
Under review as a conference paper at ICLR 2022

LEARNING RATE GRAFTING:
TRANSFERABILITY OF OPTIMIZER TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In the empirical science of training large neural networks, the learning rate sched-
ule is a notoriously challenging-to-tune hyperparameter, which can depend on all
other properties (architecture, optimizer, batch size, dataset, regularization, ...) of
the problem. In this work, we probe the entanglements between the optimizer and
the learning rate schedule. We propose the technique of optimizer grafting, which
allows for the transfer of the overall implicit step size schedule from a tuned op-
timizer to a new optimizer, preserving empirical performance. This provides a
robust plug-and-play baseline for optimizer comparisons, leading to reductions to
the computational cost of optimizer hyperparameter search. Using grafting, we
discover a non-adaptive learning rate correction to SGD which allows it to train a
BERT model to state-of-the-art performance. Besides providing a resource-saving
tool for practitioners, the invariances discovered via grafting shed light on the suc-
cesses and failure modes of optimizers in deep learning.

1 INTRODUCTION

Adaptive gradient methods and learning rate schedules are cornerstones of optimization for deep
learning. The pursuit of faster and more robust convergence in training deep neural networks has led
to a preponderance of optimizer update rules, annealing heuristics, and hyperparameters, with no
clear or principled way to select between them. The difficulty makes tuning a state-of-the-art deep
learning pipeline very opaque and expensive.

Consequently, a large body of work aims to understand the structure of these search spaces, ana-
lyzing the properties of optimizers and their components in idealized models to predict directional
trends, provide rules of thumb, and propose mechanisms for emergent phenomena (like general-
ization and transfer). Other works study the intrinsic tradeoffs between competing objectives, such
as faster convergence vs. generalization. The continued prevalence of black-box hyperparameter
search points to a consensus that a quantitatively predictive understanding of training dynamics cur-
rently eludes us.

Towards forming more robust beliefs in this space, we provide a recipe that enables a wide class
of ablation studies on state-of-the-art models. We consider an unnatural-looking meta-algorithm,
which combines the update rules of two different optimizers, forming a single grafted update rule.
Our findings serve not only as a sanity check on explanatory theory, but also as a way to simplify
the optimizer search space in practical settings.

1.1 OUR CONTRIBUTIONS

We introduce learning rate grafting, a meta-algorithm which blends the steps of two optimizers by
combining the step magnitudes of one (M) with the normalized directions of the other (D). Applied
to state-of-the-art deep models, grafting leads to the following:

Transfer of optimizer performance. We discover that in many deep learning settings, the per-
formance of an optimizer can be explained by the implicit step size schedules it induces. Grafting
provides an adaptive way to transfer these schedules between algorithms, consistently closing per-
formance gaps between different optimizers used to train the same model architecture. As a result,
grafting provides a strong baseline for learning rate schedule tuning: given a tuned baseline M,

1

Under review as a conference paper at ICLR 2022

M

D
M#D

Figure 1: The optimizer grafting operation introduced and studied in this work: meta-optimizer
M#D uses the update magnitude of optimizerM, and the direction of D.

grafting can enable a different optimizer D to match (and sometimes exceed) the performance of
M, without tuning the learning rate schedule for D. We demonstrate this phenomenon in multiple
settings: across vision and language models, and different batch sizes.

Schedule discovery. We show how to use grafting for the exploratory analysis of optimization
trajectories and implicit learning rate schedules. Using grafting as a diagnostic tool, we discover
a per-layer learning rate correction that allows SGD with momentum (without adaptive precondi-
tioning) to pretrain a BERT model to state-of-the-art accuracy for the first time. This correction is
non-adaptive, and does not require the parallel execution of the original algorithm from which sched-
ule is derived. We show analogous results for vision models, finding novel and effective global (as
opposed to per-layer) schedules for AdaGrad. We discuss the implications of this for contempo-
rary theory and engineering practices in large-scale settings: the distinctions between widely-used
optimizers may boil down to just a few implicit step size schedules, not the usual understanding of
per-coordinate “preconditioned directions”.

1.2 RELATED WORK

Learning rate schedules. Choosing learning rate schedules is a difficult empirical problem, for
which many heuristics exist; the design and search of these schedules can result in dramatic perfor-
mance differences (Gotmare et al., 2018; Smith, 2018; Smith & Topin, 2019; Loshchilov & Hutter,
2016). In large-scale language modeling, a source of particularly resource-intensive training prob-
lems, the predominant empirical practice is to tune a warmup and decay alongside an adaptive
optimizer (Popel & Bojar, 2018; You et al., 2019). Beyond classical minimax convergence rates for
stochastic optimization, some theory has been established to explain the benefits of certain learn-
ing rate schedules. Ge et al. (2019) provide a fine-grained theoretical account for quadratic losses.
Agarwal et al. (2021) show that optimized non-adaptive learning rate schedules can induce stable
and usable Nesterov-like acceleration. Li & Arora (2019) and Arora et al. (2018) study the inter-
action of learning rates with batch normalization (Ioffe & Szegedy, 2015), while Li et al. (2019)
provide a theoretical mechanism by which initial large learning rates improve generalization. The
interaction of learning rates with batch size is explored in (Krizhevsky, 2014; Goyal et al., 2017;
Bottou et al., 2018; Shallue et al., 2019). Anil et al. (2020) use the grafting method to stabilize an
exotic full-matrix optimizer.

Adaptive optimizers in deep learning. Adaptive methods have turned out to be extremely robust
in training deep neural networks, receiving tens of thousands of citations for this reason. In partic-
ular, Adam has been the de facto standard in fields such as NLP (e.g. (Devlin et al., 2018; Yang
et al., 2019; Liu et al., 2019)), deep generative modeling (e.g. (Karras et al., 2017; Brock et al.,
2018; Kingma & Dhariwal, 2018)), and deep RL (e.g. (Haarnoja et al., 2018)). Adaptive methods
have seen adoption in extremely large-scale settings, necessitating modifications to reduce resource
consumption (Shazeer & Stern, 2018; Anil et al., 2019; Chen et al., 2019).

An important discussion was sparked by Wilson et al. (2017), who presented empirical and theoreti-
cal examples where adaptive methods generalize poorly. Building on this premise, Keskar & Socher
(2017) suggest switching from Adam to SGD during training. A variety of theoretical mechanisms
have been proposed for the behavior of adaptive methods; for example, learning rate schedule auto-

2

Under review as a conference paper at ICLR 2022

tuning (Ward et al., 2019), escaping saddle points (Staib et al., 2019), and mitigating long-tailed
distributions (Zhang et al., 2019). Reddi et al. (2018) construct, then mitigate, pathological set-
tings where Adam fails to converge. However, in the vast majority of cases, out-of-the-box adaptive
methods are perfectly suitable for practitioners. Large-scale empirical studies (Choi et al., 2019;
Schmidt et al., 2020; Nado et al., 2021) confirm that hyperparameter search, especially learning rate
schedules, are essential to state-of-the-art performance, and undertuned baselines can often lead to
faulty optimizer comparisons.

Layer-wise adaptive methods. Various algorithms have been proposed recently that are focused
on adaptive layer-wise scalings on top of base algorithms. Adaptive layer-wise scalar obtained via
weight norms have been derived in LARS/LAMB (You et al., 2017; 2019) and successfully applied
to both Momentum and Adam. Several works (Shazeer & Stern, 2018; Anil et al., 2019; Chen
et al., 2019) propose compressed preconditioners to reduce the space of per-coordinate adaptive
multipliers (as maintained by algorithms such as AdaGrad/Adam) to a factored space. Novograd
(Ginsburg et al., 2019) reduces the per-coordinate scalars to per layer scalars via addition. LARS-
like scalars on top of normalized SGD with momentum was used to train BERT in Cutkosky &
Mehta (2020). To the best of our knowledge, non-adaptive per-layer learning rate corrections, such
as those presented in Section 5, have not been explored.

2 PRELIMINARIES

2.1 OPTIMIZERS AS GENERIC STATE MACHINES

There are various abstractions of optimization in deep learning: for example, we could reason about
stochastic first-order oracles ∇̃F (w) which are unbiased estimators of some gradient of a population
objective F (w). However, this fails to capture various popular deviations from the standard empiri-
cal risk minimization model, such as sequential batching in NLP (Merity et al., 2018; 2017) or deep
reinforcement learning, where optimization deviates from its theoretical abstractions in many ways
(Ilyas et al., 2019; Engstrom et al., 2020).

For this reason, we take the maximally agnostic approach for our notation and definitions in this
paper. We choose the software abstraction of optimization: we view a gradient-based optimizer as a
state machine which takes a sequence of gradients gt ∈ Rd and outputs an update rule for the weights
wt ∈ Rd. This abstraction is agnostic to properties or theoretical guarantees of the optimizer; in
supervised learning, the gradients are usually understood to be averaged over a minibatch, but we
do not use this property either.

Thus, an algorithm A takes the current iterate and gradient (wt, gt), and outputs the next iterate
wt+1; this update can depend on the algorithm’s internal state, hyperparameters, side information,
or randomness. Then, vanilla SGD with learning rate schedule ηt is the algorithm A specified by

A(wt, gt) := wt − ηtgt. (1)

Then, in the usual process of iterative training, the model weights are iteratively updated, as in
wt+1 ← A(wt, gt). Even in simple theoretical settings like least-squares regression (Jain et al.,
2018; Ge et al., 2019), the choice of the time-varying scalar hyperparameter {ηt} already presents
subtleties and bias-variance tradeoffs.

2.2 ADAPTIVE METHODS

We now bring in the second ubiquitous object of study: adaptive gradient methods. Broadly, they
refer to the technique of maintaining a sequence of linear transformations Ht, dependent on the
observed information (wt, gt) so far, to modify the (stochastic) gradient descent steps:

A(wt, gt) := wt − ηtHtgt.

