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ABSTRACT

Next-token prediction has been highly effective in language, but its extension to
continuous modalities is challenging: regression over correlated latents tends to
collapse into near-identity mappings, while discretization via vector-quantized
encoders introduces quantization artifacts. Mask-based prediction with diffusion
heads mitigates these issues, yet suffers from a train—inference mismatch, inability
to use key—value caching, and poor scalability to long sequences. To overcome
these limitations, we propose self-foken prediction, which conditions each token on
ground-truth references during training, ensuring consistency with causal inference
while avoiding identity collapse. This design supports key—value caching and par-
allel generation, enabling scalable, high-fidelity synthesis across text, audio, image,
and video. Built on this paradigm, OMNIAR unifies heterogeneous modalities in a
shared omni-token space, achieving efficient and high-quality generation, including
real-time and theoretically endless video generatio
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Figure 1: Illustration of next-token prediction, mask-based prediction, and self-token prediction.
Self-token prediction leverages reference tokens to enable causal attention while maintaining efficient
training for continuous tokens. Here, 2’ denotes the modality-specific special embeddings, and the
loss is only applied to the predicted tokens.

The remarkable progress of large language models (LLMs) has established next-token predic-
tion (NTP) as a powerful and scalable learning paradigm (Kaplan et al.| 2020; Xiong et al.,2024).
Autoregressively modeling the conditional distribution of the next discrete token has proven both
efficient to train and effective at producing fluent, coherent text (Gong et al., [2025). It is therefore
natural to ask whether the same paradigm can be extended beyond language to an omnimodal setting
that jointly supports understanding and generation across text, audio, image and video (Chen et al.,
2024c;|Downes et al.,2024). In practice, however, a straightforward application of NTP to continuous
modalities reveals fundamental mismatches that limit its effectiveness (Lin et al., [2025]).

When NTP is applied to discrete token spaces (e.g., text or VQ-VAE (Razavi et al.| 2019) visual
codes), the training objective is a probabilistic cross-entropy that encourages learning a distribution
over a finite vocabulary. Small changes in content can map to different discrete ids, so the model
is incentivized to capture high-level, semantic structure rather than simply reproducing low-level
inputs. By contrast, continuous latent tokens (e.g., KL-VAE (Ho et al., |2020) features derived from
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adjacent frames or neighboring patches) are typically highly correlated: adjacent frames or nearby
patches produce very similar latent vectors. Under an NTP-style training objective on continuous
values, this similarity turns the learning problem into a numerical regression over nearly identical
input—target pairs. In this regime the easiest way to minimize the regression loss is to approximate
an identity mapping (i.e., to reproduce the input precisely), which prevents the model from learning
useful, higher-level abstractions or reasoning (Huang et al., [2025). In short, the combination of
(1) highly correlated continuous latents and (ii) a regression objective creates a strong bias toward
identity solutions that is absent when modeling discrete tokens with cross-entropy.

A practical workaround has been to avoid direct autoregressive regression by either discretizing
continuous modalities via VQ-VAE (Yu et al.,|2023b; Han et al., [2024) or by adopting mask-based
prediction (He et al.,2022) with distributional heads. Discretization recovers a cross-entropy objective
but at the cost of quantization artifacts and limited representational capacity as modalities scale (for
example, to high-resolution images or long videos). More recently, mask-based prediction combined
with token-level diffusion heads (Li et al., 2024)) has shown substantial promise: by converting
value regression into a conditional distribution modeling problem in latent-token space, diffusion
heads greatly alleviate the identity-mapping pathology and enable effective training on continuous
modalities. Recent works, including D-JEPA-T2I (Chen et al., 2024ab)) and related studies (Chen
et al.}2024bj Fan et al.[2025)), show that this approach produces high-quality image synthesis and
high-resolution text-to-image outputs.

Nonetheless, mask-based approaches introduce their own, practically important limitations. First, they
rely on full (dense) attention during training and generation, which prevents using standard key—value
caching techniques (Vaswani et al., 2017} |Dao et al., 2022} Hooper et al., [2024) and so leads to
prohibitive compute and memory costs for long sequences. Second, although the fraction of masked
tokens is sampled stochastically during training(see Fig. [T} middle), each forward pass uses only a
single sampled mask ratio; consequently, training sees only isolated masking configurations rather
than the progressive unmasking dynamics that occur during generation. This sampling granularity
produces a form of training—inference mismatch and reduces training efficiency. Moreover, NTP
itself (despite being conceptually different) also suffers from sampling inefficiency for long sequences
because it generates tokens strictly one-by-one. Together, these factors make both mask-based and
naive autoregressive schemes difficult to scale to high-resolution or long-duration content such as
long videos.

To address these interlocking problems, we propose the self-token prediction paradigm. During train-
ing, each token is provided with an explicit reference token (the ground-truth continuous latent) and
the model learns to predict tokens in a causal decoding order while attending to their corresponding
references (see Fig.[I] right). Two key properties arise from this design. First, by conditioning on
ground-truth references during training the formulation avoids the identity-mapping collapse that
plagues plain regression: the model learns to map from context to a distribution anchored by the
reference rather than simply copying the input. Second, because training explicitly mirrors the causal
generation process, self-token prediction ensures consistency between training and inference. This
consistency enables safe use of key—value caching and supports decoding strategies that generate
many tokens in parallel (for example, frame-by-frame or neighborhood-based generation), thereby
addressing the sampling inefficiency of both mask-based methods and one-by-one autoregression
without degrading quality. In other words, every training pass under self-token prediction reproduces
a complete generation step (via references), rather than exposing the model to only a single, randomly
sampled masking fraction as in prior mask-based training (Chen et al.| [2024aj} L1 et al.| [2023b; [2024).

