
Under review as submission to TMLR

Meta-Sparsity: Learning Optimal Sparse Structures in Multi-
task Networks through Meta-learning

Anonymous authors
Paper under double-blind review

Abstract

This paper presents meta-sparsity, a framework for learning model sparsity, basically learning
the parameter that controls the degree of sparsity, that allows deep neural networks (DNNs)
to inherently generate optimal sparse shared structures in multi-task learning (MTL) setting.
This proposed approach enables the dynamic learning of sparsity patterns across a variety of
tasks, unlike traditional sparsity methods that rely heavily on manual hyperparameter tuning.
Inspired by Model Agnostic Meta-Learning (MAML), the emphasis is on learning shared
and optimally sparse parameters in multi-task scenarios by implementing a penalty-based,
channel-wise structured sparsity during the meta-training phase. This method improves the
model’s efficacy by removing unnecessary parameters and enhances its ability to handle both
seen and previously unseen tasks. The effectiveness of meta-sparsity is rigorously evaluated
by extensive experiments on two datasets, NYU-v2 and CelebAMask-HQ, covering a broad
spectrum of tasks ranging from pixel-level to image-level predictions. The results show
that the proposed approach performs well across many tasks, indicating its potential as a
versatile tool for creating efficient and adaptable sparse neural networks. This work, therefore,
presents an approach towards learning sparsity, contributing to the efforts in the field of
sparse neural networks and suggesting new directions for research towards parsimonious
models.

1 Introduction

Model compression in Deep Learning (DL) is a process that aims at reducing the size and complexity of neural
network models while maintaining their performance. In the current technological trend, model compression
has become essential in DL due to its role in enabling complex neural networks to operate efficiently on
devices with constrained resources by substantially improving memory usage and computation requirements.
It facilitates the practical application of DL models in real-world scenarios, fostering sustainability and
enhancing accessibility on a broader scale (Deng et al. (2020)). It is possible to reduce the size and complexity
of a model by leveraging techniques such as Neural Architecture Search (NAS)(Ren et al. (2021)), model
value quantization, model distillation (Hinton et al. (2015)), low-rank factorization (Sainath et al. (2013)),
parameter sharing (Desai & Shrivastava (2023)), sparsification (Hoefler et al. (2021)), and many more. This
work focuses on two of these techniques, i.e., parameter sharing in the form of hard parameter sharing in
multi-task learning and sparsification. However, our emphasis extends beyond simply compressing models.
We combine the concept of model sparsification with Multi-Task Learning (MTL), viewing sparsification as
a technique for selecting optimally shared features in a multi-task setting. This methodology enables the
strategic distribution of these features across diverse tasks during MTL, enhancing the joint learning process.

Sparsification1 in DL pertains to transforming a densely connected neural network or a dense model to a
sparse one, where a considerable proportion of the parameters (typically model weights) are set to zero. This
reduction of active weights leads to less computational load and memory usage during both the training and

1Note: In the context of this work, sparsification should not be confused with pruning, which is also a widely used term in
model compression. This is because both are different concepts; pruning is a technique that can help to achieve sparsification by
systematically removing certain elements; sparsification is a much broader concept that can be reached through various methods,
including but not limited to pruning. So the words sparsification and pruning are not used interchangeably.

1

Under review as submission to TMLR

inference phases. Additionally, sparsification not only highlights the importance of key features (sparsity-
driven feature selection) but also significantly enhances the model’s ability to generalize to new data (Hoefler
et al. (2021)). When implementing sparsity in Deep Neural Network (DNN), three key aspects must be
considered: (i) identifying what elements should be made sparse, (ii) determining when to induce sparsity,
and (iii) deciding on the method i.e., how to achieve sparsity. The article by Hoefler et al. (2021) offers a
comprehensive survey that thoroughly explores these factors related to sparsity, among various other elements.
Several elements can be sparsified in a DNN, like the parameters (or weights), neurons, filters in convolution
layers, and heads in attention layers. Sparsification can be scheduled post-training, during training, or as
sparse training, as illustrated in Figure 1. Further details on these methods are provided in the subsequent
text. Various techniques can be employed to attain sparsity, including methods like magnitude pruning
based on thresholds, sparsification based on input-output sensitivity, penalty-driven approaches, variational
methods, and many more. In this work, we emphasize sparsifying the model parameters during the training
by applying penalty-based (regularization-based) sparsification methods.

Figure 1: This figure illustrates (a-d) a few common approaches to achieving sparse models and (e) the proposed
approach of meta-sparsification.

Various sparsity-inducing strategies have been developed to facilitate the transformation of a dense model
into a sparse model (Hoefler et al. (2021)). However, a vital question that arises before implementing these
strategies is determining when and how to apply sparsification. Figure 1 broadly illustrates some of these
sparsity scheduling techniques as discussed by Hubens (2020). The one-shot sparsification (Figure 1(a)) is a
fundamental technique that sparsifies an already trained dense model until a desired sparsity is achieved
and then fine-tunes the sparse model. Fine-tuning allows the model to relearn. It helps to re-distribute the
weights across the remaining parts of the network, ensuring that performance does not suffer significantly.
Figure 1(b) shows iterative sparsification where sparsity is induced gradually over many steps (Han et al.
(2015); Liu et al. (2017)). Only a handful of weights are eliminated at each iteration, and the network is
fine-tuned to restore performance. This process is repeated multiple times. Zhu & Gupta (2017) presented
the concept of automated progressive (or gradual) sparsification (Figure 1(c)) in their work, which is very
similar to iterative sparsification. While both methods incrementally introduce sparsity into a dense network,
automated gradual sparsification is different because it sparsifies the weights during the training of the model,
allegedly claiming that it eliminates the necessity for subsequent fine-tuning. Figure 1(d) illustrates sparse
training, where a sparse model is trained, and while training, it tries to retain the sparsity. This is often
referred to as sparse-to-sparse training (Dettmers & Zettlemoyer (2019); Evci et al. (2020)), while the others
Figure 1(a-c) are referred to as dense to sparse training.

2

Under review as submission to TMLR

In general, any sparsification involves the use of a few hyper-parameters that control the degree of sparsity,
like thresholds in magnitude pruning, sparsification budget (or target), the regularization parameter in
penalty-based sparsity approach, the dropout rate (probability), learning rate in gradual pruning, and several
others. Often, approaches like grid search, random search, heuristic methods, etc, are employed to determine
the optimal values of these crucial hyper-parameters. We introduce a method to learn these hyper-parameters
that induce sparsity through meta-learning. This work, therefore, proposes meta-sparsification, broadly
depicted in Figure 1(e). In this work, we refer to it as learning to learn sparsity, or learned sparsity, or
meta-sparsity. To be more precise, it is learning to learn or meta-learning (Finn et al. (2017)) the sparsity
controlling hyper-parameter, thereby learning the sparsity pattern.

We begin with a dense multi-task model, which shares some layers i.e., a shared encoder or backbone between
many tasks. To achieve a clear understanding, we begin by answering the three essential questions related to
sparsification. (i) What to sparsify? - we aim to sparsify the parameters or weights of the model, primarily
the parameters of the shared layers of a multi-task network. We apply channel-wise structured sparsity to
the shared layers to achieve optimal shared representations across all the tasks. Structured sparsity is a
coarse-grained approach that considers the architecture of the dense network while sparsifying i.e., for a
Convolutional Neural Network (CNN); it involves zeroing out entire filters, neurons, or channels, basically
a structured block of parameters. (ii)how to achieve sparsity? (i.e., the method) - we apply penalty-based
(regularization-based) structured sparsity to the backbone of a multi-task network. The sparsification is
applied in a setting inspired by gradient-based meta-learning e.g., Model Agnostic Meta Learning (MAML)
(Finn et al. (2017)) to learn the meta-sparsity patterns across all the tasks. Meta-learning (Thrun & Pratt
(2012); Huisman et al. (2021)), commonly referred to as ‘learning to learn,’ involves developing algorithms
that learn from a variety of tasks and then apply the accumulated knowledge to enhance future learning
of new or similar tasks. (iii) when to sparsify? - sparsity is applied while training the network; this is also
known as dynamic sparsity. It refers to an approach where the sparsity pattern2 changes over time during
training, adapting to the evolving data and training requirements, while static sparsity refers to fixed sparsity
patterns throughout training. The broader objective of this work is to explore learning the sparsity patterns
across multiple learning episodes or tasks and to develop a meta-sparse model during the meta-training stage
that can potentially be fine-tuned for the same tasks or unseen tasks in the meta-testing stage (as shown in
Figure 1(e)).

Now, the question is why this approach is applied in a multi-task context. Traditional MAML often involves
tasks or learning episodes that are very similar or homogeneous; for example, all are image classification
tasks (Hospedales et al. (2022); Upadhyay et al. (2024)). Because of this similarity, tasks may exhibit
consistent sparsity patterns, hindering the meta-model’s ability to accommodate a wider variety of tasks with
different sparsity requirements. MTL, in contrast, enables the simultaneous learning of multiple, diverse
tasks. Therefore, we aim to identify robust sparsity patterns that are suitable for various diverse tasks by
using sparsity in multi-task scenarios and learning sparse behavior across tasks through meta-learning. The
main contributions of this work are as follows -

• Learned sparsity framework called Meta-sparsity: We introduce a novel approach that allows for the
dynamic learning of sparsity in DNN. This is a significant shift from heuristic-based sparsity control
to a more dynamic, task-aware method. Our method is versatile, being agnostic to model type, task,
and sparsity type, allowing for wide applicability.

• Comprehensive evaluation: We rigorously assess our approach across a variety of tasks using two
publicly available datasets, showcasing its effectiveness. To provide comparative insights, we compare
these results to those obtained from models using no sparsity and fixed-sparsity (i.e., the fixed value
of sparsity hyper-parameter) in single-task and multi-task settings.

2sparsity pattern refers to the specific arrangement or layout of non-zero parameters within a model architecture, for example,
a CNN when structured sparsity is applied. In the context of channel-wise structured sparsity, this pattern identifies the
active (non-zero) channels within the network layers from the zeroed-out (inactive) ones. These patterns highlight the selective
engagement of certain parts of the network while others remain dormant.

3

Under review as submission to TMLR

• Robustness validation: The robustness of our meta-sparse models is suggested by their ability to
perform reasonably well on previously unseen tasks during meta-testing, showcasing their potential
for adaptability.

• Versatility in sparsity types: Although this work focuses on channel-wise structured sparsity, we also
validate the efficacy of our approach on unstructured sparsity, demonstrating its broad utility.

• Direction for future research: We conclude with a discussion on potential future directions and open
questions to encourage more investigation in the areas of model sparsity.

This paper is structured as follows: Section 2 delves into the related work, setting the context and background
for this study. Section 3 describes the methodology of the proposed approach. Section 4 details the
experimental setup, while Section 5 presents the results, performance analysis, and a thorough discussion of
the findings. Finally, Section 6 concludes the work and suggests directions for future research.

2 Related work

This section focuses on research works that have employed the notion of learning diverse entities (i.e.,
hyper-parameters, optimizers, loss functions, and many more) through the utilization of black-box models
or alternative methodologies. We additionally delve into the utilization of sparsity in deep learning and
subsequently focus our attention on the application of sparsity in MTL networks. Finally, we position our
work within the existing literature.

What can be learned?: The concept of learning to learn, commonly known as meta-learning, has been a
learning paradigm of great interest in research for many years. This field has significantly advanced since the
seminal works of Schmidhuber (1987); Bengio et al. (1991); Thrun & Pratt (2012), leading to a wide range of
applications. These algorithms aim to achieve generalization by learning from experiences, with the extent of
generalization depending on the accumulation of meta-knowledge. In simple words, this generalization can be
achieved by learning to learn parameters, hyper-parameters, loss functions, architectures, optimizers, and
many more, which constitutes meta-knowledge. Many excellent studies have been conducted in this field of
study; in order to set a context for our work, we will attempt to highlight and briefly discuss some of them.

We will first begin with learning to learn parameter initialization. Transfer learning centers on the concept
of providing generalized initial parameters for the downstream task, enabling the fine-tuning of the new
task with relatively fewer data samples. A possible approach to find the best initial parameters is to utilize
meta-learning algorithms to train the parameters across different tasks, acquiring meta-knowledge that can
aid in rapid adaption to new tasks. The article by Finn et al. (2017) presented MAML an algorithm that
optimizes its parameters to facilitate adaptability and quick learning across a diverse range of tasks by
providing a set of initial parameters. Reptile (Nichol & Schulman (2018)) is also a similar algorithm that is
mathematically similar to first-order MAML, that learns the initialization of a network. First-order MAML
(FOMAML) (Nichol et al. (2018)) and Almost No Inner Loop (ANIL) (Raghu et al. (2019)) are simplifications
of MAML that provide computational advantages compared to MAML. The comprehensive survey by
Huisman et al. (2021) provides detailed insights into other related work within the field of meta-learning.

While training neural networks, one of the most tedious tasks is hyperparameter tuning. This is because it
involves a trial-and-error process over a vast, complex search space, and often, the hyperparameters are very
use-case specific; there is no guarantee of finding the best solution, and each trial can be computationally
expensive and time-consuming. That is why learning to learn hyperparameters is critical. Some works by
Li et al. (2017); Xiong et al. (2022); Chen et al. (2023); Subramanian et al. (2023) focused on learning the
learning rate or learning the learning rate schedules to train a deep learning model. Many articles learn to
adapt all the hyperparameters, including the learning rate. For example, the article by Baik et al. (2020)
adaptively generated per-step hyperparameters to improve the performance of the model. Bohdal et al. (2021)
presented an approach for hyperparameter optimization by leveraging evolutionary strategies to estimate
meta-gradients. Another similar work by Franceschi et al. (2018) offered a structured bi-level programming
approach where the outer level updated hyper-parameters while the inner loop focused on task-specific
learning or loss minimization. The approach presented by Franceschi et al. (2018) closely aligns with our

4

Under review as submission to TMLR

work, with the primary distinction being our specific emphasis on learning structured sparsity within the
framework of Multi-Task Learning (MTL) by employing MAML.

