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Abstract
Semiconductor imaging and analysis are critical yet1

understudied in deep learning, limiting our ability2

for precise control and optimization in semicon-3

ductor manufacturing. We introduce a small-scale4

multimodal framework for analyzing semiconduc-5

tor electron microscopy images (MAEMI) through6

vision-language instruction tuning. We generate a7

customized instruction-following dataset using large8

multimodal models on microscopic image analy-9

sis. We perform knowledge transfer from larger10

to smaller models through knowledge distillation,11

resulting in improved accuracy of smaller models12

on visual question answering (VQA) tasks. This13

approach eliminates the need for expensive, hu-14

man expert-annotated datasets for microscopic im-15

age analysis tasks. MAEMI, can assist, accelerate,16

and even automate the semiconductor electron mi-17

croscopy image ananysis tasks. Enterprises can fur-18

ther fine-tune MAEMI on their intellectual data, en-19

hancing privacy and performance on low-cost con-20

sumer hardware. Our experiments show that MAEMI21

outperforms traditional methods, adapts to data22

distribution shifts, and supports high-throughput23

screening.24

1 Introduction25

Semiconductors, crucial for modern electronics:, undergo a26

complex multi-step production process. Fabless firms such27

as Qualcomm and NVIDIA design and simulate chip func-28

tionalities, while manufacturing is outsourced to foundries29

like TSMC and Samsung. Foundries handle semiconductor30

chip fabrication, which includes photolithography to imprint31

circuit patterns on silicon wafers, etching and doping for cir-32

cuit formation, and intricate layering for circuit interconnec-33

tion. After fabrication, chips undergo quality assurance, in-34

cluding electrical and stress testing, to confirm performance35

and defect-free status. Packaged semiconductors are assem-36

bled into devices like microprocessors and memory chips,37

integrated into various electronic systems, such as consumer38

electronics, automotive technologies, and space applications.39

Miniaturization is crucial to the semiconductor industry, en-40

abling the creation of smaller, more powerful, and more effi-41

cient devices that advance the capabilities and functionality42

of electronic products. However, this pursuit faces challenges43

that require precision and control to ensure system-level per- 44

formance and overcoming manufacturing inaccuracies. To 45

tackle these obstacles, the industry leverages sophisticated 46

imaging techniques for thorough testing and analysis. The 47

relentless pursuit of miniaturization in semiconductor man- 48

ufacturing demands an ever-increasing focus on achieving 49

nanoscale precision. Advanced tools, such as scanning elec- 50

tron microscopy (SEM) and transmission electron microscopy 51

(TEM), play a vital role in the semiconductor industry’s push 52

for precision. These electron beam instruments offer high- 53

resolution micrographs (microscopic images), revealing intri- 54

cate details of semiconductor materials and structures at the 55

nanoscale. Their sophisticated imaging capabilities are crucial 56

for quality control, including failure analysis, allowing precise 57

characterization of microstructures. As indispensable assets 58

in ensuring semiconductors conform to design specifications, 59

these tools help enable subsequent process optimization or de- 60

sign adjustments to mitigate defects. Characterizing materials 61

at the nanoscale is critical to driving ongoing technological 62

progress. However, current technology falls short in effectively 63

addressing the full spectrum of complexities and specialized 64

requirements for material characterization in the semiconduc- 65

tor industry, particularly in accurate labeling and analysis of 66

electron micrographs. Therefore, recent advancements in Arti- 67

ficial Intelligence (AI), including Large Multimodal Models 68

(LMMs) like Gemini[Team et al., 2023] and GPT-4 Turbo 69

with Vision[OpenAI, 2023], which combine advanced natural 70

language processing with visual understanding capabilities, 71

can significantly impact the semiconductor manufacturing 72

process in several ways. These vision-language models al- 73

low for the analysis of high-resolution electron micrographs, 74

revealing intricate nanoscale structures of semiconductor ma- 75

terials. By identifying and providing insights into patterns, the 76

multimodal large language models enable quality control and 77

improve the precision and efficiency of semiconductor man- 78

ufacturing. While proprietary, general-purpose LMMs offer 79

benefits, their adoption faces challenges due to concerns re- 80

garding sharing enterprise data. Sharing sensitive information 81

with third-party services could expose novel designs and pro- 82

cesses, undermining semiconductor firms’ intellectual prop- 83

erty portfolio and jeopardizing future innovation. Conversely, 84

open-source, small-scale multimodal models (SMMs) like 85

LLaVA[Liu et al., 2023] and MiniGPT-4[Zhu et al., 2023] can 86

be more cost-effective for task-specific customization on mi- 87



croscopic image analysis, enabling safe, reliable, on-premises88

enterprise adoption. The smaller multimodal models offer bet-89

ter interpretability due to their open-source nature. However,90

they may not match the reasoning and generalization capabili-91

ties of proprietary LMMs, sometimes producing less coherent92

and contextually relevant outputs. In addition, generating high-93

quality training datasets is crucial for customizing SMMs for94

microscopic image analysis, but acquiring such datasets is95

scarce and expensive. The annotation process requires expert96

knowledge and specialized tools, making it time-consuming97

and resource-intensive. Additionally, the diverse image char-98

acteristics and representations resulting from the different99

imaging techniques pose a significant challenge to develop-100

ing a generalizable multimodal model that can perform effec-101

tively across various electron micrograph-based datasets. Fur-102

thermore, electron micrograph-based image-captioning and103

open-ended VQA tasks are promising but challenging due to104

complex image characteristics, such as high intra-class dis-105

similarity, high inter-class similarity, and spatial heterogeneity106

(refer Figure1). These complexities pose obstacles to accurate107

image understanding and question answering.108

(a) High intra-dissimilarity in electron micrographs of MEMS
devices.

(b) High inter-class similarity in electron micrographs of various
nanomaterials: powders, films, porous structures, and particles.

(c) Spatial heterogeneity of uneven size distribution in nanoparti-
cle micrographs.

Figure 1: Challenges in analyzing electron micrographs from
the SEM dataset.

To address the challenges of privacy concerns, scarcity109

of high-quality data, and small-scale models generalization110

and interpretability, our study introduces a novel approach111

called ‘On-Premises Secure Multimodal Instruction Tuning112

of SMMs’. This approach enables SMMs to achieve perfor-113

mance comparable to larger models through transfer learning,114

all while decreasing computational requirements. It follows a115

‘teaching-via-data‘ method and utilizes state-of-the-art, vision-116

language models to generate custom instruction-following117

data on niche tasks to train smaller models for task-specific118

adaptation, avoiding the need for human-annotated data. Our119

approach empowers enterprises to fine-tune small-scale, pre-120

trained multimodal models on their own data within their in-121

frastructure, enhancing privacy, security, and reducing compu-122

tational costs, while improving their ability to respond to com-123

plex multimodal inputs. Overall, it offers a promising solution124

to the limitations of existing proprietary LMMs, potentially125

democratizing access to their high-end capabilities and accel- 126

erating their adoption across a wide range of tasks. To address 127

the challenges of privacy concerns, scarcity of high-quality 128

data, and small-scale models generalization and interpretabil- 129

ity, our study introduces a novel approach called ‘On-Premises 130

Secure Multimodal Instruction Tuning of SMMs’. This ap- 131

proach enables SMMs to achieve performance comparable 132

to larger models through transfer learning, while decreasing 133

computational requirements. It follows a ‘teaching-via-data’ 134

method and utilizes state-of-the-art, vision-language models 135

to generate custom instruction-following data on niche tasks. 136

This synthetic data is used to train smaller models for task- 137

specific customization, avoiding the need for human-annotated 138

data. Our approach empowers enterprises to fine-tune smaller, 139

pre-trained models on their own data within their infrastruc- 140

ture, enhancing privacy, security, and reducing computational 141

costs, while improving their ability to respond to complex mul- 142

timodal inputs. Overall, it offers a promising solution to the 143

limitations of existing proprietary LMMs, potentially democ- 144

ratizing access to their high-end capabilities and accelerating 145

their adoption across a wide range of tasks. In this work, we 146

present the Multimodal Assistant for Electron Micrograph 147

Analysis (MAEMI), an end-to-end trained, small-scale multi- 148

modal model designed for microscopic image analysis. We 149

utilize visual-language instruction tuning to customize MAEMI 150

on microscopic image analysis using GPT-4-Turbo with Vision 151

generated high-fidelity multimodal labeled data, eliminating 152

the need for additional human annotation efforts. The gener- 153

ated instruction-following dataset comprises image-question- 154

answer pairs that delve into various aspects of nanomaterials 155

in microscopic images, created by prompting a large-scale, 156

pre-trained multimodal model (like GPT-4 Turbo with Vision) 157

with task-specific instructions based on the target microscopic 158

images. The high-quality generated dataset trains the pro- 159

posed framework to analyze electron microscopy images of 160

nanomaterials, enabling it to answer questions about the con- 161

tent within the visual inputs. Our approach empowers smaller 162

models with zero-shot learning capabilities, enabling them to 163

grasp both the intricate context within microscopic images, 164

including spatial relationships and object interactions, and the 165

nuanced semantics and intent behind the questions. Conse- 166

quently, this leads to improved grounded language generation 167

and visual reasoning capabilities, resulting in more accurate 168

answers. Furthermore, our approach facilitates knowledge 169

distillation from larger to smaller models, ultimately enhanc- 170

ing their performance to be on par with larger models in mi- 171

croscopic image analysis tasks. Our novel encoder-decoder 172

multimodal framework efficiently processes and aligns im- 173

ages and text to generate textual responses to questions across 174

image captioning and open-ended VQA tasks. Key compo- 175

nents of MAEMI for the zero-shot image captioning task are 176

illustrated in Figure 2. The multimodal model, MAEMI, inte- 177

grates visual processing and language modeling for answering 178

questions about specific image features. It includes: (a) The 179

vision encoder, using a vision transformer[Dosovitskiy et al., 180

2020], analyzes the microscopic images by splitting them into 181

patches and using self-attention mechanism to capture beyond 182

pair-wise patch relationships. This allows for understanding 183

the global context and highlighting relevant visual regions and 184
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Figure 2: The schematic illustrates MAEMI, a small-scale, autoregressive text generation model. It takes as input a multimodal
prompt consisting of the target image interleaved with auxiliary image descriptions and captioning instructions (or end-user
questions), and outputs visually grounded descriptive text in a zero-shot setting. MAEMI utilizes a vision transformer and a
pre-trained language model to analyze images and interpret questions about them. Both encoders synergize through a multi-layer
structure of alternating gated cross-attention and self-attention blocks, effectively integrating both modalities – visual and textual
information – to generate accurate and contextually relevant answers. The framework is trained in a supervised learning setting
using a vision-language instruction tuning dataset to generate answers that are grounded in visual information and aligned with
the target image content.

