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Abstract

Meta-evaluation of automatic evaluation
metrics—assessing  evaluation  metrics
themselves—is crucial for accurately bench-
marking natural language processing systems
and has implications for scientific inquiry,
production model development, and policy
enforcement.  While existing approaches
to metric meta-evaluation focus on general
statements about the absolute and relative
quality of metrics across arbitrary system
outputs, in practice, metrics are applied in
highly contextual settings, often measuring
the performance for a highly constrained set
of system outputs. For example, we may
only be interested in evaluating a specific
model or class of models. We introduce a
method for contextual metric meta-evaluation
by comparing the local metric accuracy of
evaluation metrics. Across translation, speech
recognition, and ranking tasks, we demonstrate
that the local metric accuracies vary both in
absolute value and relative effectiveness as we
shift across evaluation contexts.

1 Introduction

Meta-evaluation of automatic evaluation metrics—
assessing evaluation metrics themselves—is cru-
cial for accurately benchmarking natural language
processing systems (Zhou et al., 2022). Because
metrics are central to scientific inquiry, produc-
tion model development, and policy enforcement
(Kocmi et al., 2021), there is a constant need
for new approaches to evaluating system outputs
(Novikova et al., 2017).

Although current methods for metric meta-
evaluation commonly take a global perspective, re-
porting the performance of a metric across arbitrary
system outputs, coming from any system (Stanoje-
vi¢ et al., 2015; Przybocki et al., 2009), practical
metric meta-evaluation is highly contextual, mea-
suring the performance for a highly constrained set
of system outputs. For example, we may only be

context
metric ‘ X Y 1z ‘ global
A 09 09 03 0.7
B 0.7 07 0.7 0.7
C 03 03 09 0.5

Table 1: Contextual metric meta-evaluation. When com-
paring metrics A, B, and C, traditional meta-evaluation
focuses on global accuracy across arbitrary inputs. Lo-
cal metric accuracy can vary by evaluation contexts X,
Y, and Z.

interested in evaluating a specific model or class of
models. From a model development perspective,
we may be interested in a metric that is sensitive to
model outputs coming from partially trained mod-
els at the beginning of the development cycle (when
the outputs are far from the target distribution or
close to random); such a metric may struggle to
differentiate between outputs from fully trained or
more effective models. This is highly reflective of
the results found by Fomicheva and Specia (2019),
who show that metric performance varies signifi-
cantly across different levels of translation quality.
Thus, using the same metric throughout the devel-
opment process may lead to biased or incomplete
evaluations and possibly pruning earlier models,
which may have a better performance when fully
trained.

To illustrate the difference between global and
contextual metric meta-evaluation, we constructed
a toy meta-evaluation for three metrics across three
contexts (Table 1). The values in the table represent
the accuracy of three metrics (A, B, and C) under
three different contexts (X, Y, and Z) as well as the
global accuracy across the different contexts. By
looking at the average, we might think that A and
B are equally accurate. However, when inspect-
ing accuracy within individual contexts, we can
see that selecting the most appropriate metric is
far less straightforward. For example, if we want



a metric that best generalizes across different con-
texts, we want to pick B over A even though their
global accuracies are equal. However, if we want
to specifically measure outputs in context Z, then
we would want to pick C as it is especially sensitive
to system outputs in that context, despite it having
the lowest global accuracy. This suggests that com-
paring a metric on its global accuracy may deviate
from local accuracy, which may be more relevant
in a contextual setting.

To improve contextual metric meta-evaluation,
we propose analyzing metrics across different eval-
uation contexts and measuring their local metric
accuracies. By evaluating metrics across three dif-
ferent machine learning tasks—machine transla-
tion, automated speech recognition, ranking—we
show that the metric accuracy, which measures the
ability of a metric to accurately assign the true pref-
erence between a pair of system decisions, changes
as the context of the output space changes. We
also show that the metric accuracy changes both
in absolute value and relative ordering across the
different contexts. In contrast with existing work
on metric meta-evaluation relies heavily on costly
and time-consuming explicit human feedback (Fab-
bri et al., 2021; Liu et al., 2016), our method uses
output perturbations (Sai et al., 2021; He et al.,
2023) to obtain the true ordering between a pair of
system outputs without the need of human supervi-
sion. Overall, we show that measuring local metric
accuracies is a straightforward methodology to pro-
vide a more contextual understanding of evaluation
metrics which complements existing global metric
meta-evaluation methods.