Built on these ideas, we present OMNIAR, an omnimodal foundation model that aligns heterogeneous
modalities into a shared omni-token space. OMNIAR preserves the strengths of next-token prediction
for discrete text understanding while using self-token prediction to enable high-fidelity, scalable
generation of continuous modalities (image, audio, video). The combination of token-level distribu-
tional heads (e.g., diffusion (Ho et al.l 2020) or flow matching (Lipman et al., |2022)) and self-token
prediction both mitigates identity collapse and unlocks efficient long-sequence synthesis: OMNIAR
can leverage key—value caching for causal decoding and supports batch-generation strategies (e.g.,
per-frame or local-neighborhood decoding) that make long and even real-time video generation
tractable. Extensive experiments show that OMNIAR attains strong fidelity across modalities and
scales gracefully to long sequences, establishing self-token prediction as a practical and versatile
foundation for next-generation omnimodal models.
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2 BACKGROUND

Autoregressive language models have achieved remarkable scalability by unifying diverse NLP
tasks under next-token prediction (Brown et al., [2020; |OpenAl [2023; [Touvron et al., [2023}; Bai
et al}2023), inspiring extensions to images and videos via VQ-VAE discretization (Ramesh et al.|
2021} [Esser et al.l [2021) and, more recently, continuous tokenizers (Chen et al.| [2024a; |Li et al.
2024; |Fan et al., [2024), refined objectives (Chang et al.||2022; Tian et al.,|2024; |Pang et al., |2024),
and expanded vocabularies (Tang et al.l 2024} |Agarwal et all [2025). While these approaches
improve fidelity and scalability, they remain limited in bridging discrete text with continuous visual
and auditory data. Multimodal LL.Ms address cross-modal understanding by integrating visual
encoders (Li et al.| [2023a;|Zhu et al., 2023} [Dai et al., 2023} [Liu et al.,[2024b)) or leveraging pretrained
vision—language features (Radford et al., 2021} Zhai et al.| 2023)), yet they remain text-centric, often
separating understanding from generation and relying on diffusion or complex architectures (Dong
et al., 2023} [Ge et al, 2023} Team), 2024} (Chen et al., 2025} |Wang et al., [2024b). Omnimodal
models such as OmniVL (Wang et al.,|[2022), Emu (Sun et al.| 2023b), Show-O (Xie et al., [2024),
Ming-Omni (Al et al.| 2025, and Omni-R1 (Zhong et al., [2025) expand coverage to audio and video
and support reasoning or multi-branch routing, but are still constrained by discretization bottlenecks,
pretrained encoders, or inefficient sampling. In contrast, OMNIAR introduces a unified omnimodal
architecture based on self-token prediction, bridging discrete and continuous modalities within a
single Transformer head without external encoders, enabling scalable, high-fidelity generation across
text, image, audio, and video.

3 AUTOREGRESSION WITH SELF-TOKEN PREDICTION

As illustrated in Fig. [3] building upon denoising joint embedding predictive architectures (Chen
et al., 2024a), OMNTAR introduces self-token prediction as a replacement for conventional mask-
based objectives. This novel design mitigates the train—inference discrepancy and enables efficient
key—value (KV) caching, thereby addressing key limitations of prior approaches (Chen et al.} 2024b;
Fan et al., 2025]).

3.1 ARCHITECTURE

Backbone. OMNIAR adapts QWEN3 (Xu et al., 2025) as its backbone, a decoder-only Trans-
former architecture known for its performance and public availability. The backbone employs
RMSNorm (Zhang & Sennrich} [2019)) for normalization, SwiGLU (Shazeer, 2020) for activation,
ROPE (Su et al.| [2024) for positional encoding, and GQA (Ainslie et al.| [2023) for efficient KV
caching. Following recent advances in large-scale generative modeling (Esser et al.| [2024), QWEN3
also integrates QK-Norm (Dehghani et al.} 2023 within each attention block, substantially stabilizing
optimization.

Mixture-of-Transformers. To jointly support understanding and generation, we extend the backbone
into a Mixture-of-Transformers (MoT) architecture (Deng et al.||2025} Liao et al., [2025)). Two parallel
Transformer stacks are instantiated: one specialized for understanding and the other for generation,
both initialized from pretrained QWEN3 weights. Information exchange between the stacks occurs
through joint attention, enabling cross-modal reasoning without degrading task specialization. This
design improves convergence stability while ensuring balanced capacity allocation across modalities.

Multimodal Input Encoding. For continuous modalities (images, audio, and video), we employ
a lightweight encoder based on a compact Vision Transformer (Yu et al.l 2023a) and adapt the
grouped causal attention used in the backbone. Unlike CLIP (Radford et al.| 2021)) or SigLIP (Zhai
et al.,|2023)), which rely on large-scale pretraining, our encoders are trained from scratch to project
modality-specific latents into the shared omni-token space via the JEPA loss (Assran et al.l|2023) (i.e.,
Eq.[). Text inputs are directly embedded through an embedding layer. All tokens are hard-routed
within the backbone, enabling flexible cross-modal interactions while preserving efficiency.