The articles by Wortsman et al. (2019); Gao et al. (2021); Bechtle et al. (2021); Gao et al. (2022b); Raymond
et al. (2023a;b) aim to learn parametric loss functions, thereby learning to learn a loss function. On similar
grounds, several works focus on learned optimizers or black-box or parametric optimizers, like the research by
Bengio et al. (1991); Andrychowicz et al. (2016); Wichrowska et al. (2017); Lv et al. (2017); Li & Malik (2017);
Shen et al. (2020); Harrison et al. (2022); Metz et al. (2022; 2020); Gao et al. (2022a). The learning-to-learn
concept is also used in the field of neural architecture search (Elsken et al. (2019)) to achieve optimal
architectures. This idea of learned architectures is discussed by Lian et al. (2019); Shaw et al. (2019); Elsken
et al. (2020); Ding et al. (2022); Rong et al. (2023); Schwarz & Teh (2022). Numerous studies in existing
literature apply learning to learn concepts across various domains, such as reinforcement learning, attention
learning, and neural memory learning, among others. However, this paper will not delve into each of these
applications, as it is not intended to be a comprehensive review of the field. Instead, our primary objective is
to highlight distinct insights and developments within a more limited domain of learning sparsity. Overall,
it can be summarized that the black-box or parameterized models are increasingly replacing traditional
white-box aspects of deep learning, such as loss functions, optimization algorithms, automated architecture
search, and others. Building on this concept, this paper presents an approach to learning to learn sparsity
using meta-learning.

Sparsification is one of the approaches for model compression in Deep Neural Networks (DNNs). It does not
just reduce the complexity of the model but also leads to significant gains in performance, computation, and
energy efficiency, all while strategically selecting key features that contribute to these gains. Hoefler et al.
(2021) presented an elaborate study of sparsity in deep learning. They give an extended survey of works in
this domain based on the types of sparsity, what can be sparsified, when to sparsify, and how to introduce
sparsity. Some other works that discuss model sparsity or pruning are Zhu & Gupta (2017); Gale et al.
(2019). Our work is in line with the area of learned sparsity, in contrast to works achieving sparsity using
fixed hyper-parameters. Most of the works in the domain focus on adaptive weight or parameter pruning
(Han et al. (2015)), a technique to induce sparsity in a network. Kusupati et al. (2020) proposed a dynamic
sparsity parameterization (STR) technique that used the sparse threshold operator to achieve sparsity in
DNN weights by learning layer-specific pruning thresholds. Unlike the static (fixed) pruning methods, where
the sparsity hyperparameter is fixed once pruning is performed, this method dynamically adjusts the sparsity
hyperparameter during training, thereby determining the optimal sparsity pattern.

Another similar work by Carreira-Perpinan & Idelbayev (2018) introduced the learning-compression method,
a two-stage process used by the algorithm to prune the network. In the learning phase, the weights are
optimized e.g., reducing loss, while in the compression phase, network pruning is done using l0 or l1 constrain
along with fixed pruning hyperparameters. Instead of manually adjusting the pruning rates of each layer,
Zhou et al. (2021b) introduced ProbMask, a technique that leverages probability to determine the importance
of weights across all layers and allows automatic learning of weight redundancy levels based on a global
sparsity constraint. A combination of structured and unstructured sparsity is employed by Zhou et al. (2021a),
resulting in N:M fine-grained sparsity wherein each group of M consecutive weights of the network, there are
at most N weights that have non-zero values. So, this method does weight pruning based on the N:M budget.
Many other works focus on adaptive pruning of networks or learning structured sparsity (Wen et al. (2016);
Meng et al. (2020); Liu et al. (2018); Lee et al. (2021); Wang et al. (2021); Upadhyay et al. (2023b)); however,
none have applied meta-learning for learning to learn parameter sparsity. The articles contributed by Wen
et al. (2016); Meng et al. (2020); Deleu & Bengio (2021) provide comprehensive insights into the concept of
structured sparsity in deep neural networks. The idea of structured sparsity constitutes an essential aspect of
our paper, and we draw significant inspiration from these works.

Sparsity in multi-task learning: The domain of Multi-Task Learning (MTL) confronts two significant
challenges. Firstly, as the number of tasks increases, the total number of trainable parameters also increases.
Secondly, it is crucial to efficiently group similar tasks or effectively share features across tasks during training
to prevent adverse information transfer among tasks, which could potentially impact the performance of
certain tasks. Sparsity is used in the literature as one of the solutions to overcome these problems in multi-task
settings. For example, Kshirsagar et al. (2017) constructed a regularization term to jointly optimize the

5

Under review as submission to TMLR

task-specific parameters while also learning shared group structures (or parameters). Similarly, Gonçalves
et al. (2016) in their work introduce Multi-task Sparse Structure Learning (MSSL) for joint estimation
of per-task parameters and their relationship structure parameters using Alternating Direction Method
of Multipliers (ADMM) algorithm (Boyd et al. (2011)). Argyriou et al. (2006), also assumed that tasks
are related and used l1 − l2 regularization with the combined loss for efficient multi-task feature learning.
Obozinski et al. (2010); Chen et al. (2009) used different sparse and non-sparse regularizations to learn the
low-dimensional subspace, which is shared by all the tasks. Sun et al. (2020a) proposed a method for iterative
magnitude pruning of multi-task model parameters, which was inspired by the lottery ticket hypothesis
(Frankle & Carbin (2019)). Their method induces unstructured l1 type sparsity (sparse masks for weight
matrices) by training sub-nets for multiple tasks until convergence.

Positioning our work: In the literature stated earlier, we looked into numerous ideas, such as learning to
learn an optimizer, loss function, initial parameters, hyper-parameters, and many more. Building upon these
discussions, we introduce an approach that utilizes meta-learning to facilitate the process of learning to learn
sparsity. From the view of MTL, the previously mentioned studies induce sparsity in multi-task models by
utilizing fixed values for regularization parameters, pruning thresholds, or sparsification budgets. In contrast
to employing a trial-and-search methodology for the fixed hyper-parameter, the present study emphasizes
acquiring the ability to learn a generalized sparsity parameter across many tasks. This approach can also
be viewed as one of the strategies for optimal feature sharing among tasks within a multi-task framework
facilitated by learned structured sparsity. To the best of our knowledge, this research direction has not been
previously explored, offering a unique contribution to the fields of sparsity and MTL.

3 Methodology

In this section, we outline our proposed methodology. First, we will look into the conventional MTL, meta-
learning with a focus on MAML, and group (structured) sparsity in order to establish a strong foundation
for meta sparsity. This foundational discussion sets the stage for understanding the nuances of our approach.
Furthermore, we also discuss a theoretical perspective of generalization in the context of this work.

3.1 Multi-task Learning

Multi-task learning (Caruana (1997)) is a very well-established learning paradigm wherein the aim is to
jointly learn or train multiple related tasks. The underlying theory here is that the tasks help each other
to learn better due to inductive transfer between the tasks, leading to improved performance and better
generalization. A successful MTL can be achieved by establishing a balanced sharing between tasks, such
that there is a positive transfer of information. This primarily depends on the parameter sharing approach
used for MTL, which, according to Crawshaw (2020), can be either hard parameter sharing or soft parameter
sharing. Hard parameter sharing is a result of the shared architecture, while soft parameter sharing can
be achieved by applying constraints on the model parameters. These concepts, along with various research
efforts in this area, are explored in a comprehensive survey on MTL by Crawshaw (2020). This work employs
a very simple and conventional multi-task architecture, demonstrating hard-parameter sharing see Figure 2.

Consider a task distribution p(T), from which, say, N non-identical yet related tasks are sampled that can
be trained simultaneously in a multi-task setting, say, T = {T1, T2, ..., TN}. The objective of MTL is to
train a multi-task model, say f(Θ) so that a combined loss (L) of the task-specific losses {lT1 , lT2 , . . . , lTN

} is
minimized, such that the optimal parameters are given by the Equation 1,

Θ∗ = arg min
Θ

L(f(Θ)) = arg min
θb,θi∈Θ

Fc(lTi
(fi(θb, θi))), i = 1, 2, . . . N (1)

where Θ = {θb} ∪
⋃N

i=1{θi}, indicating that the set of multi-task parameters Θ comprises θb, the parameters
of the shared architecture or backbone, and θi the parameters specific to each of the N tasks. fi denotes the
model designated for a particular task, consisting of a shared backbone (θb) along with layers specific to the
task θi. Fc represents the function that combines or, more precisely, balances the N task-specific losses. This
function may be a straightforward sum of losses, a weighted average, or any other tailored function designed
to suit the specific requirements of the use case. To maintain fair learning across all tasks and to avoid any

6

Under review as submission to TMLR

Figure 2: A schematic of the multi-task architecture used in this work (inspired by Upadhyay et al. (2023b)).

one task from dominating the learning process, loss balancing is essential in MTL. Several approaches to
combine single-task losses to ease the multi-task optimization are discussed in Crawshaw (2020).

In this work, we employ the uncertainty weighting approach given by Kendall et al. (2018). The core idea of
this approach is to optimize learning outcomes in multi-task contexts by prioritizing or weighing the tasks
based on their uncertainty. It can mathematically be represented as,

L = Fc(lT1 , lT2 , . . . , lTN
) =

N∑
i=1

(
1

2σ2
i

· lTi
+ log σi

)
(2)

where σi is a learnable noise parameter for ith task. This combined loss L undergoes backpropagation,
where gradients of the loss are computed with respect to all model parameters Θ, encompassing both shared
and task-specific parameters. These gradients are then used to update Θ to minimize L by finding the
optimized parameters, thereby enhancing the performance of all tasks. Algorithm 1 outlines the practical
implementation of Multi-Task Learning (MTL).

Algorithm 1 Multi-Task Learning (MTL)
Require: Sample N tasks from a task distribution p(T), say T = {T1, T2, ...TN}
Require: MTL model with parameters, Θ = {θb} ∪

⋃N

i=1{θi} ▷ where θb = shared parameters and θi = task-specific
parameters
while not converged do

for bs = 1 to number of batches in dataset D do
Sample a batch of data for each task Ti ▷ training data for all tasks
Compute task-specific losses, lTi , for each task Ti

Compute multi-task loss, LMT L = Fc(lT1 , lT2 , ..., lTN) ▷ aggregation of task-specific losses
Compute gradients, g = ∇ΘLMT L

Update parameters, Θ← Θ− α · g ▷ α is the learning rate
end for

end while

3.2 Meta-learning

Meta-learning, often known as ‘learning to learn’ (Thrun & Pratt (1998); Baxter (1998)), is a learning
algorithm that leverages past learning experiences to enhance the performance of a new task. In conventional

7

Under review as submission to TMLR

Machine Learning (ML), an algorithm is designed to acquire knowledge from a given dataset to perform a
specific task. However, meta-learning goes a step further; it involves algorithms that can evaluate their learning
process, analyze their performance across various tasks, and leverage this insight to learn new tasks more
efficiently. Meta-learning algorithms can be classified into three categories, i.e., (i)model-based, (ii)metric-
based, and (iii)optimization-based or gradient-based meta-learning. These classifications are thoroughly
discussed in several survey papers, including works by Huisman et al. (2021); Tian et al. (2022); Hospedales
et al. (2022), and many more, which provide in-depth analyses and comparisons of methodologies within each
category. Out of these, in this work, we focus on optimization or gradient-based meta-learning algorithms,
particularly MAML (Finn et al. (2017)). MAML facilitates fast and efficient adaptation of a DNN to new
and distinct tasks, using only a limited amount of training data. This is accomplished by optimizing a set
of initial parameters that are highly adaptable and enable quick fine-tuning via minimal gradient updates.
This approach improves model generalizability and performance and has been thoroughly tested in a variety
of settings (tasks), such as classification, regression, and reinforcement learning. In this work, we extend
its application beyond similar or homogeneous tasks to dense prediction tasks like segmentation, depth
estimation, and others by incorporating MTL in the form of multi-task learning episodes (Upadhyay et al.
(2023a) of heterogeneous tasks 3.

The MAML framework works with many tasks, also defined as learning episodes, and progresses through
two hierarchical levels (or loops): the inner loop, focusing on learning from individual tasks through rapid
adaptation to training data, and the outer loop, which aggregates knowledge from numerous tasks to enhance
and accelerate the adaptation process. These levels are formalized in the form of a bilevel optimization
problem in MAML in the meta-training stage, which is addressed hereafter. After meta-training, the ‘learning
to learn’ stage, new tasks can be introduced in the meta-testing stage, also known as the ‘adaptation stage.’
Consider, for N tasks or learning episodes sampled from task distribution p(T), Lmeta and lTi be the meta
(i.e., outer) and ith task-specific (i.e., inner) loss functions respectively. Along the same lines, as formulated
in Section 3.1, let Θmeta be the meta parameters, while θi be the parameters for ith task. For training, the
dataset for N tasks can be expressed as D = {(Dsup1 , Dquery1), . . . , (DsupN

, DqueryN
)}, where Dsup stands for

support set and Dquery stands for the query set such that Dsupi
∩Dqueryi

= ∅. The bi-level optimization in
MAML, where one optimization problem involves another as a constraint (Hospedales et al. (2022); Huisman
et al. (2021); Finn et al. (2017)), can be written as follows :

Θ∗
meta = arg min

Θmeta

N∑
i=1
Lmeta(θ∗

i , Θmeta, Dqueryi
) (outer loop) (3)

where, θ∗
i ≡ θ∗

i (Θmeta) = arg min
θ

lTi
(θ, Θmeta, Dsupi

) (inner loop) (4)

Algorithm 2 outlines the implementation of the above-discussed meta-learning, particularly the bi-level
optimization of MAML. So, Θmeta can be generalized initialization of model parameters; it can also be
hyperparameters such as learning rate, regularization parameter, or parameterized loss functions. This work
aims to concurrently ‘learning to learn’ the structured sparsity regularization parameter along with the
multi-task model parameters that offer a suitable initial point for model training in the meta-testing stage.
Further details are provided in Section 3.4.