relationships. A <cls> token attends to and aggregates185

information from all patches, resulting in a higher-level vi-186

sual semantic representation to capture the overall context or187

summary of the input image. (b)The text encoder, crucial for188

analyzing end-user questions, takes as input an interleaved189

multimodal prompt. We insert <image> token in the prompt190

at the image location and append an <Encode> token to facil-191

itate multimodal integration, with its output embedding sym-192

bolizing the fused representation. The text encoder leverages193

instruction-tuned Llama-2-7b, a pretrained language model, to194

capture language nuances and context. The language-only195

model is customized using parameter-efficient fine tuning196

technique, enhancing its ability to interpret end-user ques-197

tions. Both the vision and language-only unimodal encoders198

synergize to interpret end-user questions and analyze visual199

input for generating answers consistent with the visual context.200

(c) It utilizes a multi-layered structure with multiple blocks,201

alternating between self-attention and gated cross-attention202

blocks. This design facilitates complex interactions between203

visual and textual modalities. By extracting and refining in-204

formation from both modalities at each level, the framework205

progressively builds a comprehensive understanding, enabling206

coherent and contextually relevant answers to the end-user207

questions. Gated cross-attention blocks integrate visual fea-208

tures with textual features. The gating mechanism acts as a209

non-linear filter and controls the flow of information from210

the vision encoder to the language processing cross-attention211

blocks, allowing the framework to focus on relevant visual 212

features for the text generation task. Self-attention blocks, on 213

the other hand, allow the framework to weigh the importance 214

of different parts of the fused information. Within the self- 215

attention blocks, this is used to refine the text features based on 216

their context within the text itself. We train the framework in 217

a supervised learning setting, minimizing language modeling 218

loss to ground its text generation in visual information. This 219

results in accurate answers closely aligned with the image 220

content, empowering the framework with microscopic im- 221

age analysis expertise. In summary, the proposed framework, 222

trained through vision-language instruction tuning, takes as 223

input a multimodal prompt of microscopic images paired with 224

auxiliary image descriptions, and outputs free-form text as 225

answers to a range of open-ended, image-related questions. 226

1.1 Dynamic Low-Rank Adaptation with 227

Activation Memory Reduction (DyQLoRA-FA) 228

Low-Rank Adaptation (LoRA[Hu et al., 2021]) is a deep 229

learning technique used to efficiently fine-tune large-scale 230

pre-trained language models on consumer hardware to adapt 231

for niche domain-specific tasks. It accomplishes this without 232

introducing additional inference latency and without the need 233

for extensive retraining. LoRA adapts these large-scale mod- 234

els to domain-specific tasks by preserving the vast knowledge 235

acquired during pretraining, thereby avoiding catastrophic 236

forgetting—a phenomenon where the language model loses 237

previously learned information while acquiring new infor- 238



mation. This selective adaptation of large pre-trained lan-239

guage models is achieved by inserting small pairs of trainable240

low-rank weight matrices, known as adapters, into each pre-241

trained model layer. By keeping the original pretrained model242

weights unchanged, LoRA updates only these auxiliary pa-243

rameters, achieving comparable performance to full-parameter244

fine-tuning. LoRA primarily focuses on the linear layers in245

Transformer-based large-scale language models [Vaswani et246

al., 2017], for several key reasons: (a) These layers are preva-247

lent in such architectures and contain a significant portion of248

the language model’s parameters. (b) They are well-suited for249

low-rank approximations, offering a balance between language250

model adaptability and computational efficiency. (c) Addition-251

ally, modifying linear layers directly impacts the language252

model’s learning capabilities, making them ideal targets for253

efficient and effective fine-tuning. By taking advantage of the254

distinct features of linear layers, LoRA incorporates additional255

trainable parameters (∆W) to capture task-specific informa-256

tion, thereby updating the pretrained language model without257

altering the original weights (W0). The low-rank adapta-258

tion, in which the original weight matrices are transformed by259

adding the product of pair of low-rank matrices, effectively260

allows the pretrained language model to learn domain-specific261

tasks, as expressed below:262

Y = (W0 +∆W)X = W0X+ (αAB)X (1)263

Here, Y ∈ Rb×dout and X ∈ Rb×din represent the output264

and input tensors, respectively. We omit the bias term for265

simplicity. din and dout denote the input and output dimen-266

sions, respectively. b denotes the batch size. The original267

weight matrix, denoted as W0 ∈ Rdin×dout , preserves the pre-268

trained knowledge. ∆W, the low-rank approximation added269

to W0 during language model adaptation, enables fine-tuning270

for domain-specific tasks while preserving general capabili-271

ties. The projection-down weight matrix A has dimensions272

Rdin×r, and the projection-up weight matrix B has dimen-273

sions Rr×dout . The rank of the decomposition, denoted as r,274

is significantly smaller than din or dout (i.e., r ≪ din or dout).275

α, a positive constant, is typically valued at 1
r . The rank, r,276

is a critical hyperparameter that influences the balance be-277

tween the pretrained language model’s adaptation capacity,278

computational efficiency, and overall performance during the279

fine-tuning process for task-specific customization. During280

training, the low-rank weight matrices B and A are updated,281

while W0 remains fixed. During the fine-tuning of pre-trained282

language models, gradients for each trainable parameter are283

calculated using the loss function. These gradients guide op-284

timizers, such as Adam[Kingma and Ba, 2014] or SGD[Rob-285

bins and Monro, 1951], in updating the trainable parameters.286

Additionally, optimizers maintain extra state information for287

these parameters, which includes momentum and adaptive288

learning rates. Thus, fine-tuning pre-trained language models289

necessitates storing not only the model parameters but also290

their gradients and optimizer states in memory. LoRA pro-291

portionally decreases the memory overhead associated with292

the gradients and optimizer states by reducing the number293

of trainable parameters through low-rank adaptation. This294

reduction is crucial for task-specific fine-tuning of large-scale295

language models. Consequently, LoRA requires fewer com-296

putational resources than full fine-tuning, making it a more 297

efficient and scalable approach for adapting pre-trained lan- 298

guage models to specific tasks. However, substantial memory 299

is still necessary to store the large input activations (i.e., the 300

high-dimensional intermediate outputs of layers, such as X in 301

Equation 1) during the feed-forward pass. This is necessary for 302

computing the gradients of the low-rank weights during back- 303

propagation. High activation memory demands significantly 304

limit scalability, especially when computational resources are 305

constrained. Approaches such as selective LoRA [Hu et al., 306

2021] or activation recomputation [Chen et al., 2016] can po- 307

tentially alleviate these demands, but suffer from trade-offs 308

in terms of performance and efficiency. In conclusion, while 309

LoRA enables efficient adaptation of pre-trained language 310

models to specific tasks or domains, addressing the substan- 311

tial activation memory demands during fine-tuning remains 312

a key challenge. LoRA-FA [Zhang et al., 2023] significantly 313

reduces the activation memory footprint by freezing the pre- 314

trained weights (W0), the projection-down weight (A), and 315

updating only the projection-up weight (B) in each linear layer. 316

In LoRA-FA, the frozen A is randomly initialized from a nor- 317

mal distribution, while B is initialized to zero and updated 318

during fine-tuning. This approach allows for the computation 319

of gradients solely for B, leading to a substantial reduction 320

in computational load. Moreover, it necessitates storing only 321

the reduced-dimensionality input to B (i.e., AX), where A 322

maps the high-dimensional input X to a significantly smaller 323

r-dimensional space, facilitating the computation of gradients 324

for B during backpropagation with reduced activation memory. 325

This approach significantly reduces the activation memory re- 326

quirements without compromising fine-tuning performance 327

and without introducing additional computational overhead 328

and inference latency. Consequently, it enables efficient fine- 329

tuning of pre-trained language models under resource con- 330

straints while preserving accuracy and minimizing memory 331

consumption. However, LoRA-FA may have potential limi- 332

tations, including potentially slower convergence rates in the 333

initial stages of fine-tuning and the need for careful hyperpa- 334

rameter optimization of rank r to achieve peak performance. 335

Furthermore, LoRA-FA is a static low-rank adapter that works 336

only with a specifically trained rank r. To address these limita- 337

tions, DyLoRA[Valipour et al., 2022] introduces dynamic low- 338

rank adapters that are trainable and deployable across a range 339

of ranks, thereby eliminating the need to find the optimal rank 340

through multiple trainings. Dynamic low-rank adapters offer 341

several key benefits. Firstly, their ability to dynamically adjust 342

their rank allows for an optimal trade-off between computa- 343

tional efficiency and pre-trained language model performance 344

on specialized domain-specific tasks. Secondly, because these 345

adapters can adapt their rank according to the specific task 346

and data distribution, they are particularly well-suited for sce- 347

narios involving continuous learning or frequent changes in 348

data distributions, especially when facing out-of-distribution 349

(OOD) data. We utilize DyLoRA to train and deploy LoRA- 350

FA across a range of ranks, r ∈ Range[rmin, rmax], with rmin 351

and rmax as new hyperparameters. During training at each step, 352

a rank b is sampled from a pre-defined categorical distribution, 353

b ∼ pB(Range[rmin, rmax]) and the matrices are truncated to 354

A↓b and B↓b as follows: 355



B↓b = B[1 : b, :]

A↓b = A[:, 1 : b]

Y = W0X+ (αA↓bB↓b)X

356

where A↓b and B↓b are the truncated forms of A and B357

at rank b, the back-propagation involves computing gradi-358

ents ∂L
∂A↓b and ∂L

∂B↓b , where L is the loss function. The back-359

propagation technique aims to update these matrices based360

on the loss function, taking into account the dynamic adap-361

tation in rank. We compute gradient with respect to B as362

follows: Consider the contribution to the output Y from B:363

YB = (αA↓bB↓b)X. The gradient of the loss L with respect364

to B↓b is:365
∂L
∂B↓b =

∂L
∂YB

· ∂YB

∂B↓b
366

∂L
∂B↓b = αA↓b

(
∂L
∂YB

X

)
367

Similarly, the gradient of the loss L with respect to A↓b is:368
∂L
∂A↓b =

∂L
∂YB

· ∂YB

∂A↓b

∂L
∂A↓b = αB↓b

(
∂L
∂YB

X

)369

The gradients are used to update the trainable parameters370

using an optimizer like Adam or SGD as follows,371

B↓b
new = B↓b − η · ∂L

∂B↓b ;A
↓b
new = A↓b − η · ∂L

∂A↓b

B[1 : b, :] = B↓b
new;A[:, 1 : b] = A↓b

new

372

where η is the learning rate. We manage the computational373

complexity associated with varying ranks in DyLoRA-FA374

through custom gradient accumulation and rank normalization.375

Gradient accumulation enables more stable and efficient learn-376

ing by collecting gradients over multiple iterations, while rank377

normalization equalizes the impact of different ranks on lan-378

guage model fine-tuning by scaling gradients according to rank379

size. We employ weight-only quantization (WOQ) for fine-380

tuning pre-trained language models. WOQ compresses the381

original weights of the pre-trained language model by convert-382

ing its high-precision weights (usually 16-bit floating-point)383

into lower-precision formats (e.g., 8-bit integers). This results384

in a drastic reduction in the language model’s memory foot-385

print and computational requirements. We fine-tune the quan-386

tized pre-trained language model on specific datasets related387

to the target domain-specific task using the parameter-efficient388

fine-tuning (PEFT) technique such as DyLoRA-FA, which389

compensates for any accuracy drops resulting from quantiza-390

tion. DyQLoRA-FA, which involves quantization, has been391

found to reduce memory requirements significantly, albeit at392

the cost of a slightly longer training time. This trade-off is gen-393

erally considered acceptable, especially when it allows for the394

use of low-cost GPUs. In summary, DyQLoRA-FA is a flexi-395

ble and efficient method for fine-tuning large language models396

across various rank sizes. It maintains performance without397

retraining, is highly memory-efficient, has low computational398

cost, and achieves comparable performance to full-parameter399

fine-tuning on diverse tasks.400

1.2 Fine-Tuning, Pretrained Large Language401

Models(LLMs)402

Llama 2[Touvron et al., 2023], an advanced autoregressive403

pretrained language transformer built for natural language pro-404

cessing (NLP) tasks, leverages supervised fine-tuning (SFT) 405

and reinforcement learning with human feedback (RLHF) to 406

generate responses ideal for chat applications and various 407

language generation tasks. Its robust foundation in under- 408

standing and generating human-like text, combined with its 409

ability to effectively interpret and produce natural language, 410

makes it well-suited for complex NLP tasks. Llama-2’s ar- 411

chitecture comprises 32 layers and 32 attention heads, ef- 412

ficiently handling large token sequences of up to 4096 to- 413

kens. It incorporates RMSNorm pre-normalization[Zhang 414

and Sennrich, 2019], SwiGLU activation functions[Chowd- 415

hery et al., 2022], rotary positional embeddings[Shaw et al., 416

2018], and a grouped-query attention mechanism[Ainslie et 417

al., 2023] to achieve this efficient processing. We fine-tuned 418

Llama-2-7B using a parameter-efficient fine-tuning technique 419

(PEFT) called Dynamic Adaptation with Activation Mem- 420

ory Reduction (DyQLoRA-FA). The fine-tuning leveraged a 421

vision-language instruction tuning dataset generated by GPT-4 422

Turbo with Vision, based on image captioning and open-ended 423

VQA tasks. This task-specific fine-tuning enhances Llama-2’s 424

ability to comprehend complex language in niche domains, 425

particularly evident in its improved interpretation of natural 426

language questions related to electron micrographs. The re- 427

sulting pretrained language model demonstrates advanced ca- 428

pabilities in question analysis and handling complex language, 429

leading to a stronger correspondence between images and text. 430

Llama-2’s seamless integration with vision encoders makes 431

it powerful for multimodal tasks. The proposed framework 432

can effortlessly process both visual and textual data, which is 433

particularly valuable when analyzing images and their corre- 434

sponding descriptions. 435

1.3 Pretrained Large Multimodal Models 436

We build upon pre-trained Large Multimodal Models (LMMs) 437

to generate image-question-answer triplets as instruction- 438

tuning datasets to train smaller multimodal models (SMMs) 439

through vision-language instruction tuning. This knowledge 440

transfer, or distillation, from LMMs accelerates and enhances 441

SMMs’ learning, ultimately leading to more accurate, relevant, 442

and contextually-aware responses in tasks demanding compre- 443

hension of both visual and linguistic inputs, such as zero-shot 444

VQA and image captioning for electron microscopy images 445

analysis. We utilize OpenAI’s state-of-the-art multimodal 446

model, GPT-4 Turbo with Vision (GPT-4-vision-preview), 447

which surpasses the limitations of its predecessors, to effi- 448

ciently generate high-quality training data for instruction tun- 449

ing SMMs. This allows SMMs to generalize well to new, un- 450

seen questions. GPT-4 Turbo boasts a significantly expanded 451

context window of 128k tokens (≈ 300 pages per prompt), 452

a 3x reduction in input token cost, a 2x reduction in output 453

token cost, and a maximum output length of 4096 tokens 454

for more elaborate text generation. The GPT-4 Turbo with 455

Vision API, accessible through Multimodal Modeling as a Ser- 456

vice (MMaaS), accepts both image and text inputs to generate 457

multimodal outputs. By leveraging MMaaS, which utilizes 458

proprietary GPT-4 Turbo with Vision as an on-demand cloud 459

service accessed via an API, users can design task-specific 460

prompts to query pre-trained LMMs for solving multimodal 461

tasks of interest. This approach is analogous to how users ac- 462



cess LLMs via Language Modeling as a Service (LMaaS) for463

language-specific tasks. Designed for large-scale, concurrent464

requests, APIs are ideal for integration into automated systems.465

Our exploration of small multimodal models (SMMs) for elec-466

tron micrograph analysis begins by leveraging GPT-4 Turbo467

with Vision (GPT-4V) to generate natural language questions468

as task-specific instructions for VQA and image-captioning469

tasks. By pairing these questions with the corresponding tar-470

get electron micrographs, we create multimodal prompts that471

guide GPT-4V to generate contextually rich textual responses472

to natural language questions about the nanomaterial’s struc-473

ture and patterns underlying the electron micrographs. This474

approach capitalizes on GPT-4V’s inherent domain-specific475

knowledge, acquired during training on a vast multimodal cor-476

pus, to yield comprehensive insights into these microscopic477

images. These insights helps to generate diverse multimodal478

instruction-following data, vital for training SMMs to general-479

ize well on electron microscopy image analysis tasks.480

1.4 Multimodal Instruction-Following Data481

The generation of high-quality, diverse, and task-specific mul-482

timodal instruction-following data using GPT-4 Turbo with483

Vision is a powerful approach for training versatile, more484

efficient, and smaller multimodal models for VQA and image-485

captioning on microscopic image analysis tasks. This ap-486

proach offers several benefits, including: (a) Enhancing487

model capabilities: GPT-4 Turbo with Vision’s, owing to488

its vast pre-training knowledge can generate questions that489

comprehensively investigate diverse facets of nanomaterials490

underlying electron micrographs, including size, distribution,491

morphology, and structure. These questions are more complex,492

nuanced, and require reasoning and knowledge beyond basic493

image recognition. This can expand the limits of what smaller494

multimodal models can learn and enable them to answer more495

challenging visual questions about these microscopic images.496

(b) Improving zero-shot learning: Training smaller models497

on diverse questions and answers fosters deeper insights into498

the relationships between visual features, language, and task499

objectives. This enhances their ability to answer new ques-500

tions on unseen microscopic images without further training,501

a critical element for practical applications. (c) Facilitating502

knowledge distillation: GPT-4 Turbo with Vision can gen-503

erate detailed, nuanced question-answer pairs that describe504

microscopic images, including their visual properties such505

as shape, texture, patterns, and surface characteristics. Fur-506

thermore, it can draw connections to size, distribution, mor-507

phology, and structural relationships, leveraging its extensive508

internal knowledge acquired during pre-training. This facili-509

tates knowledge distillation, transferring valuable task-specific510

knowledge from larger to smaller models. As a result, smaller511

models become more efficient, accurate, and transparent in512

their reasoning since they don’t need to learn everything from513

scratch with expensive human-annotated datasets. (d) Gener-514

ating diverse question-answer pairs: Finally, the end-user515

queries can be used to generate diverse question-answer pairs516

that delve into various aspects, properties, and characteristics517

of microscopic images. This further enriches the training data518

for smaller models, equipping them to handle a wider range519

of end-user queries. Our approach leverages the power of520

zero-shot chain-of-thought (CoT) prompting to guide large 521

multimodal models (LMMs) like GPT-4 Turbo with Vision to 522

create a novel training dataset of image-question-and-answer 523

triples specifically designed for SMMs. As shown in Tables 524

11 - 20, the generated Q&A pairs correspond to a sample of 525

microscopic images of different nanomaterials from the SEM 526

dataset [Aversa et al., 2018]. Through knowledge distillation, 527

SMMs achieve performance on par with or even exceeding 528

that of larger, more generalized multimodal models. The high- 529

quality dataset, encompassing both images and corresponding 530

Q&A pairs extracted from LMMs, provides a clear foundation 531

for SMMs to understand how certain concept-based questions 532

and their corresponding answers are visually represented. 533

Prompt 1: **Basics** - What type of nanomaterial
is depicted in the image? - What is the scale of the
image? (e.g., what does one unit of measurement
represent?). Prompt 2: **Morphology and Struc-
ture** - What is the general shape or morphology
of the nanomaterials in the image? - Are there dis-
tinct layers, phases, or domains visible? - Do the
nanomaterials appear uniform in size and shape or are
they varied?. Prompt 3: **Size and Distribution**
- What is the approximate size or size range of the
individual nanostructures? - How are the nanomate-
rials distributed throughout the image? (e.g., evenly
spaced, clustered, random) - Is there any evidence of
aggregation or bundling?. Prompt 4: **Surface Char-
acteristics** - Does the nanomaterial appear smooth,
rough, or have any specific textures? - Are there any
visible defects, pores, or impurities on the surface?.
Prompt 5: **Composition and Elements** - Is there
evidence of compositional variations in the image (e.g.,
different colors, brightness, or contrasts)? - Are there
any labels or markers indicating specific elements or
compounds present?. Prompt 6: **Interactions and
Boundaries** - How do individual nanostructures in-
teract with one another? (e.g., are they touching, fused,
or separate?) - Are there clear boundaries between dif-
ferent structures or phases?. Prompt 7: **External
Environment** - Is there any evidence of the nanoma-
terial interacting with its surrounding environment or
matrix (e.g., solvents, polymers, or other materials)? -
Are there other structures or objects in the image that
are not nanomaterials? If so, what are they?. Prompt
8: **Image Technique and Modifications** - What
imaging technique was used to capture this image?
(e.g., SEM, TEM) - Were there any post-processing or
modifications made to the image (e.g., false coloring,
3D rendering)?. Prompt 9: **Functional Features** -
If applicable, are there any functional features visible
(e.g., active sites, regions with distinct properties)? -
Are there dynamic processes captured in the image or
is it a static representation?. Prompt 10: **Context
and Application** - What is the intended application
or use of the nanomaterial being depicted? - Is this
a experimental sample, or a theoretical or simulation-
based representation?