Despite their extreme popularity and theoretically principled origins, there is considerable uncer-
tainty regarding the dynamics of adaptive methods. They were first motivated by regret bounds
dependent on the geometry of the data (McMahan & Streeter, 2010; Duchi et al., 2011), hence

3

Under review as a conference paper at ICLR 2022

the terminology “adaptive regularization”. The view of loss curvature estimation leads to the term
“adaptive preconditioning”, where Ht serves as an adaptive scaling factor to make the problem less
ill-conditioned (Tieleman & Hinton, 2012; Kingma & Ba, 2014).

Although more exotic adaptive optimizers exist (Martens & Grosse, 2015; Gupta et al., 2018; Agar-
wal et al., 2019), we focus on diagonal second-moment preconditioning methods, which have yet
to be dethroned as the de facto standard. This family of optimizers accumulates the squares of the
entries of gt, and sets Ht to be the diagonal matrix of entrywise inverse square roots of the accumu-
lators.

Entanglements between preconditioners and learning rates. Notice that in Equation 2.2, a
scalar multiplier on the preconditioner Ht can be absorbed into the learning rate schedule ηt. In
other words, the dynamics of Ht can induce an implicit step size schedule over the course of train-
ing, and different choices of optimizers (or configurations of the same optimizer) lead to different
implicit schedules. This entanglement motivates the introduction of our grafting meta-algorithm.
Specifically, we design an experiment to answer the following question: does the empirical success
of an adaptive optimizer arise from the true preconditioner Ht, or can it be equivalently described
by a learning rate schedule ηt? By combining the step magnitudes of an optimizer M and step
directions of an optimizer D, we can isolate and disentangle adaptive preconditioners Ht from their
induced step size schedules.

3 THE GRAFTING META-ALGORITHM

We begin by outlining the grafting procedure, which maintains two child optimizers M,D and
outputs a grafted update step; we call the entire algorithm M#D. Before developing the meta-
algorithm in full generality, we walk through the execution of the simplest case:

1. At each training iteration, M#D feeds the same input (wt, gt) to both children M,D,
which manage their states independently and produce outputs wM, wD.

2. We do not update wt+1 yet. Instead, we compute ‖wM − wt‖ and ‖wD − wt‖, the norms
of the steps the child optimizers would have taken.

3. The update step that grafting outputs is{
wt +

‖wM−wt‖
‖wD−wt‖ (wD − wt) wD 6= wt

wt otherwise
,

which combinesM’s update magnitude with D’s update direction.

We remark on a few elementary properties of this binary operation on optimizers:

• Grafting is idempotent. If A, x1, gt are deterministic, then A#A ≡ A (meaning that these
two optimizers have the same trajectory under identical sequences of inputs (wt, gt)).

• IfM,D differ only by a learning rate schedule (i.e. wM − wt is always a positive scalar
multiple of wD − wt, under identical inputs (wt, gt)), thenM#D ≡M.

• Disregarding the special case where A outputs a zero step, we have

(M#A)#D ≡M#(A#D) ≡M#D.

• Grafting is not commutative.M#D 6≡ D#M.

• Grafting is not necessarily a descent method. Even if M,D are guaranteed to make
progress on a deterministic objective (i.e. when gt is ∇F (wt)), M#D is not. For in-
stance, ifM,D are gradient descent with different preconditioners, there is no guarantee
thatM#D converges, or ever makes progress on F (w).

Grafting can be used as a diagnostic tool to answer the question posed at the end of Section 2, by
letting us observe the optimization trajectory and end-to-end performance whenM andD are forced
to have the same overall learning rate schedule. This gives a controlled way to study whether Ht or
ηt is more important in determining an optimizer’s empirical success.

4

Under review as a conference paper at ICLR 2022

Algorithm 1 Grafted meta-optimizerM#D
1: init: optimizersM,D; hyperparameters forM,D; partition P of model parameters.
2: InitializeM,D with their hyperparameters.
3: for each iteration t do
4: Receive input (wt, gt).
5: Query steps from inner optimizers:

wM ←M(wt, gt), wD ← D(wt, gt).
6: for each parameter group ρ ∈ P do
7: Compute grafted update:

w
(ρ)
← w

(ρ)
t +

∥∥∥w(ρ)
M −w

(ρ)
t

∥∥∥∥∥∥w(ρ)
D −w

(ρ)
t

∥∥∥
(
w

(ρ)
D − w

(ρ)
t

)
.

(Or, if w(ρ)
D = w

(ρ)
t , let w(ρ)

← w
(ρ)
t .)

8: Output grafted weight update:
(M#D)(wt, gt) := w#.

3.1 GRANULARITY OF GRAFTING

Before proceeding to the experiments, we will introduce one more dimension to the grafting proce-
dure: its granularity. Formally, let P be a partition of {1, . . . , d}, supplied as a hyperparameter. For
v ∈ Rd, ρ ∈ P , we denote by v(ρ) ∈ R|ρ| the restriction of v to the coordinates indexed at ρ. Then,
we transfer norms separately for each set of coordinates in the partition; this is the complete method
summarized by Algorithm 1. Let us note some special cases of P , and their associated properties
and interpretations:

• If P = {{1, . . . , d}}, then we can think ofM#D as transferring an overall learning rate
schedule fromM to D. This schedule is not in general a static sequence of scalars {ηt},
and depends on the trajectory of inputs (wt, gt). We call this instantiation global grafting.

• If we choose instead the most granular partitionP = {{1}, . . . , {d}}, grafting transfers one
learning rate schedule per parameter. If the optimizers differ only by a positive diagonal
preconditioner (like SGD and AdaGrad), so that the steps have the same sign pattern, then
it holds thatM#D ≡M.

• Interpolating between these two extremes, we can set the elements of P to be the (usually
tensor-shaped) parameter groups in the model’s implementation. This is a natural partition
provided by the optimizer interfaces of all commonly-used deep learning frameworks. We
call this variant layer-wise grafting, which transfers one learning rate schedule per param-
eter group fromM to D.

This provides a generalization of the schedule transfer methodology: for any choice of partition,
we can forceM and D to have the same learning rate schedule simultaneously over the parameter
groups. By making this partition more granular, we obtain more expressive families of learning rate
corrections.

4 GRAFTING FOR IMPLICIT SCHEDULE TRANSFER

We first present an empirical study on the transfer of implicit step size schedules between optimizers,
on state-of-the-art training benchmarks. Starting with a well-tuned baselineM, our protocol com-
pares two optimizer hyperparameter searches with the same computational budget: an optimizer D
which is less frequently used and has worse performance thanM on the corresponding architecture,
andM#D, fixing the tuned hyperparameters ofM. Note that the set of hyperparameters tuned in
both cases are also the same i.e. the hyperparameters of D. Under the same hyperparameter tuning
protocol and budget we consistently found across architectures/tasks and batch sizes, that grafting
induced positive transfer of end-to-end model performance, i.e. the performance of D#M closes
the gap (sometimes fully) between the performance D andM.

5

Under review as a conference paper at ICLR 2022

0 2 4 6
training steps 1e4

2

4

6

8

10

pr
et

ra
in

in
g

lo
ss

SGD
Adam
Adam#SGD

0 2 4 6
training steps 1e4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
LM

 to
p-

1
ev

al
 a

cc
ur

ac
y

BERT (batch size 8192)

0.5 1.0 1.5
training steps 1e4

2

4

6

8

10

pr
et

ra
in

in
g

lo
ss

0.5 1.0 1.5
training steps 1e4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
LM

 to
p-

1
ev

al
 a

cc
ur

ac
y

BERT (batch size 32768)

Figure 2: BERT experiments for implicit hyperparameter transfer, comparing hyperparameter search
for SGD (with momentum) vs. grafting withM = Adam. Adam#SGD outperformed all pure SGD
runs significantly; most hyperparameter settings for SGD caused training to diverge. Trials on batch
sizes 8192 and 32768 are shown.

BERT pretraining. As a timely choice of a resource-intensive training task, we ran this hyper-
parameter transfer experiment for a BERT (Devlin et al., 2018) model pretraining setup. We make
two choices ofM, Adam and LAMB (You et al., 2019) commonly reported as the state-of-the-art
optimizer for this problem (also see Nado et al. (2021). For D we choose SGD with momentum,
which has been widely reported to be unsuccessful in reaching state-of-the-art performance. In par-
ticular, You et al. (2019) explicitly point out in their abstract that their LAMB algorithm is motivated
by the fact that LARS (You et al., 2017), its non-adaptively-preconditioned predecessor, performs
poorly on self-attention models. We repeated the experiment at batch sizes 8192 (measuring final
performance at 56000 training steps) and 32768 (14063 steps). Further details of the hyperparameter
search space as well as the full hyperparameter tables are supplied in the appendix.

The model contains 24 transformer layers with 1024 hidden dimensions and 16 attention heads with
a total of 340M parameters. It was trained on the combined Wikipedia and Books corpus (Zhu et al.,
2015) datasets (2.5B and 800M words, respectively). We used sequence length of 128. We follow
the tuning protocol from Nado et al. (2021) that uses a quasi-random search (Bousquet et al., 2017)
with a simple search space. Hyperparameters included are learning rate η, the moment parameters
β1, β2, the polynomial power for the learning rate warmup pwarmup, and weight decay λ. We fixed
the ε in Adam to 1e − 11 for all BERT experiments. We selected the best trial using the masked
language model accuracy over 10k examples from the training set. Further details are provided in
the appendix.