2 Related work

Our work connects to the broader literature on
meta-evaluation, which has been approached in
various ways, highlighting the complexity and the
necessity of this task. For example, the Workshop
of Statistical Machine Translation (WMT) has fo-
cused on evaluating the utility of metrics in ma-
chine translation since 2008, where participants
submit automated metrics for validation against hu-
man feedback (Callison-Burch et al., 2008). How-
ever, human feedback can be subjective and sus-
ceptible to social biases (Sun et al., 2022). Not-
ing these limitations, Xiao et al. (2023) propose a
theory-driven meta-evaluation framework rooted in
measurement theory for NLG metrics. Their work
highlights issues in human evaluation including a

lack of validation, standardization, and consistency.

Our use of output perturbation is inspired by
prior work in testing metric robustness. Chen and
Eger (2023) proposed a preference-based adversar-
ial attack framework using targeted perturbations
to evaluate the robustness of NLI-based and BERT-
based metrics, finding that NLI-based metrics are
more robust in summarization but not in machine
translation. Sai et al. (2021) extends perturbation-
based robustness testing by creating templates tar-
geting specific criteria such as jumbled word order
to test fluency. Chen et al. (2019) assessed QA
metrics by converting multiple-choice datasets into
free-response formats, highlighting the need for
BERT-based metrics. Additionally, Valcarce et al.
(2018) evaluated the robustness of ranking metrics
against incompleteness by introducing sparsity to
system outputs. Our paper adopts similar pertur-
bation techniques to assess the preference-based
evaluation capability of different metrics, eliminat-
ing the need for costly and time-intensive explicit
human feedback.

Although metric meta-evaluation is often done
on a global level, previous work indicates that the
reliability of a metric changes from the system-
level to the decision-level (Reiter and Belz, 2009;
Stent et al., 2005). Though some research has in-
vestigated metric performance for different con-
texts based on output sources (i.e., models) or out-
put qualities (Mathur et al., 2020; Novikova et al.,
2017), our work addresses the lack of a systematic
review of contextual meta-evaluation and how to
conduct it.

3 Local accuracy

To formalize local metric accuracy, we introduce
the following notation. Let X be the set of all
possible system inputs (e.g., for MT, all possible
strings from the source language) and ) the set of
all possible system outputs (e.g., for MT, all pos-
sible strings from the target language). We define
X C X to be the subset of system inputs observed
in a specific context (e.g., for MT, a sample of
source sentences from a specific university). Simi-
larly, Y, C ) is the subset of system decisions for
x € X observed for X in a specific context (e.g.,
for MT, a set of translations generated by a set of
candidate systems). In addition, we have access to
a perturbation function that, with high probability,
degrades the utility of a decision y (e.g., dropping
a random word from a translated input). Let Q.



be the set of pairs decisions conditioned on an in-
put = and their corresponding degraded version:
Qo = {{y, ") }yev..-

An evaluation metric u : X x )Y — R gener-
ates a scalar number reflecting the performance
according to some system property that we want to
measure (e.g. correctness of translation). Each met-
ric is an approximation of 1*, the ideal evaluation
metric (i.e., the true utility of an output). Given
any two pairs of system outputs, px will always
be able to determine the true ordering of the two
outputs. In cases where we intentionally perturb
y to obtain 3/, we know that u*(z,y) > pu*(z,v').
Under the assumption that ;¢ approximates p*, we
want to compute how often p(z,y) > u(z,y'). As
suggested by Kocmi et al. (2021), we focus on
the ability of u to reproduce the ordering of deci-
sions, rather than the magnitude of the difference
between p(z, y) and p(x,y'). From this, we define
the pointwise local metric accuracy, conditioned
on an input x as,

Acc,(Qq) = L

o Yo Lulxy) > play)]

(¥,y")€Qx

(1
This measures the ability of a metric to reproduce
the true ordering of perturbations for a specific
input x. We define the local metric accuracy across
all contexts as,

Acc,(Q) = |X1| > Accu(Q)

zeX

2)

where ) = Ugcx@;. This measures the local
metric accuracy across a sample of system inputs,
as we may have in a standard evaluation set.