Multimodal Output Decoders. To enable generation across modalities, we introduce lightweight
(~300M parameters) modality-specific denoising heads, trained jointly with the backbone. Each
head adopts flow matching (Liu et al.,[2022) to render the target modality conditioned on backbone
features z;. For audio and image synthesis, we use denoising MLPs (Li et al., [2024), which are more
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Two foxes resting on large rocks. The foreground features a fox lying down, with its
head resting on the rock. The second fox is sitting upright on a rock in the midground,
looking directly at the camera. Both foxes have a reddish-brown fur, with darker
shades around their eyes and ears.

In the background, there is a body of water, possibly a lake or a calm sea. Beyond

-~ thewater, thereis a blurred landscape that includes a few trees and a house or

7 building. The skyis overcast, with a soft, diffused light that gives the scene a serene
Yl and peaceful atmosphere.

Aman is surfing on a white surfboard with a black stripe on the bottom, riding a large, green wave. He is wearing a striped
shirt and black shorts. The man maintains his balance by adjusting his stance and using his arms for stability. The wave
behind himis large and crashing, creating a dynamic and energetic background. The man continues to surf smoothly, making
slight turns and adjustments to his position on the board. The water is a vibrant green, indicating a clear and sunny day. The
man skillfully maneuvers through the wave, showcasing his surfing skills. The man maintains his balance and control over the
surfboard as he rides the wave.

Figure 2: Qualitative results of OMNTAR. Top row: image captioning; second row: video captioning;
third row: text-to-image generation; bottom row: video generation.

computationally efficient and operate at a fine-grained token or patch level. For video generation, we
adopt a denoising Transformer (Chen et al., 2023b) that reconstructs frames in parallel, capturing
temporal coherence.

Positional Encoding. While RoPE 2024) is effective for discrete text, it suffers when ap-
plied to continuous spatiotemporal modalities. To address this, we employ VoPE 2024b),
a RoPE-inspired scheme tailored for vision and audio, further integrated with MM-RoPE (Yuan
2025)) for unified multimodal representations. Each token is associated with an 8-dimensional
meta-vector encoding (global position ID, frame index, height, width), with each scalar expanded into
two dimensions. Tokens from the same modality share a global position ID, mitigating long-context
interference in text generation (Yang et al. [2025). This meta-information is projected into the
embedding dimension and incorporated multiplicatively, ensuring modality-consistent grounding
across the entire sequence.

3.2 SELF-TOKEN PREDICTION

Conventional next-token prediction often degrades continuous generation (e.g., images, video),
since previously generated tokens lack precise positional cues for the current token. Prior works
attempt to alleviate this by reinjecting target-aware position embedding (Yu et al. [2024), but this
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Figure 3: OMNIAR: An omnimodal Transformer that bridges discrete text and continuous modalities
through self-token prediction. Special tokens x’ are used as modality-specific embeddings for
prediction.

remains insufficient. We instead propose self-token prediction, a paradigm that avoids dependence on
autoregressively emitted outputs, as shown in Fig. [T}

Prediction tokens are initialized with a special embedding z’, analogous to masked prediction but
fully compatible with autoregressive decoding. The model maintains two parallel streams: reference
tokens, derived from the ground truth and processed with grouped causal attention (field a in Fig.[3);
and prediction tokens, which attend freely within their group (field c¢) and causally to preceding
reference tokens (field b). All other tokens attend exclusively to reference tokens, ignoring prediction
tokens (field d). In other words, prediction tokens are never used as context for modeling or generating
the remaining tokens. This asymmetric attention design enforces a faithful generative trajectory while
remaining fully compatible with causal attention and key—value caching.

Grouped causal attention. Grouped causal attention abstracts token-generation strategies across
modalities while aligning training and inference. For images, we adopt a next-neighbor scheme:
tokens are ordered by Manhattan distance from a randomized point. We then determine the number
of groups G via a logarithmic law:

G = {mgb(lfan)J, (1

where 7 is the total number of image tokens, and a, b € R are tunable coefficients (with clamping
to ensure validity). In practice, we set ¢ = 0.08 and b = 1.10, which yields a reasonable growth of
group count as the number of tokens increases. As shown in Fig.[d] compared to strictly token-wise
grouping, row-/column-based grouping or next-neighbor grouping (He et al.,|2025), Eq.|l|achieves a
better trade-off: it maintains high generation quality while requiring fewer groups. Fewer groups
directly reduce the number of forward passes at inference time.

Unlike uniform partitioning of n tokens into G groups, we argue that early-stage groups should be
smaller, since little context is available, while later groups can be larger due to richer context. Thus,
group sizes follow a cosine allocation:

Ve = %(1+cos(7r%)), n, = |wnl, 7=1,...,G, )

with the final group set to absorb the remainder such that Zle n, = n. Fig. Visualizes the per-step
token allocation when generating a 256 x 256 image, showing that early steps generate fewer tokens
and later steps more.

The distance-ordered list is thus partitioned into G contiguous groups {7}, with full intra-group
attention and causal inter-group attention. For video, all tokens within a frame form one group
(next-frame generation). For audio, strict temporal order is preserved (next-sample generation).
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3.3 TRAINING OBJECTIVE

Cross-Entropy Loss. For discrete text generation, we adopt the standard negative log-likelihood:

N
Lop = —Zlng(wi | wei, 2i), @)

i=1

where w; is the i-th token, w.; the prefix, and z; the associated multimodal feature. This ensures
accurate autoregressive grounding in language.