Figure 2 and Table 1 summarize our findings. We were able to corroborate the reported difficulty of
training Transformers with SGD, with SGD leading to significantly worse performance as compared
to Adam or LAMB. On the other hand, we found that Adam#SGD (at the layer-wise granularity)
was able to closely match the performance of Adam, even exceeding it at the smaller batch size.
This establishes that the performance gap between the untuned optimizers in this setting arises not
from Adam’s per-coordinate preconditioning, but at the granularity of layer-wise implicit step size
schedules. Zhang et al. (2019) propose a theoretical mechanism towards explaining the apparent
necessity of adaptive methods for training self-attention models; here, grafting serves as an ablation
tool, showing successful convergence with a less granular adaptive preconditioning rule.

Algorithm BERT MLM top-1 accuracy
Batch size 8192 Batch size 32768

Adam 69.5 70.9
SGD 63.3 48.3

Adam#SGD (Layer-wise) 70.1 67.6
LAMB 70.4 -

LAMB#SGD (Layer-wise) 71.0 -

Table 1: Final Top-1 masked language model validation accuracies for BERT pretraining with
Adam, Lamb at 8k and 32K batch size. The global version of grafting were found to perform
significantly worse and have been omitted. All the results were repeated multiple times with random
seeds and the results are consistent upto a 1% deviation

6

Under review as a conference paper at ICLR 2022

0 50 100 150
training epochs

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

tra
in

in
g

lo
ss

AdaGrad
SGD
SGD#AdaGrad

0 50 100 150
training epochs

0.3

0.4

0.5

0.6

0.7

0.8

to
p-

1
ev

al
 c

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

ImageNet/ResNet-50

0 50 100 150 200
training epochs

0

10

20

30

40

50

tra
in

in
g

lo
ss

0 50 100 150 200
training epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

te
st

 a
cc

ur
ac

y

ResNet-18/CIFAR-10

Figure 3: ResNet experiments for implicit hyperparameter transfer, comparing hyperparameter
search for AdaGrad vs. grafting with a well-tuned baseline M = SGD. SGD#AdaGrad outper-
formed all pure AdaGrad runs. The batch size for the ImageNet run was 8192 and the CIFAR-10
run was 128. Further details can be found in the appendix.

ImageNet/CIFAR-10 classification with ResNets. As an alternative setting for grafting, we ex-
amine the behavior of grafting on convolutional architectures for image classification tasks: Ima-
geNet (a ResNet-50 with 26M parameters) and CIFAR-10 (a ResNet-18 model with about 11M
parameters). In this setting, we make two choices ofM, SGD (with momentum) as well as Adam,
with tuned baseline setups derived from Goyal et al. (2017) (ImageNet) and Loshchilov & Hutter
(2016) (CIFAR-10). A full description of the hyperparameters is deferred to the appendix. For D
we choose AdaGrad, which is commonly believed to lead to low performance on these models. For
these models we observe that the global version of grafting is as effective as the local version and
both lead to performance improvements over the Adagrad baseline for these models closing the gap
between performance. The results are summarized in Figure 3 and the ImageNet results are summa-
rized in Table 2. We conducted these experiments at multiple regimes of batch sizes for both models
and observed consistent trends. The precise numbers for the CIFAR-10 study can be found in the
appendix.

It has been noted many times (Zeiler, 2012; Wilson et al., 2017; Bottou et al., 2018) that the AdaGrad
optimizer, with commonly used hyperparameter search spaces, fails to train state-of-the-art vision
models to the same performance as other, closely related optimizers. These experiments show that
the gap can be partially closed with a global learning rate schedule transferred from a successful run
of SGD/Adam.

Algorithm ImageNet Top-1 Accuracy
Batch size 1024 Batch size 8192

SGD 76.85 76.68
AdaGrad 72.93 70.63

SGD#AdaGrad (global) 74.43 72.53
SGD#AdaGrad (layer-wise) 73.85 72.59

Adam 76.47 76.27
Adam#AdaGrad (global) 73.61 72.09

Adam#AdaGrad (layer-wise) 73.42 72.45

Table 2: Top-1 accuracy at 150 training epochs for ImageNet experiments across batch sizes. The
accuracy stabilized at 90 epochs. For all algorithms we performed an extensive tuning over hyper-
parameters and used the step-decay schedule. SGD#AdaGrad and Adam#AdaGrad are the grafted
versions. All the results were repeated multiple times with random seeds and the results are consis-
tent upto a 0.3% deviation.

5 GRAFTING FOR EXPLICIT SCHEDULE DISCOVERY

A natural question, in light of the results in Section 4, is whether the benefits of grafting can be
distilled into a non-adaptive correction to the algorithm D, eliminating the need to runM in par-
allel. In this section, we demonstrate that this pipeline can be completed in both of the large-scale
setups from the previous section. We extract the step size ratios ‖wM − wt‖ / ‖wD − wt‖ from a
successful execution of grafting, and using these sequences as learning rate schedules for D in the

7

Under review as a conference paper at ICLR 2022

0 20 40 60 80 100 120 140
training epochs

10 3

10 2

10 1

100

lr
sc

he
du

le
 c

or
re

ct
io

n

lr schedule for SGD
correction for AdaGrad

Figure 4: A learning rate schedule for AdaGrad discovered using grafting. Before the first learning
rate decay (imposed by the tuned schedule forM=SGD), grafting discovers an implicit polynomial
warmup when transferring the performance to D=AdaGrad.

traditional non-adaptive. Applying this form of transfer from global grafting results in the discovery
of novel learning rate schedules in the usual sense: global, time-dependent, non-adaptive multipliers
for the learning rate ηt. Applied more granularly to layer-wise grafting, this allows for the discovery
of a higher-dimensional correction.

Training a ResNet with AdaGrad. Using the global variant of Algorithm 1 with (M,D) = (SGD,
AdaGrad) and keeping track of the norms of the steps produced byM and D periodically at every
epoch, we arrive at a polynomial warmup-like correction overlaid on the stagewise-constant anneal-
ing (Goyal et al., 2017) schedule employed by SGD. Figure 4 displays this discovered learning rate
schedule compared to the one used on SGD. The final training performance was a top-1 accuracy
was 72.46%.

Training BERT with SGD. We demonstrate that the protocol of learning rate schedule discovery
can be done with per-layer grafting as well. Strikingly, this enables us to discover a simple per-layer
step size correction that allows the standard SGD(with momentum) to train a Transformer model
without adaptive preconditioning for the first time to the best of our knowledge. In contrast to global
grafting which transferred a non-adaptive global learning rate schedule, herein we only transfer a
single per-layer scalar correction which is held constant through training.

In particular, we performed the protocol of layer-size grafting as discussed in the previous section,
and recorded the per-layer ratio of the norms. Figure 5 provides a collection of some representative
ratios. Table 5 and Figure 8 in the appendix provide all the ratios as well as additional visualizations
at a finer granularity.

We computed the median of these individual corrections for the first 2000 steps and applied this
layer-wise multiplier along with SGD. We note that these corrections effectively rescale the relative
learning rate between the layers. We find that this offline transfer is sufficient to push the test accu-
racy of SGD to the state-of-the-art Adam baseline achieving eval accuracy of 69.5. Full experimental
details with can be found in the supplementary material.

Simplifying the discovered schedule. The above discussion in particular highlights that standard
SGD with momentum can be used to train BERT to state-of-the-art performance, as long as an ap-
propriate per-layer learning rate correction is provided. In this section we explore whether the space
of these corrections can be further simplified. This highlights the robustness of our transfer ap-
proach, showing that performance is preserved as long as relative per-layer scales are approximately
preserved and provides a proof of concept that search space for these corrections is significantly
smaller than the number of parameter groups. We only consider the case of batch-size 8192 here,
similar results are obtained for batch size 32K and the presentation is deferred to the appendix.

To provide a proof-of-concept, motivated by trends observed in Figure 5, we tie the per-layer scalar
corrections for all the parameter groups in the attention layers to a fixed value β, and simply dis-
cretize the obtained medians for the other parameter groups/ layers (eg. softmax and embeddings)
to the nearest power of 10 which is smaller. This results in a very simple scalar correction scheme
which has values in the set Dβ = {0.1, 1, 10, 100, β}. We provide the achieved accuracy results
via the above corrections in Table 6b over some choices of β. We find that performance tends to
be relatively stable to small changes in choices of β. We stress that our aim is to demonstrate a

8

Under review as a conference paper at ICLR 2022

0 250 500 750 1000 1250 1500 1750 2000
Training iterations

100

101

102

103

104

105

106

Ad
am

/S
GD

 n
or

m
 ra

tio
 d

ur
in

g
gr

af
tin

g

self-attention Q
self-attention K
self-attention V
self-attention out

feedforward
softmax
embeddings
misc (LayerNorm, ...)

Figure 5: Per-layer learning rate corrections during the first 2000 iterations of BERT pretraining with
Adam#SGD, enabling the discovery of the learning rate correction to SGD. More visualizations are
provided in the supplementary material.

Algorithm Eval accuracy
Adam 69.5
SGD 63.3

Adam#SGD 70.1
SGD (Medians) 69.5

SGD (D500) 70.0
SGD (D250) 68.9
SGD (D50) 67.8

(a) Final top-1 validation accuracies for
BERT pretraining with discovered per-
layer learning rate corrections.

Parameter group Median Rounded (D500)
Position embeddings 18.8 10

Word embeddings 312.9 100
Layer 1 Q 525.5 500
Layer 1 K 466.6 500
Layer 1 V 312.9 500
Layer 24 Q 1090.1 500
Layer 24 K 1081.3 500
Layer 24 V 193.9 500

Softmax 62.8 10
(b) Some representative per-layer learning rate corrections dis-
covered using grafting, then simplified manually. These correc-
tions, which can be viewed as a 168-dimensional hyperparam-
eter, enable SGD to pretrain a BERT with performance com-
petitive with adaptive methods.

proof-of-concept that a simplified correction scheme (in this case composed of only 5 distinct val-
ues) works and thus to shed a light on the extent of the role of adaptivity in training these models.
A careful study of the space of all possible discretizations is out of the scope and if left for future
work.