534



1.5 Vision Encoder535

We start with an input image I, a 3D tensor of dimensions536

H×W ×C, representing height H , width W , and color chan-537

nels C per pixel. The image is divided into non-overlapping538

patches sized P × P × C. Tokenizing the image results in539

n = HW
P 2 patches. These patches are linearly encoded into 1D540

vectors, forming a sequence of tokens I′ ∈ Rn×d, where d is541

the dimensionality of patch embeddings. Positional embed-542

dings are added to each patch embedding to preserve spatial543

information. A special classification token, < cls>, is ap-544

pended for aggregating information across patches for global545

representation. This token sequence is processed by a variant546

of the Vision Transformer (ViT) with stacked encoder layers547

using hierarchical attention mechanism. The stacked encoder548

layers process patch embeddings through higher-order atten-549

tion mechanisms for multi-scale visual comprehension, from550

fine details to global context. It involves local and global multi-551

head attention phases, first focusing on patch interrelationships552

and then incorporating the classification token for a holistic553

understanding. The output is the embedding of the classifica-554

tion token hcls, representing the image’s unified visual context.555

In summary, the vision encoder breaks down the image into556

patches, converts them into tokens, and integrates them us-557

ing a layered hierarchical attention mechanism to produce a558

comprehensive representation, hcls, encapsulating both local559

and global aspects of the image. A vision encoder analyzes560

images to extract visual knowledge like objects, textures, and561

patterns, encoding them into a representation understood by a562

language model. This visual understanding is then fused with563

a natural language question, allowing the model to accurately564

interpret the question in the context of the image and generate565

precise answers to visual questions. This process effectively566

bridges the gap between visual and linguistic information,567

leading to richer and more meaningful multimodal reasoning568

and generation.569

1.6 Sampling Strategies570

To generate instruction-following multimodal data using GPT-571

4 Turbo with vision for few-shot image classification (refer572

to Figure 4) and to analyze electron micrographs for high573

intra-class dissimilarity, high inter-class similarity, and spa-574

tial heterogeneity (refer to Figures 5-7), we implement the575

following strategies. We train a Vision Transformer (ViT)576

through supervised learning to minimize cross-entropy loss577

and improve multiclass classification accuracy. The output578

embedding (hcls) from the (<cls>) token provides a compre-579

hensive image representation. For few-shot classification, we580

use a similarity-driven sampling method. We hypothesize581

that training with demonstrations that resemble the target im-582

age’s data distribution will enhance adaptability and accuracy.583

To achieve this, we use cosine similarity of classification to-584

ken embeddings to select the top-K similar images from the585

training set that are most similar to the target image. To586

comprehend high inter-class similarity and conversely, high587

intra-class dissimilarity, we generate question-answer pairs588

using GPT-4 Turbo with vision for each target image. For589

inter-class similarity, we sample highly similar images across590

nanomaterial categories. Conversely, for intra-class dissim-591

ilarity, we sample highly dissimilar images within the same592

category. This process allows us to gain deeper insights from 593

the electron micrographs. 594

1.7 Additional Information 595

We investigate the effect of using training data with diverse 596

instruction lengths (image-question-answer triplets) generated 597

by GPT-4 Turbo with Vision on the performance of smaller 598

multimodal models. By incorporating both short (concise) and 599

long (detailed) answers for the same natural language question 600

into the training datasets, we aim to optimize these smaller 601

models for tasks ranging from basic classification and image 602

captioning to complex scenario analysis. This approach of 603

employing varied-length data offers several potential benefits. 604

Exposing a smaller model to diverse sentence structures and 605

visual complexities fosters greater flexibility and adaptabil- 606

ity. This approach enhances its ability to process real-world 607

scenarios with varying levels of detail, improving generaliz- 608

ability and reducing overfitting. Furthermore, it challenges 609

the smaller model’s reasoning abilities, promoting a deeper 610

understanding of the relationships between visual features and 611

textual descriptions. Consequently, the smaller multimodal 612

model’s performance in tasks like image captioning and Visual 613

Question Answering (VQA) improves, making it more robust 614

and versatile for practical applications. Figures 3, 4, 5, 6, and 615

7 illustrate MAEMI, a multimodal assistant for electron micro- 616

graph analysis. MAEMI takes a multimodal prompt consisting 617

of electron micrographs and supplementary information (e.g., 618

metadata, annotations) and produces free-form text as out- 619

put. Figure 3 and 4 show variants of the MAEMI framework 620

on the zero/few-shot classification task. Figures 5, 6, and 7 621

illustrate how the MAEMI model can be adapted to address 622

specific challenges in VQA tasks on electron micrographs, 623

including intra-class dissimilarity, inter-class similarity, and 624

spatial heterogeneity. 625

1.8 Experimental Setup 626

MAEMI is an AI assistant with an SMM (smaller multimodal 627

model) as its backbone, specializing in electron microscopic 628

image analysis. It integrates visual and textual data to under- 629

stand microscopic images and answer questions. The SMM, 630

with its vision and language capabilities, enables image cap- 631

tioning and visual question answering on microscopic images. 632

The proposed vision-and-language assistant neural network 633

architecture includes a vision encoder, a pretrained language- 634

only-instruction-tuned decoder (Llama-2-7b), and multiple 635

intertwined blocks of gated cross-attention and self-attention 636

layers, allowing for task-specific adaptation on consumer hard- 637

ware. This is achieved using the generated vision-language 638

instruction-tuning data (image-text pairs) created by a large 639

multimodal model (GPT-4 Turbo with Vision) to train the 640

SMM for microscopic image analysis tasks. The smaller 641

model leverages two key attention mechanisms: gated cross- 642

attention and self-attention, to process both visual and tex- 643

tual data and generate human-like descriptions. Gated cross- 644

attention allows the smaller model to selectively focus on rele- 645

vant parts of the electron micrograph based on the textual input. 646

Self-attention then refines the understanding by weighing dif- 647

ferent parts of the combined information. Despite its size, 648

the smaller model generates accurate, contextually relevant, 649



and coherent text comparable to larger models, showcasing its650

ability to interpret natural language questions, utilize visual651

context, and produce effective responses. To train the SMM in652

a supervised learning setting, we employed the SEM dataset653

[Aversa et al., 2018], a collection of electron micrographs of654

various nanomaterials with dimensions of 1024 × 768 × 3655

pixels. We preprocessed the microscopic images by resizing656

them to 224×224×3 pixels and applying data standardization657

to normalize the data to have a mean of 0.5 and a variance of658

1 across all channels. This preprocessing ensured that image659

values fell within the range of -1 and 1. To capture local fea-660

tures effectively, we divided the resized images into smaller661

patches, representing the micrographs as sequences of patches.662

Each patch was 32 pixels wide and high. We set both the663

patch dimension (dpos) and the position embedding dimension664

(d) to 64 to capture sufficient spatial information within each665

patch sequence. This approach allowed the SMMs to learn666

from local features within the micrographs while maintain-667

ing context through the sequence of patches, improving the668

SMM’s understanding and analysis of complex nanomateri-669

als. Parameter-efficient fine-tuning of the Llama-2-7b model670

leverages the dynamic adaptation with activation memory re-671

duction (DyQLoRA-FA) technique, characterized by three672

key hyperparameters: a) Rank (r): This parameter balances673

the smaller model’s capacity and complexity by controlling674

the low-rank approximation of the trainable weight matrices.675

During training, r is randomly selected from a predefined676

range (rmin = 4, rmax = 16). A higher rank yields a more677

expressive model with more adaptable parameters, while a678

lower rank promotes computational efficiency. (b) Alpha (α):679

This scaling factor is typically set to a small value, such as 1
r ,680

based on the rank. Alpha controls the step size of the parame-681

ter updates. A larger alpha enables more aggressive updates,682

which can improve performance but may also cause training683

instability. (c) LoRA dropout: Specifically applied to low-rank684

adapter layers, this dropout mechanism combats overfitting685

and enhances generalization. A typical value for this hyper-686

parameter is 0.05. We utilize 8-bit weight quantization for687

pre-trained model weights via the DyQLoRA-FA technique688

to enable efficient fine-tuning on consumer hardware while689

retaining comparable performance. The training regime for690

the SMM comprised 50 epochs, employing an initial learning691

rate of 1×10−3 to ensure controlled optimization, and a batch692

size of 32. For the self-attention and cross-attention layers, we693

configured the number of attention heads (H) to be 4 and the694

dimensionality of Key/Query/Value (dh) to be 32. To optimize695

SMM performance, we implemented two key strategies: (a)696

Early stopping on the validation set: We halted the training697

when the SMM’s performance on the validation data plateaued,698

effectively preventing overfitting; (b) Learning rate scheduler:699

The learning rate was systematically reduced by half if the val-700

idation loss did not improve for five consecutive epochs. This701

reduction assisted the SMM in converging to a better solution702

and further mitigated overfitting. Furthermore, we employed703

the Adam optimization algorithm [Kingma and Ba, 2014] to704

update the SMM’s trainable parameters. In our work, we705

have two types of instruction-following data: (a) a multi-class706

classification task - identification of nanomaterial category in707

zero/few shot settings, and (b) an open-ended visual question708

answering (VQA) task. For supervised fine-tuning, we mini- 709

mize the standard cross-entropy loss built using the PyTorch 710

framework. We utilize Nvidia V100 GPUs (32GB RAM) to 711

develop the custom SMM model. 712

1.9 Evaluation Metrics 713

In the field of image-captioning, visual question answering 714

(VQA), several metrics are used to evaluate the quality of 715

the generated text. These metrics assess different aspects 716

of text generation, such as its similarity to reference texts, 717

grammatical correctness, and semantic relevance. Here’s an 718

overview of some key metrics: 719

• BLEU Score (Bilingual Evaluation Understudy): The 720

BLEU score score evaluates machine-generated text qual- 721

ity by measuring its similarity to ground-truth references. 722

It compares the overlapping n-grams (word sequences) 723

between the translated text and reference texts, consid- 724

ering various n-gram lengths. BLEU mainly evaluates 725

translation precision, ensuring the machine translation’s 726

words and phrases appear in the reference texts. It counts 727

matching n-grams, using a clipping mechanism to avoid 728

over-counting in cases of n-gram repetition. The score 729

ranges from 0 to 1, with 0 indicating no overlap and 1 de- 730

noting complete similarity. Higher scores suggest better 731

translation quality. 732

• METEOR (Metric for Evaluation of Translation 733

with Explicit Ordering): METEOR evaluates machine- 734

generated text against ground-truth references, measur- 735

ing overlap and considering linguistic qualities like syn- 736

onymy and paraphrasing. It uses an alignment module 737

to map unigrams between the candidate and reference 738

texts, prioritizing exact matches, stem/lemma matching, 739

and semantic similarity. To evaluate performance, it ana- 740

lyzes both how much of the reference text is addressed 741

(coverage for recall) and how closely the generated text 742

matches the wording (alignment for precision). Scores 743

range from 0 to 1, with higher values indicating better 744

performance. Unlike BLEU, METEOR better aligns with 745

human quality judgments by considering recall, linguis- 746

tic variations, and stronger correlation at the sentence or 747

segment level. 748

• ROUGE Score (Recall-Oriented Understudy for Gist- 749

ing Evaluation): ROUGE measures the quality of gen- 750

erated text by comparing it with ground-truth references. 751

It analyzes overlapping textual elements (like words or 752

phrases) between the candidate and reference texts. The 753

basic ROUGE-N metric computes the number of overlap- 754

ping n-grams. Variants like ROUGE-L, ROUGE-W, and 755

ROUGE-S measure the longest common subsequence, 756

full word consecutive matches, and skip-bigram matches, 757

respectively. Scores range from 0 to 1, where 0 means no 758

overlap and 1 indicates complete overlap. Higher scores 759

suggest better quality, showing the model’s summary 760

captures content similar to human references. 761
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Figure 3: The schematic illustrates the small-scale, multimodal assistant for electron micrograph analysis (MAEMI), a content-
aware, visually-conditioned, autoregressive text generation model that takes a multimodal prompt containing electron micrographs
interleaved with textual descriptions, and produces free-form text as output. The input consists of a target image, user-provided
supplementary text, and task-specific instruction. The goal is to categorize the image into one of ten categories in a zero-shot
setting.
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Figure 4: The schematic illustrates a small-scale, multimodal assistant for electron micrograph analysis (MAEMI), a visually-
conditioned, autoregressive text generation model. The multimodal input conisits of microscopic images arbitrarily interleaved
with textual descriptions and produces free-form text as output. The input includes a few demonstration examples as input-output
mappings(microscopic images their corresponding labels), and a task-specific instruction. The goal is to predict the label for the
target image in a few-shot setting.
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Figure 5: The schematic illustrates the proposed small-scale multimodal assistant for electron micrograph analysis (MAEMI).
It leverages a multimodal prompt that interleaves visual data from electron microscopy images with user-provided auxiliary
text data to generate descriptive output. The multimodal model is designed to generate accurate and concise descriptions
of the visual features in high-contrast images, linking them to the classification of the electron micrographs into a specific
nanomaterial category. During inference, MAEMI utilizes its domain-specific knowledge to interpret intertwined visual features
and query text, generating accurate and informative responses about microscopic images within the specified category. Note:
For clarity and brevity, the output text has been simplified.
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Figure 6: The schematic illustrates MAEMI, a proposed small-scale multimodal assistant for the VQA task on electron micrographs.
It leverages a multimodal prompt that interleaves visual data of similar-looking, high-resolution electron micrographs showcasing
diverse nanomaterial categories such as films and coated surfaces, particles, porous sponges, and powders with user-provided
auxiliary text data. Additionally, MAEMI receives specific user queries that prompt it to analyze and describe the unique visual
features distinguishing each category, thereby generating precise and concise responses describing the unique visual features
distinguishing each category. Note: The output text is simplified for the sake of illustration and conciseness.
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Figure 7: The schematic outlines the architecture of the small-scale multimodal assistant (MAEMI), which is tailored for the
analysis of electron microscopy images of nanomaterials. It takes both visual and textual inputs: a series of high-resolution
electron micrographs showcasing the spatial variations and diverse morphologies of the particles, combined with user-provided
auxiliary text data. The multimodal model, guided by user instructions, produces brief, precise descriptions, highlighting the
visual features unique to each nanomaterial category underlying the images. For clarity and brevity, the output text has been
simplified. Note: We’ve presented the output text in a simplified format for better readability.

2 Experiments And Results762

2.1 Datasets763

Our study utilized the SEM dataset [Aversa et al., 2018], which764

comprises more than 21,000 electron micrographs covering765

ten different nanomaterials. We employed this comprehensive766

dataset to generate a diverse set of high-quality instruction-767

tuning data in the form of question-answer pairs using GPT-4768

Turbo with Vision,. Figure 8 displays representative images for769

each of the ten nanomaterial categories. We trained our frame-770

work exclusively on this machine-generated multimodal data,771

eliminating the need for human-annotated data. In contrast772

to a previous study [Modarres et al., 2017], which worked773

with a subset of the data, we leveraged the entire publicly774

available dataset as the subset data was not publicly accessi-775

ble in its entirety, enabling more comprehensive and robust776

framework training. We conducted rigorous benchmarking777

resulting in demonstrably improved task performance. Fur-778

ther experiments confirmed the framework’s generalizability779

across open-source material datasets within its thematic area.780

Please refer to the technical appendix for more discussion.781

3 Experiments782

We evaluated our framework on zero-shot/few-shot multi-class783

classification tasks for microscopic images, image-captioning784

tasks, and open-ended VQA tasks. This in-depth analysis785

aimed to understand microscopic images better. Additionally,786

we conducted VQA tasks to assess intra-class dissimilarity,787

inter-class similarity, and spatial heterogeneity, providing a788

more comprehensive understanding of the nanomaterials un-789

derlying electron micrographs. In summary, we analyzed790

microscopic images using the proposed framework for classi- 791

fication, captioning, and answering questions. This improved 792

understanding of image content and material properties. 793

3.1 Results 794

Our image captioning approach uses metrics like BLEU, ME- 795

TEOR, and ROUGE to evaluate text quality, focusing on as- 796

pects like similarity, language fluency, and coherence. As 797

shown in Table 2, our framework, MAEMI, generates detailed 798

and logically consistent captions, outperforming recent base- 799

lines like InstructBLIP[Dai et al., ], LLaVA[Liu et al., 2023], 800

and MiniGPT-4[Zhu et al., 2023] on the image captioning 801

task. Table 1 showcases representative electron microscope 802

images with their true labels, alongside captions generated by 803

our framework with their BLEU-2, ROUGE-L, and METEOR 804

scores indicating caption similarity to the labels. Tables 8 805

and 9 present experimental results comparing the accuracy 806

of our proposed multiclass classification framework against 807

multiple baseline algorithms. Table 3 shows the framework’s 808

performance on open-ended VQA. Table 7 shows a sample of 809

electron microscope images with true labels, generated cap- 810

tions, and similarity scores (BLEU-2, ROUGE-L, METEOR) 811

comparing the captions to the labels. Sample questions and 812

answers from the instruction-tuning Q&A dataset (created by 813

GPT-4 Turbo with Vision) for training MAEMI are shown in 814

Tables 11 - 20. Figures 5, 6, and 7 showcase tailored MAEMI 815

variants for VQA tasks on electron micrographs, addressing 816

intra-class dissimilarity, inter-class similarity, and spatial het- 817

erogeneity respectively. Tables 4, 5, and 6 compare the perfor- 818

mance of different methods on the aforementioned VQA task, 819

respectively. 820



Table 1: The table shows electron microscope images and their true captions alongside machine-generated captions. The table
also includes evaluation metrics like BLEU-2, ROGUE-L, and METEOR, which measure the similarity between true captions
and generated captions. By presenting both ground-truth and machine-generated captions side-by-side, the table enables analysis
of the framework’s performance in capturing visual details and semantics of the microscopic images. The multi-metric approach
allows precise measurement of the proposed framework’s performance on the captioning task for this scientific image dataset.