JEPA Loss. To encourage modality alignment, we extend JEPA (Assran et al.,|2023)) to token-level
embeddings:

pred
n i

Lygpa = ZHF(ZZ)_yZHl? 4
i=1

where 2z; = Eox(2;) and y; = Eiy,(;). The context encoder E i observes partial tokens via grouped
causal attention, while the target encoder Ei,, observes full inputs via full (dense) attention. Intuitively,
Eq. @ enforces the backbone F to produce features that are as close as possible to those obtained
with full attention, thereby enhancing the model’s ability to learn and understand representations.
During training, E is optimized jointly with the backbone F', while Ey, is updated via EMA of
FE« (Assran et al.| 2025; |Bardes et al., 2023 /Chen et al., |[2024a).

Flow Matching Loss. For continuous token prediction, we leverage flow matching (Lipman et al.|
2022). Given noise € ~ N(0, I) and interpolation ¢ ~ U(0, 1), we perturb inputs as

rt =tz + (1 —t)e.

The model learns a velocity field vy via:

Liv = Ey e H’va(xf,t,«%) —(zi — G)HZ]’ ®)

with vy parameterized by a denoising MLP (Li et al.,|2024) or a denoising Transformer (Chen et al.,
2023Db)).

Final Objective. The overall loss integrates all components:
L = Ly + Ack Lcg + Asepa Ligpa, (6)

where A\cg balances linguistic grounding and generation, while A\jgpa regularizes multimodal align-
ment. Following [Fan et al.|(2025)), all losses are applied to prediction tokens, improving efficiency
by avoiding unnecessary reconstruction. We further observe that setting Acg and Ajgpa too high
significantly degrades the quality of image and video generation. Therefore, their values are typically
kept around the order of 0.001, which maintains strong generative performance without noticeably
impairing understanding ability.

3.4 EFFICIENT OMNIMODAL TRAINING

A key challenge in multimodal training is maintaining stability across heterogeneous tasks. A naive
approach requires all nodes to sample the same task type in each iteration so that computation graphs
remain identical across workers. Although this improves computational efficiency, we observe severe
instability when task distributions are highly imbalanced: the model frequently switches between
tasks, loss curves oscillate sharply, and in extreme cases training may even diverge.

To mitigate this, we adopt a more robust strategy: each node samples tasks independently at every
iteration, while performing an additional dummy forward pass on unmatched tasks to maintain graph
consistency. Although this mixed-task scheme stabilizes training, these dummy passes introduce zero
gradients, causing the gradients from rare tasks to be diluted during all-reduce averaging.

To address this gradient underrepresentation, we introduce a dynamic scaling mechanism inspired
by federated learning (Chen et al., 2023a). Suppose the i-th node processes s; samples, and let
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Figure 4: Groups allocated via Eq. (1| Low-resolution images use smaller groups, similar to next-
token prediction, while high-resolution images have slower group growth than next-neighbor and
next-token, enabling efficient generation.

S =>""", s; be the total samples across the m non-empty nodes. Denote by W' the total number of
nodes (world size). The scaling factor applied to the loss of each modality on node ¢ is defined as:

si W
S m’

)

scale(s;) =

This formula ensures that each modality’s loss is scaled according to both its local sample count and
the global task distribution. In practice, we compute this factor independently for every modality
and multiply it with the corresponding loss before backward. Empirically, this scaling strategy
significantly improves convergence under imbalanced modality distributions, ensuring that gradients
from rare modalities are preserved rather than suppressed during all-reduce averaging.

4 SAMPLING WITH SELF-TOKEN PREDICTION

Figure 5: The progressive generation via self-token prediction. Unlike next-token prediction, during
inference, self-token prediction uses special embeddings as input and requires updating the key—value
cache with the newly generated tokens.

4.1 PROGRESSIVE SAMPING WITH CACHE REFRESH

As illustrated in Fig. [} inference uses strictly causal attention and preserves the grouping strategy
employed during training. Relative to conventional next-token decoding, our procedure introduces
two key modifications.

Parallel Token Prediction. Instead of feeding previously generated tokens directly into the model,
we introduce a special embedding as input when predicting the current tokens. This design allows the
model to generate multiple tokens in parallel within a group, thereby mitigating the strict token-by-
token constraint of standard autoregressive decoding.

Cache Refresh with Omni-Tokens. To ensure the correctness of KV caching, each newly generated
token must replace the corresponding special embedding used during its prediction. Otherwise, the
cache would contain representations associated only with special embeddings, which—as discussed in
Sec.[32—never serve as valid context. To resolve this mismatch, the generated tokens are re-encoded
via the omni-encoder to produce omni-tokens, which are then used to update the cache. Importantly,
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this cache update is performed jointly with token prediction, avoiding additional forward passes and
thereby preserving inference efficiency.

4.2 TOKEN-LEVEL SAMPLING

Since we employ flow matching as the rendering head, many techniques originally developed
to improve sampling quality in diffusion models can be naturally adapted to our framework. In
particular, we highlight two strategies: Classifier-Free Guidance (CFG) (Ho & Salimans| [2022) and
time reparameterization (Gao et al.l 2024} [Esser et al.| 2024)).