6 CONCLUSION

We have introduced learning rate grafting, a binary operation which blends the behavior of two op-
timization algorithms, towards investigating the entanglements between widely-used adaptive pre-
conditioning rules and learning rate schedules. We have presented an empirical study with popular
optimizers for state-of-the-art deep architectures, discovering that a well-performing optimizerM
can transfer its performance to D via grafting its sequence of implicit step size schedules. Fur-
thermore, we have shown that grafting can be used to extract standalone learning rate corrections,
enabling us to train a Transformer using SGD (with momentum) for the first time. We hope that
this finding will stimulate further empirical research on the power of simple per-layer learning rate
schedules.

The empirical phenomena examined in this work seem to be unexplained by current theory. We
hope that the experiments enabled by grafting will aid in developing more robust beliefs about both
adaptive methods and learning rate schedules, and guide future theoretical inquiry.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril Zhang, and Yi Zhang.
Efficient full-matrix adaptive regularization. In International Conference on Machine Learning,
pp. 102–110. PMLR, 2019.

Naman Agarwal, Surbhi Goel, and Cyril Zhang. Acceleration via fractal learning rate schedules.
arXiv preprint arXiv:2103.01338, 2021.

Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory-efficient adaptive optimiza-
tion for large-scale learning. arXiv preprint arXiv:1901.11150, 2019.

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable Second Order
Optimization for Deep Learning. arXiv e-prints, art. arXiv:2002.09018, February 2020.

Sanjeev Arora, Zhiyuan Li, and Kaifeng Lyu. Theoretical analysis of auto rate-tuning by batch
normalization. arXiv preprint arXiv:1812.03981, 2018.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223–311, 2018.

Olivier Bousquet, Sylvain Gelly, Karol Kurach, Olivier Teytaud, and Damien Vincent. Critical
hyper-parameters: No random, no cry. arXiv, 2017. URL https://arxiv.org/abs/
1706.03200.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Xinyi Chen, Naman Agarwal, Elad Hazan, Cyril Zhang, and Yi Zhang. Extreme tensoring for
low-memory preconditioning. arXiv preprint arXiv:1902.04620, 2019.

Dami Choi, Christopher J Shallue, Zachary Nado, Jaehoon Lee, Chris J Maddison, and
George E Dahl. On empirical comparisons of optimizers for deep learning. arXiv preprint
arXiv:1910.05446, 2019.

Ashok Cutkosky and Harsh Mehta. Momentum improves normalized sgd. In International Confer-
ence on Machine Learning, pp. 2260–2268. PMLR, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep policy gradients: A case study
on ppo and trpo. arXiv preprint arXiv:2005.12729, 2020.

Rong Ge, Sham M Kakade, Rahul Kidambi, and Praneeth Netrapalli. The step decay schedule: A
near optimal, geometrically decaying learning rate procedure for least squares. In Advances in
Neural Information Processing Systems 32, pp. 14951–14962. 2019.

Boris Ginsburg, Patrice Castonguay, Oleksii Hrinchuk, Oleksii Kuchaiev, Vitaly Lavrukhin, Ryan
Leary, Jason Li, Huyen Nguyen, Yang Zhang, and Jonathan M Cohen. Stochastic gradi-
ent methods with layer-wise adaptive moments for training of deep networks. arXiv preprint
arXiv:1905.11286, 2019.

Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. A closer look
at deep learning heuristics: Learning rate restarts, warmup and distillation. arXiv preprint
arXiv:1810.13243, 2018.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

10

https://arxiv.org/abs/1706.03200
https://arxiv.org/abs/1706.03200

Under review as a conference paper at ICLR 2022

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European Conference on Computer Vision, pp. 630–645. Springer, 2016.

Andrew Ilyas, Logan Engstrom, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. A closer look at deep policy gradients. In International Con-
ference on Learning Representations, 2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Accelerat-
ing stochastic gradient descent for least squares regression. In Conference On Learning Theory,
pp. 545–604. PMLR, 2018.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

Nitish Shirish Keskar and Richard Socher. Improving generalization performance by switching from
adam to sgd. arXiv preprint arXiv:1712.07628, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In
Advances in Neural Information Processing Systems, pp. 10215–10224, 2018.

Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv preprint
arXiv:1404.5997, 2014.

kuangliu. Pytorch-cifar. https://github.com/kuangliu/pytorch-cifar, 2017.

Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial large
learning rate in training neural networks. arXiv preprint arXiv:1907.04595, 2019.

Zhiyuan Li and Sanjeev Arora. An exponential learning rate schedule for deep learning. arXiv
preprint arXiv:1910.07454, 2019.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius Micikevicius, David Patter-
son, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf, et al. Mlperf training benchmark.
arXiv preprint arXiv:1910.01500, 2019.

H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex opti-
mization. arXiv preprint arXiv:1002.4908, 2010.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and Optimizing LSTM
Language Models. arXiv preprint arXiv:1708.02182, 2017.

11

https://github.com/kuangliu/pytorch-cifar

Under review as a conference paper at ICLR 2022

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. An Analysis of Neural Language Mod-
eling at Multiple Scales. arXiv preprint arXiv:1803.08240, 2018.

Zachary Nado, Justin M. Gilmer, Christopher J. Shallue, Rohan Anil, and George E. Dahl. A Large
Batch Optimizer Reality Check: Traditional, Generic Optimizers Suffice Across Batch Sizes.
arXiv e-prints, art. arXiv:2102.06356, February 2021.

Zachary Nado, Justin M Gilmer, Christopher J Shallue, Rohan Anil, and George E Dahl. A large
batch optimizer reality check: Traditional, generic optimizers suffice across batch sizes. arXiv
preprint arXiv:2102.06356, 2021.

Martin Popel and Ondřej Bojar. Training tips for the transformer model. arXiv preprint
arXiv:1804.00247, 2018.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and beyond. In
International Conference on Learning Representations, 2018.

Robin M Schmidt, Frank Schneider, and Philipp Hennig. Descending through a crowded valley–
benchmarking deep learning optimizers. arXiv preprint arXiv:2007.01547, 2020.

Christopher J. Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and
George E. Dahl. Measuring the effects of data parallelism on neural network training. Journal of
Machine Learning Research, 20(112):1–49, 2019. URL http://jmlr.org/papers/v20/
18-789.html.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
arXiv preprint arXiv:1804.04235, 2018.

Leslie N Smith. A disciplined approach to neural network hyper-parameters: Part 1–learning rate,
batch size, momentum, and weight decay. arXiv preprint arXiv:1803.09820, 2018.

Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using
large learning rates. In Artificial Intelligence and Machine Learning for Multi-Domain Operations
Applications, volume 11006, pp. 1100612. International Society for Optics and Photonics, 2019.

Matthew Staib, Sashank Reddi, Satyen Kale, Sanjiv Kumar, and Suvrit Sra. Escaping saddle points
with adaptive gradient methods. In International Conference on Machine Learning, pp. 5956–
5965. PMLR, 2019.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–
31, 2012.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex
landscapes. In International Conference on Machine Learning, pp. 6677–6686. PMLR, 2019.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. In Advances in Neural Information
Processing Systems, pp. 4151–4161, 2017.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V
Le. Xlnet: Generalized autoregressive pretraining for language understanding. arXiv preprint
arXiv:1906.08237, 2019.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

12

http://jmlr.org/papers/v20/18-789.html
http://jmlr.org/papers/v20/18-789.html

Under review as a conference paper at ICLR 2022

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank J Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? arXiv preprint
arXiv:1912.03194, 2019.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watch-
ing movies and reading books. In Proceedings of the 2015 IEEE International Conference on
Computer Vision (ICCV), ICCV ’15, pp. 19–27, USA, 2015. IEEE Computer Society. ISBN
9781467383912. doi: 10.1109/ICCV.2015.11. URL https://doi.org/10.1109/ICCV.
2015.11.

A ADDITIONAL EXPERIMENTS AND DETAILS

We provide additional experiments and all the implementation details in this section. In the next
section we provide full hyper-parameter search tables for all our experiments to aid reproduction of
our experiments.

A.1 BERT EXPERIMENTS

A.1.1 IMPLEMENTATION DETAILS

We used the same experimental setup as the official BERT codebase1 and the standard train/test split
from the previous literature. We trained on Google TPUs, using TPUv3-128 / TPUv3-256 for the
8K and 32K batch size experiments.

We trained the two pretraining objectives on the combined Wikipedia and Books corpus (Zhu et al.,
2015) datasets (2.5B and 800M words, respectively). We used sequence lengths of 128.

Our experimentation protocol is identical to tyat described in Nado et al. (2021): we tuned hyperpa-
rameters using quasi-random search (Bousquet et al., 2017) with a fixed budget in a simple search
space described in Table A.1.1. We selected the best trial using the masked language model accuracy
over 10k examples from the training set. The experiments were run for a total of 56352 steps for
batch size 8K and 14063 steps for batch size 32K.

Adam. Hyperparameters included learning rate η, exponential window parameters β1, β2, the
polynomial power for the learning rate warmup and decay p, and weight decay λ. We fixed the ε
in Adam to 10−11 for all BERT experiments. Polynomial power was searched over {1, 2} for batch
size 8K and set to 1 for 32K. The entire hyperparameter search and associated performance can be
found in Tables 7 and 11 for batch sizes 8K and 32K respectively.

SGD with momentum. Hyperparameters included learning rate η, β1, the polynomial power for
the learning rate warmup and decay p, and weight decay λ. Polynomial power was searched over 1,2
for batch size 8K and set to 1 for 32K. The entire hyperparameter search and associated performance
can be found in Tables 8 and 12 for batch sizes 8K and 32K respectively.