We are interested in testing two hypotheses with
respect to local metric accuracy.

H1: The absolute local metric accuracy, ACC, (@),
of a metric p changes as the context changes.

Evidence supporting this hypothesis suggests that
existing evaluation methods focusing on global
metric accuracy obscures how metric accuracy
varies across different contexts.

H2: The ordering of a set of metrics by local metric
accuracy changes as context changes.

In other words, the total ordering of all metrics
by local metric accuracy within a context changes
as the context () changes. Evidence supporting
this hypothesis suggests that choosing an appropri-
ate metric to benchmark compare system outputs
largely depends on the context.

4 Methods and Materials

4.1 Tasks, dataset, and metrics

We performed our evaluation on three different
tasks: Machine Translation (MT), Automated
Speech Recognition (ASR), and Ranking. Table
2 details the dataset and metrics that we used in
our experiments. For each task, we used readily
available system outputs to improve reproducibil-
ity. For each metric, we employed their respective
official implementations or, when unavailable, the
most widely used implementation with default pa-
rameters. For any neural metric computation, we
used a NVIDIA RTX A6000 GPU. For BLEU, we
used nltk’s sentencebleu implementation. We
also used nl1tk’s implementation for METEOR. For
ROUGE! and BERTSCOREZ, we have used the im-
plementation released by their respective authors.
For BLEURT?, COMET*, CHRF’® and UNITE®, we
have used their official implementations via the
evaluate library on HuggingFace. We used the
jiwer’ Python package to compute the ASR met-
rics. We used the trec_eval® to calculate the rank-
ing metrics.

We adopt the category with the highest num-
ber of contexts for each task. The abundance of
contexts allowed us to identify trends in metric be-
havior across a broader range of items and helped
us identify supporting evidence for or against our
hypotheses.

4.2 Perturbation techniques

To test our hypotheses, we applied a perturbation
function that degrades the utility of a system output
y and its corresponding degraded version 3. Thus,
we know that the quality of 3/ under a specific task
is worse than y with a high probability. For the
system outputs belonging to the machine transla-
tion and automated speech recognition tasks, we
perturbed y by removing 20% of the words in the
outputs, rounded to the nearest integer.

Our perturbation technique is a simplification of
He et al. (2023), who synthesize a range of per-
turbations that closely mimic human or machine

"https://github.com/google-research/google-
research/tree/master/rouge
Zhttps://github.com/Tiiiger/bert, core
3https://github.com/google-research/bleurtreadme
*https://unbabel.github.io/COMET/html/models.html
>https://github.com/mjpost/sacreBLEUchrf—chrf
®https://huggingface.co/Unbabel/unite-mup
"https://github.com/jitsi/jiwer
8https://github.com/usnistgov/trec_eval


https://github.com/google-research/google-research/tree/master/rouge
https://github.com/google-research/google-research/tree/master/rouge
https://github.com/Tiiiger/bert_score
https://github.com/google-research/bleurt##readme
https://unbabel.github.io/COMET/html/models.html
https://github.com/mjpost/sacreBLEU##chrf--chrf
https://huggingface.co/Unbabel/unite-mup
https://github.com/jitsi/jiwer
https://github.com/usnistgov/trec_eval

Task

Dataset

Metrics

MT

ASR

Ranking

Over 150,000 system outputs and reference translation
from 62 different MT systems submitted to the WMT
metrics task from year 2023 (Freitag et al., 2023) for
the source-target language pairs English-Russian (en-
ru), English-German (en-de), Chinese-English (zh-en).
The subsets that are available are YEAR, DOMAIN, and
SYSTEM.