Classifier-Free Guidance. During inference, we modulate the guidance strength progressively
according to the proportion of tokens already generated. Let n denote the total number of tokens
to generate and N, = ZJT‘=1 n; the cumulative number of tokens after group 7 (with group sizes
n, defined in Eq.[I)). For a target CFG scale s > 1, the per-group weight w, is defined as a linear
function of the generation progress:

N.
wy =14+ (s —1), r=1,...,G. (8)
n

Early groups, which correspond to a small N, are assigned weaker guidance to encourage sample
diversity, while later groups approach the target scale s as more context becomes available, as shown

in Fig. [
For audio and video synthesis, we instead adopt a constant schedule w, = ¢ with ¢ > 1, which we
find yields more stable results in temporal domains.

Time Reparameterization. We additionally apply a time reparameterization:

t
!/
= —— At > 0, 9

t+ At — Att ©)
where ¢ € [0, 1] is the normalized original time variable, and ¢ is the transformed value. This
reparameterization can be viewed as a smooth rescaling that adjusts the effective progression of time
as a function of both ¢ and A¢. Empirically, moderate At values sharpen and stabilize generations,
while excessively large values oversuppress variation and lead to blurry outputs.

In flow-matching generative models (Esser et al.,[2024), At is typically set within [5, 7] to achieve
strong perceptual quality. In contrast, our foken-level formulation is substantially more sensitive:
setting At in the range 1.0-1.5 consistently improves quality, whereas At > 2 noticeably degrades
performance.

Ablations on both the CFG scheduling strategy and the time reparameterization factor are provided in
the Appendix.

5 EXPERIMENTS ANALYSIS

Detailed experimental settings are provided in App.[Cl Beyond benchmarks, OMNIAR-AVI further
demonstrates emerging cross-modal capabilities, including audio-driven image animation, automatic
video soundtracking, and image-to-video synthesis. Additional examples are provided on the project
page, while representative qualitative results are shown in Fig. 2]

5.1 EFFICIENCY OF SELF-TOKEN PREDICTION

We investigate whether self-token prediction can serve as a principled alternative to mask-based
prediction on ImageNet (Deng et al., 2009), using OMNIAR with ViT-B as both omni-encoder and
backbone. Two training paradigms are compared: (i) mask-based prediction with full attention and
(ii) self-token prediction with grouped causal attention. To unify generation and classification, we
randomly reverse the order of image and label tokens with probability 0.3; the label branch can be
regarded as a special prompt encoded via dedicated embeddings. Other training settings follow (Chen
et al., [2024a).
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FID| IST FID| ISt .
Method #Params  #Epochs | ' cRG  w/o CFG | w/CFG  w/ CFG | A ,ﬁ“j,‘f;‘imm m(,de,l. Ace
MAR-B (2024) 208M 800 3.48 192.4 2.31 281.7 N/A I-JEPA (2023) 72.9
D-JEPA-B (2024a) 212M 1400 3.40 197.1 2.08 320.9 N/A MAE (2022) 68.0
MaskGIT (2022) 227TM 300 6.18 182.1 - - N/A MAGE (2023b) 74.7
VAR-d16 (2024) 310M - - - 3.30 274.4 N/A DINO (2021} 72.8
MAGE (2023b) 230M 1600 6.93 195.8 - - N/A Generative models
DiT-XL (2023) 675M 1400 9.62 121.5 2.27 278.2 N/A BigBiGAN (2019) 56.6
Mask-based pred. 212M 400 3.83 194.2 243 289.3 77.8 MaskGIT (2022) 57.4
Self-token pred. 212M 400 4.01 185.2 2.78 272.2 77.5 ViT-VQGAN (2021) | 65.1
Mask-based pred. 212M 800 3.50 200.2 2.15 318.4 78.0 D-JEPA (2024a) 46.8
Self-token pred. 212M 800 3.38 203.1 2.03 323.0 78.2 Ours 69.1

(a) System-level comparison on conditional generation and top-1 accuracy of classi- (b) Top-1 accuracy of
fication. linear-prob.

Table 1: Comparison on ImageNet benchmarks. For a fair comparison, we only report results from
methods with comparable model sizes.

Method ‘ #Params Image Video KV Cache Cnt. Tokens GenEvalt VBench? BLIPT
Base scale model

Show-O (2024) 1.3B v X v X 0.53 N/A -
OMNIAR-I 1.3B v X v v 0.56 N/A 60.2
Large Scale model

UniFluid (2025) 2B v X X v 0.59 N/A -
D-JEPA-T2I (2024b) 2.6B v X X v 0.66 N/A -
OMNIAR-IV 2.9B v v v v 0.62 75.12 71.3
Lumos-1 (2025) 3.6B v v v X 0.66 78.32 -
Huge scale model

OMNIAR-AVI 5.5B v v v v 0.67 81.54 80.5
EMUS3 (2024b) 8B v v v X 0.66 80.96 79.6
Chameleon (2024) 7B v X v X 0.39 N/A 54.1
Transfusion (2024) 7B v X X v 0.63 N/A -

Table 2: Overall performance comparison. OMNIAR supports key—value caching to ensure efficient
inference, while preserving continuous tokens to maintain representation quality.