Grafting: Adam#SGD. We use the above described implementations of Adam and SGD with mo-
mentum asM,D respectively. The Adam hyperparameters were fixed to the optimal ones found.
The SGD hyperparameters were tuned with the same protocol as for SGD alone. The overall learn-
ing rate scalar was also tuned. Tables 9 and 13 contain the hyperparameter search and associated
performance for batch sizes 8K and 32K respectively.

1https://github.com/google-research/bert

13

https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://github.com/google-research/bert

Under review as a conference paper at ICLR 2022

Hyperparameter Range Scaling
p {1, 2} discrete
η [10−5, 1.0] logarithmic

1− β1 [10−3, 0.5] logarithmic
1− β2 [10−3, 0.5] logarithmic
λ [10−6, 10−3] logarithmic

Table 3: The search space used to tune Adam/SGD on BERT. λ refers to weight decay and p refers
to the polynomial power in the learning rate schedule for both the warmup and decay phases.

LAMB - We use the exact same settings as in the original paper (You et al., 2019).

Grafting: LAMB#SGD. We use the above described implementations of LAMB and SGD with
momentum asM,D respectively. The LAMB hyperparameters were fixed to the optimal ones. The
SGD hyperparameters were tuned with the same protocol as for SGD alone. The overall learning
rate scalar was also tuned. Table 10 contains the hyperparameter search and associated performance
for batch sizes 8K and 32K respectively.

A.1.2 TRAINING BERT WITH SGD (BATCH SIZE 8K AND 32K)

Some of these results are partly presented in the main paper. We provide a full exposition for
completeness.

We demonstrate that the protocol of learning rate schedule discovery can be done with per-layer
grafting as well. Strikingly, this enables us to discover a simple per-layer step size correction that
allows the standard SGD(with momentum) to train a Transformer model without adaptive precondi-
tioning for the first time to the best of our knowledge. In contrast to global grafting which transferred
a non-adaptive global learning rate schedule, herein we only transfer a single per-layer scalar cor-
rection which is held constant through training.

In particular, we performed the protocol of layer-size grafting as discussed in the previous section,
and recorded the per-layer ratio of the norms. Figure 7 shows these ratios for batch sizes 8K and 32K.
Given the apparent instability of the ratios on the later part of the runs for the 8K, we zoom in on the
initial part of the training.2 In particular, we computed the median of these individual corrections
for the first 2000 (respectively 500) steps for batch size 8K (respectively 32K) and applied this
layer-wise multiplier along with SGD (with momentum); see Figures 6 and 8 for visualizations of
the schedule corrections, and Table 5 for the median values. We find that this offline transfer is
sufficient to push the test accuracy of SGD much closer to the state-of-the-art Adam baseline (see
Table 4).

Algorithm Masked LM Accuracy
Batch size 8K Batch size 32K

Adam 69.5 70.8
SGD 63.3 49.0

Adam#SGD 70.1 67.6
SGD (Medians) 69.5 63.8

Table 4: Final top-1 validation accuracies for BERT pretraining with Adam, SGD(with momentum),
Adam#SGD and the discovered per-layer learning rate corrections via medians.

2Despite these exponentially large correction ratios, the grafted optimizer converges successfully. We leave
an investigation of this curious phenomenon for future work.

14

Under review as a conference paper at ICLR 2022

0 250 500 750 1000 1250 1500 1750 2000
Training iterations

100

101

102

103

104

105

106

Ad
am

/S
GD

 n
or

m
 ra

tio
 d

ur
in

g
gr

af
tin

g

self-attention Q
self-attention K
self-attention V
self-attention out

feedforward
softmax
embeddings
misc (LayerNorm, ...)

(a) Batch size 8K (b) Batch size 32K

Figure 6: Per-layer learning rate corrections during the first 2000 (resp. 500) iterations of BERT
pretraining with Adam#SGD with batch size 8K (resp. 32K), enabling the discovery of the learning
rate correction to SGD. A median filter of width 51 is applied to each sequence, for clarity.

(a) Batch size 8K (b) Batch size 32K

Figure 7: Per-layer learning rate corrections for all training iterations, in the BERT pretraining setups
with Adam#SGD. Some of these corrections increase exponentially; note that despite performing
these large corrections, the grafted optimizer converges to nearly state-of-the-art accuracy.

15

Under review as a conference paper at ICLR 2022

Parameter group Median correction (8K) Median correction (32K)
Embedding LN β 9.10 0.54
Embedding LN γ 16.34 2.26
Position embeddings 18.83 2.48
Token type embed-
dings

0.45 0.03

Word embeddings 312.94 7.94
Attention Q bias 378.07 38.56
Attention K bias 154101.58 25119.54
Attention V bias 37.69 2.01
Attention out bias 21.92 1.16
Attention FC1 bias 81.30 4.57
Attention FC2 bias 23.87 1.24
Attention LN1 β 21.60 1.13
Attention LN1 γ 41.99 4.08
Attention LN2 β 22.05 1.12
Attention LN2 γ 45.42 3.83
Pooler bias 32.69 0.64
Pooler weights 48.73 1.02
MLM output bias 479.54 8.74
MLM LN β 21.78 0.57
MLM LN γ 17.19 0.82
MLM pre-LN bias 48.04 0.71
MLM pre-LN weights 62.77 1.06
NSP bias 0.66 0.01
NSP weights 2.00 0.04
Attention Q weights
(layers 1-24)

{525.50, 575.42, 714.81, 794.62, 900.46,
904.97, 1150.11, 1290.34, 1411.08,
1867.67, 2074.47, 1975.08, 859.45,
2026.33, 1739.56, 1549.03, 1602.61,
1516.13, 1291.10, 1101.66, 1124.54,
850.50, 993.93, 1090.10}

{39.00, 80.19, 103.98, 104.84, 146.52,
202.22, 187.58, 229.54, 279.68, 236.02,
267.71, 272.56, 255.77, 227.56, 216.35,
207.21, 194.48, 172.97, 150.94, 145.22,
108.78, 84.44, 90.25, 69.70}

Attention K weights
(layers 1-24)

{466.59, 503.57, 662.77, 679.56, 764.49,
714.15, 958.21, 1086.80, 1266.25,
1731.75, 1980.33, 1842.08, 595.65,
1949.40, 1669.08, 1335.04, 1495.53,
1452.81, 1098.97, 1027.76, 1096.50,
709.72, 838.97, 1081.26}

{34.70, 66.95, 98.20, 90.28, 123.40,
185.35, 180.04, 227.60, 265.37, 206.99,
262.27, 276.03, 253.69, 231.60, 227.34,
211.37, 205.17, 179.20, 155.37, 142.24,
101.69, 72.56, 77.83, 64.13}

Attention FC1 weights
(layers 1-24)

{82.02, 108.41, 131.46, 151.14, 169.54,
186.14, 198.20, 208.18, 217.43, 228.15,
230.22, 228.92, 237.99, 239.71, 236.57,
235.85, 231.04, 224.10, 219.76, 214.12,
206.27, 203.64, 207.25, 216.04}

{7.17, 11.03, 14.30, 16.96, 18.66, 19.93,
20.77, 21.24, 21.95, 22.31, 22.27, 21.70,
21.41, 21.04, 20.27, 19.43, 18.38, 17.47,
16.04, 14.29, 12.70, 10.49, 8.66, 6.24}

Attention V weights
(layers 1-24)

{48.61, 66.94, 85.83, 96.88, 112.34,
129.41, 135.96, 150.30, 167.87, 184.03,
203.72, 202.35, 178.28, 214.61, 210.79,
209.75, 216.17, 226.42, 221.07, 220.83,
219.30, 197.48, 187.25, 193.95}

{2.58, 4.56, 7.23, 9.69, 10.97, 12.42,
13.39, 13.25, 14.18, 14.48, 14.72, 14.27,
14.25, 14.16, 13.65, 12.89, 12.26, 11.58,
10.93, 9.85, 8.55, 7.40, 6.32, 4.71}

Attention out weights
(layers 1-24)

{56.17, 74.65, 97.39, 105.54, 120.98,
137.54, 145.35, 167.26, 186.15, 204.79,
212.83, 212.14, 202.61, 232.44, 222.43,
228.23, 228.55, 238.57, 234.49, 232.85,
241.87, 229.22, 222.86, 213.22}

{2.92, 5.59, 8.01, 10.51, 12.55, 13.42,
13.61, 14.52, 14.51, 14.45, 14.40, 14.44,
14.49, 14.41, 13.88, 13.13, 12.61, 11.76,
10.89, 9.91, 8.84, 7.40, 6.35, 4.65}

Attention FC2 weights
(layers 1-24)

{71.84, 88.45, 103.35, 115.39, 126.44,
137.14, 148.70, 159.31, 167.05, 179.80,
181.04, 183.60, 192.79, 200.97, 201.98,
207.50, 208.11, 206.15, 208.88, 210.20,
207.35, 209.14, 216.43, 218.14}

{5.56, 7.32, 8.64, 9.54, 10.34, 11.12,
12.05, 12.71, 13.44, 13.89, 14.37, 14.74,
14.83, 14.89, 15.00, 14.69, 14.14, 13.83,
13.19, 12.05, 10.81, 9.16, 7.38, 5.26}

Table 5: Corrections for each parameter group for the BERT schedule discovery experiments, found
using grafting but executed indepedently as a correction on SGD.16

Under review as a conference paper at ICLR 2022

0 500 1000 1500 2000

103

104

Attention Q

0 500 1000 1500 2000

103

104

105

Attention K

0 500 1000 1500 2000

101

102

Attention V

0 500 1000 1500 2000

101

102

Attention out

0 500 1000 1500 2000

102

Attention FC1

0 500 1000 1500 2000

101

102

Attention FC2

0 500 1000 1500 2000

100

101

102

Embeddings

0 500 1000 1500 2000

100

101

102

103
Others

BERT, batch size 8192

0 200 400

102

103

Attention Q

0 200 400

102

103

104

105 Attention K

0 200 400

101

Attention V

0 200 400
100

101

Attention out

0 200 400

101

Attention FC1

0 200 400
100

101

Attention FC2

0 200 400

10 1

100

101

Embeddings

0 200 400

10 1

100

101

Others

BERT, batch size 32768

Figure 8: Per-layer learning rate schedule corrections from Figure 6, displayed on separate plots by
type of parameter group.

