic time series
	Experimental setups
	Experimental results

	Algorithm
	Detailed description of datasets
	2D-Helmholtz equation
	Time series datasets

	Detailed experimental results on 2D Helmholtz equation
	Experiments on periodic time series
	Detailed experimental setups
	Additional experimental results

	Additional comparison with time-series baselines
	Experimental setups
	Experimental results

	Additional comparison with modulated INR on unseen samples
	Latent modulation
	Experimental setups
	Experimental results

	Experiments on long-term time series
	Detailed experimental setups
	Additional experimental results

