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Abstract

Meta-evaluation of automatic evaluation001
metrics—assessing evaluation metrics002
themselves—is crucial for accurately bench-003
marking natural language processing systems004
and has implications for scientific inquiry,005
production model development, and policy006
enforcement. While existing approaches007
to metric meta-evaluation focus on general008
statements about the absolute and relative009
quality of metrics across arbitrary system010
outputs, in practice, metrics are applied in011
highly contextual settings, often measuring012
the performance for a highly constrained set013
of system outputs. For example, we may014
only be interested in evaluating a specific015
model or class of models. We introduce a016
method for contextual metric meta-evaluation017
by comparing the local metric accuracy of018
evaluation metrics. Across translation, speech019
recognition, and ranking tasks, we demonstrate020
that the local metric accuracies vary both in021
absolute value and relative effectiveness as we022
shift across evaluation contexts.023

1 Introduction024

Meta-evaluation of automatic evaluation metrics—025

assessing evaluation metrics themselves—is cru-026

cial for accurately benchmarking natural language027

processing systems (Zhou et al., 2022). Because028

metrics are central to scientific inquiry, produc-029

tion model development, and policy enforcement030

(Kocmi et al., 2021), there is a constant need031

for new approaches to evaluating system outputs032

(Novikova et al., 2017).033

Although current methods for metric meta-034

evaluation commonly take a global perspective, re-035

porting the performance of a metric across arbitrary036

system outputs, coming from any system (Stanoje-037

vić et al., 2015; Przybocki et al., 2009), practical038

metric meta-evaluation is highly contextual, mea-039

suring the performance for a highly constrained set040

of system outputs. For example, we may only be041

context
metric X Y Z global

A 0.9 0.9 0.3 0.7
B 0.7 0.7 0.7 0.7
C 0.3 0.3 0.9 0.5

Table 1: Contextual metric meta-evaluation. When com-
paring metrics A, B, and C, traditional meta-evaluation
focuses on global accuracy across arbitrary inputs. Lo-
cal metric accuracy can vary by evaluation contexts X,
Y, and Z.

interested in evaluating a specific model or class of 042

models. From a model development perspective, 043

we may be interested in a metric that is sensitive to 044

model outputs coming from partially trained mod- 045

els at the beginning of the development cycle (when 046

the outputs are far from the target distribution or 047

close to random); such a metric may struggle to 048

differentiate between outputs from fully trained or 049

more effective models. This is highly reflective of 050

the results found by Fomicheva and Specia (2019), 051

who show that metric performance varies signifi- 052

cantly across different levels of translation quality. 053

Thus, using the same metric throughout the devel- 054

opment process may lead to biased or incomplete 055

evaluations and possibly pruning earlier models, 056

which may have a better performance when fully 057

trained. 058

To illustrate the difference between global and 059

contextual metric meta-evaluation, we constructed 060

a toy meta-evaluation for three metrics across three 061

contexts (Table 1). The values in the table represent 062

the accuracy of three metrics (A, B, and C) under 063

three different contexts (X, Y, and Z) as well as the 064

global accuracy across the different contexts. By 065

looking at the average, we might think that A and 066

B are equally accurate. However, when inspect- 067

ing accuracy within individual contexts, we can 068

see that selecting the most appropriate metric is 069

far less straightforward. For example, if we want 070
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a metric that best generalizes across different con-071