17

Under review as a conference paper at ICLR 2022

A.2 IMAGENET EXPERIMENTS

A.2.1 IMPLEMENTATION DETAILS

For the image classification task with Imagenet we use the standard Resnet-50 model He et al.
(2016). The model code, training pipeline and other parameters are identical to the MLPerf training
benchmark for ResNet-50 v1.5 on ImageNet Mattson et al. (2019). All the training experiments
are carried out up to 150 epochs (however all training stabilizes around 90 epochs). We report the
achieved test top-1 accuracy. For all the cases we implement a distributed version of batch-norm
akin to the one used in Goyal et al. (2017). Each core locally computes and maintains batch-norm
statistics over sub-batches of 64 (akin to the n parameter in Goyal et al. (2017)). The maintained
batch norm statistics are synchronized at the end of every epoch. The batch norm momentum is set
to 0.9 for batch size 8192 and 0.99 for batch size 1024 and epsilon is set to 0.00001. The experiments
are performed on a 16 TPU core v3 (for batch size 1024) and a 64 TPU core v3 (for batch size 8192).
The timings for a single run are approximately 1.5 hours and 35 minutes for batch size 1024 and
8192 respectively.

SGD with momentum. We use the standard implementation of SGD with Heavy Ball Momen-
tum with the momentum parameter set to 0.9 and the weight decay set to 0.0001. We use the
warmup+step decay schedule proposed in Goyal et al. (2017). The schedule warms up the learning
rate linearly to the base learning rate for 5 epochs and then the learning rate is held constant until
cut by a factor of 0.1 at epoch 30,50,80. Table 15 contains the hyperparameter tuning information
where the search was performed over the base learning rate and across two batch sizes.

Adam. We use the standard implementation of Adam and tune the momentum parameter and the
weight decay. We fixed β2 to the default 0.999. We use the warmup+step decay schedule proposed
in Goyal et al. (2017). The schedule warms up the learning rate linearly to the base learning rate
for 5 epochs and then the learning rate is held constant until cut by a factor of 0.1 at epoch 30,50,80.
Tables 16 and 17 contain the hyperparameter tuning information where the search was performed
over the base learning rate and across two batch sizes.

AdaGrad. We use the standard implementation of AdaGrad (present in TensorFlow). We use
all the default hyperparameters except the learning rate which we search over. We use the same
learning rate schedule as reported in SGD with Momentum (step-decay). We highlight that this
schedule worked significantly better than no schedule at all which is traditionally what has been
reported for AdaGrad baselines leading to the stronger baselines for AdaGrad baselines we present.
Table 14 contains the hyperparameter tuning information where the search was performed over the
base learning rate and across two batch sizes.

Grafting: SGD#AdaGrad/Adam#Adagrad. We use the above described implementations of
SGD with momentum/Adam and AdaGrad asM,D respectively. Since the only hyper-parameter
for Adagrad is a learning rate , we tune the base learning rate supplied to SGD (as theM algorithm
governs the overall learning rate of the grafted algorithm) Table 18 contains the hyperparameter
tuning information where the search was performed over the base learning rate and across two batch
sizes.

A.3 CIFAR-10 EXPERIMENTS

For the image classfication task with CIFAR-10 dataset we use a standard PreActivation Resnet-18
model (He et al., 2016). The model code is implemented identically as in the following repository
(kuangliu, 2017). All the training experiments are carried out upto 200 epochs. We report the
achieved test accuracy. The experiments are performed on a single Tesla V100-SXM2 GPU. The
timings for a single run are approximately 90 minutes.

SGD with Momentum. We use the standard implementation of SGD with Heavy Ball Momentum
with the momentum parameter set to 0.9 and the weight decay set to 0.0005. We use the single cycle
cosine decay learning rate schedule suggested by Loshchilov & Hutter (2016). Formally the learning

18

Under review as a conference paper at ICLR 2022

rate at the start of epoch t given the base learning rate β is given by

β · cos(π/2(t/200))
Table 20 contains the hyperparameter tuning information where the search was performed over the
base learning rate and across three batch sizes.

AdaGrad. We use the standard implementation of AdaGrad (present in TensorFlow). We use all
the default hyperparameters except the learning rate which we search over. We use the same cosine
schedule as reported in SGD with Momentum as we found it to be better than applying no schedule
at all. Table 19 contains the hyperparameter tuning information where the search was performed
over the base learning rate and across three batch sizes.

Grafting: SGD#AdaGrad. We use the above described implementations of SGD with momen-
tum and AdaGrad as M,D respectively. Further we tune the base learning rate supplied to SGD
(as the M algorithm governs the overall learning rate of the grafted algorithm) Table 21 contains
the hyperparameter tuning information where the search was performed over the base learning rate
and across three batch sizes. It is worth noting that while the additional learning rate tuning leads to
small benefits, running grafting with the tuned SGD learning rate already provides a strong baseline.

Table 6 contains the comparisons between the tuned results.

Algorithm CIFAR-10 Top-1 Accuracy
Batch size 128 Batch size 512 Batch size 2048

SGD 94.93 94.39 93.37
AdaGrad 89.81 88.25 85.71

SGD#AdaGrad 93.42 92.36 89.81

Table 6: Top-1 accuracy at 200 training epochs for CIFAR-10 experiments across batch sizes.

19

Under review as a conference paper at ICLR 2022

B FULL HYPERPARAMETER SEARCH TABLES

B.1 BERT EXPERIMENTS

B.1.1 BERT (BATCH SIZE 8K)

Poly Power (p) 1− β1 1− β2 Weight Decay Rate (λ) Learning Rate Masked LM Accuracy (as fraction)

2 0.014533 0.305531 3.469230 0.022672 0.000000
1 0.019056 0.068170 0.174876 0.027856 0.000000
1 0.043181 0.418378 1.930781 0.000571 0.000000
1 0.012960 0.067712 1.286336 0.002391 0.000000
2 0.396269 0.019148 0.003123 0.087673 0.000000
1 0.104732 0.493163 0.049373 0.000430 0.000000
2 0.439164 0.126745 0.009961 0.010594 0.000000
1 0.012784 0.077563 0.005028 0.002035 0.000000
1 0.242170 0.097739 0.653928 0.002798 0.033710
1 0.014564 0.054001 0.002970 0.000214 0.033710
1 0.116967 0.286304 4.401929 0.006926 0.033710
2 0.406820 0.072237 0.008125 0.015782 0.048026
1 0.118934 0.012215 0.473520 0.003294 0.048026
1 0.124374 0.010643 4.738276 0.002856 0.048646
1 0.114625 0.129364 0.762753 0.026747 0.057222
2 0.016942 0.010706 0.010191 0.000042 0.596373
2 0.018620 0.479633 0.280896 0.000030 0.600682
2 0.056560 0.025435 0.545407 0.000050 0.602233
1 0.277735 0.316840 0.003889 0.000037 0.614416
1 0.051057 0.055620 0.001138 0.000051 0.634374
1 0.099721 0.473195 1.174743 0.000412 0.667841
2 0.039101 0.133753 1.472112 0.000956 0.672648
2 0.235072 0.186723 0.828703 0.000751 0.693680
1 0.047688 0.246138 0.075992 0.000151 0.696613

Table 7: Hyperparameter search space for Adam, BERT, batch size 8K.

20

Under review as a conference paper at ICLR 2022

Poly Power (p) 1− β1 Weight Decay Rate (λ) Learning Rate Masked LM Accuracy (as fraction)

2 0.015823 0.036840 0.054733 0.000000
1 0.096770 0.426730 0.056828 0.000912
2 0.112533 0.382084 0.024687 0.057222
1 0.153500 0.105432 0.026578 0.057222
1 0.235137 4.153353 0.056153 0.057222
1 0.204847 0.104750 0.036520 0.057222
1 0.011275 4.299596 0.003757 0.057222
2 0.224600 1.709058 0.052954 0.057222
1 0.084911 0.002031 0.010545 0.057222
2 0.046596 2.510824 0.003590 0.057222
2 0.030383 1.391879 0.002720 0.057222
1 0.174070 0.033287 0.005125 0.057299
2 0.017656 4.237251 0.000495 0.087236
1 0.277091 0.003713 0.000025 0.107089
2 0.259132 1.357934 0.000693 0.107096
1 0.255655 1.054776 0.000041 0.107335
2 0.104964 1.613354 0.000066 0.111124
1 0.276399 0.011414 0.000054 0.119279
2 0.022524 3.054689 0.000019 0.121293
2 0.052927 3.238563 0.000501 0.125202
2 0.177523 0.002682 0.000126 0.137419
2 0.311772 0.009484 0.000209 0.138753
1 0.034004 0.001888 0.000031 0.146332
1 0.131274 0.942633 0.001947 0.281134
2 0.105729 0.153407 0.000419 0.328938
1 0.180943 0.001704 0.000379 0.335963
1 0.013722 0.222883 0.000048 0.343942
1 0.165404 0.017183 0.000395 0.345149
1 0.045047 0.948157 0.000550 0.358314
1 0.085101 0.060706 0.000309 0.377149
1 0.157212 0.015188 0.000701 0.431824
2 0.082335 0.030545 0.000618 0.449213
1 0.183162 0.024755 0.003892 0.465375
2 0.011765 0.738450 0.000429 0.491509
2 0.020559 0.007351 0.001888 0.632697

Table 8: Hyperparameter search space for SGD, BERT, batch size 8K.