Results in Tab. [Ta] show that mask-based prediction achieves lower FID at 400 epochs (3.83 vs.
4.01) due to richer context under full attention, but self-token prediction surpasses it after sufficient
training (3.38 vs. 3.50). This demonstrates two points: (i) the train—test mismatch inherent in
masking ultimately limits performance, and (ii) despite less context, causal attention can be fully
exploited with longer training, yielding superior generative quality. In contrast, classification accuracy
converges quickly for both paradigms (~78% at 400 epochs), suggesting that understanding tasks are
easier to learn than generation, which should thus receive higher training emphasis. Furthermore,
linear probing results in Tab.|1b|confirm the high quality of omni-modal representations (69.1% on
ImageNet), surpassing generative counterparts and comparable to specialized representation models.

5.2 PERFORMANCE OF OMNIAR

We then evaluate multimodal generation. For images, we report GenEval (Ghosh et al. 2023ﬂ;
captioning is assessed with BLIP (Li et all 2022) on COCO, and videos are benchmarked by
VBench (Huang et al., [2024]).

As summarized in Tab.[2] OMNIAR scales effectively: text-to-image GenEval improves from 0.56 to
0.67 and visual understanding from 60.2 to 80.5, both reaching state-of-the-art. In video generation,
OMNTIAR-IV matches Lumos-1 (Yuan et al., 2025) with fewer parameters (2.9B vs. 3.6B), while the
5.5B OMNIAR-AVI achieves parity with EMU3 (Wang et al.,|2024b)) (§B).

6 CONCLUSION

We introduce OMNIAR with self-token prediction, an omni-model capable of comprehending and
generating images, videos, and audio. By progressively scaling in both model capacity and modality
coverage, OMNIAR establishes a versatile foundation for future omni-model applications, such as
synchronized audio—video synthesis, interactive editing, and speech-driven content generation.

2Scores are obtained on official prompts without rewriting or DPO/reward fine-tuning.
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Astreet scene in what appears to be a residential area. The photograph is taken from
aslightly elevated angle, giving a wide-angle view of the street.

On the left side of the street, there is a red car parked close to the curb. Behind the
red car, there are several other vehicles parked along the street. The buildings on
this side of the street are made of brick and have a traditional architectural style.
Some of the buildings have signs and windows, indicating that they are likely
residential homes.

On the right side of the street, there is a large, gray car parked along the curb. In
front of this car, a person is walking down the street, heading towards the camera.
The person is wearing casual clothing. There appears to be a small, wooden chair
placed on the sidewalk. The chair is empty and seems to be a makeshift object.

The street itself is paved and appears to be relatively narrow. There are white
parking lines on the road, indicating designated parking spaces. The street is lined
with buildings on both sides, creating a somewhat enclosed feel.

In the background, there are more buildings, some with red roofs. The sky is partly
cloudy, suggesting it might be a day with mixed weather conditions.

Astill life arrangement featuring three martini glasses filled with a clear liquid, likely a
martini. Each glass is garnished with a lemon slice, adding a pop of color to the
composition. The glasses are placed on a wooden surface, which provides a rustic contrast
to the sleek, modern design of the glasses.

& Inthe background, there is a vase containing a vibrant yellow sunflower, which adds a touch
of natural beauty to the scene. The sunflower is positioned to the right of the glasses,
partially out of focus, creating a bokeh effect that draws attention to the glasses and their
contents.

To the left of the glasses, a small of a lemon, cut in half, revealing the juicy interior. Beside
the lemon, there are a few black olives, adding a classic element to the composition.

The overall style of the image is Photographic, specifically using a standard lens style. The

‘ lighting is soft and even, highlighting the clarity and elegance of the martini glasses. The
background is a solid black color, which further emphasizes the subjects in the foreground.

A quiet residential street with a stop sign on the right side. a car is driving down the
street, which is lined with houses and trees. the sky is clear, suggesting a calm, sunny
day.

l A collection of wooden letters scattered across a wooden surface. The letters are in
various orientations, creating a somewhat chaotic arrangement. Among the
wooden letters, there is a single light bulb, which stands out due to its bright,
glowing appearance. The light bulb is positioned centrally in the image, drawing
attention to it. The overall style of the image is photographic, with a focus on the
wooden letters and the light bulb. The lighting in the image is soft, with the light
bulb providing a focal point. The background is a solid wooden surface, which
complements the wooden letters.

Figure 6: Caption generated by OMNIAR-IL.

A USE OF LARGE LANGUAGE MODELS

During the writing of this paper, we utilized large language models (LLMs), such as ChatGPT,
to refine the wording of certain sections, primarily within the Introduction. No other parts of the
manuscript were directly modified using LLMs. All experimental ideas, designs, and analyses were
entirely conceived and executed by the authors without any assistance from LLMs. Therefore, this
work is entirely original in terms of its scientific contributions and experimental methodology.

B MORE EXAMPLES

Caption. In Fig. [6] we present additional examples of captions generated by OMNIAR-I. Re-
markably, even with a 0.6B-parameter backbone, OMNIAR is able to accurately capture numerical
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relationships among objects, textual content, and spatial configurations within images. The model
further demonstrates robustness in describing complex and cluttered scenes, while being capable of
producing both detailed and concise captions depending on the context.

Figure 7: The influence of time shifting factor At.

Time shifting factor. Unlike diffusion or flow-matching models, the denoising head in self-token
prediction is highly sensitive to the time shifting factor. As shown in Fig.[7} when no adjustment
is applied (i.e., At = 1.0), the generated images tend to be overly abstract, lacking fine details
and often failing to render complete objects. Introducing a moderate shift, with At in the range of
1.1-1.2, substantially enhances visual details and improves object integrity. However, increasing At
beyond this range severely compromises the clarity of the generated images, leading to significant
degradation in quality.

s=175 s =10.0 s=12.5

Figure 8: The influence of classifier free guidance s.