texts, we want to pick B over A even though their072

global accuracies are equal. However, if we want073

to specifically measure outputs in context Z, then074

we would want to pick C as it is especially sensitive075

to system outputs in that context, despite it having076

the lowest global accuracy. This suggests that com-077

paring a metric on its global accuracy may deviate078

from local accuracy, which may be more relevant079

in a contextual setting.080

To improve contextual metric meta-evaluation,081

we propose analyzing metrics across different eval-082

uation contexts and measuring their local metric083

accuracies. By evaluating metrics across three dif-084

ferent machine learning tasks—machine transla-085

tion, automated speech recognition, ranking—we086

show that the metric accuracy, which measures the087

ability of a metric to accurately assign the true pref-088

erence between a pair of system decisions, changes089

as the context of the output space changes. We090

also show that the metric accuracy changes both091

in absolute value and relative ordering across the092

different contexts. In contrast with existing work093

on metric meta-evaluation relies heavily on costly094

and time-consuming explicit human feedback (Fab-095

bri et al., 2021; Liu et al., 2016), our method uses096

output perturbations (Sai et al., 2021; He et al.,097

2023) to obtain the true ordering between a pair of098

system outputs without the need of human supervi-099

sion. Overall, we show that measuring local metric100

accuracies is a straightforward methodology to pro-101

vide a more contextual understanding of evaluation102

metrics which complements existing global metric103

meta-evaluation methods.104

2 Related work105

Our work connects to the broader literature on106

meta-evaluation, which has been approached in107

various ways, highlighting the complexity and the108

necessity of this task. For example, the Workshop109

of Statistical Machine Translation (WMT) has fo-110

cused on evaluating the utility of metrics in ma-111

chine translation since 2008, where participants112

submit automated metrics for validation against hu-113

man feedback (Callison-Burch et al., 2008). How-114

ever, human feedback can be subjective and sus-115

ceptible to social biases (Sun et al., 2022). Not-116

ing these limitations, Xiao et al. (2023) propose a117

theory-driven meta-evaluation framework rooted in118

measurement theory for NLG metrics. Their work119

highlights issues in human evaluation including a120

lack of validation, standardization, and consistency. 121

Our use of output perturbation is inspired by 122

prior work in testing metric robustness. Chen and 123

Eger (2023) proposed a preference-based adversar- 124

ial attack framework using targeted perturbations 125

to evaluate the robustness of NLI-based and BERT- 126

based metrics, finding that NLI-based metrics are 127

more robust in summarization but not in machine 128

translation. Sai et al. (2021) extends perturbation- 129

based robustness testing by creating templates tar- 130

geting specific criteria such as jumbled word order 131

to test fluency. Chen et al. (2019) assessed QA 132

metrics by converting multiple-choice datasets into 133

free-response formats, highlighting the need for 134

BERT-based metrics. Additionally, Valcarce et al. 135

(2018) evaluated the robustness of ranking metrics 136

against incompleteness by introducing sparsity to 137

system outputs. Our paper adopts similar pertur- 138

bation techniques to assess the preference-based 139

evaluation capability of different metrics, eliminat- 140

ing the need for costly and time-intensive explicit 141

human feedback. 142

Although metric meta-evaluation is often done 143

on a global level, previous work indicates that the 144

reliability of a metric changes from the system- 145

level to the decision-level (Reiter and Belz, 2009; 146

Stent et al., 2005). Though some research has in- 147

vestigated metric performance for different con- 148

texts based on output sources (i.e., models) or out- 149

put qualities (Mathur et al., 2020; Novikova et al., 150

2017), our work addresses the lack of a systematic 151

review of contextual meta-evaluation and how to 152

conduct it. 153

3 Local accuracy 154

To formalize local metric accuracy, we introduce 155

the following notation. Let X be the set of all 156

possible system inputs (e.g., for MT, all possible 157

strings from the source language) and Y the set of 158

all possible system outputs (e.g., for MT, all pos- 159

sible strings from the target language). We define 160

X ⊂ X to be the subset of system inputs observed 161

in a specific context (e.g., for MT, a sample of 162

source sentences from a specific university). Simi- 163

larly, Yx ⊂ Y is the subset of system decisions for 164

x ∈ X observed for X in a specific context (e.g., 165

for MT, a set of translations generated by a set of 166

candidate systems). In addition, we have access to 167

a perturbation function that, with high probability, 168

degrades the utility of a decision y (e.g., dropping 169

a random word from a translated input). Let Qx 170
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be the set of pairs decisions conditioned on an in-171

