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Abstract

Systems biology relies on mathematical models that often involve complex and
intractable likelihood functions, posing challenges for efficient inference and model
selection. Generative models, such as normalizing flows, have shown remarkable
ability in approximating complex distributions in various domains. However, their
application in systems biology for approximating intractable likelihood functions
remains unexplored. Here, we elucidate a framework for leveraging normalizing
flows to approximate complex likelihood functions inherent to systems biology
models. By using normalizing flows in the Simulation-based inference setting,
we demonstrate a method that not only approximates a likelihood function but
also allows for model inference in the model selection setting. We showcase the
effectiveness of this approach on real-world systems biology problems, provid-
ing practical guidance for implementation and highlighting its advantages over
traditional computational methods.

1 Introduction

Systems biology aims to understand the complex interactions within biological systems by modeling
them as integrated networks of genes, proteins, and biochemical reactions. Analogous to ensemble
methods in machine learning, where individual models are integrated to improve predictive accuracy,
systems biology aims to model complex biological systems as integrated wholes to provide deeper
insights into their function and behavior. Leveraging computational approaches, including machine
learning algorithms for network analysis and high-dimensional data interpretation, systems biology
offers a paradigm shift from reductionist methods that examine individual components, such as
proteins, in isolation.

A pressing challenge in systems biology is the problem of inference in models characterized by
intractable likelihood functions. These complex models often encapsulate the high dimensionality
and non-linearity innate to biological systems but come at the cost of computational intractability for
standard statistical methods. Conventional approaches, such as maximum likelihood estimation via
least squares regression, are generally ill-suited for these models, failing to provide robust parameter
estimates that can be reliably used for further analysis or uncertainty quantification. This creates a
bottleneck that limits our ability to draw meaningful insights from biological networks. Examples of
biological networks with intractable likelihoods are those governed by mass action kinetics, including
protein dynamics and metabolic systems [5].

Simulation-based inference (SBI) methods [3], particularly those employing normalizing flows, have
begun to bridge the gap in tackling the challenging problem of approximating intractable likelihoods
in systems biology. Normalizing flows transform a complex or unknown distribution into a simple,
tractable one, such as a Gaussian, effectively learning the data’s underlying distribution without
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requiring an explicit likelihood function. This offers a powerful tool for probabilistic modeling of
complex systems, allowing for both robust inference via posterior predictive checks and uncertainty
quantification for each model parameter, as well as model comparison.

A salient challenge within systems biology is the inference of network parameters pertaining to
the Bone Morphogenetic Protein (BMP) signaling pathway [1]. This pathway assumes a pivotal
role in both pathological and developmental contexts, being implicated in an array of malignancies,
such as cancer, as well as critical developmental processes [21]. Given its dichotomous functions,
understanding the intricacies of BMP and other signaling pathways becomes imperative for predicting
their responses to external modulations, such as pharmacological perturbations.

Prior studies modeled the BMP pathway using mass action kinetics that qualitatively described
observed experimental outputs [1]. However, traditional parameter fitting methods such as least
square regression yield an expansive array of plausible parameter values without a probabilistic
interpretation, thereby aggravating the issue of model uncertainty. Additionally, the BMP pathway
can be captured by multiple competing models [23], introducing the need for effective model
discrimination. Traditional criteria for model selection, such as the Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC), offer point estimates of model probabilities.
While these methods are generally efficacious for models with tractable likelihoods, they encounter
limitations when applied to models characterized by intractable likelihood functions [15]. Hence,
there is a need for new computational techniques that can conduct reliable inference and identify the
most probable fitting model in the context of observed data, circumventing the limitations imposed
by intractable likelihoods.

We demonstrate the first application of SBI techniques that use normalizing flows to address the task
of approximating likelihood functions for the BMP signaling pathway. Using experimental data [11],
we address the challenges associated with inferring these likelihood functions and demonstrate how
to infer likelihoods of high-dimensional observed data and high dimensional simulator parameters
using statistical features of i.i.d. likelihoods to infer a data space D and parameter space P , such that
D ∈ R940,P ∈ Rm where m ≤ 70. Using these approximated likelihoods, we not only scrutinize
the uncertainty enveloping each model’s parameters but also offer indications regarding which model
is more plausible given the observed data. Our findings underscore the efficacy of deep generative
models, such as normalizing flows, in the context of biological model parameter inference and
model selection. Finally, these surrogate likelihoods hold the potential to be integrated into Bayesian
Optimal Experimental Design (BOED) frameworks [6, 10], thereby minimizing both the temporal
and experimental resources required to achieve a model with robust predictive accuracy in biology.