3.3 Group sparsity

This section introduces group sparsity, specifically l1− l2 regularization, as an important building block of the
meta-sparsity framework. This discussion is not a new contribution; rather, it gives the theoretical context
which is necessary for laying the groundwork for the proposed methodology outlined in Section 3.4.

Sparsity in DL can be introduced in two broad ways: as model sparsity, affecting the model structure, or as
ephemeral sparsity, impacting individual data examples, as discussed by Hoefler et al. (2021). As already
discussed in Section 1, this work explores model sparsity, especially regularization(penalty)-based model

3As defined by Upadhyay et al. (2024), tasks are considered homogeneous when they share similar objective, and if the
objectives differ, they are classified as heterogeneous. For example, if the objective of all the tasks is image classification, they
can be referred to as homogeneous tasks.

8

Under review as submission to TMLR

Algorithm 2 Model-Agnostic Meta-Learning (MAML)
Require: Sample N tasks from a task distribution p(T), say T = {T1, T2, . . . , TN}
Require: Initialize meta-parameters Θmeta ▷ initial shared model parameters

while not converged do
Initialize gradient accumulator G ← [] ▷ empty list for gradient accumulation
for each task Ti ∈ T do ▷ inner loop for task-specific adaptation

Sample support set Dsupi and query set Dqueryi

Compute task-specific loss LTi on Dsupi ▷ use support data for task-specific training
Update ΘTi ← Θmeta − αin · ∇ΘmetaLTi ▷ perform one or more gradient steps, αin: inner loop learning rate
Compute meta-loss gradient Gi ← ∇ΘTi

L(ΘTi , Dqueryi) ▷ gradient on query set
Accumulate gradient G ← G ∪ {Gi}

end for
Compute aggregated meta-gradient Gmeta = Average(G) ▷ aggregate gradients from all tasks
Update Θmeta ← Θmeta − αout · Gmeta ▷ outer loop meta-update, αout: outer loop learning rate

end while

weight sparsification. In the context of how sparsity is introduced to model parameters, two distinct modes
emerge - structured and unstructured sparsity. Unstructured sparsity (also known as fine-grained sparsity),
the more straightforward method, eliminates the least significant weights based on chosen criteria, leading
to irregular sparse patterns. In contrast, structured sparsity (also known as group sparsity) adopts a more
holistic strategy by targeting the elimination of whole groups of parameters. In this context, a group refers to
various structural elements within the model, such as channels, filters, neurons, tailored blocks, or attention
heads, each representing a distinct set of parameters (Hoefler et al. (2021); Liu & Wang (2023)). Unstructured
sparsity can significantly reduce the model size but typically achieves only modest speedups on hardware for
dense computations, such as GPUs. Meanwhile, structured sparsity is designed to complement optimized
hardware architectures, leading to improvements in computational efficiency. This work primarily concentrates
on structured sparsity, utilizing penalty-based techniques for model weight sparsification. Additionally, while
our approach centers on structured sparsity, we have also implemented it for unstructured sparsity. The
findings and insights are discussed in Section 5.

Suppose the weights of a model are divided into G non-overlapping groups of varying sizes, denoted as
Θ = {θ1, θ2 . . . θG}. L(f(Θ)) represents the loss function, where f(Θ) represents the model with parameters
Θ. The objective function for the regularization-based group sparsity (group lasso) given by Yuan & Lin
(2005) can be expressed as -

Θ∗ = arg min
Θ

L(f(Θ)) + λ

G∑
g=1

√
ng ||θg||2︸ ︷︷ ︸

l1−l2 norm regularization term:R

where θg ∈ Θ (5)

where R is the regularization term that zeros out entire groups of parameters denoted by θg. Here, ng is the
number of elements in the gth group, such that ng > 1 ∀g, it is multiplied to achieve normalization of the
regularization term across groups of varying sizes. The l2 norm of the parameter group is represented by the
term ||θg||2 =

√∑
j(θg

j)2, here θg
j is the parameter at index j for group g. In Equation 5, the regularization

parameter is represented by λ, which controls the degree of sparsity by balancing the trade-off between model
complexity and data conformity. We aim to learn this hyperparameter using MAML in meta-sparsity over
multiple tasks. Given the regularization term R combines the l1 norm of l2 norms across groups, it is often
referred to as l1 − l2 norm in this work.

To optimize the composite loss function in Equation 5, proximal gradient methods can be applied since the
regularization term R is non-differentiable (Parikh et al. (2014); Bach et al. (2012)). The proximal gradient
descent updates the parameters based on the gradient of the differential part of the composite loss function
given by

Θt+1 ← proxαR(Θt) = proxαR(Θt − α∇ΘL(f(Θt))). (6)

9

Under review as submission to TMLR

Here, proxαR is the proximal operator, and α is the learning rate. Since Θ is divided into G disjoint groups,
the proximal operator can be written as,

proxαR(Θ) = (proxαR(θ1), . . . , proxαR(θg), . . . , proxαR(θG)) (7)

In the case of group sparsity-inducing regularization, this proximal operator can be computed and has a
closed form as discussed by Combettes & Wajs (2005); Hastie et al. (2015); Scardapane et al. (2017); Deleu
& Bengio (2021), given by the equation,

proxαR(θg) =

[
1− αλ

√
ng

||θg||2

]
θg ; ||θg||2 > αλ

√
ng

0 ; ||θg||2 ≤ αλ
√

ng

(8)

So, if the l2 norm of a group of parameters is less than (or equal to) a threshold depending on the size of the
group and regularization parameter, the entire group of parameters is zeroed out, thereby enforcing group
sparsity.

3.4 Proposed approach - Meta sparsity

Now that we have established the concepts of MTL, meta-learning, and group sparsity, we will discuss the
proposed approach of meta-sparsity or learned sparsity in this section. Now, in the context of this work, to
precisely answer the three questions related to sparsity- (i) what to sparsify?: the objective is to sparsify
the backbone parameters i.e., θb, also known as the shared layers of the multi-task network. (ii) how to
sparsify?: apply group sparsity (i.e., Equation 5) to the backbone parameters θb only. The channels of the
convolution layer weight matrix are treated as different groups, i.e., θl

b(:, c, :, :) which represents one group
consisting of the weights of cth channel of the lth layer. This is symbolically illustrated in Figure 2. (iii) when
to sparsify?: this proposed approach is inspired by meta-learning i.e., learning to learn sparsity; therefore, the
sparsification is done during the meta-training phase in the outer loop. This approach, in general, can be
viewed as a learning-sparsification iterative methodology. It involves episode-specific learning at the inner
loop (Equation 4) and parameter sparsification at the outer loop (Equation 3) of MAML in an iterative
manner. Therefore, similar to meta-learning, meta-sparsity also has two phases: the meta-learning phase and
the meta-testing (adaptation) phase. An overview of the meta-training and testing stages is given in the table
below. Adding one more question to the ones above, (iv) why sparsification?: besides model compression,
the main intention behind applying structured sparsity is efficient feature selection across multiple tasks.
Furthermore, sparsification promotes generalization, an important aspect when incorporating new yet related
tasks into the multi-task framework.

Since MAML is an episodic learning approach (Hospedales et al. (2022); Finn et al. (2017)), it necessitates
several learning episodes, which essentially involve single-task learning. In this study, we extend the concept
of learning episodes to include multi-task learning episodes (Upadhyay et al. (2023a)), encompassing all
possible combinations of the N tasks. For N tasks i.e., T = {T1, T2, . . . , TN}, the learning episodes E used
for meta-training are an ensemble of single-task and multi-task learning episodes given by the power set of T ,
such that,

E = 2T \ {∅} = {E1, E2, ..., E2N −1} = {T1, T2, .., T1TN , .., T1T2TN , ...} (9)

The training procedure is inspired by MAML(Finn et al. (2017)) but with two notable distinctions. First,
the training process involves a multi-task model being trained on single-task and multi-task learning episodes
to utilize sparsity patterns specific to each context; Second, in addition to the model parameters, the
hyperparameter that induces sparsity, denoted as λ, is also meta-learned, which results in a meta-sparse
multi-task model.

In CNN, the weight tensor is organized as a 4D array, with dimensions representing the number of filters,
channels(or depth), height, and width. When considering structured sparsity, the specific structures that
can be regularized include filters, channels, filter shapes, or a customized block of parameters. In this work,
we employ channel-wise structured sparsity to the shared backbone of the multi-task architecture. Several
previous studies, including those by Wen et al. (2016); Deleu & Bengio (2021); Upadhyay et al. (2023b),

10

Under review as submission to TMLR

META-TRAINING META-TESTING
Inner loop (learning) Fine-tuning (similar to MTL)

Objective: reduce the episode-specific loss Begin with - Meta sparse multi-task model
i.e. LEi Three possibilities:

Train: episode-wise training of multi- (i) Fine-tuning on all the same N tasks
task model with sparse backbone as meta-training.

Optimize: multi-task model parameters(ΘEi) (ii) Add new task and fine-tune only
for every learning episode. on the new (N + 1)th task

Outer loop (sparsification) (iii) Add new task and fine-tune on all
Objective: reduce the meta-loss the (N+1) tasks.

i.e. Lmeta (maintain sparsity while fine-tuning)
Train: meta-train the multi-task model

on all learning episodes. Testing
Optimize: multi-task model parameters(Θmeta), Use an independent test set to evaluate

regularization parameter(λmeta) the performance of the meta-sparse
(inducing channel-wise sparsity) multi-task model

Outcome: Meta sparse multi-task model

among others, have focused on channel-wise sparsity across a range of applications, mainly because of two
reasons. First, this approach generates smaller dense networks by eliminating redundant channels, effectively
compressing the network. Furthermore, these optimized networks offer greater hardware benefits, especially
for GPUs, as they can be more easily accelerated. The emphasis on channel-wise sparsity improves both
computing efficiency and the suitability of models for deployment on devices with limited resources.

Consider a simple and conventional multi-task architecture with a shared encoder or backbone: a CNN and N
task-specific networks (a.k.a heads) connected to the backbone. In this case the multi-task model parameters
Θ = {θb} ∪

⋃N
i=1{θi} where θb are the shared parameters and θi are the task-specific parameters for ith

task. Since the group sparsity is applied to the channels of convolution layers of the backbone network, the
meta-optimization objective as per Equation 3 and 4 can be expressed along with group sparsity (Equation 5)
as,

Θ∗
meta = arg min

Θmeta

Nb∑
Lmeta(Θ∗

Ei
, Θmeta, DqueryEi

) + λ

G∑
g=1

√
ng||θg

bEi
||2, s.t. Ei ∈ E (outer loop) (10)

where, Θ∗
Ei
≡ Θ∗

Ei
(Θmeta) = arg min

ΘEi

LEi(ΘEi , Θmeta, DsupEi
). (inner loop) (11)

G∑
g=1

√
ng ||θg

bEi
||2 =

L∑
l=1

Cl∑
c=1

√
numel(θl

bEi
(:, c, :, :)) ||θl

bEi
(:, c, :, :)||2 (l2 norm of a group). (12)

Here, L is the number of convolution layers, and Cl is the number of channels in the lth layer. numel(·)
represents the number of elements in the vector. Nb represents the total number of batches of data in batch-
wise training of the model. λ is the learnable regularization parameter. Ei stands for the learning episode see
Equation 9 Here, LEi

is the episode-specific loss if the learning episode has a single task, then LEi
= lTj

such that, Tj ∈ T . But if it is a multi-task episode, say the LEi
= Fc(lTa

, lTb
, lTc

), where Ta, Tb, Tc ∈ T (see
Equation 1). To avoid the potential divergence of λ towards negative infinity, a Softplus function is applied to
λ, which ensures that it remains positive throughout the optimization process. The Softplus function, defined
as Softplus(x) = 1

β log(1 + exp(β · x)), acts as a smooth approximation to the ReLU function and effectively
constrains λ to positive values.

The Equation 10 and 11 illustrate the process of bi-level optimization. The inner loop trains the multi-task
model for various task combinations, while the outer loop finds the meta-optimized multi-task network
parameters and generates a channel-sparse backbone network. This process involves meta-learning the
channel sparsity and model parameters. The full algorithm of meta-training is outlined in Algorithm 3. This
algorithm is built on the principles of MTL (Algorithm 1) and MAML (Algorithm!2). It combines MTL’s
ability to optimize shared and task-specific parameters with MAML’s meta-optimization framework, enabling

11

Under review as submission to TMLR

the dynamic learning of both model parameters (Θmeta) and the sparsity-inducing hyperparameter (λmeta).
Note that λmeta is simply a representation of λ being meta-learned; technically, both are the same.

Algorithm 3 Meta-sparsity (training)
Require: Sample N tasks from a task distribution p(T), say T = {T1, T2, ...TN}
Require: MTL model with parameters, Θ = {θb} ∪

⋃N

i=1{θi} ▷ where θb = shared parameters and θi = task-specific
parameters

Require: Initialize meta parameters Θmeta and λmeta ▷ dense model and sparsity hyperparameter
Require: Single & multi-task episodes: E = {E1, E2, .., E2N −1}

while not converged do
for bs = 1 to no. of batches of Dsup and Dquery do ▷ outer loop

Randomly sample an episode Ei

G ← [] ▷ Using [] to denote an empty list
Initialize ΘEi ← Θmeta

if ΘEi has sparse groups and regrow probability rp > 0 then ▷ Regrowing sparse parameters
- Select groups for regrowth (randomly or some criteria))
- Initialize the selected groups

end if
for κ inner updates do ▷ inner loop

if Ei contains n tasks such that, n > 1 then
LEi = Fc(lT1 , lT2 , . . . , lTn) ▷ multi-task loss

else
LEi = lTj ▷ single task loss

end if
Calculate gradients, g = ∇ΘEi

LEi (ΘEi , Θmeta, DsupEi
)

Update Θ∗
Ei
← ΘEi − αin g ▷ αin is the learning rate for adaptation stage

end for
For the query set, calculate Gi = ∇Θ∗

Ei
Lmeta(Θ∗

Ei
, Θmeta, DqueryEi

)
Accumulate gradients, G ← G ∪ {Gi} ▷ gather gradients for all the learning episodes

end for
Calculate meta gradients, Gmeta, as the average of all accumulated gradient
Update Θ∗

meta ← proxαout (Θmeta − αout Gmeta,Θ) ▷ meta-update for model parameters where αout is the
learning rate for meta stage (outer loop)

Update λ∗
meta ← proxαout (λmeta − αout Gmeta,λ) ▷ meta-update for λmeta

end while

It is worth noticing that the gradient of λ in Equation 10 might suggest a consistent decrease, but in practice,
the interaction between the sparsity term and model performance prevents λ from collapsing to zero. A very
small λ would hurt task performance, creating a feedback mechanism that stabilizes λ. During meta-training,
λ gradually induces sparsity while improving performance, and as training progresses, the sparsity level
naturally stabilizes (Figure 7). Additionally, the early stopping mechanism on validation loss ensures that
training halts before overfitting, helping maintain a meaningful λ. These factors together prevent trivial
solutions and allow the algorithm to effectively leverage sparsity.