put x and their corresponding degraded version:172

Qx = {⟨y, y′⟩}y∈Yx .173

An evaluation metric µ : X × Y → ℜ gener-174

ates a scalar number reflecting the performance175

according to some system property that we want to176

measure (e.g. correctness of translation). Each met-177

ric is an approximation of µ∗, the ideal evaluation178

metric (i.e., the true utility of an output). Given179

any two pairs of system outputs, µ∗ will always180

be able to determine the true ordering of the two181

outputs. In cases where we intentionally perturb182

y to obtain y′, we know that µ∗(x, y) > µ∗(x, y′).183

Under the assumption that µ approximates µ∗, we184

want to compute how often µ(x, y) > µ(x, y′). As185

suggested by Kocmi et al. (2021), we focus on186

the ability of µ to reproduce the ordering of deci-187

sions, rather than the magnitude of the difference188

between µ(x, y) and µ(x, y′). From this, we define189

the pointwise local metric accuracy, conditioned190

on an input x as,191

ACCµ(Qx) =
1

|Qx|
∑

⟨y,y′⟩∈Qx

1
[
µ(x, y) > µ(x, y′)

]
(1)

192

This measures the ability of a metric to reproduce193

the true ordering of perturbations for a specific194

input x. We define the local metric accuracy across195

all contexts as,196

ACCµ(Q) =
1

|X|
∑
x∈X

ACCµ(Qx) (2)197

where Q = ∪x∈XQx. This measures the local198

metric accuracy across a sample of system inputs,199

as we may have in a standard evaluation set.200

We are interested in testing two hypotheses with201

respect to local metric accuracy.202

H1: The absolute local metric accuracy, ACCµ(Q),203

of a metric µ changes as the context changes.204

Evidence supporting this hypothesis suggests that205

existing evaluation methods focusing on global206

metric accuracy obscures how metric accuracy207

varies across different contexts.208

H2: The ordering of a set of metrics by local metric209

accuracy changes as context changes.210

In other words, the total ordering of all metrics211

by local metric accuracy within a context changes212

as the context Q changes. Evidence supporting213

this hypothesis suggests that choosing an appropri-214

ate metric to benchmark compare system outputs215

largely depends on the context.216

4 Methods and Materials 217

4.1 Tasks, dataset, and metrics 218

We performed our evaluation on three different 219

tasks: Machine Translation (MT), Automated 220

Speech Recognition (ASR), and Ranking. Table 221

2 details the dataset and metrics that we used in 222

our experiments. For each task, we used readily 223

available system outputs to improve reproducibil- 224

ity. For each metric, we employed their respective 225

official implementations or, when unavailable, the 226

most widely used implementation with default pa- 227

rameters. For any neural metric computation, we 228

used a NVIDIA RTX A6000 GPU. For BLEU, we 229

used nltk’s sentencebleu implementation. We 230

also used nltk’s implementation for METEOR. For 231

ROUGE1 and BERTSCORE2, we have used the im- 232

plementation released by their respective authors. 233

For BLEURT3, COMET4, CHRF5 and UNITE6, we 234

have used their official implementations via the 235

evaluate library on HuggingFace. We used the 236

jiwer7 Python package to compute the ASR met- 237