Image Ground Truth Answers
BLEU-2/
ROGUE-L/
METEOR

This electron microscopy image dis-
plays a neuron with its dendritic tree
and synaptic connections, magnified
10,000 times.

This electron microscopy image ex-
hibits a neuron with its dendritic tree
and synaptic connections, magnified
10,000 times

0.847
0.944
0.941

This SEM image shows tightly wo-
ven fibrous material, with each fiber
distinctly magnified 225 times to re-
veal its twisted structure.

This SEM image displays tightly wo-
ven fibrous material, with every fiber
distinctly magnified 225 times, re-
vealing its twisted structure.

0.659
0.821
0.852

This SEM image captures a granu-
lar film surface with a magnification
of 50,000 times, revealing the mi-
crostructure of the coated material.

This SEM image captures a granu-
lar film surface, magnified 50,000
times, revealing the microstructure
of the coated material.

0.724
0.878
0.767

This SEM image shows a microelec-
tromechanical system (MEMS) with
intricate wiring and electrodes, cap-
tured at 100 times magnification.

This SEM image shows a microelec-
tromechanical system (MEMS) with
intricate wiring and electrodes, mag-
nified 100 times

0.795
0.882
0.842

This SEM image depicts an array
of vertical nanowires, showcasing
their uniformity and high aspect ra-
tio, magnified at 80,000 times.

This SEM image depicts an array of
vertical nanowires, displaying their
uniformity and high aspect ratio,
magnified 80,000 times.

0.843
0.927
0.902

This SEM image reveals clusters of
spherical nanoparticles, each group-
ing distinct from the others, magni-
fied 11,000 times.

This SEM image shows clusters of
spherical nanoparticles, each cluster
distinct from the others, magnified
11,000 times

0.813
0.889
0.879

This SEM image displays a highly
ordered, diamond-shaped patterned
surface, magnified 345 times, char-
acteristic of nano-fabrication tech-
niques.

This SEM image displays a highly
ordered, diamond-shaped patterned
surface, magnified 345 times, typi-
cal of nano-fabrication techniques

0.907
0.947
0.940

This SEM image shows a porous
sponge-like material with variously
sized and shaped voids, magnified
50,000 times to reveal the texture
and porosity.

This SEM image shows a porous
sponge-like material with voids of
various sizes and shapes, magnified
50,000 times, revealing the texture
and porosity.

0.616
0.760
0.778

This SEM image reveals a dense
aggregation of nanoscale particles
forming a powder, with a magnifica-
tion of 13,570 times.

This SEM image displays a dense
aggregation of nanoscale particles
forming a powder, magnified 13,570
times

0.664
0.760
0.679

This SEM image shows a sharply
pointed nanomaterial tip, high-
lighted against a stark background
at a magnification of 100,000 times.

This SEM image shows a sharply
pointed nanomaterial tip, high-
lighted against a stark background,
magnified 100,000 times.

0.710
0.760
0.737



Figure 8: The figure shows representative microscopic images of diverse nanomaterials: biological structures, fibers, films,
MEMS devices, nanowires (top); nanoparticles, patterned surfaces, porous sponges, powders, tips (bottom).

Table 2: The table summarizes the proposed framework’s performance in comparison to various methods on the image captioning
task.

Method BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

InstructBLIP[Dai et al., ] 0.7003 ± 0.032 0.6501 ± 0.039 0.8116 ± 0.016 0.7348 ± 0.005 0.8018 ± 0.021 0.8323 ± 0.024

LLaVA[Liu et al., 2023] 0.7043 ± 0.035 0.6609 ± 0.043 0.8097 ± 0.016 0.7456 ± 0.005 0.8038 ± 0.021 0.8244 ± 0.023

MiniGPT-4[Zhu et al., 2023] 0.7644 ± 0.086 0.6757 ± 0.100 0.8264 ± 0.035 0.7831 ± 0.014 0.8146 ± 0.047 0.8510 ± 0.052

MAEMI 0.7862 ± 0.089 0.6979 ± 0.115 0.9014 ± 0.041 0.8410 ± 0.016 0.8448 ± 0.054 0.8698 ± 0.062

Table 3: Table shows the performance of sLAVA compared to baselines on open-ended VQA task.
Method BLEU-2 (↑) BLEU-4 (↑) ROUGE-1 (↑) ROUGE-2 (↑) ROUGE-L (↑) METEOR (↑)

InstructBLIP[Dai et al., ] 0.704±0.063 0.571±0.078 0.808±0.032 0.710±0.011 0.765±0.042 0.822±0.048

LLaVA[Liu et al., 2023] 0.711±0.070 0.579±0.085 0.809±0.032 0.713±0.011 0.767±0.042 0.823±0.046

MiniGPT-4[Zhu et al., 2023] 0.735±0.075 0.598±0.090 0.823±0.033 0.726±0.012 0.780±0.043 0.842±0.047

MAEMI 0.801±0.085 0.731±0.105 0.903±0.036 0.785±0.014 0.834±0.050 0.882±0.055

Table 4: The table shows sLAVA excels on VQA task on high intra-dissimilarity of nanomaterials.
Method BLEU-2 (↑) BLEU-4 (↑) ROUGE-1 (↑) ROUGE-2 (↑) ROUGE-L (↑) METEOR (↑)

InstructBLIP[Dai et al., ] 0.667±0.063 0.541±0.078 0.764±0.032 0.672±0.011 0.724±0.042 0.778±0.048

LLaVA[Liu et al., 2023] 0.651±0.070 0.530±0.085 0.740±0.032 0.652±0.011 0.702±0.042 0.754±0.046

MiniGPT-4[Zhu et al., 2023] 0.673±0.075 0.548±0.090 0.754±0.033 0.664±0.012 0.714±0.043 0.770±0.047

MAEMI 0.732±0.085 0.668±0.105 0.826±0.036 0.717±0.014 0.762±0.050 0.807±0.055

Table 5: The table shows sLAVA excels on VQA task on high inter-similarity of nanomaterials.
Method BLEU-2 (↑) BLEU-4 (↑) ROUGE-1 (↑) ROUGE-2 (↑) ROUGE-L (↑) METEOR (↑)

InstructBLIP[Dai et al., ] 0.676±0.063 0.548±0.078 0.775±0.032 0.682±0.011 0.734±0.042 0.789±0.048

LLaVA[Liu et al., 2023] 0.675±0.070 0.550±0.085 0.767±0.032 0.677±0.011 0.730±0.042 0.782±0.046

MiniGPT-4[Zhu et al., 2023] 0.690±0.075 0.561±0.090 0.773±0.033 0.682±0.012 0.733±0.043 0.791±0.047

MAEMI 0.744±0.085 0.679±0.105 0.841±0.036 0.730±0.014 0.775±0.050 0.820±0.055

Table 6: The table shows sLAVA excels on VQA task related to nanomaterials’ spatial heterogeneity.
Method BLEU-2 (↑) BLEU-4 (↑) ROUGE-1 (↑) ROUGE-2 (↑) ROUGE-L (↑) METEOR (↑)

InstructBLIP[Dai et al., ] 0.614±0.055 0.496±0.068 0.703±0.028 0.619±0.010 0.667±0.037 0.716±0.042

LLaVA[Liu et al., 2023] 0.620±0.061 0.503±0.074 0.704±0.028 0.622±0.010 0.669±0.037 0.717±0.040

MiniGPT-4[Zhu et al., 2023] 0.640±0.066 0.521±0.079 0.717±0.029 0.632±0.010 0.681±0.037 0.734±0.041

MAEMI 0.698±0.074 0.637±0.092 0.787±0.031 0.684±0.012 0.728±0.044 0.769±0.048



Table 7: The table shows a selection of electron microscope images with their corresponding true labels for an open-ended VQA
task that describes the overall shape and morphology of the nanomaterials underlying the electron micrographs. We also include
the framework generated responses or descriptions for each image. Additionally, the BLEU-2, ROGUE-L, and METEOR metrics
are included to evaluate their similarity to the accurate labels.

Image Ground Truth Answers
BLEU-2/
ROGUE-L/
METEOR

The nanomaterials exhibit a
branched, web-like structure with
varying strand thickness, indicative
of a porous, high-surface-area
morphology.

The nanomaterials exhibit a
branched, web-like structure with
varying strand thicknesses, sug-
gesting a porous, high-surface-area
morphology

0.786
0.872
0.947

The nanomaterials have a twisted,
rope-like morphology with multiple
strands intertwined together.

The nanomaterials possess a twisted,
rope-like morphology, featuring
multiple strands intertwined

0.461
0.872
0.827

The nanomaterials are polygonal, re-
sembling a mosaic of tightly packed,
irregularly shaped flat plates.

The nanomaterials appear polygo-
nal, resembling a mosaic of tightly
packed, irregular shaped flat plates.

0.770
0.872
0.850

The image showcases a microfabri-
cated pattern with a square central
area and symmetrically arranged ge-
ometric line patterns extending out-
ward on a porous background.

This image showcases a microfabri-
cated pattern with a square central
area and symmetrically arranged ge-
ometric lines extending outward on
a porous background.

0.844
0.872
0.917

The nanomaterials are cylindrical
rods standing vertically with uni-
form alignment and consistent spac-
ing between them.

The nanomaterials are cylindrical
rods, standing vertically with uni-
form alignment and consistent spac-
ing among them.

0.787
0.872
0.861

The nanomaterials exhibit rod-like
and ellipsoidal shapes with smooth
surfaces and are well-dispersed
across the substrate.

The nanomaterials exhibit rod-like
and ellipsoidal shapes, featuring
smooth surfaces and are well-
dispersed over the substrate

0.736
0.872
0.808

The nanomaterials have a hexago-
nal shape with well-defined edges
and are arranged in an ordered,
honeycomb-like pattern.

The nanoscale materials have a
hexagonal shape with well-defined
edges and are positioned in an or-
derly, honeycomb-like arrangement

0.618
0.872
0.749

The nanomaterials display a porous,
foam-like structure with irregularly
shaped voids and a network of inter-
connected struts.

The nanomaterials display a porous,
foam-like structure, having irregu-
larly shaped voids and a network of
interconnected struts

0.847
0.872
0.881

The nanomaterials appear as clus-
tered, irregularly shaped particles
with a rough surface texture.

The nanomaterials are displayed as
clustered, irregularly shaped parti-
cles with a rough surface textures.

0.738
0.872
0.837

The nanomaterial is conical with a
pointed tip and a smooth gradient in
diameter from base to apex.

The nanomaterial is conical, featur-
ing a pointed tip and a smooth gradi-
ent in diameter from its base to apex.

0.780
0.872
0.881



3.2 Empirical Insights821

Our research thoroughly evaluated the proposed framework822

MAEMI for classifying electron micrographs of diverse nano-823

materials. These complex materials vary in composition, mor-824

phology, structure, and other properties, which is evident in825

their electron micrographs. The framework achieved high ac-826

curacy on the imbalanced SEM dataset[Aversa et al., 2018]827

using metrics like precision, recall, and F1-score, demon-828

strating its effectiveness in categorizing nanomaterials with829

different patterns in a zero-/few-shot setting. Table 10 reports830

the experimental results. The multi-metric approach provided831

a detailed analysis, highlighting MAEMI’s efficiency in han-832

dling various categories, especially those with fewer labeled833

instances. Overall, our findings confirm MAEMI’s robustness834

in classifying nanomaterials, contributing to advancements in835

materials characterization and research.836

Table 8: Table shows the performance comparisons: Our
method vs. ConvNets, vision transformers (ViTs), & vision
self-supervised learning(VSL) algorithms for classification
task.

Algorithms Top-1 Top-5

C
on

vN
et

s

AlexNet([Krizhevsky et al., 2017]) 0.528 0.827
DenseNet([Huang et al., 2017]) 0.569 0.929

ResNet([He et al., 2016]) 0.485 0.897
VGG([Simonyan and Zisserman, 2014]) 0.538 0.808

GoogleNet([Szegedy et al., 2015]) 0.609 0.969
SqueezeNet([Iandola et al., 2016]) 0.404 0.698

V
SL

Barlowtwins[Zbontar et al., 2021] 0.148 0.410
SimCLR[Chen et al., 2020b] 0.130 0.379

byol[Grill et al., 2020] 0.143 0.453
moco[He et al., 2020] 0.169 0.472

simsiam[Chen and He, 2021] 0.188 0.535

V
is

io
n

Tr
an

sf
or

m
er

s(
V

iT
s)

CCT[Hassani et al., 2021] 0.570 0.981
CVT[Wu et al., 2021] 0.577 0.930

ConViT[d’Ascoli et al., 2021] 0.609 0.957
ConvVT[Wu et al., 2021] 0.319 0.921

CrossViT[Chen et al., 2021b] 0.442 0.915
SwinT[Liu et al., 2021] 0.707 0.993

VanillaViT[Dosovitskiy et al., 2020] 0.655 0.970
Visformer[Chen et al., 2021c] 0.398 0.856

ATS[Fayyaz et al., 2021] 0.540 0.973
CaiT[Touvron et al., 2021b] 0.657 0.989
DeepViT[Zhou et al., 2021] 0.546 0.988

Dino[Caron et al., 2021] 0.049 0.437
Distillation[Touvron et al., 2021a] 0.533 0.955

LeViT[Graham et al., 2021] 0.624 0.970
NesT[Zhang et al., 2022] 0.660 0.985

PatchMerger[Renggli et al., 2022] 0.578 0.975
PiT[Heo et al., 2021] 0.555 0.979

RegionViT[Chen et al., 2021a] 0.606 0.948
SMIM[Xie et al., 2021] 0.171 0.646

T2TViT[Yuan et al., 2021] 0.749 0.992
ViT-SD[Lee et al., 2021] 0.597 0.973

Zero-Shot-Image Captioning / MAEMI 0.773 0.876
Few-Shot-Image Captioning / MAEMI 0.965 0.991

Table 9: The table shows the comparison of supervised-
learning GNNs(Graph Neural Networks), self-supervised
GCL(Graph Contrasting Learning) algorithms on the clas-
sification task.

Algorithms Top-1 Top-5

G
C

L

GBT[Bielak et al., 2021] 0.547 0.706
GRACE[Zhu et al., 2020] 0.598 0.750

BGRL[Thakoor et al., 2021] 0.556 0.696
InfoGraph[Sun et al., 2019] 0.526 0.702

G
ra

ph
N

eu
ra

lN
et

w
or

ks

APPNP[Klicpera et al., 2018] 0.632 0.786
AGNN[Thekumparampil et al., 2018] 0.538 0.894

ARMA[Bianchi et al., 2021] 0.582 0.987
DNA[Fey, 2019] 0.622 0.916

GAT[Veličković et al., 2017] 0.491 0.985
GGConv[Li et al., 2015] 0.563 0.992

GraphConv[Morris et al., 2019] 0.658 0.996
GCN2Conv[Chen et al., 2020a] 0.732 0.998

ChebConv[Defferrard et al., 2016] 0.504 0.951
GraphConv[Morris et al., 2019] 0.509 0.993
GraphUNet[Gao and Ji, 2019] 0.657 0.978
MPNN[Gilmer et al., 2017] 0.603 0.999

RGGConv[Bresson and Laurent, 2017] 0.618 0.961
SuperGAT[Kim and Oh, 2022] 0.598 0.985

TAGConv[Du et al., 2017] 0.598 0.999
Zero-Shot-Image Captioning / MAEMI 0.773 0.876
Few-Shot-Image Captioning / MAEMI 0.965 0.991

4 Conclusion 837

Our research unveils a groundbreaking method for analyz- 838

ing electron micrographs for the semiconductor industry. We 839

utilize transfer learning to distill knowledge, customizing an 840

instruction-following language-vision assistant trained on a 841

unique multimodal data created with GPT-4 Turbo for VQA 842

tasks on consumer hardware. The pre-trained assistant allows 843

further customization with private data, all without exposing 844

sensitive information to external, proprietary multimodal mod- 845

els. This secure, efficient, and cost-effective methodology 846

unlocks exciting possibilities for enterprise applications. Em- 847

pirical results confirm our framework’s superiority, achieving 848

notable accuracy improvements over prior techniques while 849

Category Multi-class metrics

Precision Recall F1 Score

Biological 0.949±0.009 0.981±0.007 0.954±0.013
Tips 0.939±0.005 0.952±0.008 0.936±0.011

Fibres 0.982±0.007 0.987±0.000 0.982±0.000
Porous Sponge 0.956±0.014 0.955±0.013 0.955±0.010

Films Coated Surface 0.961±0.005 0.960±0.009 0.961±0.008
Patterned Surface 0.969±0.016 0.968±0.006 0.953±0.014

Nanowires 0.953±0.012 0.965±0.007 0.977±0.011
Particles 0.961±0.006 0.959±0.011 0.942±0.023

MEMS Devices 0.965±0.011 0.953±0.008 0.953±0.009
Powder 0.959±0.014 0.960±0.009 0.940±0.011

Table 10: The table shows the effectiveness of our proposed
framework, compared to existing methods, in terms of preci-
sion, recall, and F1-score for accurately classifying nanomate-
rials of different categories.



remaining computationally efficient.850
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Table 11: The table presents an instruction-following dataset composed of image-question-answer triples generated
using GPT-4 Turbo with vision in response to open-ended natural language prompts about a microscopic image
of patterned surface nanomaterials. In summary, this GPT-assisted vision-language dataset aids in the tuning of
smaller models for the analysis and interpretation of complex microscopic images in the context of open-ended
VQA tasks.