21

Under review as a conference paper at ICLR 2022

Poly Power (p) 1− β1 Weight Decay Rate (λ) Learning Rate Masked LM Accuracy (as fraction)

2 0.008817 1.523654e-03 0.247838 0.000000
2 0.025831 7.554433e-09 0.010177 0.000000
2 0.004666 7.457963e-05 0.041305 0.000000
2 0.042243 5.682363e-08 0.161833 0.000000
2 0.001035 2.020054e-10 0.002286 0.000000
2 0.034458 7.282971e-10 0.082530 0.002035
2 0.022501 1.747059e-06 0.005476 0.032267
2 0.002092 4.521310e-03 0.003641 0.032267
2 0.017431 1.669821e-06 0.009074 0.048646
2 0.005098 7.112310e-03 0.142092 0.057222
2 0.016812 2.641299e-10 0.052162 0.057222
2 0.009421 3.166860e-08 0.006412 0.057222
2 0.001396 4.255182e-05 0.120496 0.057222
2 0.001615 8.588940e-07 0.001236 0.057222
2 0.013455 5.000904e-07 0.201592 0.057222
2 0.016216 8.084465e-03 0.034562 0.057222
2 0.003546 5.341552e-08 0.002101 0.057222
2 0.048880 7.500002e-01 0.018438 0.100170
2 0.072832 3.817323e-01 0.033588 0.110570
2 0.190460 8.796291e-02 0.464158 0.357879
2 0.349429 2.119862e-06 0.002255 0.672795
2 0.070881 1.240433e-08 0.001685 0.685996
2 0.042185 7.085360e-04 0.054075 0.687168
2 0.120310 3.566263e-07 0.038694 0.691329
2 0.075832 4.531688e-05 0.015860 0.701189

Table 9: Graft Bert 8K: Adam#SGD

22

Under review as a conference paper at ICLR 2022

Learning Rate 1− β1 Weight Decay Rate (λ) Masked LM Accuracy (as fraction)

0.557378 0.052662 0.008343 0.000000
0.000051 0.010000 0.000100 0.000000
0.010168 0.104408 0.118838 0.057684
0.000001 0.250000 1.000000 0.082367
0.000001 0.010000 0.000100 0.108002
0.000002 0.228890 0.046535 0.109349
0.000339 0.250000 1.000000 0.134516
0.001165 0.250000 1.000000 0.140487
0.001274 0.010000 0.005104 0.296781
0.000014 0.024513 0.000535 0.309587
0.000051 0.099820 0.072073 0.346744
0.001021 0.184613 0.167212 0.415491
0.000052 0.105862 0.003519 0.431919
0.001568 0.037527 1.000000 0.439019
0.000514 0.040944 0.254123 0.503474
0.000501 0.212621 0.017731 0.529117
0.001231 0.209148 0.008710 0.599985
0.000909 0.017010 0.218740 0.601494
0.000159 0.010000 0.000100 0.631107
0.000997 0.250000 0.000100 0.642831
0.000865 0.101639 0.004944 0.647802
0.001007 0.149186 0.000757 0.657476
0.001000 0.050000 0.010000 0.669588
0.000962 0.049001 0.007475 0.676035
0.000810 0.010000 0.016944 0.688638
0.001808 0.031094 0.004114 0.710352

Table 10: Hyperparameter search space for LAMB#SGD, BERT, batch size 8K.

23

Under review as a conference paper at ICLR 2022

B.1.2 BERT (BATCH SIZE 32K)

Poly Power (p) 1− β1 1− β2 Weight Decay Rate (λ) Learning Rate Masked LM Accuracy (as fraction)

1 0.446131 0.025372 0.107242 0.065235 0.000000
1 0.010053 0.056364 0.171185 0.000041 0.000000
1 0.260209 0.311713 0.010859 0.003011 0.000000
1 0.043480 0.018414 0.003984 0.045078 0.000000
1 0.116452 0.374498 0.338193 0.057663 0.000000
1 0.011695 0.063804 0.003009 0.000230 0.000000
1 0.010612 0.379281 0.010484 0.000680 0.000000
1 0.049212 0.021061 0.154526 0.005826 0.000000
1 0.011473 0.010763 0.023060 0.004987 0.000000
1 0.094829 0.034333 0.007080 0.003053 0.000000
1 0.182225 0.116353 0.002412 0.005812 0.000000
1 0.035019 0.297140 0.523223 0.009278 0.000000
1 0.156544 0.277251 0.662085 0.059544 0.000000
1 0.016542 0.193700 0.707171 0.021833 0.000000
1 0.150077 0.286466 0.299879 0.093842 0.000000
1 0.012764 0.012950 0.692721 0.001412 0.000029
1 0.016431 0.026711 0.012575 0.001505 0.000057
1 0.072118 0.017038 2.161319 0.059588 0.029695
1 0.242228 0.014281 7.335423 0.000740 0.057367
1 0.014321 0.032597 7.421835 0.000292 0.057367
1 0.044166 0.023843 0.047968 0.000014 0.429771
1 0.107729 0.013147 2.653585 0.000018 0.453644
1 0.334832 0.069228 0.040715 0.000043 0.549747
1 0.079745 0.019922 0.007470 0.000053 0.564666
1 0.054556 0.035450 0.005083 0.000059 0.575131
1 0.209573 0.011596 3.090723 0.000189 0.601642
1 0.085371 0.020573 0.396168 0.000114 0.627102
1 0.147607 0.012472 0.420754 0.000135 0.639349
1 0.187887 0.045957 0.008888 0.000262 0.679573
1 0.073969 0.207516 0.010205 0.000782 0.704228
1 0.095339 0.030376 0.080869 0.000589 0.707279
1 0.065729 0.010705 0.314657 0.000594 0.708929

Table 11: Hyperparameter search space for Adam, BERT, batch size 32K.

24

Under review as a conference paper at ICLR 2022

Poly Power (p) 1− β1 Weight Decay Rate (λ) Learning Rate Masked LM Accuracy (as fraction)

1 0.130375 0.000011 0.008209 0.057367
1 0.130338 0.000298 0.005776 0.057367
1 0.145380 0.000295 0.005523 0.057367
1 0.161747 0.031063 0.006454 0.057367
1 0.211265 0.000011 0.003328 0.057367
1 0.222030 0.667330 0.000016 0.099826
1 0.107412 0.000204 0.000011 0.102016
1 0.248541 0.002621 0.000027 0.102487
1 0.241575 0.232839 0.000025 0.102706
1 0.206147 0.234432 0.000026 0.104275
1 0.190062 0.003350 0.000059 0.115585
1 0.129872 0.434452 0.000051 0.118843
1 0.225584 0.000080 0.000092 0.121976
1 0.218541 0.013667 0.000113 0.126746
1 0.173291 0.000074 0.000146 0.137803
1 0.133697 0.000275 0.000199 0.154843
1 0.204741 0.793410 0.002174 0.279284
1 0.159334 0.055297 0.000434 0.289112
1 0.222569 0.060583 0.003277 0.349611
1 0.102489 0.000315 0.000507 0.350370
1 0.204039 0.002175 0.000906 0.351956
1 0.249884 0.017145 0.001747 0.408409
1 0.166861 0.000449 0.001317 0.414829
1 0.199344 0.013357 0.001739 0.437989
1 0.151030 0.000124 0.002287 0.490207

Table 12: Hyperparameter search space for SGD, BERT, batch size 32K.

Poly Power (p) 1− β1 Weight Decay Rate (λ) Learning Rate Masked LM Accuracy (as fraction)

1 0.054284 0.000185 0.000383 0.032528
1 0.062899 0.000077 0.000248 0.032528
1 0.057734 0.000225 0.000325 0.057367
1 0.144769 0.000206 0.000473 0.057367
1 0.093987 0.000179 0.000401 0.057367
1 0.114372 0.000224 0.000495 0.057367
1 0.058382 0.000064 0.000463 0.057367
1 0.149345 0.000213 0.000294 0.061838
1 0.071465 0.000186 0.000253 0.240233
1 0.142337 0.000096 0.000113 0.580597
1 0.134273 0.000208 0.000216 0.629878
1 0.114651 0.000124 0.000290 0.654084
1 0.063694 0.000224 0.000291 0.676234

Table 13: Hyperparameter search space for AdamSGD, BERT, batch size 8K.