Classifier-free guidance. An appropriate choice of the CFG scale can significantly improve gen-
eration quality. As illustrated in Fig.[8] setting s in the range of 5-7.5 leads to more complete and
coherent images. However, further increasing the CFG value reduces realism and may even introduce
artifacts such as watermarks inherited from the training data.

Denoising steps. The number of iterative steps in the denoising head has a substantial impact on
generation quality. As shown in Fig.[9] meaningful images can be produced with as few as 10 steps,
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Figure 9: The influence of denosing steps in denosing heads.

| OMNIAR-I ~OMNIAR-IV OMNIAR-AVI
Parameters dsitribution

Vocabulary mapping 155M 311M 388M
Omni-encoder 353M 355M 355M
MoT 362M+362M  1.25B+1.25B 3.4B+3.4B
Image denoising head 309M 312M 313M
Video denoising head N/A 3290M 320M
Audio denoising head N/A N/A 313M
LLM head 155M 311M 388M
Total params 1.3B+362M  2.9B+1.25B 5.48B+3.4B
Training time distribution

VAE encoding 1.3% 3.4% 10.8%
Omni-encoder forward 3.2% 6.3% 12.4%
Omni-encoder EMA forward 2.4% 2.4% 1.2%
MoT forward 22.5% 25.3% 22.3%
Backward 53.9% 47.4% 42.3%
Update params 16.5% 14.9% 11.0%
Training modal distribution

Text 22.2% 9.3% 5.7%
Image 77.8% 45.4% 34.9%
Video N/A 45.2% 44.9%
Audio N/A N/A 14.5%

Table 3: Model parameters, computation, and modality distribution across different model scales.

which highlights the potential for real-time generation. We find that 20-30 steps typically yield the
most visually appealing results. However, blindly increasing the number of denoising steps does not
consistently improve image quality; for example, using 50 steps often introduces local distortions.
Note that we omit results on varying AR steps during generation, since the number of groups is fixed
according to Eq.[T} consistent with the training setup. This design reduces hyperparameter tuning
during sampling and stabilizes the overall performance.

C IMPLEMENTATION DETAILS

Our implementation is guided by three central design choices. First, we emphasize temporal alignment
across modalities to ensure consistent synchronization between audio, video, and text. Second, we
adopt a progressive scaling strategy in which model capacity and modality coverage grow coherently
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with scale. Third, we rely on a unified joint training protocol that integrates multimodal data at scale
while balancing efficiency and performance. We describe these design choices in detail below.

C.1 MODEL DESIGN

Tokenization and Patchification. Text inputs are processed using the QWEN3 tokenizer, which
produces discrete token IDs mapped to dense embeddings through a single embedding layer. Con-
tinuous modalities such as images, videos, and audio are encoded by compact KL-VAE encoders
that yield dense latent feature maps suitable for patchification. After modality-specific patchification,
all latent representations are projected into a unified sequence of omni-tokens through the shared
omni-encoder.

For video, an input clip of 47"+ 1 frames is reduced to 7'+ 1 latent frames by WANX’s KL-VAE (Wan
et al., [2025) with a temporal stride of s = 4. This yields 4 latent frames per second at 16 FPS, with
spatial downsampling by a factor of 8 and expansion of the channel dimensionality from 3 (RGB)
to 16. Images undergo the same spatial encoding process. Audio waveforms are converted into mel
spectrograms (16 kHz sampling rate, hop size of 256, 80 mel bins), then downsampled by a factor
of 2 and compressed into latent maps with 20 channels, resulting in 32 time steps per second, as
depicted in [Huang et al.| (2023).

A key design principle is temporal alignment. Audio produces 32 latent steps per second, while video
produces 4 latent frames per second. To reconcile them, we use an audio patch size of 8 and a video
patch size of 1, resulting in 4 tokens per second for both modalities. Each token therefore corresponds
to 0.25 seconds, enabling precise synchronization. After omni-encoding, audio and video tokens are
interleaved to strengthen alignment without regrouping, following designs in QWEN-OMNI (Xu et al.|
2025). For spatial patchification of images and frames, we adopt a standard patch size of 2 (Peebles
& Xiel [2023)).

Model Configurations. The smallest model, OMNIAR-I, contains 0.6B parameters and supports
image-only understanding and generation. A medium-scale model, OMNIAR-IV, with 1.7B pa-
rameters, extends to video, enabling image+video understanding, generation, and image-to-video
synthesis. The largest model, OMNIAR-AVI, with 4B parameters, incorporates audio, supporting
fully integrated multimodal tasks such as synchronized audio—video generation and audio-driven
video synthesis, including speech-driven talking heads and ambient sound generation.

C.2 MULTI-TIMBRE GENERATION

Unlike image and video synthesis, audio generation often requires modeling multiple timbres. Our
general strategy is to assign distinct modal embeddings to indicate different timbres, while sharing
a single audio denoising head. In TTS, for example, each speaker is assigned a unique modal
embedding to represent their specific timbre. For audio—video generation, background sounds without
human voices are associated with a separate modal embedding. When synthesizing speech mixed
with natural background sounds, we simultaneously use the speaker’s embedding and the background
embedding to generate the two streams of audio before mixing them. Additionally, for unclassified
sounds, we employ a default modal embedding. This embedding allocation strategy enables the
model to flexibly and effectively support multi-timbre audio generation.