Based on the provided image of patterned surface
nanomaterials, please answer the following questions.

Query prompt GPT-4 Turbo with vision output
**Basics** The image is a scanning electron microscope (SEM) image of a pat-

terned surface nanomaterial, with a scale bar indicating that 1 microme-
ter (µm) is the unit of measurement.

**Morphology and Structure** The nanomaterials in the image have a hexagonal shape or morphology.
There do not appear to be distinct layers, phases, or domains within
the individual hexagonal units, but there is a consistent pattern to their
arrangement. The nanomaterials appear to be uniform in size and shape,
suggesting a controlled fabrication process.

**Size and Distribution** The nanostructures are hexagonal and uniform in size, likely in the
hundreds of nanometers range, judging by the 1 µm scale bar. They are
evenly spaced throughout the image with no evidence of aggregation or
bundling.

**Surface Characteristics** The nanomaterial appears to have a textured surface, possibly due
to the patterning technique used to create the hexagonal shapes. No
visible defects, pores, or impurities are apparent in the image provided,
suggesting a clean and uniform fabrication process.

**Composition and Elements** The SEM image is monochromatic, with brightness and contrast varia-
tions hinting at topographical or compositional differences. The absence
of specific labels or markers means exact composition can’t be deter-
mined. Annotations are standard SEM parameters, not compositional
data.

**Interactions and Boundaries** The individual nanostructures are separate, with clear boundaries be-
tween them, and do not appear to be touching or fused. There is a
consistent gap that defines the boundaries of each hexagonal structure,
indicating well-defined individual units.

**External Environment** The SEM image displays isolated nanomaterials, free from interactions
with solvents, polymers, or other substances. The uniform, featureless
background indicates either a vacuum or a non-descript solid substrate at
this magnification, with no other visible structures or objects unrelated
to the patterned nanomaterials.

**Image Technique and Modifica-
tions**

The image was taken with a Scanning Electron Microscope (SEM),
evident from typical SEM annotations like “EHT” and “WD”. It shows
no signs of post-processing, such as false coloring, and appears as a
standard monochromatic SEM output.

**Functional Features** There are no obvious functional features like active sites with distinct
properties visible in this image.

**Context and Application** The intended application of the nanomaterial is unclear without context.
The image is a real SEM capture of an experimental sample, not a
theoretical or simulation-based representation.
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Table 12: The table presents an instruction-following dataset, comprising image-question-answer triples generated
using GPT-4 Turbo with vision in response to open-ended natural language prompts about a microscopic image
depicting biological nanomaterials. In summary, this GPT-assisted vision-language dataset facilitates the training
of smaller models, enabling them to effectively analyze complex microscopic images for open-ended VQA tasks.

Based on the provided image of biological
nanomaterials, please answer the following questions.

Query prompt GPT-4 Turbo with vision output
**Basics** The biological nanomaterial shown in the image is a neuron with its den-

dritic tree. The scale bar represents two micrometers (2 µm), providing
a reference for the size of the structures in the image.

**Morphology and Structure** The nanomaterials in the image are biological in nature and exhibit a
complex morphology characteristic of neuronal cells. The neuron has a
prominent cell body from which multiple dendrites extend, forming an
intricate network. There are no distinct layers, phases, or domains in
the traditional material science sense, as this is a biological sample. The
neuron displays compartmentalization with the cell body, dendrites, and
possibly axon hillocks or initial segments visible. The nanomaterials are
varied in size and shape, as typical for biological structures. Dendrites
exhibit diverse thickness, length, and branching patterns, reflecting
inherent biological variability.

**Size and Distribution** The individual nanostructures, the dendrites, vary in size but typically
range from a few hundred nanometers to a couple of micrometers in
diameter. They are distributed throughout the image in a connected,
somewhat random pattern, emanating from a central neuron cell body.
There is no evidence of aggregation or bundling, as these structures tend
to spread out rather than cluster together.

**Surface Characteristics** The nanomaterial, which is a neuron with its dendritic tree, appears to
have a textured surface characteristic of biological structures, rather than
being smooth. The dendrites and cell body show a complex, granular
surface texture under the magnification provided. No specific defects,
pores, or impurities can be discerned from this image; such features
would require higher magnification to resolve.

**Composition and Elements** The monochromatic image, typical of electron microscopy, lacks color-
based compositional variations. Yet, it shows variations in brightness
and contrast, suggesting topographical or material density differences
in the neuron and its dendrites.

**Interactions and Boundaries** The monochromatic electron microscope image shows topographical
and density variations, but no compositional differences or labeled
elements.

**External Environment** The SEM image shows only the isolated neuron, with no evidence of
external interactions or matrix material.

**Image Technique and Modifica-
tions**

The image was captured using Scanning Electron Microscopy (SEM).
There is no evident post-processing or modifications like false coloring
or 3D rendering; it appears to be a standard grayscale SEM image

**Functional Features** The SEM image of the neuron does not visibly show any specific
functional features like active sites.

**Context and Application** The image is of an experimental sample, an actual neuron, captured
using Scanning Electron Microscopy (SEM), rather than a theoretical
or simulation-based representation.
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Table 13: The table presents an instruction-following dataset composed of image-question-answer triples generated
using GPT-4 Turbo with vision in response to open-ended natural language prompts about a microscopic image
depicting fibers nanomaterial. In summary, this GPT-assisted vision-language dataset facilitates the training of
smaller models, enabling them to effectively analyze and interpret complex microscopic images for open-ended
VQA tasks.

Based on the provided image of fibres nanomaterials,
please answer the following questions.

Query prompt GPT-4 Turbo with vision output
**Basics** The image shows nanofibers, which are extremely fine fibers with diam-

eters in the nanometer range. The scale of the image is not indicated,
so it’s not possible to determine the exact measurement without a scale
reference. However, given that these are nanofibers, we can infer that
the width of these fibers is likely in the range of tens to hundreds of
nanometers.

**Morphology and Structure** The nanomaterials in the image have a fibrous morphology, indicating
a long, slender shape. There are no distinct layers, phases, or domains
visible in the image provided. The fibers seem fairly uniform in shape,
suggesting a controlled synthesis process. However, due to the image’s
resolution and the absence of a scale, it is challenging to accurately
comment on the uniformity of size.

**Size and Distribution** The fibers appear to be in the range of nanometers in diameter, although
the exact size cannot be determined without a scale. They are densely
distributed, with some bundling and clustering visible.

**Surface Characteristics** The nanomaterial fibers appear to have a smooth texture overall. No
clear defects, pores, or impurities are visible from this image. The
resolution is not sufficient to identify finer surface details.

**Composition and Elements** The image is in grayscale, and there are no visible labels or markers
indicating specific elements or compounds. There are no apparent color
variations that would suggest compositional differences. The uniformity
of contrast throughout the fibers suggests they are likely composed of a
single material or that any compositional variations are not discernible
at this scale and image quality.

**Interactions and Boundaries** The nanostructures appear to be touching and interacting closely, with
some degree of fusion or entanglement, typical for fibrous networks.
There are no clear boundaries between different structures or phases; it
looks like a continuous phase of similar fibers.

**External Environment** The SEM image shows isolated nanofibers with no visible external
interactions or matrix.

**Image Technique and Modifica-
tions**

The grayscale image, likely captured via a standard scanning electron
microscope (SEM), showcases nanomaterials in sharp detail, typical
of SEM outputs. No evidence suggests post-processing, like false
coloring or 3D rendering, indicating a straightforward SEM image
without modifications.

**Functional Features** The image does not show any distinct functional features like active
sites or regions with varying properties; it appears to be a uniform
structure. Since it’s an SEM image, it captures a static representation of
the nanofibers and does not depict any dynamic processes.

**Context and Application** The intended application of the nanomaterial in the image cannot be
determined without additional context. The image appears to be of an
experimental sample, typical of real-world SEM imaging, rather than a
theoretical or simulation-based representation.
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Table 14: The table presents an instruction-following dataset composed of image-question-answer triples generated
using GPT-4 Turbo with vision in response to open-ended natural language prompts about a microscopic image of
films and coated surfaces nanomaterials. In summary, this GPT-assisted vision-language dataset aids in the tuning
of smaller models for the analysis and interpretation of complex microscopic images in the context of open-ended
VQA tasks.

Based on the provided image of films and coated
surface nanomaterials, please answer the following

questions.

Query prompt GPT-4 Turbo with vision output
**Basics** The image is a Scanning Electron Microscope (SEM) image of a nano-

material, possibly metallic or ceramic nanoparticles. The scale bar
indicates that 1 micrometer (µm) is represented, allowing for the size
of the particles to be estimated in relation to this scale.

**Morphology and Structure** The nanomaterials in the image have a general morphology that appears
to be polygonal, with most particles exhibiting angular edges and flat
surfaces. There are no distinct layers, phases, or domains visible; it
appears to be a homogenous surface of similar particles. The particles
seem to be fairly uniform in size and shape, suggesting a controlled
synthesis process.

**Size and Distribution** The individual nanostructures appear to be in the sub-micron size range,
likely several hundred nanometers across, given the scale bar of 1
micrometer for reference. They are distributed throughout the image
quite densely, with little to no space between adjacent particles, which
indicates a uniform surface coverage. There seems to be minimal
aggregation or bundling; the particles mostly appear as distinct entities
with some contact points, which is typical for particles that have settled
out of a dispersion onto a substrate.

**Surface Characteristics** The nanomaterial surface appears to be relatively rough with a textured
appearance, which is characteristic of aggregated nanoparticles. There
are no obvious defects, pores, or impurities visible at this magnifica-
tion. The roughness is likely due to the individual particles’ edges and
surfaces rather than a feature of the particles themselves.

**Composition and Elements** There is no evidence of compositional variations in the grayscale SEM
image, and there are no labels indicating specific elements or com-
pounds. The uniformity in color suggests a homogenous material, but
specific composition cannot be determined from this image alone.

**Interactions and Boundaries** The individual nanostructures are touching and seem to be sintered,
with no clear gaps between them. There are clear boundaries between
individual particles, but no distinct phases or separate structures are
visible.

**External Environment** No, there is no evidence of the nanomaterial interacting with any sur-
rounding environment or matrix in the SEM image, and no other struc-
tures or objects are present other than the nanomaterials themselves.

**Image Technique and Modifica-
tions**

The image was captured using a Scanning Electron Microscope (SEM).
There are no indications of post-processing or modifications such as
false coloring or 3D rendering; it appears to be a standard grayscale
SEM image.

**Functional Features** In the SEM image, functional features like active sites or regions with
distinct properties are not discernible. SEM images typically provide a
static representation and cannot capture dynamic processes, so this im-
age is a static representation of the nanomaterial at the time of imaging.

**Context and Application** From the image alone, the nanomaterial’s purpose is indeterminate. It’s
a real, experimental Scanning Electron Microscope (SEM) image, used
for analyzing surface morphology and structure.
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Table 15: The table presents an instruction-following dataset composed of image-question-answer triples generated
using GPT-4 Turbo with vision in response to open-ended natural language prompts about a microscopic image
of nanowires nanomaterials. In summary, this GPT-assisted vision-language dataset aids in the tuning of smaller
models for the analysis and interpretation of complex microscopic images in the context of open-ended VQA
tasks.

Based on the provided image of nanowire
nanomaterials, please answer the following questions.

Query prompt GPT-4 Turbo with vision output
**Basics** The image depicts nanowires, and the scale bar represents 200 nanome-

ters (nm).

**Morphology and Structure** The nanomaterials have a cylindrical, rod-like morphology, typical of
nanowires. There are no distinct layers, phases, or domains visible in
this image. The nanowires appear to be relatively uniform in size and
shape, suggesting a controlled synthesis process.

**Size and Distribution** The individual nanostructures, which are nanowires, are approximately
200 nanometers or less in length as indicated by the scale bar. They
appear to be densely packed and evenly distributed across the image
with no significant clustering or random distribution. There is no clear
evidence of aggregation or bundling; the nanowires stand individually,
which is typical for well-synthesized nanowires.

**Surface Characteristics** The nanomaterials, which are nanowires, appear to have a smooth
surface with no significant roughness or specific texture visible at this
magnification. There are no clearly visible defects, pores, or impurities
on the surface of the nanowires in the provided image. The uniformity
and smoothness suggest a high level of control in the synthesis process
of these nanostructures.

**Composition and Elements** In the grayscale electron microscope image, variations in brightness or
contrast usually show compositional differences, due to varied electron
scattering by different elements. The provided image’s uniform color
and contrast imply a homogeneous composition in the nanowires. No
labels or markers indicate specific elements or compounds, and the
image doesn’t directly reveal the nanomaterials’ chemical composition.

**Interactions and Boundaries** The individual nanostructures, which are nanowires, appear separate and
not fused together, with each nanowire standing distinct from others.
There are clear boundaries between each nanowire, with no visible
merging or blending at the bases or tips, indicating they are well-defined
individual entities.

**External Environment** There is no visible evidence in the image of the nanomaterial interacting
with an external environment or matrix such as solvents, polymers,
or other materials. The image appears to be focused solely on the
nanowires themselves. There are no other structures or objects present
that are distinguishable from the nanomaterials.

**Image Technique and Modifica-
tions**

The image was captured using Scanning Electron Microscopy (SEM).
There are no indications of post-processing or modifications like false
coloring or 3D rendering; it appears to be a standard grayscale SEM
image.

**Functional Features** There are no visible functional features like active sites or regions with
distinct properties in the image. The image is a static representation; it
does not capture dynamic processes, as SEM images are snapshots and
cannot depict motion or change over time.

**Context and Application** Nanomaterial application unclear. Depicted nanowires used in electron-
ics, photonics, research. SEM image suggests experimental sample, not
theoretical representation, for observation at high magnifications.
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Table 16: The table presents more informative and accurate question-answer pairs, compared to traditional
methods, generated using GPT-4 Turbo with vision in response to natural language prompts about an input
microscopic image from the porous sponge nanomaterial category. To summarize, GPT-assisted visual instruction
data generation (that is, question-answer pairs) provides in-depth insights into an image related to porous sponge
nanomaterials.

Based on the provided image of porous sponge
nanomaterials, please answer the following questions.

Query prompt GPT-4 Turbo with vision output
**Basics** The nanomaterial in the image is a porous sponge-like structure. The

scale of the image indicates that 1 micrometer (µm) is the unit of
measurement.

**Morphology and Structure** The nanomaterials in the image have an irregular, highly porous mor-
phology with many voids. There are no distinct layers, phases, or
domains visible; it’s a continuous network of material. The nanomateri-
als do not appear uniform in size and shape; there’s a variety in the pore
sizes and the thickness of the material between the pores.

**Size and Distribution** The individual nanostructures vary in size, with pores ranging from
very small to relatively large in the context of the scale provided. The
pores do not have a uniform size and seem to be randomly distributed
throughout the material. There is no clear evidence of aggregation
or bundling; the material seems to be a single continuous phase with
interconnected pores.