rics. We used the trec_eval8 to calculate the rank- 238

ing metrics. 239

We adopt the category with the highest num- 240

ber of contexts for each task. The abundance of 241

contexts allowed us to identify trends in metric be- 242

havior across a broader range of items and helped 243

us identify supporting evidence for or against our 244

hypotheses. 245

4.2 Perturbation techniques 246

To test our hypotheses, we applied a perturbation 247

function that degrades the utility of a system output 248

y and its corresponding degraded version y′. Thus, 249

we know that the quality of y′ under a specific task 250

is worse than y with a high probability. For the 251

system outputs belonging to the machine transla- 252

tion and automated speech recognition tasks, we 253

perturbed y by removing 20% of the words in the 254

outputs, rounded to the nearest integer. 255

Our perturbation technique is a simplification of 256

He et al. (2023), who synthesize a range of per- 257

turbations that closely mimic human or machine 258

1https://github.com/google-research/google-
research/tree/master/rouge

2https://github.com/Tiiiger/bertscore
3https://github.com/google-research/bleurtreadme
4https://unbabel.github.io/COMET/html/models.html
5https://github.com/mjpost/sacreBLEUchrf–chrf
6https://huggingface.co/Unbabel/unite-mup
7https://github.com/jitsi/jiwer
8https://github.com/usnistgov/trec_eval

3

https://github.com/google-research/google-research/tree/master/rouge
https://github.com/google-research/google-research/tree/master/rouge
https://github.com/Tiiiger/bert_score
https://github.com/google-research/bleurt##readme
https://unbabel.github.io/COMET/html/models.html
https://github.com/mjpost/sacreBLEU##chrf--chrf
https://huggingface.co/Unbabel/unite-mup
https://github.com/jitsi/jiwer
https://github.com/usnistgov/trec_eval


Task Dataset Metrics

MT Over 150,000 system outputs and reference translation
from 62 different MT systems submitted to the WMT
metrics task from year 2023 (Freitag et al., 2023) for
the source-target language pairs English-Russian (en-
ru), English-German (en-de), Chinese-English (zh-en).
The subsets that are available are YEAR, DOMAIN, and
SYSTEM.

BLEU, ROUGE-1, ROUGE-2, ROUGE-L, METEOR,
BERTSCOREP, BERTSCORER, BERTSCOREF1,
COMET, BLEURT, CHRF, UNITESRC, UNITEREF,
UNITEUNIFIED

ASR Over 33,000 system outputs from six different ASR mod-
els on ESPnet (Watanabe et al., 2018) on the LibriSpeech
100 dataset (Panayotov et al., 2015). The subsets that
are available are SYSTEM, SPEAKER ID, GENDER, and
QUALITY.

Word Error Rate (WER), Match Error Rate (MER),
Word Information Lost (WIL), Word Information Pre-
served (WIP), Character Error Rate (CER)

Ranking Ranked list of top-100 items retrieved by 21 recom-
mender algorithms provided by Valcarce et al. (2018) on
the MovieLens1M dataset (Harper and Konstan, 2015)
submitted to TREC (Buckley and Voorhees, 2004). We
were able to segment the outputs by ALGORITHM.

Mean Average Precision (MAP), Precision@R, where
R is the number of relevant documents (RPREC), Re-
ciprocal Rank (RECIP_RANK), Interpolated Precision
at Recall Level X (for X = {0.0, 0.1, 0.2, 0.3, 0.4})
(IPREC_AT_RECALL_X), Precision@K (P_K),
Recall@K (RECALL_K), nDCG@K (NDCG_CUT_K)
(where K = 5, 10, 15, 20, 30)