Although OMNIAR-AVI in this work adopts a continuous KL-VAE for audio encoding followed by a
shared omni-encoder, we observe a substantial modality gap between speech and vision. Directly
sharing the omni-encoder with visual features degrades the quality of both image and video generation.
Meanwhile, recent studies have shown strong performance in audio generation using discrete audio
tokens. We hypothesize that this is because audio, like text, is inherently one-dimensional and thus
well-suited to discrete representations. Consequently, in future work we plan to adopt a discrete audio
tokenizer, similar to Boson All (2025), to encode audio signals. This approach is expected to alleviate
the degradation of visual quality caused by sharing the omni-encoder.

C.3 TRAINING DETAILS

Datasets and Preprocessing. Image data are sourced from LAION-5B (Schuhmann et al., 2022),
COCO (Lin et al., |2014)), COYO-700M (Byeon et al., 2022), and JourneyDB (Sun et al., [2023a),
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with captions regenerated using InternVL-2.5 (Chen et al.} 2024e) and LLaVA (Liu et al., 2024al).
Video data are drawn from Panda70M (Chen et al.| 2024d), HD-VG130M (Wang et al.| 2023), and
WebVid10M (Bain et al.| [2021)), segmented into 4—10 second intervals with descriptions generated by
Tarsier (Wang et al.,|2024a). Audio is extracted from video soundtracks, focusing on speech segments
or clips with visible speakers for audio-driven generation. Images are resized to a short edge within
[144,256] and capped at 256 x 256. Videos are resized to 144 x 256 (or 256 x 144) and clipped
to 4-8 seconds. Audio is trimmed or padded to match paired video lengths before mel conversion.
While simple operations such as random horizontal flipping accelerate convergence, we also adopt
a randomized augmentation strategy inspired by |Yu et al.|(2024). At each training step, a random
starting token is chosen, and subsequent neighboring tokens are generated deterministically within
its local context. This randomized-local augmentation enhances multimodal comprehension while
preserving generative quality.

Training Protocol. Overall, we find that the difficulty of learning generative tasks varies across
modalities: audio is the easiest, followed by motion information, while the most challenging is
generating images from scratch. Therefore, in multimodal training for OMNIAR-IV and OMNIAR-
IVA, we always ensure that text-to-image tasks account for at least 50% of training. To support
CFG sampling, prompts are randomly dropped with probability 0.3. Captioning is considered
relatively simple, so only 10% of training samples are assigned to caption tasks. Notably, during
video generation, the first frame is always trained as an image, split into multiple groups and
rendered using the image denoising head. Subsequent frames are conditioned on preceding frames,
focusing on motion generation. Optimization is performed using AdamW (Loshchilov et al., 2017)
(B1 = 0.9, 82 = 0.95,¢ = 1 x 10715) with zero weight decay. Based on the model size and memory
allocation strategy, we predefine the maximum training sequence length that can be supported. During
sampling, data from the same task are cached until they can be assembled into a batch with consistent
dimensions (e.g., identical image sizes or equal video lengths). Once the maximum sequence length
is reached, the samples are combined into a batch for training. Unlike the sequence packing strategy
commonly adopted in LLM training, we deliberately employ this batching scheme, which proves to
be more efficient in our multimodal setting. The learning rate warms up linearly from 1 x 10~7 to
1 x 10~* over 5k steps and then remains constant. Training proceeds for IM steps with an EMA factor
of 0.9999. Gradients are clipped at 1.0. Efficiency is further improved with gradient checkpointing
and FSDP hybrid sharding, with optional CPU offloading (Paszke et al., 2019).

As shown in Tab. [3| we report the model parameters and training performance. Notably, the additional
overhead of Omni-encoder EMA forward arises from the use of the JEPA loss. However, this
overhead remains below 3% across all model scales, while JEPA training consistently accelerates
convergence, making it a worthwhile trade-off.

D TRAINING ANALYSIS

Since few prior works adopt designs similar to OMNIAR—including self-token prediction and JEPA
training within LLMs—we provide convergence curves across different scales and modalities in
Fig.[T0] We observe that the flow matching loss quickly converges to a small value and then decreases
slowly and stably, consistent with findings in diffusion and flow matching models. Notably, halving
this loss does not necessarily indicate satisfactory generation quality: around 10k steps the model can
move beyond pure noise and produce image patches, around 40k it can generate simple single-object
images, while more complex or rare cases require training beyond 300k steps (for OMNIAR-I;
larger models converge faster). Text prediction loss also drops rapidly and remains low. In contrast,
JEPA loss exhibits a different trajectory: it rises sharply from near zero to a peak, then gradually
decreases before slightly increasing and stabilizing at a moderate value—behavior aligned with its
adversarial nature of balancing generation and understanding. Excessive weighting of Ajgps prevents
effective training, as shown in Fig. where the loss keeps shrinking without improving generation
quality despite decreasing flow matching loss. Finally, Fig. [TT|shows that gradient magnitudes shrink
with model scale, indicating stronger learning capacity, while increasing modalities slightly reduces
stability (e.g., an outlier appears near 3k steps for OMNTAR-AVI).
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