**Surface Characteristics** The nanomaterial appears to have a rough texture with numerous visible
pores of varying sizes, which are characteristic of a highly porous
surface. The walls of the material between the pores also seem rough and
irregular. Visible defects or variations in the pore size and distribution
across the surface can be considered impurities, which are typical for
porous materials like aerogels or foam-like structures.

**Composition and Elements** There are no visible compositional variations in the image; it appears
uniform in color and contrast. No labels indicate specific elements or
compounds within the nanomaterial.

**Interactions and Boundaries** The individual nanostructures are fused, forming a continuous network
without clear boundaries between separate structures or phases. The
pores are interconnected, suggesting a single, cohesive material.

**External Environment** The image does not show any evidence of the nanomaterial interacting
with an external environment or matrix such as solvents or polymers.
The entire field of view is occupied by the nanomaterial, with no other
distinct structures or objects present that are not part of the nanomaterial
itself. All visible features appear to be intrinsic to the porous structure
of the nanomaterial.

**Image Technique and Modifica-
tions**

The imaging technique used is Scanning Electron Microscopy (SEM),
as indicated by the labels on the image such as ”EHT” (electron high
tension), which is specific to SEM. There are no obvious signs of post-
processing or modifications such as false coloring; the image appears to
be a SEM grayscale representation.

**Functional Features** As for functional features like active sites or regions with distinct prop-
erties, these are not discernible at the resolution and format of the
image.

**Context and Application** The nanomaterial is likely intended for applications like catalysis, filtra-
tion, or insulation, given its porous structure. The image is of an actual
experimental sample, as indicated by its SEM imaging characteristics.
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Table 17: The table presents an instruction-following dataset composed of image-question-answer triples generated
using GPT-4 Turbo with vision in response to open-ended natural language prompts about a microscopic image
of tips nanomaterials. In summary, this GPT-assisted vision-language dataset aids in the tuning of smaller models
for the analysis and interpretation of complex microscopic images in the context of open-ended VQA tasks.

Based on the provided image of tips nanomaterials,
please answer the following questions.

Query prompt GPT-4 Turbo with vision output
**Basics** The image shows an electron microscope image of a nanomaterial tip,

likely for scanning probe microscopy. The scale bar represents 10
micrometers.

**Morphology and Structure** The nanomaterial in the image has a conical shape, characteristic of
a sharp tip used in microscopic probes. There are no distinct layers,
phases, or domains visible in this image. It appears to be a single,
uniform structure without visible variation in size or shape along its
length, suggesting a consistent manufacturing process.

**Size and Distribution** The image depicts a single nanostructure with a conical tip. The scale
bar indicates that the tip width is less than 10 micrometers, and the tip
itself tapers to a point, which is characteristic of nanomaterial tips used
for scanning probe microscopy. There is only one nanomaterial visible,
so we cannot comment on the distribution or spacing of multiple nanos-
tructures. Similarly, there is no evidence of aggregation or bundling, as
the image shows a solitary nanostructure.

**Surface Characteristics** The nanomaterial tip in the image appears relatively smooth, which
is typical for nanomaterials used in high-precision applications like
microscopy. There are minor variations on the surface that could be
indicative of some roughness or surface texture, but these are minimal.
There don’t seem to be any large visible defects, pores, or impurities;
however, the presence of small surface imperfections cannot be ruled
out at this magnification and resolution.

**Composition and Elements** The grayscale image does not show compositional variations in color.
However, brightness and contrast variations can indicate differences in
composition or density. The uniform grayscale suggests homogeneous
material composition. There are no labels indicating specific elements
or compounds.

**Interactions and Boundaries** The image shows a single nanomaterial tip with no visible interactions
or boundaries with other nanostructures.

**External Environment** In the image, there is no direct evidence of the nanomaterial interacting
with a surrounding environment or matrix. The background is feature-
less and uniform, which suggests that the image focuses solely on the
nanomaterial tip and does not include other materials or structures such
as solvents, polymers, or additional objects.

**Image Technique and Modifica-
tions**

The image was captured using a Scanning Electron Microscope (SEM).
There are no apparent post-processing or modifications like false color-
ing or 3D rendering; it’s a raw grayscale SEM image.

**Functional Features** No specific functional features like active sites are visible in the image.
It’s a static representation, not capturing any dynamic processes.

**Context and Application** The nanomaterial depicted is likely for use in scanning probe mi-
croscopy, such as Atomic Force or Scanning Tunneling Microscopy.
The image is of an experimental sample.
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Table 18: The table presents an instruction-following dataset composed of image-question-answer triples generated
using GPT-4 Turbo with vision in response to open-ended natural language prompts about a microscopic image
of particles nanomaterials. In summary, this GPT-assisted vision-language dataset aids in the tuning of smaller
models for the analysis and interpretation of complex microscopic images in the context of open-ended VQA
tasks.

Based on the provided image of particles
nanomaterials, please answer the following questions.

Query prompt GPT-4 Turbo with vision output
**Basics** The image shows spherical nanoparticles, and the scale bar at the bottom

indicates that 100 nanometers (nm) is the unit of measurement. Each
particle appears to be about 100 nm in diameter.

**Morphology and Structure** The nanomaterials in the image are generally spherical in shape and ap-
pear to be highly uniform in size and shape, suggesting a monodisperse
distribution. There are no distinct layers, phases, or domains visible;
the particles are consistent in their morphology throughout the image.

**Size and Distribution** The approximate size of the individual nanostructures, judging by the
scale bar, is about 100 nanometers in diameter. The nanomaterials are
distributed evenly throughout the image, with a uniform spacing that
suggests a well-ordered array and minimal aggregation or bundling.
There’s no visible evidence of clustering; each particle is isolated from
its neighbors, indicative of a stable colloidal system.

**Surface Characteristics** The nanomaterials appear to have a smooth surface without any notice-
able roughness or specific textures. The resolution of the image does
not allow for the identification of any defects, pores, or impurities on
the surface of the nanoparticles. The overall uniformity and smooth-
ness suggest high-quality synthesis methods without obvious defects or
contamination.

**Composition and Elements** There are no visible compositional variations in the image, and there
are no labels indicating specific elements or compounds. The particles
appear uniformly bright, suggesting a homogenous material without
visible impurities.

**Interactions and Boundaries** The nanostructures are separate and not fused together, with clear bound-
aries between each particle, indicating no significant interaction or
aggregation. There are no different structures or phases visible; all
particles appear identical and are evenly spaced.

**External Environment** The image doesn’t provide evidence of the nanomaterial interacting with
its surrounding environment or matrix; it’s a close-up with a focus solely
on the nanoparticles. There are no other structures or objects visible
that are not part of the nanomaterials themselves. The background is
consistent with what you’d expect in electron microscopy - featureless,
providing contrast to the particles being studied.

**Image Technique and Modifica-
tions**

The image was captured using Scanning Electron Microscopy (SEM).
There’s no apparent post-processing or modifications like false coloring
or 3D rendering; it appears to be a standard grayscale SEM image.

**Functional Features** No functional features such as active sites or regions with distinct
properties are visible in the image.

**Context and Application** The nanomaterial’s application is unclear from the image. Such nanopar-
ticles may serve in medicine, electronics, catalysis, or materials science.
This looks like an experimental sample, not a simulation.
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Table 19: The table presents an instruction-following dataset composed of image-question-answer triples generated
using GPT-4 Turbo with vision in response to open-ended natural language prompts about a microscopic image
of powder nanomaterials. In summary, this GPT-assisted vision-language dataset aids in the tuning of smaller
models for the analysis and interpretation of complex microscopic images in the context of open-ended VQA
tasks.

Based on the provided image of powder
nanomaterial, please answer the following questions.

Query prompt GPT-4 Turbo with vision output
**Basics** The image is a scanning electron microscope (SEM) image showing

a powder nanomaterial. The scale bar indicates 2 micrometers (µm),
meaning each unit on the scale bar represents 2 µm in the sample.

**Morphology and Structure** The nanomaterials in the image exhibit an irregular, clumped morphol-
ogy, with no distinct layers, phases, or domains readily apparent from
this view. The particles do not appear uniform in size and shape; there
is a variety of sizes and agglomerations, which is common in powdered
nanomaterials due to their high surface energy leading to aggregation.

**Size and Distribution** The individual nanostructures vary in size, but due to the scale bar
indicating 2 micrometers, we can estimate that the particles range from
sub-micrometer to a couple of micrometers in diameter. The distribution
of nanomaterials throughout the image is clustered and random rather
than evenly spaced, which is typical for powdered materials in a SEM
image. There is evidence of aggregation or bundling, as many particles
appear to be clumped together, forming larger aggregates rather than
existing as isolated, individual particles.

**Surface Characteristics** The nanomaterials in the image have a rough and textured surface, which
is typical for powdered nanomaterials as seen under high magnification.
There are no clearly visible defects, pores, or impurities that can be
distinctly identified from the image provided. However, the granularity
and irregularity of the surfaces suggest a high surface area, which
is a common characteristic of nanomaterials. The roughness could
contribute to potential sites for chemical activity or adsorption.

**Composition and Elements** The SEM image shows uniform grayscale intensity, suggesting a ho-
mogeneous composition without visible evidence of different elements
or compounds. There are no specific labels or markers indicating the
presence of particular elements or compounds in the image.

**Interactions and Boundaries** Individual nanostructures in the image appear to be touching and fused,
forming clusters with no clear boundaries between them, indicating
a degree of agglomeration. There are no visible distinct boundaries
between different structures or phases.

**External Environment** The SEM image shows only the nanomaterial tip, with no evidence of
interaction with or immersion in an external environment or matrix. No
other structures or materials are visible.

**Image Technique and Modifica-
tions**

The image was captured using Scanning Electron Microscopy (SEM).
It appears to be a standard SEM output without false coloring or 3D
rendering. SEM images are grayscale, and there are no signs of post-
processing.

**Functional Features** The SEM image does not visibly show any specific functional features
like active sites.

**Context and Application** The intended application of the nanomaterial in the SEM image cannot
be determined from the image alone. It is an experimental sample, not a
theoretical or simulation-based representation.
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Table 20: The table presents an instruction-following dataset composed of image-question-answer triples generated
using GPT-4 Turbo with vision in response to open-ended natural language prompts about a microscopic image
of MEMS devices and electrodes nanomaterials. In summary, this GPT-assisted vision-language dataset aids in
the tuning of smaller models for the analysis of complex microscopic images in the context of open-ended VQA
tasks.

Based on the provided image of MEMS devices and
electrodes nanomaterial, please answer the following

questions.

Query prompt GPT-4 Turbo with vision output
**Basics** The image shows nanoscale electrodes or conductive paths, possibly part

of a microelectromechanical system (MEMS). The scale bar indicates
that each unit of measurement represents 2 micrometers.

**Morphology and Structure** The nanomaterials in the image exhibit a linear, elongated morphology,
likely representing nanowires or nanorods. There appear to be distinct
parallel layers or strips, which could be separate phases or material
components. The uniformity in the spacing between the layers suggests
a controlled fabrication process. The nanomaterials themselves seem to
have a consistent width, indicating a uniform size and shape across the
visible structures.

**Size and Distribution** The nanostructures in the image appear as straight, parallel lines with a
consistent width less than 2 micrometers. They are evenly spaced and
aligned, indicating a controlled distribution typical of fabricated nano-
materials. There is no evidence of aggregation or bundling, supporting
the idea of deliberate design often seen in MEMS devices.

**Surface Characteristics** The nanomaterial’s surface appears relatively smooth, with minor varia-
tions that could be indicative of texture or grain boundaries. There are
some visible defects and impurities, such as particles or irregularities
on the surface between the parallel lines.

**Composition and Elements** The monochromatic SEM image shows uniform brightness along the
nanomaterial, suggesting homogeneous composition without visible
variation. No labels indicate specific elements or compounds.

**Interactions and Boundaries** The nanostructures are separate and do not appear to be touching or
fused, indicating they are likely isolated conductive paths or electrodes.
There are clear boundaries between the structures, as evidenced by the
distinct, parallel lines that separate them.

**External Environment** There is no evidence of interaction with a surrounding environment
or matrix in the image. All visible features appear to be part of the
nanomaterial system, with no other distinct objects present.

**Image Technique and Modifica-
tions**

The imaging technique used is Scanning Electron Microscopy (SEM),
as indicated by the details in the image. There’s no evidence of post-
processing modifications like false coloring or 3D rendering; the image
appears to be a standard grayscale SEM image.

**Functional Features** The image, being a static SEM representation, does not capture dynamic
processes. As for functional features, the parallel linear structures likely
represent active regions, such as conductive paths in a MEMS device.
However, specific active sites or regions with distinct properties are not
explicitly visible in this image.

**Context and Application** SEM image reveals nanomaterial structure suited for electronics/MEMS
(electrodes/conductors). The image is a real SEM photograph, not a
theoretical or simulation-based representation.
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4.1 Additional datasets and Experimental results1166

To bolster the robustness and generalizability of our frame-1167

work, we conducted evaluations using a diverse range of open-1168

source benchmark datasets. These datasets are relevant to1169

our research domain and encompass a broad spectrum of ap-1170

plications. This comprehensive evaluation strategy not only1171

validated the efficacy of our framework but also demonstrated1172

its adaptability to a wider range of datasets, extending beyond1173

the SEM dataset[Aversa et al., 2018].1174

NEU-SDD1175

To thoroughly evaluate the effectiveness of our proposed1176

method, specifically for open-ended VQA tasks involv-1177

ing multiple defect categories, we utilized the NEU-SDD1178

dataset([Deshpande et al., 2020]) 1. This dataset comprises1179

an extensive collection of 1,800 electron microscopy images1180

illustrating surface defects on hot-rolled steel plates. The NEU-1181

SDD dataset enabled us to evaluate our framework’s ability1182

to comprehend complex visual information and provide in-1183

sightful answers to questions about the surface defects. Each1184

defect category in the NEU-SDD dataset is represented by1185

300 images, with each image having a resolution of 200×2001186

pixels. The dataset is categorized into six distinct types of1187

defects, with 300 representative micrographs for each cate-1188

gory. These categories encompass a diverse range of surface1189

imperfections, including pitted surfaces, scratches, rolled-in1190

scale, crazing, patches, and inclusion defects. Notably, each1191

image in the dataset features only one type of defect. Figure 91192

provides illustrative images from each category. In summary,1193

the NEU-SDD dataset represents a valuable resource for the1194

development and evaluation of surface defect-based VQA al-1195

gorithms. Its diverse range of defects, and high-quality images1196

make it a challenging and realistic benchmark for this task.1197

CMI1198

The CMI dataset2, meticulously curated by corrosion ex-1199

perts, comprises 600 high-resolution electron micrographs that1200

vividly capture the deterioration of corroded panels. These1201

meticulously labeled images adhere to the ASTM-D1654 stan-1202

dards and feature individual scores ranging from 5 to 9, corre-1203

sponding to 120 unique micrographs each. Each micrograph1204

has a spatial resolution of 512 × 512 pixels, providing a gran-1205

ular view of the corrosion damage. Figure 10 showcases1206

representative images from each score-based category. We1207

conducted experimental studies to evaluate the effectiveness of1208

our proposed technique for both multi-category classification1209

and open-ended VQA tasks.1210

KTH-Tips1211

The KTH-TIPS3 dataset, which serves as a cornerstone in1212

texture analysis, comprises an extensive collection of 810 elec-1213

tron micrographs. Each of these images has been meticulously1214

categorized into one of ten distinct material classes. These1215

1Datasource: http://faculty.neu.edu.cn/yunhyan/NEU surface
defect database.html

2https://arl.wpi.edu/corrosion dataset
3https://www.csc.kth.se/cvap/databases/kth-tips/index.html

high-resolution images, each measuring 200 × 200 pixels, cap- 1216

ture a diverse range of materials under varying lighting condi- 1217

tions, orientations, and scales. The comprehensive collection 1218

encompasses textures such as sponge, orange peel, styrofoam, 1219

cotton, cracker, linen, crust, sandpaper, aluminum foil, and 1220

corduroy. The representative images from each material class 1221

can be seen in Figure 11. To evaluate the effectiveness of our 1222

proposed method in multi-category texture-based classifica- 1223

tion and open-ended visual question answering (VQA) tasks, 1224

we conducted comprehensive experiments. 1225

Additional Information 1226

A common misconception is that GPT-4 Turbo with Vision 1227

can handle all tasks, from image classification to visual ques- 1228

tion answering (VQA), with a one-size-fits-all prompt. In 1229

reality, each task requires a carefully designed prompt specific 1230

to the dataset, leveraging our understanding of the model’s 1231

capabilities. Diverse prompting strategies are essential in AI, 1232

not just beneficial. By tailoring prompts to individual needs, 1233

we unlock the full potential of advanced AI models and ensure 1234

generation of high-quality, instruction-following datasets. We 1235

leverage custom prompts tailored to each specific additional 1236

datasets. This allows us to generate instruction-following 1237

datasets focused on the material categories present in the input 1238

microscopy images. Subsequently, smaller models trained 1239

on this generated data can learn human intent from larger 1240

teacher models, ultimately achieving state-of-the-art perfor- 1241

mance on downstream tasks. To evaluate the effectiveness 1242

of the MAEMI framework, we conducted a comprehensive 1243

performance comparison with existing SOTA models across 1244

various tasks. Specifically for multi-class classification tasks, 1245

Table 21 presents classification accuracy results, demonstrat- 1246

ing MAEMI’s performance relative to baseline models. In the 1247

domain of open-ended VQA, Table 22 showcases MAEMI’s 1248

performance, providing a detailed comparison with alterna- 1249

tive approaches. To further illustrate MAEMI’s capabilities in 1250

open-ended VQA, Tables 30, 31, and 32 offer concrete ex- 1251

amples presenting images, corresponding questions, and the 1252

generated answers. These tables go beyond textual compari- 1253

son by incorporating performance evaluation metrics such as 1254

BLEU-2, ROUGE-L, and METEOR, ensuring a quantitative 1255

assessment. Additionally, Tables 23 - 29 present samples 1256

from the instruction-tuning Q&A pairs dataset, generated by 1257

GPT-4 Turbo with Vision. This dataset plays a crucial role in 1258

the training process of smaller models. 1259

http://faculty.neu.edu.cn/yunhyan/NEU_surface_defect_database.html
http://faculty.neu.edu.cn/yunhyan/NEU_surface_defect_database.html
https://arl.wpi.edu/corrosion_dataset
https://www.csc.kth.se/cvap/databases/kth-tips/index.html