Table 2: Datasets and metrics used for different tasks

errors. However, we want added simplicity and259

generalizability to languages other than English,260

so we refrained from doing perturbations that are261

semantically informed, such as removing articles262

and prepositions, verb lemmatization, or negation.263

For the system outputs belonging to the rank-264

ing task, we perturbed y by shuffling the rankings265

within the top-100 items for each user-system pair.266

4.3 Hypothesis Testing267

In order to test H1, we plotted the metric accuracies268

ACCµ(Q) for each task across different contexts269

within the selected context category Q as a line270

graph, such that we can visualize how the met-271

ric’s capability of differentiating between y and y′272

changes as the context changes by observing the273

slopes and overlaps between the lines. To further274

investigate the association between the context Q275

and the metric accuracy ACCµ(Q), we used the χ2276

test of independence of variables (Pearson, 1900) in277

a contingency table (Pearson, 1904). We will com-278

pare the resulting p-values to the significance level279

of α = 0.05 to understand whether the changes280

in metric accuracy ACCµ(Q) across the different281

contexts Q are statistically significant.282

To test H2, we computed the Kendall’s τ283

(Kendall, 1938) between a two rankings of met-284

rics according to local metric accuracy under two285

contexts. This helps us quantify how the total order-286

ing of the metrics changes as the context changes.287

In order to emphasize the metric selection task, we288

adopt version of Kendall’s τ that weighs changes289

at the higher in the ranking more than those lower 290

in the ranking (Shieh, 1998). Specifically, we use 291

a hyperbolic weighing that maps each rank r to 292

weight 1
r+1 . 293

5 Results 294

5.1 Machine Translation 295

We visualize the metric accuracies for the machine 296

translation metrics under the different SYSTEM 297

contexts, as shown in Figure 1a. We observe that 298

the line for each metric changes as we change the 299

context, as indicated by the varying slopes of the 300

lines. The results of the χ2 test indicate that the 301

difference in the metric accuracies across the dif- 302

ferent context is statistically significant, supporting 303

H1 for MT. 304

Figure 1a also contains intersections between 305

lines corresponding to different metrics, indicat- 306

ing that there is a change in the relative position 307

of each metric in the different contexts and hence 308

signifying a change in the total ordering of metrics 309

by local accuracy across contexts, supporting H2. 310

This is further strengthened in Figure 1b, where 311

the τ values show that the correspondence between 312

the pairs of metric accuracy rankings varies consid- 313

erably for each pair of SYSTEMs. If the τ values 314

were consistently close to 1, there would not be sup- 315

port for H2. Instead, we find that τ values cluster 316

according to similarity of context. 317
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5.2 Automated Speech Recognition318