2 Background

The Intractable Likelihood of the BMP Model. The BMP signaling pathway is commonly
described by mass action kinetics and conservation laws, capturing the dynamics of downstream
genetic expression signals reaching a steady-state. Two principal models exist for describing this
system: the “twostep” model which involves equations Ai + Lj ↔ Dij and Dij +Bk ↔ Tijk, and
the “onestep” model represented by Ai +Bk + Lj ↔ Tijk, where the binding affinity K represents
the transition from one state to another. Additionally, i, j, k represent the ith type A receptor, the
jth protein ligand complex, and kth type B receptor, D represents a dimeric protein complex, and
T represents a trimeric complex. Both models then describe the phosphorylation efficiency, ε, of a
trimeric complex T sending a downstream gene expression signal, S, as S = εT . While these models
are originally formulated as ordinary differential equations (ODEs), they become differential algebraic
equations under certain conditions such as fixed volume and large ligand concentration. These models
can be solved via convex optimization, however, this results in an intractable likelihood functions.
The lack of a likelihood function for the BMP pathway requires novel computational methods, such as
SBI, for further refinement and understanding of models’ parameters and probabilities given observed
data, xo.

Normalizing Flows. Normalizing flows constitute a specialized subset of invertible and differentiable
neural networks engineered to represent a series of monotonic transformations. These transformations
are designed to minimize the divergence between a base distribution, commonly Gaussian, denoted
as pu(u), and the target data distribution, px(x). This is formulated using the change of variables
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formula and a composition of monotonic diffeomorphic functions, fϕ, which can be parameterized
via neural networks. The formal transformation from the base distribution to the data distribution is:

px(x) = pu(f
−1
ϕ (x))

∣∣∣∣∣det ∂f
−1
ϕ

∂x

∣∣∣∣∣ . (1)

A thorough review on the theoretical framework and practical application of normalizing flows can
be found in [12] and [19]. In this work, we use normalizing flows to model the intractable likelihood
pϕ(x|θ), where ϕ are parameters of the normalizing flow and θ represent biological model parameters
of interest, such as binding affinity, K, and phosphorylation efficiency, ε, such that K, ε ∈ θ and x is
simulated data from the simulator that we want to get close to the observed data, xo. Using Bayes
Theorem we can then infer parameters’ posterior distribution as p(θ|xo) ∝ pϕ(xo|θ)p(θ).
Simulation-based Inference. Concurrently with advancements in normalizing flow architectures,
significant advancements have been made in SBI algorithms for sequential posterior approximation
[8, 18, 14, 16, 4, 9]. These SBI methodologies estimate various elements, such as the posterior
distribution, likelihood, and the ratio of posterior to prior probabilities, to gauge the posterior of a
specific model given observed data. SBI techniques are valuable in disciplines with complicated
simulations based on mathematical models like particle physics [2], where functions are readily
simulated but challenging to evaluate analytically.

These sequential SBI methods take inspiration from importance sampling to refine a posterior,
likelihood, or likelihood ratio given an observed sample of interest, xo. There are a variety of
sequential SBI techniques, each with their own benefits, and reviewed in [13]. We employ the
Sequential Neural Likelihood (SNL) approach [20], which utilizes a normalizing flow to approximate
the likelihood represented by a simulator and conditioned over multiple rounds on observed data. We
chose to use likelihoods as the likelihood ratio can be used as a form of model comparison, which is
another important desiderata of this paper.

Model selection. The Bayes Factor (BF) is another term for the ratio of model probabilities, expressed
as BF = p(M0)

p(M1)
. It serves as a criterion for selecting between models. A BF > 10 indicates strong

support for M0, while a BF < 1
10 reveals strong support for M1. The BF inherently favor

simpler models due to the Bayesian version of Occam’s razor. This, however, depends on unbiased
computation of the model’s marginal likelihood. For more details on assorted model selection
methods, refer to [17].

To engage in model selection, we need an estimate of the marginal likelihood for each model to
compute the BF. One approach to achieve this is by sampling from a likelihood using posterior samples
p(x|M) =

∫
Θ
p(x|θ,M)p(θ|M)dθ ≈ 1

N

∑N
i=1 p(x|θi,M). When each model’s prior probabilities

are equal, the BF reduces to a comparison of two model likelihoods such that p(M1)
p(M0)

= p(x|M1)
p(x|M0)

. We
use this formulation in this paper given that both models evaluated are equally likely apriori.