Within the meta-training inner loop, the concept of regrowth can also be introduced, which involves reinstating
previously pruned (or sparsified) parameters, as highlighted by (Hoefler et al. (2021)). This strategy is
employed because regrowth aids in overcoming excessive sparsification, enables the model to adjust to new
data patterns, and ensures a balance between achieving sparsity and maintaining performance (Sun et al.
(2023); Zhang et al. (2024)). Moreover, the literature suggests that when regrowth is iteratively used along
with sparsity (or pruning), it contributes to discovering better parsimonious network architectures. The
extent of parameter regrowth is modulated by a hyper-parameter rp that governs the probability of regrowth.
Regrowth can be implemented in the inner loop during meta-training in order to enhance episode-specific
learning in this work. We did not apply regrowth to all trials to avoid influencing the outcome of meta-sparsity.
However, we included some results for comparison in Section 5 (under the subheading - Regrowing the
parameters).

12

Under review as submission to TMLR

In meta-testing, we have the meta sparse multi-task model, which is further fine-tuned (as discussed in
Figure 1(e)). A new task may be introduced during this stage to evaluate the generalizability of the meta-
model. During fine-tuning, the sparsity pattern of the backbone parameters is maintained, and only the
task-specific heads of the new tasks are trained. This is similar to standard multi-task training (Equation 1).
Once we have the fine-tuned multi-task model, its performance is evaluated on the test set.

In this study, we primarily emphasize meta-learning structured (l1 − l2) sparsity for the shared layers in
a multi-task setting. However, through extensive experiments, we demonstrate that our approach is not
limited to structured sparsity alone; it is equally adept at meta-learning other forms of penalty-based sparsity,
such as l1 (unstructured) sparsity. For this work, we limit the focus of our work only to regularization
(or penalty) based sparsity-inducing approaches. However, we are certain that the proposed approach has
broader applications and can facilitate learning sparsity in various elements, including weights, activations, or
any aspect that can be adjusted via a hyperparameter. Furthermore, the learning process involves various
hyperparameters, such as learning rate, momentum, activation functions, and dropout probability, which can
also be optimized through meta-learning. However, this paper focuses on meta-learning the model parameters
and the regularization hyperparameter. This focused approach will allow us to thoroughly examine the sole
influence of learning sparsity on model performance.

3.5 A theoretical perspective on generalization

In ML and DL, generalization refers to the ability of a model to adapt to new, previously unseen data, usually
from the same distribution as training data (Goodfellow et al. (2016)). This work encompasses three key
concepts, i.e., MTL, meta-learning, and sparsification, particularly group sparsity, and all of these contribute
towards generalization in their way, as summarized in Table 1. This subsection explains the concept of
generalization in terms of all the important components of this work that aid in establishing the theoretical
foundation for generalization in the proposed meta-sparsity approach.

Table 1: Generalization types and their impact w.r.t. meta-learning, MTL, and Sparsification

Paradigm
Type of
Generaliza-
tion

Impact

Meta-
Learning

Task-Level Learns to adapt to new tasks by capturing shared patterns across a distribution of tasks.
Distribution-
Level

Models the task distribution, enabling effective transferability to tasks drawn from similar
distributions.

MTL Task-Level Leverages shared representations to enhance performance across related tasks.

Data-Level Exploits cross-task data regularization to prevent overfitting and improve learning from
limited data.

Sparsi-
fication

Feature-
Level

Prunes redundant parameters to focus on task-relevant features, reducing overfitting and
enhancing generalization to unseen data.

Theoretically, the combination of MTL, meta-learning, and sparsification establishes a robust framework for
achieving generalization. For cross-task generalization (task-level and distribution-level), MTL facilitates
the learning of task-invariant representations by leveraging shared knowledge across tasks. Meta-learning
enhances adaptability to new tasks by optimizing model parameters across a distribution of tasks, which acts
as a good initialization for a new task. Additionally, sparsification focuses on essential shared features, thereby
reducing overfitting to specific tasks. For within-task generalization (data-level, feature-level), MTL acts as a
regularizer by utilizing multi-task data, mitigating overfitting on individual tasks (Caruana (1997); Crawshaw
(2020)). Meta-learning further ensures efficient adaptation to new, unseen data within a task by identifying
generalizable priors (Hospedales et al. (2022); Huisman et al. (2021)). Meanwhile, sparsification reduces noise
and retains only the most critical connections, simplifying the model and enhancing its performance on novel
data (Hoefler et al. (2021)). Together, these methods create an approach to improve generalization across
and within tasks. This motivation drove the adoption of meta-learning to optimize the sparsity-inducing
hyperparameter rather than treating it simply as a learnable parameter within the MTL setting. The

13

Under review as submission to TMLR

proposed approach in this work aims to meta-learn the sparsity hyperparameters (as well as the model
parameters) across various combinations of multiple tasks, resulting in a sparse meta-learned backbone.
Theoretically, as per meta-learning principles, backbone should effectively adapt to previously unseen tasks.

Therefore, in the context of this work, generalization mainly refers to the adaptability of the shared backbone
in a multi-task network, highlighting its capacity to generalize to previously unseen tasks and data. The
robustness of the backbone lies in its ability to learn task-agnostic features that serve as a strong foundation
for introducing new task-specific decoders during testing. Theoretically, this ensures that the shared backbone
can adapt to previously unseen tasks, enabling efficient transfer of knowledge across tasks and encouraging
scalability in multi-task settings. We demonstrate this empirically through the experimental results (in
Section 5) by showing the capability of a backbone to support new tasks effectively, hence generalizing to
new scenarios.

4 Experimental setup

In this section, we elaborate on the experimental framework designed to investigate the effectiveness of our
proposed meta-sparse multi-task models. Here, we provide an overview of the datasets chosen for multi-task
learning, describe the structure of the multi-task network used, and outline the specific evaluation metrics
employed for each task. Additionally, we outline the types of experiments designed to assess the effectiveness
of our proposed methodology.

Table 2: A table containing the loss functions and evaluation metrics for the various tasks for both the datasets:
NYU-v2 and CelebAMask-HQ. In the table a downward arrow (↓) represents that a lower value is better while an
upward arrow (↑) represents a higher value is better. Also, IoU stands for intersection over union and MAE stands for
mean absolute error.

Dataset Tasks (T) Loss Functions Evaluation Metric

NYU-v2

Semantic segmentation T1 cross-entropy loss IoU (↑)

Depth estimation T2
Combination of errors in depth gradient
and surface normal(Hu et al. (2019)) MAE (↓)

Surface Normal estimation T3 Inverse cosine similarity cosine similarity (↑)
Edge detection T4 huber loss(Paul et al. (2022)) MAE (↓)
Semantic segmentation T1 cross-entropy loss IoU (↑)

CelebA
Mask-HQ

Binary classification
(attributes- male, smile, big lips,
high cheekbones, wearing lipstick,
bushy eyebrows)

T2 − T7 binary cross-entropy loss Accuracy (↑)

In this work, two widely recognized and publicly accessible datasets, the NYU-v2 dataset (Nathan Silberman
& Fergus (2012)) and CelebAMask-HQ dataset (Lee et al. (2020)), are used, hereafter referred to as NYU and
CelebA, respectively in this paper. Table 2 details the various tasks considered for each dataset, the respective
loss functions, and evaluation metrics (see Appendix or supplementary material for details). We have adopted
the standard loss functions (and metrics) as utilized in previous works such as Sun et al. (2020b); Upadhyay
et al. (2023a) and many others, to primarily focus on assessing the impact of sparsity on task performance and
avoiding performance enhancements that could arise from the use of complex, custom-designed loss functions.
Overall, in the NYU dataset, all the tasks are pixel-level tasks, segmentation is pixel-level classification, and
the rest are pixel-level regression. While in the celebA dataset, there is only one pixel-level (classification)
task, and the rest are image-level (classification) tasks. This set of tasks was chosen explicitly to extensively
evaluate the performance of the proposed approach across a wide range of task combinations, proving their
effectiveness and adaptability in many contexts.

As already discussed in Section 3, a very standard multi-task network architecture is chosen, which has a
backbone network i.e., the layers shared by all the tasks, and task-specific heads or layers are connected to
the output of the backbone, see Figure 2. We selected the dilated ResNet-50 (Yu et al. (2017)) architecture
as our backbone network due to its resilience to sparsity; even when sparsity leads to entire layers having
zero parameters, the residual connections within the network ensure continuity by effectively propagating
values forward. This characteristic maintains the network’s structural integrity and facilitates uninterrupted

14

Under review as submission to TMLR

information flow, making it an ideal choice for our experiments. For the dense prediction tasks, a deeplab-v3
network (Chen et al. (2017)) is employed as a task-specific network, and for the binary classification task, a
two-layer fully connected network is used. In the past, similar network designs and architecture were also
used by Kendall et al. (2018); Liebel & Körner (2018); Upadhyay et al. (2023a), and many more. For a fair
comparison of results and to maintain consistency across evaluations, all the experiments in this work use
the same architecture, loss functions, metrics, train-validation-test split, and hyperparameters. Models are
trained using NVIDIA A100 Tensor Core GPUs, which have 40 GB of onboard HBM2 VRAM. To assess the
reliability of the model, we conducted five replications of each experiment using distinct random seeds. The
findings are presented in terms of the mean and the standard deviation. To ensure reproducibility, the source
code can be accessed at: https://github.com/PLACEHOLDER TO THE GIT REPOSITORY

The following are the types of experiments designed and analyzed in this work-

• Experiments without group sparsity (using the dense model, λ = 0)

1. Single task learning - one model for each task.
2. Multi-task learning - employ a multi-task model for different task combinations.
3. Multi-task + meta-learning - learn the multi-task model parameter initialization only during

meta-training.
– These are also referred to as meta-learning baseline experiments in the subsequent text.

• Experiments with group sparsity (applying channel-wise structured sparsity on the backbone layers)

1. Single task learning + sparse backbone; Fixed sparsity (i.e., λ is fixed).
2. Multi-task learning + sparse backbone; Fixed sparsity (i.e., λ is fixed).
3. Multi-task learning + meta-sparse backbone; Learnable sparsity (i.e., λ is meta-learned).

– These are the meta-sparsity experiments designed to meta-learn both the parameter initial-
ization and hyperparameter (λ) that induces sparsity.

In experiments involving meta-learning, namely the meta-learning baseline (MTL + meta-learning) and
meta-sparsity (MTL + meta-learning + learnable sparsity), the performance of tasks under these three
settings is evaluated during meta-testing, utilizing the backbone learned during meta-training:

1. Meta-testing on the same tasks as meta-training.
2. Add a new task, and fine-tune only the new task.
3. Add a new task to the meta-training task and fine-tune all the tasks.

To clarify, adding a new task involves integrating a new decoder to the meta-trained (multi-task) backbone for
a task that has not been previously introduced i.e., during meta-training. Note that the single experiments
without and with fixed sparsity do not use meta-learning for parameter initialization. Meta-learning is
used in the MTL+ meta-learning (without sparsity) and meta-sparsity experiments. This means that the
meta-parameter initializations obtained from meta-training are used during meta-testing for these experiments.
Additionally, all the multi-task experiments are performed for 3-4 task combinations. Given the computation
requirement, not all the 2N − 1 combinations for N tasks are evaluated. For the NYU dataset, we examine
three multi-task scenarios: (i) the complete set (T1, T2, T3, T4) encompassing all tasks, (ii) a mixed set of
classification and regression tasks (T1, T2, T3) with one task reserved for meta-testing, and (iii) a subset of
solely regression tasks (T2, T3, T4), omitting the classification task for meta-testing purposes. Similarly, for
the celebA dataset, the following combinations are considered : (i) all the seven tasks i.e., (T1 − T7), (ii) all
the binary classification tasks i.e., (T2 − T7), and (iii) (T1, T2, T3, T7); other tasks with very similar attributes
primarily related to the mouth region of the image were added during meta-testing to study the performance.

5 Results and Discussion

This section primarily answers the following questions: why multi-task over single-task learning? Is the
meta-sparsity approach viable? Is the performance of meta-sparsity robust and stable? Do the observed

15

https://github.com/PLACEHOLDER_to_the_git_repo

Under review as submission to TMLR

Figure 3: For NYU dataset, task-wise performance comparison of single-task and multi-task no sparse (λ = 0, in blue),
fixed sparsity single and multi-task (for λ = 1× 10−4 in yellow and λ = 1× 10−3 in green) and meta sparsity (λ =
learned in red i.e., meta-sparsity) experiments. The vertical axis label is annotated with an upward or downward
arrow to indicate whether a higher or lower metric value is preferable. The values below each bar represent the
percentage of parameter sparsity in the backbone network. The ‘x3’ on the initial bar for task T4 indicates that the
depicted performance metric (MAE) is triple the current value represented by the bar. This notation is employed to
simplify the depiction of values that exhibit significant disparities. In these plots, we have selected a narrow range for
the y-axis to make it easier to compare the performances. However, this may have enhanced the visual effect of the
error bars representing the performance’s standard deviation. These results are also presented in tabular form in the
supplementary material Table A.1.

improvements in meta-sparsity performance compared to the meta-learning baseline result from the effec-
tiveness of meta-learning the sparsity hyperparameter, or are they merely a consequence of the advantages
of meta-learning itself? How do the meta-sparse multi-task models perform compared to the fixed sparsity
multi-task models? How effectively is the sparse backbone model processing a novel, unseen task? Therefore,
this section aims to provide comprehensive insight into the applicability and advantages of the proposed
meta-sparsity approach within MTL learning, supported by empirical evidence. Detailed results are provided
in the Appendix for further reference.