Over 33,000 system outputs from six different ASR mod-
els on ESPnet (Watanabe et al., 2018) on the LibriSpeech
100 dataset (Panayotov et al., 2015). The subsets that
are available are SYSTEM, SPEAKER ID, GENDER, and
QUALITY.

Ranked list of top-100 items retrieved by 21 recom-
mender algorithms provided by Valcarce et al. (2018) on
the MovieLens1M dataset (Harper and Konstan, 2015)
submitted to TREC (Buckley and Voorhees, 2004). We

BLEU, ROUGE-1, ROUGE-2, ROUGE-L, METEOR,
BERTSCOREP, BERTSCORER, BERTSCOREFI,
COMET, BLEURT, CHRF, UNITESRC, UNITEREF,
UNITEUNIFIED

Word Error Rate (WER), Match Error Rate (MER),
Word Information Lost (WIL), Word Information Pre-
served (WIP), Character Error Rate (CER)

Mean Average Precision (MAP), Precision@ R, where
R is the number of relevant documents (RPREC), Re-
ciprocal Rank (RECIP_RANK), Interpolated Precision
at Recall Level X (for X = {0.0,0.1,0.2,0.3,0.4})

were able to segment the outputs by ALGORITHM.

(IPREC_AT_RECALL_X), Precision@ K (P_K),
Recall@ K (RECALL_K), nDCG@ K (NDCG_cuT_K)
(where K = 5,10, 15, 20, 30)

Table 2: Datasets and metrics used for different tasks

errors. However, we want added simplicity and
generalizability to languages other than English,
so we refrained from doing perturbations that are
semantically informed, such as removing articles
and prepositions, verb lemmatization, or negation.

For the system outputs belonging to the rank-
ing task, we perturbed y by shuffling the rankings
within the top-100 items for each user-system pair.

4.3 Hypothesis Testing

In order to test H1, we plotted the metric accuracies
Acc,(Q) for each task across different contexts
within the selected context category () as a line
graph, such that we can visualize how the met-
ric’s capability of differentiating between y and v/
changes as the context changes by observing the
slopes and overlaps between the lines. To further
investigate the association between the context ()
and the metric accuracy ACC,,(Q), we used the x>
test of independence of variables (Pearson, 1900) in
a contingency table (Pearson, 1904). We will com-
pare the resulting p-values to the significance level
of @ = 0.05 to understand whether the changes
in metric accuracy ACC,(Q) across the different
contexts () are statistically significant.

To test H2, we computed the Kendall’s 7
(Kendall, 1938) between a two rankings of met-
rics according to local metric accuracy under two
contexts. This helps us quantify how the total order-
ing of the metrics changes as the context changes.
In order to emphasize the metric selection task, we
adopt version of Kendall’s 7 that weighs changes

at the higher in the ranking more than those lower
in the ranking (Shieh, 1998). Specifically, we use
a hyperbolic weighing that maps each rank r to

weight T%

5 Results

5.1 Machine Translation

We visualize the metric accuracies for the machine
translation metrics under the different SYSTEM
contexts, as shown in Figure 1a. We observe that
the line for each metric changes as we change the
context, as indicated by the varying slopes of the
lines. The results of the x? test indicate that the
difference in the metric accuracies across the dif-
ferent context is statistically significant, supporting
H1 for MT.

Figure la also contains intersections between
lines corresponding to different metrics, indicat-
ing that there is a change in the relative position
of each metric in the different contexts and hence
signifying a change in the total ordering of metrics
by local accuracy across contexts, supporting H2.
This is further strengthened in Figure 1b, where
the 7 values show that the correspondence between
the pairs of metric accuracy rankings varies consid-
erably for each pair of SYSTEMs. If the 7 values
were consistently close to 1, there would not be sup-
port for H2. Instead, we find that 7 values cluster
according to similarity of context.