Figure 9: The figure displays a curated collection of electron microscopy images from the NEU-SDD dataset, also known as
the NEU Surface Defect Database. This specialized dataset is primarily used for detecting and classifying surface defects on
steel. It contains images representing six different types of steel surface defects found on hot-rolled steel strips: pitted surfaces,
scratches, rolled-in scale, crazing, patches, and inclusion defects. The database plays a crucial role in developing frameworks for
quality control in manufacturing and automated inspection systems by providing a diverse range of defect types and images for
comprehensive testing and evaluation.

Figure 10: The figure shows a curated collection of electron micrographs from the CMI dataset, which have been methodically
categorized based on the ASTM-D1654 standards. It features corrosion severity scores from 5 to 9, suggesting a scale that
measures the progression of corrosion damage on the material panels. With scores ranging from 5 to 9 indicating a progression
from moderate to less severe corrosion. The CMI dataset includes 600 images of material panels undergoing different levels of
corrosion, each evaluated and confirmed by experts through standardized laboratory testing.

Figure 11: The figure shows a curated selection of electron micrographs from the KTH-TIPS texture dataset showcasing the ten
diverse material classes, including sponge, orange peel, styrofoam, cotton, cracker, linen, crust, sandpaper, aluminum foil, and
corduroy.

Algorithms NEU-SDD CMI KTH-TIPS

B
as

el
in

es ResNet 0.906 0.928 0.941
GoogleNet 0.936 0.928 0.929
SqueezeNet 0.955 0.943 0.963
VanillaViT 0.962 0.968 0.972
MAEMI 0.985 0.983 0.991

Table 21: The table compares the multi-category classification performance of the proposed framework against established
benchmarks across datasets.

Table 22: The table shows MAEMI framework excels on open-ended VQA task across benchmark datasets with their corresponding
scores in several evaluation metrics.

Method BLEU-2 (↑) BLEU-4 (↑) ROUGE-1 (↑) ROUGE-2 (↑) ROUGE-L (↑) METEOR (↑)

InstructBLIP[Dai et al., ] 0.822 0.666 0.933 0.832 0.895 0.955

LLaVA[Liu et al., 2023] 0.814 0.664 0.956 0.841 0.903 0.951

MiniGPT-4[Zhu et al., 2023] 0.855 0.687 0.966 0.828 0.901 0.982

MAEMI 0.908 0.823 0.984 0.889 0.942 0.992
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Table 23: The table presents an instruction-following dataset composed of image-question-answer triples generated
using GPT-4 Turbo with vision in response to open-ended natural language prompts about a microscopic image
of corrosion category 5, according to ASTM-D1654 standards. In summary, this GPT-assisted vision-language
dataset aids in tuning smaller models to interpret complex microscopic images in the context of open-ended VQA
tasks.

Please answer the following questions about the provided
image of corrosion category 5, classified according to

ASTM-D1654 standards.

Query prompt GPT-4 Turbo with vision output
What is the primary purpose of the
image?

The image is used for research on material corrosion, specifically to
classify the extent of damage according to standardized corrosion sever-
ity levels in a Visual Question Answering system. It’s a part of a dataset
for training machine learning models in corrosion detection.

How is the severity of corrosion vi-
sually represented in this rating?

The severity of corrosion in the images is determined by the extensive-
ness of the corroded area- in terms of size, depth, color changes, and
presence of rust or pitting. The lower ASTM-D1654 rating scores like a
5 here indicate more severe corrosion, with larger and more numerous
defects visible on the metal surface.

What is the dominant feature in the
image?

The image’s dominant feature is a large X-shaped mark, suggesting
severe corrosion or a deliberate assessment marking in the corrosion
dataset. Its size, shape, and contrasting color against the surface indi-
cate a lower corrosion severity rating, implying significant damage or
deterioration.

Describe the color and texture of the
X-shape.

The X-shape in the image is dark, suggesting heavy oxidation or degra-
dation. The texture is rough and uneven, hinting at flaking or pitting
typical of corroded metal. The color contrasts with the lighter back-
ground, possibly indicating early corrosion stages or intact coatings.
This is a typical appearance of a surface that has experienced significant
corrosion.

What’s notable about the back-
ground surrounding the X-shape?

The background has a mottled appearance with color variations from
lighter to darker shades, resembling rust and wear from corrosion. The
uneven surface shows pitting and discoloration, suggesting the onset of
corrosion. This context indicates the X-shape is part of a larger corroded
area being studied for material degradation.

Are there visible boundaries or divi-
sions between the X-shape and the
background?

The distinct X-shape boundaries suggest a clear division from the back-
ground, possibly due to deeper corrosion setting it apart or differences
in image processing or metal treatment in that area.

Is there a pattern to the corrosion
emanating from the X-shape?

Generally, corrosion may spread outward from points of origin, but the
exact pattern would depend on various factors including the material
and environmental conditions.

How do the dark speckles on the
background contribute to the overall
appearance of corrosion?

Dark speckles on a corroded surface indicate areas where the material
has started to pit or the protective layer has been compromised, allowing
oxidation. Their varying size and density give insights into the severity
and progression of corrosion. They create visual texture reflecting the
irregular nature of corrosion across the surface.

What does a rating of 5 signify
in terms of material integrity and
longevity?

A corrosion rating of 5 signifies severe degradation that can compromise
integrity and longevity, requiring attention, maintenance, or replacement
to ensure safety and functionality.
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Table 24: The table presents an instruction-following dataset composed of image-question-answer triples generated
using GPT-4 Turbo with vision in response to open-ended natural language prompts about a microscopic image
of corrosion category 9, according to ASTM-D1654 standards. In summary, this GPT-assisted vision-language
dataset aids in tuning smaller models to analyze and interpret complex microscopic images in the context of
open-ended VQA tasks..

Please answer the following questions about the provided
image of corrosion category 9, classified according to

ASTM-D1654 standards.

Query prompt GPT-4 Turbo with vision output
What is the primary intent of the
image?

The primary intent of the image you’ve provided, which belongs to the
corrosion 9 category from the CMI dataset, is to serve as a detailed
electron micrograph for the study of corrosion. It appears to capture
the advanced state of deterioration on metal panels, providing a high-
resolution view to analyze and understand the patterns and progression
of corrosion. This kind of image is typically used by researchers and
professionals in the field of material science and engineering to assess
the condition of metal structures, to develop better corrosion-resistant
materials, and to test the effectiveness of anti-corrosion treatments.
The image’s adherence to ASTM-D1654 standards indicates that it
has been categorized and scored based on a standardized measure of
evaluating the severity of corrosion, which is crucial for consistent
scientific analysis and research.

Can you describe the overall color
scheme of the image?

The image displays a predominantly beige or tan background with a
central feature that appears as a rust or brownish streak, indicative of cor-
rosion. This streak has variations in intensity, with some areas appearing
darker, suggesting different stages or concentrations of corrosion.

What is the main corroded feature
present in the image?

The main corroded feature in the image is a long, linear streak of
corrosion running across the field of view. This streak is characterized
by its brownish, rust-like color, which contrasts with the lighter beige
background. It likely represents a significant area of metal degradation,
with variations in color intensity indicating different levels or depths of
corrosion damage.

How does the corrosion manifest
around this scribed line?

The corrosion shows as a rust-colored line where the coating was likely
removed, allowing corrosion to start. Around this line, the corrosion
spreads outward, creating a gradient where the rust color fades away
from the central line. This indicates severe corrosion near the scribed
line, with less impact on the surrounding metal.

Given the context of corrosion rat-
ings, how does a rating of 9 com-
pare to other ratings in terms of cor-
rosion severity?

A rating of 9 in the context of corrosion severity, especially within
a scale that adheres to ASTM-D1654 standards, typically indicates
minimal corrosion, with the metal surface remaining mostly intact.
Lower ratings would denote more severe corrosion damage.

Is the corrosion consistent through-
out the scribed line?

The corrosion along the scribed line is not uniform; it varies in intensity,
suggesting different levels of corrosion severity along the line.

How does the background of the im-
age appear in comparison to the cor-
roded area?

The background of the image is a uniform beige or tan color, which
appears smooth and undamaged, contrasting with the corroded area that
shows a brownish, textured streak indicative of corrosion damage.

If one were to run their fingers
across the image, what differences
in texture might they expect be-
tween the corroded scribe and the
background?

Touching the corroded panel in the image would reveal roughness and
unevenness along the corroded line, contrasting with the smoother,
intact background. The corroded area feels irregular and pitted, while
the surrounding area is smoother. However, this texture is only visually
perceptible in the image, not tactile.
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Table 25: The table presents an instruction-following dataset composed of image-question-answer triples generated
using GPT-4 Turbo with vision in response to open-ended natural language prompts about a microscopic image
of the aluminium foil. In summary, this GPT-assisted vision-language dataset aids in tuning smaller models to
analyze and interpret complex microscopic images in the context of open-ended VQA tasks.

Referring to the provided image of aluminum foil,
please provide answers to the questions below.

Query prompt GPT-4 Turbo with vision output
What is the primary material de-
picted in the image?

The primary material depicted in the image you provided appears to be
aluminum foil. Aluminum foil is typically characterized by its shiny
surface and its ability to crumple and fold easily, creating a range of
highlights and shadows that give it a distinctive textured appearance.
The image shows these characteristics, suggesting that it is indeed
aluminum foil.

How is the surface texture of the
material?

The surface texture of the aluminum foil in the image is highly irregular
and crinkled, characterized by sharp folds and creases that reflect light
differently. This creates a complex pattern of highlights and shadows.
The crumpled nature results in a chaotic, random texture typical of
manipulated foil. The texture varies with the degree of crumpling and
lighting angle, contributing to the foil’s unique and detailed appearance.

What color predominates in the im-
age?

The image predominantly displays shades of gray, characteristic of the
metallic sheen of aluminum foil. The varying brightness within those
shades is due to the crinkled texture and how it reflects light.

Are there any reflections or shines
visible on the material?

Yes, there are multiple reflections and shines visible on the material,
which are indicative of aluminum foil’s reflective metallic surface. The
crinkles and folds create varying degrees of brightness and contrast,
emphasizing the shiny quality of the foil.

How would you describe the overall
pattern on the foil?

The overall pattern on the aluminum foil is highly irregular and chaotic,
with no uniformity or repeating motifs. It consists of numerous random
creases and folds that create a complex and intricate texture. The
pattern is formed by the way the foil has been crumpled, resulting in a
disordered array of reflective angles and surfaces.

Is the foil flat or does it appear to
have depth and volume?

The foil appears to have depth and volume due to the pronounced creases
and folds, which create a three-dimensional effect, the crumpling gives
it a textured appearance that suggests a sense of depth.

Does the foil cover the entirety of
the image?

The foil appears to cover the entirety of the image with no other distinct
elements or objects present.

How would you describe the light-
ing on the foil?

The lighting on the foil seems to be diffuse, with no harsh or direct
reflections, suggesting a soft, indirect light source. This type of lighting
enhances the visibility of the texture by casting gentle shadows within
the creases without creating overpowering glare.

Is there any uniformity in the crin-
kles and folds, or are they random?

The crinkles and folds in the aluminum foil appear to be random and
without any discernible pattern or uniformity. Each crease and fold is
unique, contributing to the overall complex texture of the material.

Is the background distinguishable,
or does the foil cover it completely?

The foil covers the background completely, making it indistinguishable.
There are no visible elements or details beyond the foil itself in the
image.
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Table 26: The table presents an instruction-following dataset composed of image-question-answer triples generated
using GPT-4 Turbo with vision in response to open-ended natural language prompts about a microscopic image
of the corduroy fabric. In summary, this GPT-assisted vision-language dataset aids in tuning smaller models to
analyze and interpret complex microscopic images in the context of open-ended VQA tasks.

Referring to the provided image of corduroy fabric,
please provide answers to the questions below.

Query prompt GPT-4 Turbo with vision output
What type of material is depicted in
the image?

The image you’ve provided appears to be a texture that is consistent
with the material class of corduroy. Corduroy is characterized by its
distinct pattern of raised ridges, or wales, which run in parallel lines.
The texture in the image exhibits these hallmark ridges, suggesting that
it indeed represents a corduroy material.

What color does the corduroy fabric
primarily exhibit?

The corduroy fabric in the image primarily exhibits a brown color.

Describe the texture and pattern no-
ticeable on the corduroy

The texture of the corduroy in the image is characterized by its dis-
tinctive ridges or wales, which are raised parallel lines that run along
the length of the fabric. These wales give corduroy its unique texture
that is both visual and tactile. The pattern is repetitive and consistent,
with each wale typically having a uniform width and height, creating a
corded look that is typical of this type of fabric. The valleys between
the wales appear as linear depressions that alternate with the raised
wales, contributing to the overall texture of the material. The texture
also suggests a soft and somewhat velvety feel, which is common with
corduroy fabrics.

Are these raised lines uniformly dis-
tributed throughout the fabric?

Yes, in the image of the corduroy fabric, the raised lines, or wales, are
uniformly distributed, giving it a consistent texture and appearance.
The regular spacing and similar width of each wale contribute to the
material’s uniform look.

How does light interact with the fab-
ric’s texture?

In the image, light interacts with the fabric’s texture, creating highlights
and shadows along the corduroy’s wales. The raised ridges catch light,
enhancing brightness and sheen on the peaks, while the valleys remain
shadowed, accentuating the fabric’s depth and texture. This interplay
enhances the corduroy’s three-dimensional look and emphasizes its
tactile quality. The light’s directionality also affects texture visibility;
angled light increases the contrast between the wales and grooves,
making the texture more pronounced.

Describe the spacing between the
ribs.

The spacing between the ribs in the corduroy is uniform and even,
typical of the regular pattern associated with this material.

How does the fabric’s texture vary
between the raised lines and the
gaps in between?

The fabric’s texture varies between the raised lines (wales) and the gaps
(channels) in that the wales are more pronounced and may feel thicker
or plush, while the channels are recessed, creating a softer and smoother
feel in comparison.

Are there any visible imperfections
or signs of wear on the corduroy?

The image of the corduroy does not exhibit any visible imperfections
or signs of wear; the wales appear consistent and intact, indicating the
fabric is likely in good condition.

From which angle or perspective is
the fabric being observed?

The fabric is being observed from a direct, overhead angle, looking
straight down onto the surface, allowing for a clear view of the texture
and pattern of the corduroy.

Is the image a full representation of
the fabric or just a section?