Note: For the fixed lambda experiments, we looked at how different tasks and combinations of tasks respond
to the same setting of a sparsity parameter, λ. This parameter controls the level or amount of sparsity, which
is measured in terms of (%) parameter sparsity4. We focused on three specific settings of this parameter:
1×10−3, 1×10−4, and 1×10−5 because these values induced sparsity in most of the single-task and multi-task
settings.

Assessing the viability of meta-sparsity: Figures 3 and 4 illustrate the task-wise performance for
the NYU and celebA datasets, respectively. For ease of comparison, the bar charts display the results for
single-task learning (both with and without fixed sparsity), multi-task learning (again, with and without
fixed sparsity), and meta-sparsity multi-task learning (featuring learned sparsity) across all tasks. For the
NYU dataset (Figure 3), for tasks T2 and T4, the meta-sparse multi-task models significantly outperform
compared to other model configurations. For task T3, these models achieve performance on par with their
counterparts, whereas for task T1, they slightly under-perform relative to the single or multi-task fixed
sparsity counterparts, while are equivalent or better than not sparse models. Meta-sparse models surpass
their fixed-sparsity counterparts in terms of performance despite having a lower level of parameter sparsity,
highlighting a trade-off between performance and sparsity.

4In this work, parameter sparsity refers to the proportion of the model’s parameters which are zeroed out, represented as a
percentage

16

Under review as submission to TMLR

Figure 4: For celebA dataset, task-wise performance comparison of single-task and multi-task no sparse (λ = 0, in
blue), fixed sparsity single and multi-task (for λ = 1× 10−5 in lavender, λ = 1× 10−4 in yellow and λ = 1× 10−3 in
green) and meta sparsity (in red) experiments. The vertical axis label is annotated with an upward or downward
arrow to indicate whether a higher or lower metric value is preferable. These results are also presented in tabular form
in the supplementary material Table A.3.

For the celebA dataset, meta-sparsity excels for some task combinations. However, specifically for the
task combination T1, T2, T3, T7, the performance across all the tasks, except for T1 (i.e., segmentation), is
undesirable. A probable reason behind this can be that the task ensemble involves classification tasks aimed
at significantly distinct attributes. This under-performance can primarily be attributed to task interference,
where the meta-sparsity approach faces challenges in identifying optimal features for sharing between tasks.
However, the expanded combination of T1 − T7 leads to improved performance for many of these tasks. This
improvement suggests that more related (similar attributes) tasks improve performance through enhanced
feature sharing among tasks facilitated by meta-sparsity. Some exceptions are discussed further in this section.

Regularization Stochasticity and discussion on performance stability: To enhance the visibility
and comparability of the performance differences, we chose a narrow y-axis range for the plots in Figure 3,
which may have amplified the visual impact of the variability of the error bars representing the standard
deviation. Please refer to Table A.1 in the supplementary material (which forms the basis of Figure 3),
which quantitatively demonstrates that the standard deviations of the performance metrics of the tasks are
consistently low (in the range of 0.001-0.0101). However, it is evident that for many tasks, the variance in the
performance of meta-sparsity is slightly greater than the rest (no sparsity and fixed sparsity). One probable
reason can be ‘Regularization Stochasticity’ (Sandjakoska & Bogdanova (2018)). It can be defined as the

17

Under review as submission to TMLR

variability in the learned sparsity patterns because of the stochastic nature of (mini-batch) gradient-based
optimization and the dynamic penalty-based sparsity applied during training. This stochasticity can result
in different paths of convergence and patterns of sparsity when the same experiment is run multiple times;
therefore, there is slight variability in the performance. Another factor to consider, that can amplify these
stochastic effects, is the random initialization of the strength of the regularization hyperparameter (λ), which
is trainable/learned in meta-sparsity. We sample the initial value of λ from a uniform distribution between
0.1 and 1. While this may seem like a small range, it can still lead to significant variations in the convergence
paths and the resulting sparsity patterns. The aforementioned reasons for performance instability are also
applicable to the CelebA dataset.

Stability in the amount (%) of sparsity with fixed λ and in meta-sparsity: As the preceding
subsection addresses performance stability, it is also essential to look at the stability of percentage sparsity
over the experiments. Table A.1 in the supplementary material presents the percentages of group sparsity
and parameter sparsity for the NYU-v2 dataset, while task performance is also illustrated in Figure 3. In
both single-task and multi-task experimental settings, under fixed sparsity, the percentage of group and
parameter sparsity exhibits significant variance (high standard deviation) across multiple trials. The high
variance comes from differences in parameter initialization, causing small differences in the trained parameters
(regularization stochasticity as discussed above). These small changes can disproportionately impact sparsity
by leading to the elimination of entire groups or channels of the parameter matrices, resulting in considerable
fluctuations in overall sparsity levels. In contrast, the meta-sparsity experiments demonstrate substantially
lower variance in percentage sparsity, highlighting the robustness of the proposed approach. This behavior
can be observed for both datasets (see Tables A.1 and A.3 in the supplementary material). The NYU dataset
exhibits greater variability in the percentage sparsity of the meta-sparsity experiments compared to the
CelebA dataset. This is because NYU tasks involve dense, pixel-level predictions, which demand diverse and
task-specific adjustments to the sparsity patterns across different layers of the shared network to preserve
important features. In contrast, the classification tasks of the celebA dataset share more uniform feature
extraction needs, resulting in comparatively more consistent sparsity levels during meta-training.

Comparative performance analysis: Before evaluating the proposed meta-sparsity approach, we would
like to provide an insight into why MTL is preferred over single-task learning. Experiments (Figures 3 and 4)
typically show that tasks perform better in a multi-task environment compared to a single-task environment.
This observation emphasizes the importance of utilizing multi-task learning episodes. Additionally, the
amount of sparsity varies depending on the specific task (in single-task scenarios) and the combination of
tasks (in multi-task scenarios). There is no clear trend in sparsity levels that might help to predict how the
sparsity of a multi-task model changes in relation to the number of tasks. It can be inferred that sparsity is
affected by the nature and interconnection of the tasks involved. Further elaboration on task performance in
the celebA dataset is provided in the following subsections.

Interestingly, when analyzing the outcomes for the celebA dataset, we noticed that for the lowest value i.e.,
1× 10−5, the experiments, both single and multi-task, show no sparsity at all, and the performance is also
similar to the without sparsity setting. While for 1 × 10−3 and 1 × 10−4, they exhibit very high sparsity
(around 85% - 95%) in just one or two epochs, but this comes at the cost of not being trained enough, which
negatively affects its performance (not for single tasks). This is the reason behind the poor performance of
all the tasks for λ = 1× 10−3 and 1× 10−4, see the Figure 4 (the lavender and yellow bars). In the case of
single-task experiments, they perform better since the feature requirement in single-task settings is much
simpler (straightforward) than in multi-task settings. From the above analysis, it is logical to infer that other
values of λ, both lower than 1× 10−5 and higher than 1× 10−3, would exhibit similar behaviors. Specifically,
values below 1× 10−5 may not cause considerable sparsity, potentially resulting in overfit models without
performance advantages, while values above 1× 10−3 may result in sparse models early in training, impeding
learning and performance. This conjecture highlights the delicate balance needed to optimize sparsity and
model performance when selecting λ. This fuels the rationale behind the primary aim of this research, which
is to learn the optimal sparsity parameter λ, which in turn is expected to enhance performance.

Also, for the task T7 i.e., bushy eyebrows/ no bushy eyebrows, the performance of meta sparsity is not
up to the mark for any of the task combinations. This shortfall could be attributed to the unique nature
of the task. Most selected tasks are associated with attributes of the entire image, such as segmentation

18

Under review as submission to TMLR

Table 3: Performance comparison between the proposed meta-sparsity approach (with meta-learnable λ) and a
conventional meta-learning baseline that only learns parameter initialization in an MTL setting, evaluated on the
NYU dataset. The baseline incorporates both multi-task and meta-learning approaches while omitting sparsification.
This table compares the performance of the tasks for NYU dataset when a new unseen task is added during the
meta-testing stage. The new tasks are highlighted in blue, and the best (mean value) metrics for each task are in bold.

Meta- Meta- Segmentation Depth est. SN est. Edge det. Parameter
training testing T1 T2 T3 T4 sparsity

IoU(↑) MAE(↓) CS(↑) MAE(↓) (%)
MTL + meta-learning (without any sparsity in the shared backbone, λ = 0)

T1,T2,T3 T1,T2,T3 0.2750 ± 0.0109 0.1449 ± 0.0006 0.7263 ± 0.0009 0
T2,T3,T4 T2,T3,T4 0.1563 ± 0.0048 0.7278 ± 0.0018 0.1414 ± 0.0037 0

T1,T2,T3,T4 T1,T2,T3,T4 0.2769 ± 0.0039 0.1476 ± 0.0050 0.7235 ± 0.0017 0.1441 ± 0.0030 0
Adding unseen tasks during meta-testing in MTL+meta-learning

T1,T2,T3 T1,T2,T3,+T4 0.2796 ± 0.0053 0.1467 ± 0.0033 0.7257 ± 0.0050 0.1380 ± 0.0009 0
T1,T2,T3 finetuning only T4 - - - 0.1541 ± 0.0028 0

T2,T3,T4 T2,T3,T4,+T1 0.2704 ± 0.0064 0.1497 ± 0.0059 0.7237 ± 0.0048 0.1428 ± 0.0024 0
T2,T3,T4 finetuning only T1 0.2619 ± 0.0038 - - - 0

Meta-Sparsity (MTL+ meta-learning + group sparsity, λ = meta-learnable)

T1,T2,T3 T1,T2,T3 0.2937 ± 0.0091 0.1409 ± 0.0035 0.7460 ± 0.0073 43.4391 ± 0.1925
T2,T3,T4 T2,T3,T4 0.1412 ± 0.0040 0.7402 ± 0.0080 0.1386 ± 0.0019 43.7577 ± 0.1886

T1,T2,T3,T4 T1,T2,T3,T4 0.2923 ± 0.0101 0.1397 ± 0.0037 0.7414 ± 0.0055 0.1395 ± 0.0021 44.1159 ± 0.3696
Adding unseen tasks during meta-testing in Meta-Sparsity

T1,T2,T3 T1,T2,T3,+T4 0.3003 ± 0.0067 0.1389 ± 0.0030 0.7438 ± 0.0005 0.1404 ± 0.0015 43.4391 ± 0.1925
T1,T2,T3 finetuning only T4 - - - 0.1431 ± 0.0020 43.4391 ± 0.1925

T2,T3,T4 T2,T3,T4,+T1 0.2950 ± 0.0069 0.1378 ± 0.0020 0.7444 ± 0.0017 0.1386 ± 0.0003 43.7577 ± 0.1886
T2,T3,T4 finetuning only T1 0.2828 ± 0.0392 - - - 43.7577 ± 0.1886

and gender classification, or specifically relate to the mouth area, including distinctions like smiling/not
smiling, having big lips/no big lips, and wearing lipstick/not wearing lipstick; the sparse features dominate
towards these tasks. In contrast, task T7 is the only task that concentrates on the eye region, specifically
eyebrows, which likely requires features different from those needed for the other tasks, which is why its
performance in isolation is much better. Similarly, the semantic segmentation task T1 from the NYU dataset
performs satisfactorily in a fixed-sparsity situation but does not reach comparable performance levels under
meta-sparsity (although there is a significant standard deviation). This discrepancy is likely due to the nature
of T1 as the sole pixel-level classification task among others that are pixel-level regression tasks, suggesting
that sparse meta-parameters might not be well-suited to support T1 effectively. Overall, it can be summarized
that the relatedness of the tasks influences their feature requirements, which in turn dictates both the sparsity
pattern and performance outcomes. The competitive and cooperative dynamics of MTL might cause some
tasks to struggle or perform poorly in the ensemble while others may excel. It emphasizes the significance of
cautiously choosing and balancing tasks in an ensemble to enhance overall performance and sparsity efficiency.

Comparing meta-sparsity and MTL + meta-learning (meta-learning baseline): Tables 3 and 4 offer
a comparison between the proposed meta-sparsity approach and a baseline meta-learning method without
sparsification in a MTL setup. The proposed meta-sparsity approach performs better than the conventional
meta-learning baseline across almost all evaluated tasks for both datasets. It is important to observe that the
performance metrics of single-task and standard multi-task experiments frequently match closely with the
meta-learning baseline. The performance of the baseline meta-learning approach may, in certain instances, be
marginally inferior to that of standard MTL (without sparsity). This suggests meta-learning gains may not
always translate into large improvements across all tasks. It might be because a meta-learning approach that
focuses on optimizing for a shared initialization across tasks may face difficulties in sufficiently capturing
the distinct features of individual tasks, particularly when tasks are diverse. The performance gains in
meta-sparsity can be noticed when introducing unseen tasks during the meta-testing stage and fine-tuning
only the new tasks. Further details on this comparison are provided in the next sub-section, while this
section focuses specifically on comparison with the meta-learning baseline. In the meta-learning baseline

19

Under review as submission to TMLR

Table 4: Performance comparison between the proposed meta-sparsity approach (with meta-learnable λ) and a
conventional meta-learning baseline that only learns parameter initialization in an MTL setting, evaluated on the
celebA dataset. The baseline incorporates both multi-task and meta-learning approaches while omitting sparsification.
This table compares the performance of the tasks for celebA dataset when a new unseen task is added during the
meta-testing stage. The new tasks are highlighted in blue, and the best (mean value) metrics for each task are in bold.