5.2 Automated Speech Recognition

For ASR, we report the local metric accuracy under
the different SPEAKER IDs which come from dif-
ferent dataset QUALITY contexts (CLEAN/RAW).
We plot the local metric accuracy for contexts as-
sociated with different contexts shown in Figure
2a. We observe that the lines corresponding to
each metric are not straight, which indicates that
the absolute local accuracy for each metric changes
with context, supporting H1. Our x? test results
confirm that the difference in the local metric accu-
racies across the different contexts is statistically
significant, providing evidence supporting H1 for
ASR.

Interestingly, we do not observe the same overlap
between the lines corresponding to the different
metrics as we did for MT. This, along with the
consistently high values of 7 in Figure 2b, indicates
that there is not evidence supporting H2 for ASR.

5.3 Ranking

Plotting the metric accuracies for the ranking met-
rics for the different ALGORITHMSs in Figure 3a,
we can first observe that none of the lines corre-
sponding to the different metrics are straight lines,
which supports H1. The large fluctuations within
each line suggest that the changes in the absolute lo-
cal accuracies for each metric are rather significant.
The 2 test results shows a statistically significant
change, providing evidence in support of HI1.

Furthermore, we can see that overlaps exist be-
tween the different lines corresponding to the dif-
ferent metrics, similar to the observation we made
in the MT case. This indicates that the total or-
dering of metric accuracies changes as the context
changes, supporting H2. The 7 results (Figure 3b)
show clustering by algorithm, as with MT.

6 Discussion

6.1 H1: Absolute Local Accuracies

The results in Section 5 generally provide evidence
supporting H1, as our experiments consistently
show that the local metric accuracy changes as the
context changes.

We can observe that the local metric accuracy
for a context is related to the average quality of
outputs in that context. For example, in the rank-
ing setting, the most effective system according to
MAP is SLIM, which is also the context whose
perturbed outputs are easiest to distinguish. Con-
versely, perturbed outputs in the random ranker are

more difficult for all metrics to distinguish. This is
because our perturbation method catastrophically
degrades good outputs and bad outputs are already
poor and difficult to make demonstrably worse. We
will return to this in Section 6.3.

These results suggest that evaluators may be in-
terested in the stability of local metric accuracy
when selecting a metric. A metric that is more sta-
ble with respect to local metric accuracy is more
predictable when deployed under a new context
and the probability of selecting the wrong system
is consistent. This is especially important if we
consider a new evaluation context where poor local
metric accuracy puts users—or a vulernable subs-
group of users—at risk. Work in robust machine
learning provides existing methods for designing
metrics stable across context changes (Yuan et al.,
2024).

In addition to stability, we can organize metrics
according to systematic behavior in local metric
accuracy. For example, in Figure 1a, more com-
plex embedding-based and model-based evaluation
metrics generally perform better than the simpler
lexical-based metrics (Zhang et al., 2019; Freitag
et al., 2022). More complex metrics cluster on the
top of the figure while simpler metrics occupy the
bottom regions; any overlap occurs mostly within a
specific category. Such analysis allows evaluators
to understand the empirical relationships between
metric ensembles. Although picking the best met-
ric might involve selecting a metric occupying the
top of the figure, there may be contexts in which
local metric accuracies are close enough to allow
flexibility in selecting metrics with lower local met-
ric accuracy.

More generally, we can consider multi-objective
metric development. For example, since
embedding- and model-based methods are more
time-intensive and computationally costly com-
pared to the lexical-based methods, adopting sim-
pler and cheaper metrics when local metric accura-
cies are comparable (e.g., early in model develop-
ment) would result in cost savings and faster itera-
tion. Beyond cost and local metric accuracy, one
can imagine local versions of metric interpretabil-
ity, metric engineering overhead, metric optimiz-
ability, and other criteria when conducting for con-
textual meta-evaluation.