The image seems to represent just a section of the corduroy fabric, not
the full extent of the material. It provides a close-up view that focuses
on the texture and pattern detail.
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Table 27: The table presents an instruction-following dataset composed of image-question-answer triples generated
using GPT-4 Turbo with vision in response to open-ended natural language prompts about a microscopic image of
the linen fabric. In summary, this GPT-assisted vision-language dataset aids in tuning smaller models to analyze
and interpret complex microscopic images in the context of open-ended VQA tasks.

Referring to the provided image of the linen fabric,
please provide answers to the questions below.

Query prompt GPT-4 Turbo with vision output
What is the primary material dis-
played in the image?

The image is a representation of a linen texture. Linen is known for
its distinctive, slightly irregular weave and natural fiber look, which is
visible in the image provided.

Can you identify the primary color
of the linen fabric in the image?

The primary color of the linen fabric in the uploaded image appears to
be a beige or light tan color. This color is often associated with natural
linen materials.

Describe the texture or pattern visi-
ble on the linen?

The linen’s texture in the image shows a distinct, woven pattern typical
of linen fabrics. The weave is tight and regular, with slight thread
thickness variation, giving it a natural, irregular appearance. The pattern
features a crisscross arrangement, creating a grid-like structure. The
surface has a matte finish, suggesting a soft, natural feel typical of linen
textiles.

How would you describe the spac-
ing between the woven threads?

The spacing between the woven threads in the image appears to be quite
close, but with enough separation to make individual threads distin-
guishable. The threads are woven in a consistent pattern, indicative of a
tightly woven fabric, yet they are not so tightly bound that they lose the
textured appearance distinctive to linen. This type of spacing is typical
for quality linen, allowing for durability while retaining breathability.

Does the linen appear soft or rigid
based on the visible texture?

Based on the visible texture in the image, the linen appears to have a
soft quality. The slight irregularities in the thread thickness and the
natural weave pattern suggest flexibility, which is characteristic of linen
fabrics. Despite its structured and tight weave, linen is known for its
natural softness and the image does not suggest any stiffness that would
indicate rigidity.

Are there any observable sheen or
reflective properties on the linen?

From the image provided, the linen does not exhibit a significant sheen
or reflective properties. The surface appears matte, with the natural,
slightly uneven texture of the weave absorbing light rather than reflect-
ing it. This lack of luster is typical for linen, which is known for its
more subdued, earthy aesthetic rather than a glossy or shiny appearance.

How consistent is the texture
throughout the displayed section?

The texture of the linen in the image is consistent, with a uniform weav-
ing pattern indicating high-quality textile production. Subtle natural
variations in thread thickness, characteristic of linen, don’t disrupt the
fabric’s overall uniformity. This consistent weave suggests a smooth,
even feel, desirable in linen fabrics.

Based on the visible attributes, how
would you describe the tactile sen-
sation of the fabric?

The linen fabric in the image would likely offer a tactile experience
that is characteristically textured and crisp to the touch, with a natural,
slightly irregular feel indicative of its organic origin. The tight yet
breathable weave suggests a fabric that is both durable and comfortable,
providing a sensation of both softness and structured quality.

Are there any discernible imperfec-
tions or unique characteristics in the
fabric?

Based on the image, the fabric is uniform, free from snags, pulls, or
discoloration. The natural variation in thread thickness, characteristic
of linen, provides a distinct, organic texture, enhancing its aesthetic and
tactile appeal. Overall, the fabric appears high quality, embodying the
nuanced details typical of woven linen.
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7 NEU-SDD1267

Table 28: The table presents an instruction-following dataset composed of image-question-answer triples generated
using GPT-4 Turbo with vision in response to open-ended natural language prompts about a microscopic image
of the scratches category of surface defects. In summary, this GPT-assisted vision-language dataset aids in tuning
smaller models to analyze and interpret complex microscopic images in the context of open-ended VQA tasks.

Based on the provided image from the scratches
category, please respond to the following questions.

Query prompt GPT-4 Turbo with vision output
What category does this texture be-
long to?

The category of the texture in the provided image belongs to the
scratches category. Scratches are characterized by linear markings or
indentations on the surface, which can vary in depth and width. These
defects are typically a result of mechanical damage where an object
has come into contact with the surface with enough force to mar it. In
the context of the NEU-SDD dataset, this image would be used to train
algorithms to recognize and categorize such imperfections on hot-rolled
steel plates.

Describe the central feature in the
image?

The central feature in the image is a linear, vertical scratch mark, charac-
terized by a distinct, bright line against a darker background, indicative
of a surface defect on the material.

How would you describe the con-
trast between the scratch and the
surrounding texture?

The contrast between the scratch and the surrounding texture is quite
pronounced. The scratch appears as a bright, linear streak against a
uniformly darker background, which indicates a significant difference
in reflectivity or texture between the scratch and the rest of the surface.
This high-contrast feature makes the scratch readily identifiable.

What color tones dominate the im-
age?

The image is grayscale, so it is dominated by shades of gray. There are
no color tones in a grayscale image, only variations from black to white.

Can you define the orientation of
the scratch?

The orientation of the scratch is vertical, extending from the top to the
bottom of the image.

How would you describe the edges
of the scratch?

The edges of the scratch appear relatively straight and parallel, suggest-
ing a singular, consistent force that created it. They are well-defined,
indicating a clear demarcation between the scratch itself and the sur-
rounding unaffected material.

Is the scratch in the center or to-
wards the side of the image?

The scratch is centrally located in the image, running vertically down
the middle of the frame..

Are there multiple scratches or just
a single prominent one?

Based on the image provided, there is a single prominent scratch visible
running vertically down the center.

Is the rest of the image’s texture
smooth or grainy?

The rest of the image’s texture appears grainy, with a speckled pattern
of lighter and darker gray areas indicative of the microscopic surface
texture of the material.

How does the brightness of the
scratch compare to the overall im-
age?

The scratch is significantly brighter than the overall image. It stands
out as a distinct, lighter feature against the predominantly darker, grainy
background of the rest of the image.

If you were to touch the scratch,
would it feel raised or recessed?

Based on the visual characteristics of the scratch in the image, it would
likely feel recessed. The brightness of the scratch, in contrast to the
darker surrounding area, suggests a groove or indentation in the mate-
rial’s surface.
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Table 29: The table presents an instruction-following dataset composed of image-question-answer triples generated
using GPT-4 Turbo with vision in response to open-ended natural language prompts about a microscopic image
of the patches category of surface defects. In summary, this GPT-assisted vision-language dataset aids in tuning
smaller models to analyze and interpret complex microscopic images in the context of open-ended VQA tasks.

Based on the provided image from the patches
category, please respond to the following questions.

Query prompt GPT-4 Turbo with vision output
What category does this texture be-
long to?

The texture in the image belongs to the patches category of surface
defects.

Describe the dominant features in
the image?

The image shows a grayscale texture with varied patterns of light and
dark areas. Dominant features include irregularly shaped darker patches
distributed across a lighter background, suggesting an uneven surface
typical of the ”patches” defect category in steel. These patches appear as
areas of concentration or clusters, contrasting with the lighter grayscale
background, and may indicate surface inconsistencies or repairs.

How would you characterize the
contrast between the patches and the
surrounding area?

The contrast between the patches and the surrounding area in the im-
age is quite pronounced. The patches appear as distinct, darker areas
against a lighter background, indicating a significant difference in tone.
This stark contrast helps to highlight the irregularities and the texture
differences between the defective patches and the rest of the surface.

What color tones are prevalent in
the image?

The image is in grayscale, showing black, white, and gray tones. It
lacks color, displaying intensity variations from black (low intensity or
absence of material) to white (high intensity or presence of material),
with gray shades indicating levels in between. The darker gray patches
suggest lower intensity areas compared to the lighter gray surrounding
surface.

Describe the shape and arrangement
of the patches?

The patches in the image are irregularly shaped and vary in size and
form, distributed randomly across the surface. Some cluster together,
while others are isolated, with jagged, poorly-defined edges blending
into the lighter background. This irregularity in shape and arrangement
typifies material surface defects.

How does the texture within the
patches compare to the rest of the
image?

Within the patches, the texture appears to be denser and more chaotic
compared to the rest of the image. The granularity is more pronounced,
with a rougher, less uniform appearance. In contrast, the surrounding
areas exhibit a smoother and more consistent texture with lighter shades
of gray, suggesting a less disturbed surface. The patches stand out due to
their distinct, rugged texture against the relatively uniform background.

Would you say the patches are cen-
tralized or more dispersed?

The patches appear to be dispersed throughout the image rather than
centralized. They are spread across the surface without a clear concen-
tration in any particular central area, indicating a random distribution of
the surface defects.

Do the patches have well-defined
boundaries?

The patches do not have well-defined boundaries; their edges are irregu-
lar and blend into the surrounding area.

Describe the granularity of the back-
ground texture?

The background texture in the image is relatively smooth and uniform,
with fine granularity. This contrasts with the rougher texture of the
patches, making the overall surface appear heterogeneous.

In a real-world scenario, how might
such patches form on materials?

Patches on materials can form due to corrosion, wear and tear, manufac-
turing flaws, inconsistent repairs or treatments, and chemical exposure,
often indicating areas of weakness.

Does the image lean more towards
being bright, dark, or neutral over-
all?

The image is overall neutral in tone, with a balance between light and
dark areas, neither leaning distinctly towards being bright nor dark.
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Table 30: The table displays a collection of electron microscope images that depict metal corrosion, accompanied by their
accurate labels. Additionally, it includes machine-generated descriptions for each image, which are obtained from an open-ended
VQA task that examines contributing factors. The effectiveness of these generated descriptions is assessed by comparing their
similarity to the actual labels, using BLEU-2, ROUGE-L, and METEOR evaluation metrics.

Image Ground Truth Answers
BLEU-2/
ROGUE-L/
METEOR

The corrosion on this metal could be
influenced by environmental factors
(moisture, temperature, exposure to
chemicals), the metal’s composition,
protective coating failures, and pos-
sibly physical damage that compro-
mised the surface.

The corrosion on this metal could be
due to environmental factors (mois-
ture, temperature, chemical expo-
sure), the metal’s composition, pro-
tective coating failures, and possibly
physical damage compromising the
surface

0.689
0.833
0.802

The corrosion shown may be due
to environmental elements, material
defects, or inadequate corrosion pro-
tection measures.

The corrosion shown may be due
to environmental factors, defects in
materials, or inadequate corrosion
protection measures.

0.725
0.848
0.806

Corrosion here appears influenced
by direct exposure to elements, pos-
sibly exacerbated by an abrasive
treatment that may have removed
protective coatings.

Corrosion appears influenced by di-
rect exposure to elements, possibly
exacerbated by an abrasive method
that may have removed some protec-
tive coatings.

0.824
0.905
0.901

The streaking patterns suggest water
flow, so exposure to moisture and en-
vironmental conditions likely played
roles in the corrosion process.

The streaking patterns indicate wa-
ter flow, suggesting that exposure to
moisture and environmental factors
likely played roles in the corrosion
process.

0.725
0.829
0.886

In this image, corrosion seems min-
imal, suggesting effective protec-
tive measures, possibly the triva-
lent chromium pretreatment, are in
place.

In this image, corrosion appears min-
imal, indicating that effective pro-
tective measures, possibly including
the trivalent chromium pretreatment,
are in place.

0.711
0.842
0.931



Table 31: This table showcases a selection of electron microscope images alongside their corresponding labels, and framework-
generated descriptions on an open-ended VQA task delving into material properties like durability, degradation, and environmental
impact. To gauge the effectiveness of the automatically generated descriptions for these images, we evaluated their similarity to
the true labels using metrics such as BLEU-2, ROUGE-L, and METEOR.

Image Ground Truth Answers
BLEU-2/
ROGUE-L/
METEOR

The material shown, likely alu-
minum foil, is durable and resistant
to degradation but can have a sig-
nificant environmental impact if not
recycled properly.

The shown material, likely alu-
minum foil, is durable and resistant
to degradation but can have a sig-
nificant environmental impact if not
recycled correctly.

0.844
0.913
0.869

The material appears to be bread,
with low durability, quick biodegra-
dation, and minimal environmental
impact.

The material, which appears to
be bread, possesses low durability,
quick biodegradation, and minimal
environmental impact.

0.736
0.903
0.855

The material appears to be carpet,
which is moderately durable, de-
grades over years, and can be en-
vironmentally impactful if synthetic
and not recycled.

The material, appearing to be car-
pet, possesses moderate durability,
degrades over time, and can be en-
vironmentally significant if made of
synthetic materials and not recycled.

0.447
0.667
0.727

This textile, possibly canvas or
burlap, has high durability, slow
degradation, and if natural, a low
environmental impact.

This textile, which could be canvas
or burlap, has high durability, de-
grades slowly, and has a low envi-
ronmental impact if it is natural

0.453
0.634
0.648

The material, likely sponge or foam,
is less durable, degrades variably,
and can have a higher environmental
impact if not biodegradable.

The material, presumably sponge or
foam, is comparatively less durable,
degrades in various ways, and po-
tentially has a higher environmental
impact if it lacks biodegradability.

0.500
0.652
0.688

The fabric, likely a natural fiber
weave, is moderately durable,
biodegradable, and has a low envi-
ronmental impact when untreated.

The fabric, likely comprised of a
natural fiber weave, is moderately
durable, biodegrades effectively, and
usually has a minimal environmen-
tal impact when untreated

0.635
0.810
0.865

The material, resembling an or-
ganic rind, has moderate durability,
biodegradable properties, and a low
environmental impact.

The substance, which appears to be
an organic rind, exhibits moderate
durability, has biodegradable quali-
ties, and generally results in a low
environmental impact.

0.393
0.615
0.718

The material, likely sandpaper, is de-
signed for short-term use, degrades
with wear, and has a moderate envi-
ronmental impact depending on the
backing material.

The substance, resembling sandpa-
per, is constructed for limited use,
degrades with wear, and has a mod-
erate environmental impact, varying
with the backing.

0.499
0.696
0.573

The material, resembling a sponge,
has low to moderate durability, vari-
able degradation, and a potentially
high environmental impact if syn-
thetic.

The substance, which looks like a
sponge, has low to moderate durabil-
ity, degrades variably, and can have
a high environmental impact if it is
synthetic.

0.474
0.615
0.708

The material, likely glittery fabric
or paper, has low to moderate dura-
bility, can degrade slowly, and often
has a high environmental impact due
to microplastic pollution.

The substance, possibly glittery fab-
ric or paper, displays low to mod-
erate durability, tends to degrade
slowly, and often leads to a high en-
vironmental impact from microplas-
tic pollution.

0.609
0.696
0.731



Table 32: The table displays a selection of electron microscope images along with their corresponding labels and framework-
generated descriptions. These descriptions are evaluated for their effectiveness in a open-ended VQA task that investigates
defects and their identifying features. We assess the similarity between the automatically generated descriptions and the true
labels using metrics such as BLEU-2, ROUGE-L, and METEOR.

Image Ground Truth Answers
BLEU-2/
ROGUE-L/
METEOR

The image displays crazing, charac-
terized by a network of fine, inter-
linked cracks on the surface.

The picture shows crazing, marked
by a fine, interconnected network of
cracks on its surface

0.378
0.600
0.721

The image shows the defect known
as inclusion, identifiable by darker
areas or spots embedded within the
material’s matrix.

The image exhibits the defect known
as inclusion, evident from the darker
areas or spots within the material’s
matrix.

0.695
0.800
0.820

The image shows a defect known as
patches, which are characterized by
large, dark, and irregularly shaped
areas on the material’s surface.

The image depicts the defect re-
ferred to as patches, characterized
by expansive, dark, and irregularly
shaped regions on the surface.

0.460
0.651
0.703

The image shows a pitted surface
defect, characterized by numerous
small, shallow depressions scattered
across the material’s surface.

The image illustrates a pitted sur-
face condition, with numerous small
and shallow depressions distributed
across the material’s surface.

0.524
0.737
0.643

The image shows the defect known
as rolled-in scale, indicated by dark
streaks and spots embedded in the
surface, typical of metalworking.

The image illustrates the defect
known as rolled-in scale, recogniz-
able by the dark streaks and embed-
ded spots on its surface, often seen
in metalworking.

0.511
0.667
0.741

The image shows a defect called
scratches, identifiable by the long,
thin, and straight lines running
across the material’s surface.

The image reveals scratches as a de-
fect, recognizable by the long, slen-
der, and straight paths etched across
the material’s face.

0.417
0.619
0.524
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