Meta- Meta- Segmen- male smile biglips highcheek wearing bushy Parameter
training testing tation bones lipstick eyebrows sparsity

T1 T2 T3 T4 T5 T6 T7
IoU(↑) Accuracy(↑) Accuracy(↑) Accuracy(↑) Accuracy(↑) Accuracy(↑) Accuracy(↑) (%)

MTL + meta-learning (without any sparsity in the shared backbone, λ = 0)

T1-T7 T1-T7 0.8922±0.0067 0.8467±0.0108 0.6446±0.0021 0.6010±0.0013 0.6272±0.0018 0.9138±0.0020 0.5993±0.0510 0
T2-T7 T2-T7 0.6297±0.0100 0.5071±0.0022 0.5993±0.0012 0.5221±0.0010 0.7560±0.0078 0.6053±0.0480 0

T1,T2,T3,T7 T1,T2,T3,T7 0.8942±0.0010 0.6297±0.0100 0.5261±0.0030 0.6103±0.0501 0
Adding unseen tasks during meta-testing in MTL+meta-learning

T2-T7 T2-T7, +T1 0.8731±0.0159 0.9479±0.0136 0.5261±0.0024 0.6140±0.0014 0.5905±0.0118 0.9127±0.0080 0.6223±0.0173 0

T2-T7
finetune 0.8913±0.0015 - - - - - - 0only T1

T1,T2,T3,T7
T1,T2,T3,T7, 0.8944±0.0022 0.9494±0.0257 0.5261±0.0016 0.6340±0.0031 0.5221±0.0095 0.9205±0.0098 0.6223±0.0105 0+ T4,T5,T6

T1,T2,T3,T7
finetune only - - - 0.6290±0.0021 0.5221±0.0015 0.7620±0.0306 - 0

T4,T5,T6

Meta-Sparsity (MTL+ meta-learning + group sparsity)

T1-T7 T1-T7 0.9007±0.0012 0.9669±0.0014 0.9014±0.0043 0.6330±0.1680 0.8235±0.0104 0.9068±0.0165 0.6885±0.0936 43.6893±0.3593
T2-T7 T2-T7 0.9004±0.0203 0.7618±0.1602 0.6330±0.0720 0.7562±0.1109 0.8703±0.0154 0.6223±0.0002 30.2145±0.0016

T1,T2,T3,T7 T1,T2,T3,T7 0.9034±0.0013 0.7386±0.0188 0.5261±0.0010 0.6223±0.0010 30.0187±0.0011
Adding unseen tasks during meta-testing in Meta-Sparsity

T2-T7 T2-T7, +T1 0.8985±0.0027 0.9615±0.0051 0.8977±0.0072 0.6330±0.0091 0.8278±0.0057 0.9102±0.0144 0.7529±0.0199 30.2145±0.0016

T2-T7
finetune 0.9033±0.0019 - - - - - - 30.2145±0.0016only T1

T1,T2,T3,T7
T1,T2,T3,T7, 0.9019±0.0005 0.9559±0.0191 0.8995±0.0116 0.6330±0.0130 0.8206±0.0066 0.9073±0.0070 0.7250±0.0890 30.0187±0.0011+ T4,T5,T6

T1,T2,T3,T7
finetune only - - - 0.6330±0.0011 0.7373±0.0117 0.8812±0.0096 - 30.0187±0.0011

T4,T5,T6

experiments involving the addition of unseen tasks, the meta-model adapts to these additional tasks, resulting
in performance levels comparable to that observed in single-task and multi-task configurations. However,
there is no significant improvement in performance, except for a few tasks within the celebA dataset.

As stated, meta-learning aims to find an optimal parameter initialization that shows good generalization
across various tasks. In the MTL setting, it is worth noticing that parameter initialization alone may not
be sufficient for effectively learning various tasks. This shared initialization lacks inherent specialization for
capturing the distinct and refined features of individual tasks. This limitation affects its ability to generalize,
particularly in the context of unseen tasks. Overall, the results show that integrating group sparsity into
the meta-learning + MTL framework (i.e., resulting in meta-sparsity) improves the overall performance and
boosts the generalizability of the learned shared representations. This is mainly because group sparsity, by
reducing redundant parameters, forces the model to focus on features beneficial for both shared learning
and individual task performance, thereby enhancing the adaptability of the model. Hence, the interaction
of MTL, meta-learning, and group sparsity (in meta-sparsity) can generalize better, adapt more efficiently
to new tasks, and deliver higher performance compared to the meta-learning baseline that lacks sparsity,
thereby validating the hypothesis presented in Section 3.

Evaluating the efficacy of meta-sparse backbone: We study the effectiveness of the sparse backbone
by introducing novel, previously unseen tasks during the meta-testing stage, i.e., a task different from the
ones the model is meta-trained on. So, both the task and the data during meta-testing are unseen. We
studied the performance of the sparse shared backbone network under two distinct scenarios: firstly, when
the new task is integrated alongside the tasks from the meta-training phase, and secondly, when the model is
fine-tuned exclusively on the new task. Note that the level of sparsity achieved during the meta-training
stage is maintained during meta-testing by masking the layers that were zeroed out. Tables 4 and 3 show the
performance of the new tasks for the celebA and NYU datasets, respectively. For comparison, we also show
the performance of the meta-trained tasks during meta-testing.

20

Under review as submission to TMLR

Table 5: Performance analysis of the sparsification approaches presented in Figure 1, for the NYU-v2 datset.

Sparsification Sparsity parameter Segmentation Depth est. SN est. Edge det.
approaches patterns init. before T1 T2 T3 T4

sparsification IoU(↑) MAE(↓) CS(↑) MAE(↓)

One-shot
Mask-1, magnitude MTL dense 0.2345 ± 0.0008 0.1777 ± 0.0097 0.6601 ± 0.0250 0.3069 ± 0.0325
Mask-3, random MTL dense 0.3185 ± 0.0010 0.1337 ± 0.0018 0.7412 ± 0.0027 0.1318 ± 0.0026
Meta mask MTL dense 0.2308 ± 0.0106 0.1682 ± 0.0065 0.6897 ± 0.0062 0.3036 ± 0.0214

Iterative Mask-2, iterative magnitude MTL dense 0.3082 ± 0.0094 0.1367 ± 0.0014 0.7346 ± 0.0043 0.1353 ± 0.0008
Meta mask MTL dense 0.3008 ± 0.0080 0.1373 ± 0.0007 0.7314 ± 0.0027 0.1356 ± 0.0008

Progressive
Mask-2, iterative magnitude random 0.3855 ± 0.0139 0.1491 ± 0.0209 0.7800 ± 0.0102 0.1957 ± 0.0161
Mask-3, random random 0.3740 ± 0.0155 0.1361 ± 0.0040 0.7772 ± 0.0079 0.2176 ± 0.0228
Meta mask random 0.4018 ± 0.0082 0.1391 ± 0.0007 0.7877 ± 0.0060 0.1978 ± 0.0017

Sparse training
Mask-1 , magnitude random 0.2918 ± 0.0112 0.1488 ± 0.0049 0.7202 ± 0.0058 0.2289 ± 0.0035
Mask-3, random random 0.2959 ± 0.0077 0.1530 ± 0.0009 0.7180 ± 0.0033 0.2389 ± 0.0105
Meta mask random 0.3906 ± 0.0087 0.1282 ± 0.0050 0.7827 ± 0.0022 0.2001 ± 0.0102

Meta-sparsity Meta-mask/pattern random 0.2923 ± 0.0101 0.1397 ± 0.0037 0.7414 ± 0.0055 0.1395 ± 0.0021

Note: Mask-1, one-shot sparsification by eliminating the lowest magnitude weights(Janowsky (1989)).
Mask-2, iterative magnitude sparsification by eliminating the lowest magnitude weights in steps.
Mask-3, random sparsification.
Meta-mask is the optimal sparsity pattern/mask learned by the meta-sparsity experiment.
The % parameter sparsity is kept constant across all the experiments, equal to the meta-sparsity achieved, i.e.,∼44.11%.

For the celebA dataset, when tasks T4, T5, T6 are added to the pre-existing set of tasks T1, T2, T3, T7 for
meta-testing, the performance across the tasks improves or remains stable, without any significant degradation.
Notably, task T3 (smile classification) shows significant improvement with the inclusion of mouth-related
tasks T4 (big lips/no-big lips) and T6 (wearing lipstick/not wearing lipstick) due to more focused learning on
mouth features. Similarly, tasks T2 (male classification) and T7 (bushy eyebrows classification) benefit from
this refined feature extraction, enhancing performance. Similar observations can be made when semantic
segmentation T1 (i.e., a pixel-level task) is added to the mix of classification tasks (T2−T7). The segmentation
task demands pixel-level, fine-grained image understanding, which enhances the shared feature representation,
benefiting the classification tasks with more robust and discriminative features. For the NYU dataset (see
Table 3), in both the cases, i.e., addition of T1 and T4, the performances of the tasks are consistent when
compared to the outcomes of other settings. When these tasks are fine-tuned in a multi-task setting along
with other tasks, there is either slight improvement or maintenance of performance levels for the existing
tasks without any observed degradation.

These observations highlight the advantages of MTL, where simultaneous training on multiple tasks can
lead to better overall performance through shared insights and learning dynamics. It also highlights the
performance consistency across tasks, i.e., the sparse backbone demonstrates robust behavior even when new
tasks are introduced in the mix. Occasionally, it is noticed that the addition of new tasks might also enhance
the performance of meta-training (old) tasks. This suggests that the tasks mutually support and improve
learning. Furthermore, the fact that meta-training tasks maintain stable performance during meta-testing,
even with the introduction of new tasks, suggests that the proposed method is robust and may help prevent
negative information transfer.

Comparisons with other sparsity baselines: To give a baseline performance comparison of the proposed
meta-sparsity approach with other sparsification methods, Table 5 presents a comparison in three levels:
(i) Sparsification approaches illustrated in Figure 1, (ii) Sparsity patterns are also referred to as masks in
this discussion, and (iii) Parameter initialization before sparsification. For a fair comparison between the
approaches, we forced all the sparsification methods to maintain the same % parameter sparsity achieved
by meta-sparsity. From Table 5 it is evident that there is no one approach which works the best for all
the tasks. The lowest magnitude parameter elimination for progressive and iterative sparsification shows
promising results for T1, T2, T3, but for T4 the performance is suboptimal. Zeroing out the parameters
randomly also shows some promising performance. However, it is to be noted that these performances are at
an optimal sparsity budget(∼44%) learned by meta-sparsity. As the above table shows, meta-sparsity achieves
comparable performance across all tasks. The strength of our approach lies in its ability to dynamically
(meta) learn sparsity patterns, which leads to an optimal amount of sparsity. Other methods require a sparsity
budget, thresholds, or a sparsity step in case of iterative and progressive sparsification to regulate the level of
sparsity, and very often, it is very tedious to find the correct balance between sparsity percentage and task
performance. To verify the viability of the learned meta-sparsity patterns, we applied the learned meta-mask

21

Under review as submission to TMLR

across various sparsification approaches. The meta mask/pattern consistently performed well for almost all
tasks and across all approaches, demonstrating that the learned pattern is an optimal sparsity pattern for
various tasks in an MTL setting.

Figure 5: This figure presents a comparison of performance against both the compression ratio (top row) and speed-up
(bottom row) across all tasks within the NYU dataset, with meta-sparsity experiments distinctly marked by red circles.
It is important to note that the upward arrow (↑) on the y-axis denotes that a higher value of the metric is preferable,
and the downward arrow (↓) represents that a lower value of the metric is preferable. The tabulated metrics are
presented in Table A.4 in the supplementary material.

Other sparsity metrics: In the context of sparse models, compression ratio5 (CR) and speed-up6 (Sp) are
two important metrics that quantify the application of sparsity(Blalock et al. (2020)). The compression ratio
measures the extent of model compression by comparing the size (in a number of parameters) of the original
model with the compressed model. Speed-up is not a direct measure of the size reduction; it is a result of
model compression. Due to sparsity, when a model is compressed, it typically requires fewer computational
resources i.e., FLOPs, which can lead to faster processing times. Therefore, speed-up is an indirect measure
of the operational efficiency of a model achieved due to model compression.

Figure 5 shows the task-wise compression ratio and speed-up achieved due to the fixed sparsity and meta
sparsity for different task combinations. The meta-sparsity metrics are circled in red. Except for task T1
(segmentation), these figures illustrate a trade-off between performance and both compression and speed.
This observation aligns with our earlier discussion on parameter sparsity vs performance in the comparative
performance analysis subsection. For example, in task T2 (depth estimation), models with meta-sparsity
achieve a computation speed of approximately 1.6× faster than those of the dense backbone network. While
fixed-sparsity models may be faster and more compressed than their meta-sparsity counterparts, this advantage
often results in a trade-off with performance. For the segmentation task, it is apparent that meta-sparsity fails
to boost performance and does not meet the anticipated outcomes. While the fixed sparsity models achieve
notably greater compression, they can increase their speed by fourfold and exceed expected performance
levels.

Sparsity profiles: Sparsity profiles illustrate the dynamic changes in the proportion of zero or inactive
parameters within a model during the training process, effectively mapping the evolution of model compactness.
Figure 6 illustrates the parameter sparsity profiles for the fixed and meta-sparsity experiments during
training. It is evident from Figure 6(a) and 6(b) that sparsity increases sharply early in training and then
plateaus, suggesting that sparsity is introduced quickly and maintained throughout the training process. The

5CR =
total parameters

no. of nonzero parameters
6Sp =

total F LOP s

no. of nonzero F LOP s
; FLOPs = floating point operations

22

Under review as submission to TMLR

(a) single-task fixed sparsity (b) multi-task fixed sparsity (c) multi-task meta sparsity

Figure 6: Parameter sparsity patterns while training for (a) single-task fixed sparsity, (b) multi-task fixed sparsity,
and (c) multi-task meta sparsity experiments. In the above plots, T1 represents semantic segmentation, T2 represents
depth estimation, T3 represents surface normal estimation, and T4 represents edge detection tasks. In the fixed
sparsity plots i.e., (a) and (b), the dotted lines represent the experiments where λ = 1× 10−4, while the solid lines
represent the sparsity pattern when λ = 1× 10−3.

experiments with λ = 1× 10−4 attain lower levels of parameter sparsity as compared to the λ = 1× 10−3; this
is obvious since λ defines the strength of sparsity. Moreover, sparsity is achieved more swiftly in single-task
setups than in multi-task ones. This is because MTL needs more iterations to determine which features are
unnecessary for the ensemble and may be removed.