For ASR, we report the local metric accuracy under319

the different SPEAKER IDs which come from dif-320

ferent dataset QUALITY contexts (CLEAN/RAW).321

We plot the local metric accuracy for contexts as-322

sociated with different contexts shown in Figure323

2a. We observe that the lines corresponding to324

each metric are not straight, which indicates that325

the absolute local accuracy for each metric changes326

with context, supporting H1. Our χ2 test results327

confirm that the difference in the local metric accu-328

racies across the different contexts is statistically329

significant, providing evidence supporting H1 for330

ASR.331

Interestingly, we do not observe the same overlap332

between the lines corresponding to the different333

metrics as we did for MT. This, along with the334

consistently high values of τ in Figure 2b, indicates335

that there is not evidence supporting H2 for ASR.336

5.3 Ranking337

Plotting the metric accuracies for the ranking met-338

rics for the different ALGORITHMs in Figure 3a,339

we can first observe that none of the lines corre-340

sponding to the different metrics are straight lines,341

which supports H1. The large fluctuations within342

each line suggest that the changes in the absolute lo-343

cal accuracies for each metric are rather significant.344

The χ2 test results shows a statistically significant345

change, providing evidence in support of H1.346

Furthermore, we can see that overlaps exist be-347

tween the different lines corresponding to the dif-348

ferent metrics, similar to the observation we made349

in the MT case. This indicates that the total or-350

dering of metric accuracies changes as the context351

changes, supporting H2. The τ results (Figure 3b)352

show clustering by algorithm, as with MT.353

6 Discussion354

6.1 H1: Absolute Local Accuracies355

The results in Section 5 generally provide evidence356

supporting H1, as our experiments consistently357

show that the local metric accuracy changes as the358

context changes.359

We can observe that the local metric accuracy360

for a context is related to the average quality of361

outputs in that context. For example, in the rank-362

ing setting, the most effective system according to363

MAP is SLIM, which is also the context whose364

perturbed outputs are easiest to distinguish. Con-365

versely, perturbed outputs in the random ranker are366

more difficult for all metrics to distinguish. This is 367

because our perturbation method catastrophically 368

degrades good outputs and bad outputs are already 369

poor and difficult to make demonstrably worse. We 370

will return to this in Section 6.3. 371

These results suggest that evaluators may be in- 372

terested in the stability of local metric accuracy 373

when selecting a metric. A metric that is more sta- 374

ble with respect to local metric accuracy is more 375

predictable when deployed under a new context 376

and the probability of selecting the wrong system 377

is consistent. This is especially important if we 378

consider a new evaluation context where poor local 379

metric accuracy puts users—or a vulernable subs- 380

group of users—at risk. Work in robust machine 381

learning provides existing methods for designing 382

metrics stable across context changes (Yuan et al., 383

2024). 384

In addition to stability, we can organize metrics 385

according to systematic behavior in local metric 386

accuracy. For example, in Figure 1a, more com- 387

plex embedding-based and model-based evaluation 388

metrics generally perform better than the simpler 389

lexical-based metrics (Zhang et al., 2019; Freitag 390

et al., 2022). More complex metrics cluster on the 391

top of the figure while simpler metrics occupy the 392

bottom regions; any overlap occurs mostly within a 393

specific category. Such analysis allows evaluators 394

to understand the empirical relationships between 395

metric ensembles. Although picking the best met- 396

ric might involve selecting a metric occupying the 397

top of the figure, there may be contexts in which 398

local metric accuracies are close enough to allow 399

flexibility in selecting metrics with lower local met- 400

ric accuracy. 401

More generally, we can consider multi-objective 402

metric development. For example, since 403

embedding- and model-based methods are more 404

time-intensive and computationally costly com- 405

pared to the lexical-based methods, adopting sim- 406

pler and cheaper metrics when local metric accura- 407

cies are comparable (e.g., early in model develop- 408

ment) would result in cost savings and faster itera- 409

tion. Beyond cost and local metric accuracy, one 410

can imagine local versions of metric interpretabil- 411

ity, metric engineering overhead, metric optimiz- 412

ability, and other criteria when conducting for con- 413

textual meta-evaluation. 414

6.2 H2: Relative Local Accuracies 415

Although the observations in Section 5 errs to- 416

ward accepting H2, the evidence from our experi- 417
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(b) Weighted Kendall’s τ of metrics ordered by local accuracy
between different contexts

Figure 1: Machine Translation. Contexts provided by translation system.
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Figure 2: Automatic Speech Recognition. Local metric accuracy across different Speaker IDs. (a) Speaker IDs to
the left of the grey line come from the QUALITY=CLEAN LibriSpeech-100 dataset, while the Speaker IDs to the
right of the grey line come from the QUALITY=OTHER LibriSpeech-100 dataset.
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(a) Local metric accuracy across the different contexts
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Figure 3: Ranking. Metric accuracy for Ranking metrics across the different systems.
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ments on the ASR task in Section 5.2 suggest that418