6.2 H2: Relative Local Accuracies

Although the observations in Section 5 errs to-
ward accepting H2, the evidence from our experi-
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ments on the ASR task in Section 5.2 suggest that
it strongly depends on the nature of the task and
the metrics. Evaluating ASR is relatively straight-
forward, where the ambiguity of correct answers
is low, unlike MT or ranking where two outputs
(e.g., translations or permutations) can be equally
good (Wieting et al., 2019). Hence, the metrics
are commonly used to benchmark ASR systems
only slightly vary in the construct they are trying to
measure, and they are all operationalized following
similar statistical methods.

Figures 1b and 3b indicate that there are groups
of contexts where the relative reliability of met-
rics is similar. When contexts can be structured
according to metric accuracy, ones can adopt a
fixed evaluation metric. This has practical im-
plications in terms of engineering and develop-
ment overhead or, in the case of model-based met-
rics, model development cost. Predicting the sim-
ilarity in local metric accuracy ordering (i.e., the
cells in Figures 1b and 3b) is an important task
because it allows evaluators to confidently adopt
an evaluation metric without conducting contex-
tual meta-evaluation. Predictive features include
any metadata we have about the contexts. For ex-
ample, in ranking, Valcarce et al. (2018) catego-
rize ALGORITHMs into different families of tech-
niques: matrix factorization (SVD, PURESVD,
BPRMF, WRMF), neighborhood-based (CHI2,
KLD, RSV, ROCCHIO’S WEIGHTS).

6.3 Methodology

Although our results demonstrate that local metric
accuracy analysis can provide insight into metric
behavior, there are several opportunities for im-
proving the methodology. First, our perturbations,
while reliable in generating output degradations,
may result in outputs that are easily detected by
metrics, especially for highly effective systems.
Moreover, perturbed outputs may be sufficiently
different as to be unlikely to occur in a specific
context. For example, if we are evaluating in the
context of highly effective MT systems, a transla-
tion with a missing word is very unlikely by any
highly effective MT system, even though we know
it is lower quality. In order to address this, develop-
ing perturbation methods that reliably degrade per-
formance and are likely to occur within a context
will be important for future local metric accuracy
development. This is related to synthesizing hard
negative examples in the contrastive learning liter-
ature (Kalantidis et al., 2020). Alternatively, we

can consider non-perturbation data, perhaps from
human annotators, although this compromises the
cost-effectiveness of output perturbation.

In order to help with clarity, we focused on con-
texts that were interpretable, which contexts are
relevant depends on the broader model evaluation
environment. Focusing on models, as we did for
MT and ranking, emphasizes contexts that reflect it-
erative model development and refinement within a
narrow set of constraints (i.e., the particular model
being evaluated). If we are benchmarking a diverse
set of systems, we are interested in comparing a
broader set of possible outputs than those from a
single system. In cases where we are designing a
metric agnostic to a particular context, we may be
interested in robust performance across arbitrary
contexts. While this is similar to global analysis, a
more rigorous and formal approach to context se-
lection, such as found in the distributionally robust
machine learning literature (Duchi et al., 2018),
may be more appropriate.

7 Conclusion

We introduce the notion of local metric accuracy
and demonstrate how to use it to conduct contex-
tual metric meta-evaluation. Our results show that
both the absolute and relative local accuracy of
a metric varies as we vary context, though this
depends on the nature of the task. Based on our
results, we believe that by moving beyond global
metric meta-evaluation, we can achieve a more ac-
curate understanding of metric performance, which
in turn increases the reliability of the evaluations
and provide actionable insights for improving NLP
systems.

8 Limitations

As mentioned in Section 4.2, our experiments
adopted relatively simple perturbation methods in
order to cover a wide range of tasks and guarantee
degradation. In future work, we plan to explore
more more task- and language-specific methods
developed in the NLP community (Sai et al., 2021;
Chen and Eger, 2023; He et al., 2023).

We also compute local accuracy by uniformly
weighting all output-perturbation pairs. In reality,
different outputs have different probabilities of oc-
curring in a specific context. These probabilities
should be incorporated into the accuracy calcula-
tion to provide a more reliable estimate of local
metric accuracy. Estimating the distribution over



outputs for a specific context itself is a difficult
research question which we plan on addressing in
future work.
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