25

Under review as a conference paper at ICLR 2022

B.2 IMAGENET EXPERIMENTS

Batch size 1024 Batch size 8192
learning rate accuracy

0.000100 11.908
0.000158 16.586
0.000200 19.972
0.000316 28.038
0.000398 32.874
0.000501 37.754
0.001000 52.020
0.001995 61.424
0.002512 63.574
0.003981 66.834
0.005012 68.158
0.007943 70.272
0.010000 70.760
0.012589 71.520
0.015849 71.716
0.025119 72.554
0.031623 72.664
0.039811 72.562
0.050119 72.656
0.063096 72.926
0.079433 72.558
0.100000 72.658

learning rate accuracy

0.000100 37.788
0.000127 42.612
0.000394 60.916
0.001220 68.168
0.002028 69.590
0.002972 70.116
0.002999 70.134
0.003277 70.088
0.003442 70.488
0.004383 70.432
0.004410 70.356
0.004417 70.314
0.006360 69.872
0.007823 69.672
0.009804 69.538
0.010000 69.848
0.010554 69.502
0.014409 69.068
0.021884 68.306
0.095870 25.560
0.309611 7.162
1.000000 0.122

Table 14: AdaGrad: ImageNet

Batch size 1024 Batch size 8192
learning rate accuracy

0.001000 28.636
0.001627 43.516
0.003376 59.428
0.005493 65.994
0.008936 70.644
0.014539 73.312
0.023654 74.638
0.038483 75.686
0.079860 76.394
0.129926 76.612
0.165723 76.850
0.269620 76.512
0.343903 76.232
0.438653 75.714
0.559508 75.168

learning rate accuracy

0.005480 65.374
0.017648 73.556
0.029705 75.218
0.048524 75.688
0.050000 75.996
0.054569 76.108
0.059523 76.294
0.066660 76.218
0.082167 76.278
0.108805 76.670
0.109256 76.646
0.146364 76.442
0.182960 76.504
0.278865 76.428
0.500000 75.356

Table 15: SGD: ImageNet

26

Under review as a conference paper at ICLR 2022

learning rate momentum weight decay objective value

0.000010 0.886563 0.100137 0.100
0.000882 0.999000 0.088058 0.100
0.007832 0.886460 0.030099 0.100
0.084027 0.867351 0.114223 0.100
0.012791 0.871190 0.762656 0.100
0.001059 0.779209 0.001784 0.100
0.003035 0.951726 0.001060 0.100
0.002368 0.920451 0.006413 0.100
0.043405 0.649227 0.379924 0.100
0.000064 0.987255 0.586063 0.100
0.001212 0.600000 1.000000 49.392
0.028276 0.621864 0.007048 49.550
0.000010 0.600000 0.001000 50.098
0.000010 0.831437 0.103619 50.924
0.000018 0.700728 0.008109 59.668
0.000058 0.999000 0.005061 66.848
0.000036 0.837616 0.001366 66.908
0.001036 0.999000 1.000000 70.878
0.000144 0.889598 0.009050 72.672
0.000115 0.600000 0.036989 72.816
0.000158 0.675443 0.001000 72.840
0.000628 0.606453 0.001624 73.446
0.000292 0.779432 0.008273 73.740
0.000485 0.626856 0.004095 73.744
0.001786 0.877224 0.198602 73.944
0.000315 0.600000 1.000000 74.306
0.000258 0.999000 0.116977 74.562
0.000572 0.600000 0.014438 74.766
0.000232 0.622821 0.192101 75.740
0.000614 0.747656 0.040759 75.968
0.001000 0.799500 0.031623 76.146
0.001600 0.931992 0.058883 76.378
0.001030 0.803263 0.119977 76.398
0.001189 0.848430 0.105139 76.474
0.000927 0.600000 0.101738 76.580

Table 16: Imagenet:Adam Batch Size 1024

27

Under review as a conference paper at ICLR 2022

learning rate momentum weight decay objective value

0.100000 0.638615 0.000010 0.098
0.100000 0.828515 0.000828 0.100
0.100000 0.911213 0.000494 0.102
0.007128 0.714390 0.000112 3.004
0.017291 0.950635 0.000310 29.582
0.000010 0.999000 0.005794 35.810
0.000010 0.999000 0.010000 36.060
0.000209 0.999000 0.000010 59.206
0.000328 0.999000 0.000010 59.268
0.000010 0.690038 0.000010 62.290
0.000010 0.746399 0.010000 62.454
0.000348 0.999000 0.010000 62.476
0.000013 0.797380 0.002920 64.452
0.000025 0.867802 0.000010 69.180
0.000049 0.984536 0.000378 70.680
0.002565 0.991471 0.000146 70.786
0.000052 0.850277 0.010000 71.704
0.000055 0.628945 0.000010 71.826
0.001567 0.697594 0.000473 71.870
0.003220 0.871350 0.000041 71.912
0.001823 0.800658 0.000302 72.114
0.001373 0.601300 0.002455 72.138
0.000973 0.803842 0.000208 72.436
0.000093 0.875276 0.000058 72.690
0.007858 0.964910 0.010000 72.694
0.000097 0.714558 0.000029 72.874
0.000761 0.819951 0.000481 72.914
0.000979 0.802539 0.002260 72.930
0.000233 0.780565 0.000107 72.958
0.000274 0.816199 0.000225 72.978
0.000197 0.773215 0.000843 72.988
0.000235 0.792918 0.000015 73.070
0.000208 0.896992 0.000010 73.150
0.000427 0.796783 0.000815 73.184
0.001725 0.809302 0.004951 73.408
0.000322 0.734479 0.010000 73.538
0.000647 0.851409 0.006530 73.594
0.000727 0.969539 0.010000 73.602
0.000263 0.869540 0.010000 73.658
0.001207 0.844760 0.010000 73.800
0.004101 0.934473 0.010000 73.944
0.002380 0.969588 0.010000 73.984
0.000771 0.856323 0.010000 74.030
0.001655 0.966147 0.010000 74.042
0.002968 0.961813 0.010000 74.196
0.002168 0.952292 0.010000 74.244
0.002870 0.960954 0.010000 74.298
0.000961 0.916564 0.207196 74.380
0.002261 0.869219 0.062905 74.862
0.000374 0.911343 0.376673 75.268
0.000100 0.870343 1.000000 75.430
0.001082 0.944840 0.105851 75.692
0.001048 0.902476 0.093750 75.788
0.000411 0.950000 0.081495 75.856
0.001008 0.881673 0.100641 75.926
0.000967 0.885877 0.097476 75.964
0.000803 0.850000 0.073826 76.048
0.000905 0.850000 0.092752 76.066
0.001000 0.900000 0.100000 76.068
0.000921 0.850000 0.098263 76.096
0.000913 0.850000 0.106365 76.276

Table 17: Imagenet:Adam Batch Size 8192

28

Under review as a conference paper at ICLR 2022

Batch size 1024 Batch size 8192
learning rate accuracy

0.003162 14.846
0.003981 18.744
0.006310 31.468
0.007943 37.240
0.010000 44.284
0.015849 54.534
0.019953 58.262
0.025119 60.640
0.031623 63.074
0.039811 64.830
0.063096 67.668
0.079433 68.638
0.100000 69.144
0.125893 69.928
0.158489 70.544
0.199526 71.102
0.251189 71.664
0.398107 72.452
0.501187 72.864
0.630957 72.874
0.794328 73.456
1.000000 73.502
0.876767 73.664
0.960900 73.728
1.053106 73.742
1.264911 73.832
1.386290 73.956
1.519316 74.256
1.824887 74.396
2.000000 74.434

learning rate accuracy

0.001283 6.694
0.004114 17.484
0.013190 43.236
0.068529 63.408
0.075832 64.202
0.100000 65.428
0.103259 65.768
0.160894 67.610
0.185812 68.104
0.200426 68.268
0.204970 68.280
0.299255 69.638
0.303184 69.588
0.414487 70.664
0.438243 70.708
0.524030 71.312
0.526898 71.426
0.596139 71.438
0.626390 71.736
0.706443 72.086
0.721966 72.044
0.726457 72.214
0.727370 72.160
0.756109 72.164
0.760034 72.388
0.775082 72.284
0.783008 72.274
0.796600 72.150
1.568864 0.100

10.000000 0.100

Table 18: Graft SGD#Adagrad (Global): ImageNet

29

Under review as a conference paper at ICLR 2022

B.3 CIFAR-10 EXPERIMENTS

Batch size 128 Batch size 512 Batch size 2048
Learning Rate Test Accuracy

0.00075 85.418
0.0015 88.394
0.003 89.814
0.006 88.616

0.0125 87.270
0.025 84.822

Learning Rate Test Accuracy

0.00075 84.778
0.0015 86.778
0.003 88.254
0.006 87.676

0.0125 84.070
0.025 77.164

Learning Rate Test Accuracy

0.00075 82.032
0.0015 85.710
0.003 84.502
0.006 82.138

0.0125 73.304

Table 19: AdaGrad - CIFAR-10

Batch size 128 Batch size 512 Batch size 2048
Learning Rate Test Accuracy

0.006 94.206
0.0125 94.564
0.025 94.872
0.05 94.932
0.075 94.784

0.1 94.772
0.15 10.000

Learning Rate Test Accuracy

0.006 92.032
0.0125 92.998
0.025 93.786
0.05 94.386
0.075 93.638

0.1 93.412
0.15 10.000

Learning Rate Test Accuracy

0.006 88.734
0.0125 90.724
0.025 91.974
0.05 92.820

0.075 93.372
0.1 88.818

Table 20: SGD (with momentum 0.9 and weight decay 0.0005) - CIFAR-10

Batch size 128 Batch size 512 Batch size 2048
Learning Rate Test Accuracy

0.0125 91.610
0.025 92.878
0.05 93.306
0.075 93.296

0.1 93.420
0.2 10.000
0.4 10.000

Learning Rate Test Accuracy

0.0125 86.998
0.025 89.764
0.05 91.268
0.075 92.248

0.1 92.360
0.2 83.226
0.4 65.310

Learning Rate Test Accuracy

0.025 85.332
0.05 88.136

0.075 89.074
0.1 89.818
0.2 84.770
0.4 46.332

Table 21: SGD#AdaGrad - CIFAR-10

30

	Introduction
	Our contributions
	Related work

	Preliminaries
	Optimizers as generic state machines
	Adaptive methods

	The grafting meta-algorithm
	Granularity of grafting

	Grafting for implicit schedule transfer
	Grafting for explicit schedule discovery
	Conclusion
	Additional experiments and details
	BERT experiments
	Implementation details
	Training BERT with SGD (batch size 8K and 32K)

	ImageNet experiments
	Implementation details

	CIFAR-10 Experiments

	Full Hyperparameter Search Tables
	BERT Experiments
	BERT (Batch Size 8K)
	BERT (Batch Size 32K)

	ImageNet Experiments
	CIFAR-10 Experiments