it strongly depends on the nature of the task and419

the metrics. Evaluating ASR is relatively straight-420

forward, where the ambiguity of correct answers421

is low, unlike MT or ranking where two outputs422

(e.g., translations or permutations) can be equally423

good (Wieting et al., 2019). Hence, the metrics424

are commonly used to benchmark ASR systems425

only slightly vary in the construct they are trying to426

measure, and they are all operationalized following427

similar statistical methods.428

Figures 1b and 3b indicate that there are groups429

of contexts where the relative reliability of met-430

rics is similar. When contexts can be structured431

according to metric accuracy, ones can adopt a432

fixed evaluation metric. This has practical im-433

plications in terms of engineering and develop-434

ment overhead or, in the case of model-based met-435

rics, model development cost. Predicting the sim-436

ilarity in local metric accuracy ordering (i.e., the437

cells in Figures 1b and 3b) is an important task438

because it allows evaluators to confidently adopt439

an evaluation metric without conducting contex-440

tual meta-evaluation. Predictive features include441

any metadata we have about the contexts. For ex-442

ample, in ranking, Valcarce et al. (2018) catego-443

rize ALGORITHMs into different families of tech-444

niques: matrix factorization (SVD, PURESVD,445

BPRMF, WRMF), neighborhood-based (CHI2,446

KLD, RSV, ROCCHIO’S WEIGHTS).447

6.3 Methodology448

Although our results demonstrate that local metric449

accuracy analysis can provide insight into metric450

behavior, there are several opportunities for im-451

proving the methodology. First, our perturbations,452

while reliable in generating output degradations,453

may result in outputs that are easily detected by454

metrics, especially for highly effective systems.455

Moreover, perturbed outputs may be sufficiently456

different as to be unlikely to occur in a specific457

context. For example, if we are evaluating in the458

context of highly effective MT systems, a transla-459

tion with a missing word is very unlikely by any460

highly effective MT system, even though we know461

it is lower quality. In order to address this, develop-462

ing perturbation methods that reliably degrade per-463

formance and are likely to occur within a context464

will be important for future local metric accuracy465

development. This is related to synthesizing hard466

negative examples in the contrastive learning liter-467

ature (Kalantidis et al., 2020). Alternatively, we468

can consider non-perturbation data, perhaps from 469

human annotators, although this compromises the 470

cost-effectiveness of output perturbation. 471

In order to help with clarity, we focused on con- 472

texts that were interpretable, which contexts are 473

relevant depends on the broader model evaluation 474

environment. Focusing on models, as we did for 475

MT and ranking, emphasizes contexts that reflect it- 476

erative model development and refinement within a 477

narrow set of constraints (i.e., the particular model 478

being evaluated). If we are benchmarking a diverse 479

set of systems, we are interested in comparing a 480

broader set of possible outputs than those from a 481

single system. In cases where we are designing a 482

metric agnostic to a particular context, we may be 483

interested in robust performance across arbitrary 484

contexts. While this is similar to global analysis, a 485

more rigorous and formal approach to context se- 486

lection, such as found in the distributionally robust 487

machine learning literature (Duchi et al., 2018), 488

may be more appropriate. 489

7 Conclusion 490

We introduce the notion of local metric accuracy 491

and demonstrate how to use it to conduct contex- 492

tual metric meta-evaluation. Our results show that 493

both the absolute and relative local accuracy of 494

a metric varies as we vary context, though this 495

depends on the nature of the task. Based on our 496

results, we believe that by moving beyond global 497

metric meta-evaluation, we can achieve a more ac- 498

curate understanding of metric performance, which 499

in turn increases the reliability of the evaluations 500

and provide actionable insights for improving NLP 501

systems. 502

8 Limitations 503

As mentioned in Section 4.2, our experiments 504

adopted relatively simple perturbation methods in 505

order to cover a wide range of tasks and guarantee 506

degradation. In future work, we plan to explore 507

more more task- and language-specific methods 508

developed in the NLP community (Sai et al., 2021; 509

Chen and Eger, 2023; He et al., 2023). 510

We also compute local accuracy by uniformly 511

weighting all output-perturbation pairs. In reality, 512

different outputs have different probabilities of oc- 513

curring in a specific context. These probabilities 514

should be incorporated into the accuracy calcula- 515

tion to provide a more reliable estimate of local 516

metric accuracy. Estimating the distribution over 517

7



outputs for a specific context itself is a difficult518

research question which we plan on addressing in519

future work.520
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Jekaterina Novikova, Ondřej Dušek, Amanda Cer- 611
cas Curry, and Verena Rieser. 2017. Why we need 612
new evaluation metrics for NLG. In Proceedings of 613
the 2017 Conference on Empirical Methods in Natu- 614
ral Language Processing, pages 2241–2252, Copen- 615
hagen, Denmark. Association for Computational Lin- 616
guistics. 617