In Figure 6(c), which shows the sparsity profile for meta-sparsity settings, the sparsity levels appear more
stable and less variable over iterations than fixed sparsity settings. The lines are relatively flat, indicating
that once the sparsity level is set, it doesn’t change much during the training for a very long time. This
could suggest that meta-sparsity leads to a more consistent sparsity pattern, resulting in the consistent
performance of the sparse model. A stable sparsity pattern may indicate that the model has learned a general
representation that is not overly fitted to the noise or eccentricity of the training data, which can lead to
better generalization on unseen data (or tasks).

Structured vs unstructured sparsity: In this work, we have focused on meta-sparsity within the context
of a group (channel-wise) or structured sparsity. We propose that meta-sparsity is a versatile concept,
extendable to various forms of sparsity—be it structured, unstructured, penalty-driven, or any other pruning
methods controlled by hyperparameters (denoted by λ in this case). To support our claim, we extended the
use of meta-sparsity to include fine-grained l1 (unstructured) sparsity under various experimental scenarios:
single-task fixed sparsity, multi-task fixed sparsity, and multi-task meta-sparsity.

Figure 7 shows the sparsity profile under l1 − l2 and l1 type penalty-based sparsity settings. Figures 7(a) and
(b) specifically address fixed sparsity scenarios, where the comparison reveals that models under l1 sparsity
achieve sparsity levels comparable to those subjected to group sparsity (l1 − l2). The increase of parameter
sparsity in models with l1 regularization follows a linear steady pattern. In contrast, models with l1 − l2
regularization exhibit initial volatility in parameter sparsity, characterized by quick increases or variations.
This is mainly because parameter groups are collectively deactivated in the structured sparsity approach. The
performance of the tasks under structured and unstructured sparsity is mostly similar, with the exceptions
of a few tasks performing well in a structured setting; see Tables 1 and 2 in the Appendix for a detailed
comparison of the task-wise performance.

In the case of the meta-sparsity setting i.e., Figure 7(c), it is evident that the structured sparsity gives stable
sparsity patterns, while those for unstructured sparsity are highly variable with too many fluctuations. The
stability could be beneficial in practical applications where consistent performance is crucial. The variability in
unstructured sparsity may reflect a continuous adaptation to the learning task, which could be advantageous
in non-stationary environments where the model needs to constantly adjust.

23

Under review as submission to TMLR

(a) single-task fixed sparsity (b) multi-task fixed sparsity (c) multi-task meta sparsity

Figure 7: Parameter sparsity patterns for structured (l1 − l2 channel-wise group sparsity, solid lines) and unstructured
sparsity (fine-grained l1 sparsity, ‘_.’ lines) while training for (a) single-task fixed sparsity, (b) multi-task fixed sparsity,
and (c) multi-task meta sparsity experiments. In the above plots, T1 represents semantic segmentation, T2 represents
depth estimation, T3 represents surface normal estimation, and T4 represents edge detection tasks for the NYU
dataset.

Overall, we show that the proposed approach of meta-sparsity can learn both structured and unstructured
sparsity. However, the choice between these forms of sparsity depends on the specific requirements of the use
case at hand. While unstructured sparsity often leads to greater model compression by zeroing out more
parameters, this may come at the cost of network performance (Hoefler et al. (2021)). Structured sparsity, on
the other hand, is better suited to the needs of current hardware designs. By zeroing out entire channels
or filters, the sparse network architecture can be implemented more effectively on the current hardware
accelerators like GPUs or specialized ASICs. When combined with hardware acceleration, structured sparsity
can significantly reduce computation time. On the other hand, unstructured sparsity may not result in
computational speedups without specific hardware support since the remaining non-zero values are dispersed
throughout the matrix, prohibiting the efficient use of vectorized operations.

Regrowing the parameters: As discussed earlier, regrowing refers to the process of systematically
reintroducing the sparsified parameters, which allows the network to recover from over-sparsification. While
this concept has been outlined in Section 3, it should be noted that the empirical results presented did not
involve any regrowth (i.e., rp = 0). The rationale behind this was to focus our analysis on evaluating the
effectiveness of the proposed meta-sparsity approach. Adding regrowth would require adjusting another
hyperparameter, which could affect the clarity of our findings on meta-sparsity.

Table 6: Average performance for the four task combination i.e., (T1, T2, T3, T4) of the NYU dataset under the
meta-sparsity setting for various values of the regrowth parameter, rp. The regrow parameter, say rp = x, signifies
that there is a x% chance that any sparsified channel will be regrown or reintroduced. In this work, we use Xavier
initialization (Glorot & Bengio (2010)) to set the new values of the regrown filters. rp = 0 represents the case when
none of the parameters is re-grown during meta-training.

Regrow Segmentation Depth est. SN est. Edge det. Parameter
prob. T1 T2 T3 T4 sparsity

rp IoU(↑) MAE(↓) CS(↑) MAE(↓) (%)

0 (no regrow) 0.2923 0.1397 0.7414 0.1395 44.1159
0.2 0.3177 0.1339 0.7514 0.1398 30.1157
0.4 0.3100 0.1409 0.7437 0.1405 30.0186
0.6 0.3137 0.1356 0.7500 0.1382 29.9991
0.8 0.3170 0.1351 0.7472 0.1409 31.0982

24

Under review as submission to TMLR

(a) Segmentation (b) Depth estimation

(c) SN estimation (d) Edge detection

Figure 8: Comparison of the no-regrow (for rp =0, in black dotted lines) vs regrow (for rp = 0.1, 0.2, 0.3,.., 0.9) on
the performance of the tasks during meta-training.

Figure 8 illustrates the subtle impact of the regrowth rate on the meta-training phase of the different tasks.
It is evident from the plots that the presence of regrowth leads to faster convergence, which indicates that
reintroducing the parameters helps the model quickly find the optimal parameters. Although there are not
very significant performance gains during meta-training. The test performance of some of these models that
incorporated regrowth is shown in Table 6, along with the % parameter sparsity. This table compares the
no-regrow setting to the regrow settings with rp = 0.2, 0.4, 0.6, 0.8. Analysis of the table reveals minimal
performance improvements observed with different regrowth rates, except for the segmentation task. However,
the model with regrowth is relatively less sparse than the one without regrowth. Figure 8 and Table 6 suggest
that an optimal regrowth probability may exist, which balances the trade-offs between model compression
and learning efficacy.

6 Conclusion and future scope

This study demonstrates that model sparsity can be a learnable attribute rather than a feature determined
by heuristic hyperparameters. Our proposed framework for learned sparsity, also referred to as meta-sparsity,
shows that models may be (meta-)trained to naturally adopt sparse structures, eliminating the need for
manual tuning of sparsity levels. Our outcomes show that this strategy can produce models that are not
only efficient and compact but also perform well on a variety of tasks. Although the segmentation task for
the NYU dataset, in particular, poses a challenge due to its inherent complexity, such as dense pixel maps
of around 40 segmentation classes, the meta-sparsity framework has proved robust. This study especially
focused on the MAML framework within the context of meta-learning. However, it is acknowledged that
various advanced extensions of MAML or similar gradient-based meta-learning algorithms can potentially
improve performance and are viable alternatives for implementation in this work. The aim of this study
extends beyond merely enhancing the performance of the tasks; it proposes a concept that could lead to the
development of parsimonious models.

25

Under review as submission to TMLR

Theoretically, the proposed meta-sparsity approach is versatile and can be applied to any number and types
of tasks, as well as various types of sparsity. Based on the experiments, we have identified a few scenarios
where the method may prove to be highly effective-

• Similar or closely related tasks: The definition of similar tasks is very subjective; however, in the
context of this work, they can consider them as tasks that may require some similar set of features.
Our experiments indicate that meta-sparsity performs best when the tasks are similar or closely
related, like depth estimation, surface normal estimation, segmentation, and edge detection for
the NYU-v2 dataset. In such cases, the approach is better able to identify and leverage optimal
shared sparse patterns that benefit all tasks involved. When tasks are highly diverse, it may be
more challenging to find an optimal shared sparse pattern that effectively supports all the tasks.
In such cases, the variability in the task feature requirement can make it difficult to achieve good
performance for all the tasks. The performance of the task combination T1, T2, T3, T7 for celebA is
one such example.

• Inclusion of pixel-level tasks: Adding a pixel-level task to the task mix can enhance the performance
of all tasks, as observed in our experiments with the CelebA dataset (T1 − T7 vs T2 − T7, here T1 is
the only pixel level task). Pixel-level tasks require more granular features, which may also benefit
image-level tasks by providing richer feature representations.

Our approach represents a step towards developing black box sparsity, i.e., allowing models to learn an optimal
sparsity pattern. This approach is not limited to a specific model, task, or type of sparsity. It is strengthened
by the concept of meta-learning, which learns the sparsity pattern across a range of tasks and allows easy
integration of new tasks to the sparse models. MTL facilitates the joint training of diverse tasks within a
single model. When combined with sparsity, MTL not only helps with model compression but also enhances
the task’s performance by effective feature sharing between the tasks.

In continuation of this work, various directions could be pursued. A few of them are listed below:

Structured sparsity in diverse architectures: Although structural sparsity has demonstrated potential in
networks with residual connections like ResNet architectures, its applicability to other networks remains
unclear. Future research might examine how different types of structured or block sparsity could be customized
for different network architectures.

Task transference in sparse models: Exploring task transference in sparse multi-task models is a promising
direction for further research. Investigating the sparse features that promote better sharing across tasks could
provide new insights into multi-task networks and the impact of sparsity on cooperative learning.

Hardware efficiency of sparse models: It is also necessary to investigate how sparse models align with present
and upcoming hardware capabilities. The aim is to translate model compression due to sparsity into tangible
computational efficiency and speed improvements on different hardware platforms.

Acknowledgments

Acknowledgments will be stated after the double-blind review process.

References
Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul, Brendan

Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient descent. Advances
in neural information processing systems, 29, 2016.

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Multi-task feature learning. Advances in
neural information processing systems, 19, 2006.

Francis Bach, Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, et al. Optimization with sparsity-
inducing penalties. Foundations and Trends® in Machine Learning, 4(1):1–106, 2012.

26

Under review as submission to TMLR

Sungyong Baik, Myungsub Choi, Janghoon Choi, Heewon Kim, and Kyoung Mu Lee. Meta-learning with
adaptive hyperparameters. Advances in neural information processing systems, 33:20755–20765, 2020.

Jonathan Baxter. Theoretical models of learning to learn. In Learning to learn, pp. 71–94. Springer, 1998.

Sarah Bechtle, Artem Molchanov, Yevgen Chebotar, Edward Grefenstette, Ludovic Righetti, Gaurav
Sukhatme, and Franziska Meier. Meta learning via learned loss. In 2020 25th International Confer-
ence on Pattern Recognition (ICPR), pp. 4161–4168. IEEE, 2021.

Y. Bengio, S. Bengio, and J. Cloutier. Learning a synaptic learning rule. In IJCNN-91-Seattle International
Joint Conference on Neural Networks, volume ii, pp. 969 vol.2–, 1991. doi:10.1109/IJCNN.1991.155621.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of neural
network pruning? Proceedings of machine learning and systems, 2:129–146, 2020.

Ondrej Bohdal, Yongxin Yang, and Timothy Hospedales. Evograd: Efficient gradient-based meta-learning and
hyperparameter optimization. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 22234–22246. Curran
Associates, Inc., 2021.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in
Machine learning, 3(1):1–122, 2011.

Miguel A. Carreira-Perpinan and Yerlan Idelbayev. "learning-compression" algorithms for neural net pruning.
In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8532–8541, 2018.
doi:10.1109/CVPR.2018.00890.

Rich Caruana. Multitask learning. Machine learning, 28:41–75, 1997.

Jianhui Chen, Lei Tang, Jun Liu, and Jieping Ye. A convex formulation for learning shared structures from
multiple tasks. In Proceedings of the 26th Annual International Conference on Machine Learning, ICML
’09, pp. 137–144, New York, NY, USA, 2009. Association for Computing Machinery. ISBN 9781605585161.
doi:10.1145/1553374.1553392.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous convolution
for semantic image segmentation, 2017. arXiv:1706.05587.

Yixiong Chen, Li Liu, Jingxian Li, Hua Jiang, Chris Ding, and Zongwei Zhou. Metalr: Meta-tuning of learning
rates for transfer learning in medical imaging. In Hayit Greenspan, Anant Madabhushi, Parvin Mousavi,
Septimiu Salcudean, James Duncan, Tanveer Syeda-Mahmood, and Russell Taylor (eds.), Medical Image
Computing and Computer Assisted Intervention – MICCAI 2023, pp. 706–716, Cham, 2023. Springer
Nature Switzerland. ISBN 978-3-031-43907-0.

Patrick L Combettes and Valérie R Wajs. Signal recovery by proximal forward-backward splitting. Multiscale
modeling & simulation, 4(4):1168–1200, 2005.

Michael Crawshaw. Multi-task learning with deep neural networks: A survey. arXiv preprint arXiv:2009.09796,
2020.

Tristan Deleu and Yoshua Bengio. Structured sparsity inducing adaptive optimizers for deep learning. arXiv
preprint arXiv:2102.03869, 2021.

Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. Model compression and hardware acceler-
ation for neural networks: A comprehensive survey. Proceedings of the IEEE, 108(4):485–532, 2020.
doi:10.1109/JPROC.2020.2976475.

Aditya Desai and Anshumali Shrivastava. In defense of parameter sharing for model-compression. arXiv
preprint arXiv:2310.11611, 2023.

27

https://doi.org/10.1109/IJCNN.1991.155621
https://doi.org/10.1109/CVPR.2018.00890
https://doi.org/10.1145/1553374.1553392
https://doi.org/10.1109/JPROC.2020.2976475

Under review as submission to TMLR

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing performance.
arXiv preprint arXiv:1907.04840, 2019.

Yadong Ding, Yu Wu, Chengyue Huang, Siliang Tang, Yi Yang, Longhui Wei, Yueting Zhuang, and Qi Tian.
Learning to learn by jointly optimizing neural architecture and weights. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 129–138, June 2022.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. The Journal
of Machine Learning Research, 20(1):1997–2017, 2019.

Thomas Elsken, Benedikt Staffler, Jan Hendrik Metzen, and Frank Hutter. Meta-learning of neural architec-
tures for few-shot learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 12365–12375, 2020.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery: Making
all tickets winners. In International Conference on Machine Learning, pp. 2943–2952. PMLR, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 1126–1135. PMLR, 06–11
Aug 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel programming
for hyperparameter optimization and meta-learning. In International conference on machine learning, pp.
1568–1577. PMLR, 2018.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019.

Boyan Gao, Henry Gouk, and Timothy M Hospedales. Searching for robustness: Loss learning for noisy
classification tasks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
6670–6679, 2021.

Boyan Gao, Henry Gouk, Hae Beom Lee, and Timothy M Hospedales. Meta mirror descent: Optimiser
learning for fast convergence. arXiv preprint arXiv:2203.02711, 2022a.

Boyan Gao, Henry Gouk, Yongxin Yang, and Timothy Hospedales. Loss function learning for domain
generalization by implicit gradient. In International Conference on Machine Learning, pp. 7002–7016.
PMLR, 2022b.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Yee Whye Teh and Mike Titterington (eds.), Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research, pp. 249–256,
Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR.

André R. Gonçalves, Fernando J. Von Zuben, and Arindam Banerjee. Multi-task sparse structure learning
with gaussian copula models. Journal of Machine Learning Research, 17(33):1–30, 2016.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. URL http:
//www.deeplearningbook.org. Chapter 5: Machine Learning Basics.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient
neural network. Advances in neural information processing systems, 28, 2015.

James Harrison, Luke Metz, and Jascha Sohl-Dickstein. A closer look at learned optimization: Stability,
robustness, and inductive biases. Advances in Neural Information Processing Systems, 35:3758–3773, 2022.

28

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Under review as submission to TMLR

Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity: the lasso and
generalizations. CRC press, 2015.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep learning:
Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res., 22(1),
jan 2021. ISSN 1532-4435.

T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey. Meta-learning in neural networks: A survey. IEEE
Transactions on Pattern Analysis & Machine Intelligence, 44(09):5149–5169, sep 2022. ISSN 1939-3539.
doi:10.1109/TPAMI.2021.3079209.

Junjie Hu, Mete Ozay, Yan Zhang, and Takayuki Okatani. Revisiting single image depth estimation: Toward
higher resolution maps with accurate object boundaries. In 2019 IEEE Winter Conference on Applications
of Computer Vision (WACV), 2019.

Nathan Hubens. Neural network pruning. nathanhubens.github.io, 2020.

Mike Huisman, Jan N Van Rijn, and Aske Plaat. A survey of deep meta-learning. Artificial Intelligence
Review, 54(6):4483–4541, 2021.

Steven A. Janowsky. Pruning versus clipping in neural networks. Phys. Rev. A, 39:6600–6603, Jun 1989.
doi:10.1103/PhysRevA.39.6600. URL https://link.aps.org/doi/10.1103/PhysRevA.39.6600.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses for
scene geometry and semantics. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 7482–7491, 2018.

Meghana Kshirsagar, Eunho Yang, and Aurélie C Lozano. Learning task structure via sparsity grouped
multitask learning. arXiv preprint arXiv:1705.04886, 2017.

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham Kakade,
and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In Hal Daumé III and
Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pp. 5544–5555. PMLR, 13–18 Jul 2020.

Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo. Maskgan: Towards diverse and interactive facial
image manipulation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, and Jinwoo Shin. Layer-adaptive sparsity for the
magnitude-based pruning. In International Conference on Learning Representations, 2021.

Ke Li and Jitendra Malik. Learning to optimize neural nets. arXiv preprint arXiv:1703.00441, 2017.

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for few-shot learning.
arXiv preprint arXiv:1707.09835, 2017.

Dongze Lian, Yin Zheng, Yintao Xu, Yanxiong Lu, Leyu Lin, Peilin Zhao, Junzhou Huang, and Shenghua
Gao. Towards fast adaptation of neural architectures with meta learning. In International Conference on
Learning Representations, 2019.

Lukas Liebel and Marco Körner. Auxiliary tasks in multi-task learning. arXiv preprint arXiv:1805.06334,
2018.

Shiwei Liu and Zhangyang Wang. Ten lessons we have learned in the new "sparseland": A short handbook
for sparse neural network researchers, 2023.

29

https://doi.org/10.1109/TPAMI.2021.3079209
https://doi.org/10.1103/PhysRevA.39.6600
https://link.aps.org/doi/10.1103/PhysRevA.39.6600

Under review as submission to TMLR

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. In Proceedings of the IEEE international conference on
computer vision, pp. 2736–2744, 2017.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of network
pruning. arXiv preprint arXiv:1810.05270, 2018.

Kaifeng Lv, Shunhua Jiang, and Jian Li. Learning gradient descent: Better generalization and longer horizons.
In International Conference on Machine Learning, pp. 2247–2255. PMLR, 2017.

Fanxu Meng, Hao Cheng, Ke Li, Huixiang Luo, Xiaowei Guo, Guangming Lu, and Xing Sun. Pruning filter
in filter. Advances in Neural Information Processing Systems, 33:17629–17640, 2020.

Luke Metz, Niru Maheswaranathan, C Daniel Freeman, Ben Poole, and Jascha Sohl-Dickstein. Tasks, stability,
architecture, and compute: Training more effective learned optimizers, and using them to train themselves.
arXiv preprint arXiv:2009.11243, 2020.

Luke Metz, James Harrison, C Daniel Freeman, Amil Merchant, Lucas Beyer, James Bradbury, Naman
Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, et al. Velo: Training versatile learned optimizers by
scaling up. arXiv preprint arXiv:2211.09760, 2022.

Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. Indoor segmentation and support inference
from rgbd images. In ECCV, 2012.

Alex Nichol and John Schulman. Reptile: a scalable metalearning algorithm. arXiv preprint arXiv:1803.02999,
2(3):4, 2018.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

Guillaume Obozinski, Ben Taskar, and Michael I Jordan. Joint covariate selection and joint subspace selection
for multiple classification problems. Statistics and Computing, 20:231–252, 2010.

Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and trends® in Optimization, 1(3):
127–239, 2014.

Sandip Paul, Bhuvan Jhamb, Deepak Mishra, and M. Senthil Kumar. Edge loss functions for
deep-learning depth-map. Machine Learning with Applications, 7:100218, 2022. ISSN 2666-8270.
doi:https://doi.org/10.1016/j.mlwa.2021.100218.

Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature reuse? towards
understanding the effectiveness of maml. arXiv preprint arXiv:1909.09157, 2019.

Christian Raymond, Qi Chen, and Bing Xue. Learning symbolic model-agnostic loss functions via meta-
learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023a.

Christian Raymond, Qi Chen, Bing Xue, and Mengjie Zhang. Online loss function learning. arXiv preprint
arXiv:2301.13247, 2023b.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin Wang. A
comprehensive survey of neural architecture search: Challenges and solutions. ACM Computing Surveys
(CSUR), 54(4):1–34, 2021.

Jingtao Rong, Xinyi Yu, Mingyang Zhang, and Linlin Ou. Across-task neural architecture search via meta
learning. International Journal of Machine Learning and Cybernetics, 14(3):1003–1019, 2023.

Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhadran. Low-rank
matrix factorization for deep neural network training with high-dimensional output targets. In 2013 IEEE
international conference on acoustics, speech and signal processing, pp. 6655–6659. IEEE, 2013.

30

https://doi.org/https://doi.org/10.1016/j.mlwa.2021.100218

Under review as submission to TMLR

Ljubinka Sandjakoska and Ana Madevska Bogdanova. Towards stochasticity of regularization in deep neural
networks. In 2018 14th Symposium on Neural Networks and Applications (NEUREL), pp. 1–4, 2018.
doi:10.1109/NEUREL.2018.8587027.

Simone Scardapane, Danilo Comminiello, Amir Hussain, and Aurelio Uncini. Group sparse regularization for
deep neural networks. Neurocomputing, 241:81–89, 2017.

Jurgen Schmidhuber. Evolutionary principles in self-referential learning. on learning now to learn: The
meta-meta-meta...-hook. Diploma thesis, Technische Universitat Munchen, Germany, 14 May 1987.

Jonathan Schwarz and Yee Whye Teh. Meta-learning sparse compression networks. Transactions on Machine
Learning Research, 2022. ISSN 2835-8856.

Albert Shaw, Wei Wei, Weiyang Liu, Le Song, and Bo Dai. Meta architecture search. Advances in Neural
Information Processing Systems, 32, 2019.

Jiayi Shen, Xiaohan Chen, Howard Heaton, Tianlong Chen, Jialin Liu, Wotao Yin, and Zhangyang Wang.
Learning a minimax optimizer: A pilot study. In International Conference on Learning Representations,
2020.

Shreyas Subramanian, Vignesh Ganapathiraman, and Aly El Gamal. LEARNED LEARNING RATE
SCHEDULES FOR DEEP NEURAL NETWORK TRAINING USING REINFORCEMENT LEARNING,
2023. URL https://openreview.net/forum?id=0Zhwu1VaOs.

Tianxiang Sun, Yunfan Shao, Xiaonan Li, Pengfei Liu, Hang Yan, Xipeng Qiu, and Xuanjing Huang.
Learning sparse sharing architectures for multiple tasks. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pp. 8936–8943, 2020a.

Ximeng Sun, Rameswar Panda, Rogerio Feris, and Kate Saenko. Adashare: Learning what to share for
efficient deep multi-task learning. Advances in Neural Information Processing Systems, 33:8728–8740,
2020b.

Xinglong Sun, Maying Shen, Hongxu Yin, Lei Mao, Pavlo Molchanov, and Jose M. Alvarez. Towards dynamic
sparsification by iterative prune-grow lookaheads, 2023.

S. Thrun and L.Y. Pratt (eds.). Learning To Learn. Kluwer Academic Publishers, Boston, MA, 1998.

Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media, 2012.

Yingjie Tian, Xiaoxi Zhao, and Wei Huang. Meta-learning approaches for learning-to-learn in deep learning:
A survey. Neurocomputing, 494:203–223, 2022. ISSN 0925-2312.

Richa Upadhyay, Prakash Chandra Chhipa, Ronald Phlypo, Rajkumar Saini, and Marcus Liwicki. Multi-task
meta learning: learn how to adapt to unseen tasks. In 2023 International Joint Conference on Neural
Networks (IJCNN), pp. 1–10, 2023a. doi:10.1109/IJCNN54540.2023.10191400.

Richa Upadhyay, Ronald Phlypo, Rajkumar Saini, and Marcus Liwicki. Less is more – towards parsimonious
multi-task models using structured sparsity. In Conference on Parsimony and Learning (Proceedings Track),
2023b.

Richa Upadhyay, Ronald Phlypo, Rajkumar Saini, and Marcus Liwicki. Sharing to learn and learning to share;
fitting together meta, multi-task, and transfer learning: A meta review. IEEE Access, 12:148553–148576,
2024. doi:10.1109/ACCESS.2024.3478805.

Huan Wang, Can Qin, Yulun Zhang, and Yun Fu. Neural pruning via growing regularization. In International
Conference on Learning Representations, 2021.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in deep neural
networks. Advances in neural information processing systems, 29, 2016.

31

https://doi.org/10.1109/NEUREL.2018.8587027
https://openreview.net/forum?id=0Zhwu1VaOs
https://doi.org/10.1109/IJCNN54540.2023.10191400
https://doi.org/10.1109/ACCESS.2024.3478805

Under review as submission to TMLR

Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez Colmenarejo, Misha Denil,
Nando Freitas, and Jascha Sohl-Dickstein. Learned optimizers that scale and generalize. In International
conference on machine learning, pp. 3751–3760. PMLR, 2017.

Mitchell Wortsman, Kiana Ehsani, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Learning to
learn how to learn: Self-adaptive visual navigation using meta-learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 6750–6759, 2019.

Yuanhao Xiong, Li-Cheng Lan, Xiangning Chen, Ruochen Wang, and Cho-Jui Hsieh. Learning to schedule
learning rate with graph neural networks. In International Conference on Learning Representation (ICLR),
2022.

Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated residual networks. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

Ming Yuan and Yi Lin. Model Selection and Estimation in Regression with Grouped Variables. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 68(1):49–67, 12 2005. ISSN 1369-7412.
doi:10.1111/j.1467-9868.2005.00532.x.

Guibin Zhang, Yanwei Yue, Kun Wang, Junfeng Fang, Yongduo Sui, Kai Wang, Yuxuan Liang, Dawei Cheng,
Shirui Pan, and Tianlong Chen. Two heads are better than one: Boosting graph sparse training via
semantic and topological awareness, 2024.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng Li.
Learning n: m fine-grained structured sparse neural networks from scratch. arXiv preprint arXiv:2102.04010,
2021a.

Xiao Zhou, Weizhong Zhang, Hang Xu, and Tong Zhang. Effective sparsification of neural networks with
global sparsity constraint. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3599–3608, 2021b.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878, 2017.

32

https://doi.org/10.1111/j.1467-9868.2005.00532.x

	Introduction
	Related work
	Methodology
	Multi-task Learning
	Meta-learning
	Group sparsity
	Proposed approach - Meta sparsity
	A theoretical perspective on generalization

	Experimental setup
	Results and Discussion
	Conclusion and future scope