Vassil Panayotov, Guoguo Chen, Daniel Povey, and San- 618
jeev Khudanpur. 2015. Librispeech: An asr corpus 619
based on public domain audio books. In 2015 IEEE 620
International Conference on Acoustics, Speech and 621
Signal Processing (ICASSP), pages 5206–5210. 622

Karl Pearson. 1900. X. on the criterion that a given 623
system of deviations from the probable in the case 624
of a correlated system of variables is such that it 625
can be reasonably supposed to have arisen from 626
random sampling. The London, Edinburgh, and 627
Dublin Philosophical Magazine and Journal of Sci- 628
ence, 50(302):157–175. 629

8

https://doi.org/10.18653/v1/D19-5817
https://doi.org/10.18653/v1/D19-5817
https://doi.org/10.18653/v1/D19-5817
https://doi.org/10.1162/tacl_a_00576
https://doi.org/10.1162/tacl_a_00576
https://doi.org/10.1162/tacl_a_00576
https://doi.org/10.1162/coli_a_00356
https://doi.org/10.1162/coli_a_00356
https://doi.org/10.1162/coli_a_00356
https://doi.org/10.1162/coli_a_00356
https://doi.org/10.1162/coli_a_00356
https://aclanthology.org/2023.wmt-1.51.pdf
https://aclanthology.org/2023.wmt-1.51.pdf
https://aclanthology.org/2023.wmt-1.51.pdf
https://aclanthology.org/2023.wmt-1.51.pdf
https://aclanthology.org/2023.wmt-1.51.pdf
https://aclanthology.org/2022.wmt-1.2
https://aclanthology.org/2022.wmt-1.2
https://aclanthology.org/2022.wmt-1.2
https://aclanthology.org/2022.wmt-1.2
https://aclanthology.org/2022.wmt-1.2
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
https://doi.org/10.18653/v1/2023.acl-long.674
https://doi.org/10.18653/v1/2023.acl-long.674
https://doi.org/10.18653/v1/2023.acl-long.674
https://aclanthology.org/2021.wmt-1.57
https://aclanthology.org/2021.wmt-1.57
https://aclanthology.org/2021.wmt-1.57
https://aclanthology.org/2021.wmt-1.57
https://aclanthology.org/2021.wmt-1.57
https://doi.org/10.18653/v1/D16-1230
https://doi.org/10.18653/v1/D16-1230
https://doi.org/10.18653/v1/D16-1230
https://doi.org/10.18653/v1/D16-1230
https://doi.org/10.18653/v1/D16-1230
https://aclanthology.org/2020.wmt-1.77
https://aclanthology.org/2020.wmt-1.77
https://aclanthology.org/2020.wmt-1.77
https://doi.org/10.18653/v1/D17-1238
https://doi.org/10.18653/v1/D17-1238
https://doi.org/10.18653/v1/D17-1238
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/ICASSP.2015.7178964


Karl Pearson. 1904. On the theory of contingency and630
its relation to association and normal correlation.631
Drapers’ Company research memoirs. Cambridge632
University Press.633

Mark Przybocki, Kay Peterson, Sébastien Bronsart, and634
Gregory Sanders. 2009. The nist 2008 metrics for635
machine translation challenge—overview, method-636
ology, metrics, and results. Machine Translation,637
23:71–103.638

Ehud Reiter and Anja Belz. 2009. An investigation into639
the validity of some metrics for automatically evalu-640
ating natural language generation systems. Computa-641
tional Linguistics, 35(4):529–558.642

Ananya B. Sai, Tanay Dixit, Dev Yashpal Sheth, Sreyas643
Mohan, and Mitesh M. Khapra. 2021. Perturbation644
CheckLists for evaluating NLG evaluation metrics.645
In Proceedings of the 2021 Conference on Empiri-646
cal Methods in Natural Language Processing, pages647
7219–7234, Online and Punta Cana, Dominican Re-648
public. Association for Computational Linguistics.649

Grace S Shieh. 1998. A weighted kendall’s tau statistic.650
Statistics & probability letters, 39(1):17–24.651
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