3 Experimental Evaluation

We employed two separate normalizing flow architectures for training both the onestep and twostep
BMP models, utilizing the SNL method within the larger SBI framework. Specifically, we used the
neural spline flow model [4], wherein each model was constructed with five flow layers and four
bins in each layer to approximate invertible polynomial functions. Each layer was conditioned on
the model parameters, θ, as well as on static experimental design parameters previously employed,
denoted as ξ, which represents the concentration of BMP protein ligand administered (L) and the cell
type, each with its own respective pseudo-concentrations of Type A and B receptors. This facilitated
the creation of an approximate likelihood pϕ(x|θ|ξ) for incorporation into the SNL process. The
training regimen extended over 9 rounds of SBI, during which we collected posterior parameters,
gauged the median distance between simulated and observed data, and logged probabilities. In
each round, 1,000 data points were simulated based on the posterior distribution from the previous
round, starting with a uniform prior. Mini-batches comprised 100 data points each were used to
train a normalizing flow on both the onestep and twostep models. All priors and subsequently
simulated data were combined to form an aggregate training dataset for the normalizing flows.
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Figure 1: (A) Example of pairplots generated of the first 8 binding affinities, K, for the onestep
model. Crosshairs indicate median values and occasionally align with a maximum a posteriori
estimate of parameters’ marginal distribution, but other times do not, reflecting uncertainty in the
parameter values. (B) Median distance between xo and simulated values xi ∼ pi(x|θi−1) from the
simulator using priors drawn from round i− 1. (C) Bayes Factor of the onestep to twostep model
using each model’s respective density estimator in round i and the final posterior returned after the
last round. The dotted red line indicates the boundary between preference for the onestep model (>1)
and the twostep model (<1). We see early indication that model 1 is slightly more likely, supported
by the median distance, but diminishing probability with subsequent trained likelihoods, indicating
ambiguity in model or overfitting of the likelihoods.

Concurrently, 5% of the data was reserved in each round as a validation set for early stopping, which
took place if the validation error did not decrease for more than 20 epochs. After each round, the
approximate likelihood was used to infer a new posterior using pi(θ|xo) ∝ pϕ(xo|θ)p(θ), where
pi(θ|xo) represents the posterior after round i using the trained likelihood from the previous round.

Given that the observed data point, xo, was a 940-dimensional output, modeling of the joint likelihood
is computationally impractical. To address this issue, we exploited the property that the joint distribu-
tion could be factorized into a product of individual likelihoods, p(x1, . . . , x940) =

∏940
i=1 p(xi), thus

simplifying the computational requirements for both training and the architecture.

Figure 1 shows (left) a subset example of pairplots for the binding affinity parameters from the onestep
model, (top right) median distance from xo, and (bottom right) BF calculation using normalizing
flows from each round. The final round’s posterior is qualitatively different than the flat prior used
in the initial round. The median distance serves as a validation metric for the normalizing flow’s
approximation of the true likelihood. The BF plot seems to agree with the median distance in earlier
rounds that the onestep model seems to be a slightly better model for the data, but the convergence
to essentially no difference in the later rounds indicates either that it is still ambiguous as to which
model better fits the data, or, that the normalizing flows may not be expressive enough to accurately
represent each likelihood. Pairplots of all parameters for both models can be found in Appendix A.

4 Discussion

We demonstrated how to use normalizing flows to estimate the likelihood of systems biology models,
overcoming their known limitations with high-dimensional data [7] by simplifying input dimensions
and demonstrated utility in model selection. Future work will explore deeper flow networks and
alternative methods like diffusion models, which are better at handling high-dimensional datasets
while permitting a likelihood approximation via Probability Flow ODE [22].
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A Full Posteriors of Onestep and Twostep Models

For qualitative reference, we present the entire posteriors for both binding affinities K, and phospho-
rylation efficiency ε, in this section.

Onestep Model Posteriors. We begin with a subset of posteriors for the onestep model shown in
Figure 2. Generally, the posteriors for both types of parameters seem to have dominating peaks
for both sets of parameters, which may indicate convergence of the model to those peak estimates.
Occasionally, there are bimodal distributions for binding affinities, which physically means either
the complex weakly or strongly prefers. Future experiments could help distinguish whether there is
strong or weak binding affinity.

Figure 2: Pairplots for subsets of the K (left) and ε (right) parameters for the onestep model.

Twostep Model Posteriors. Looking at a subset of posteriors for the twostep model, Figure 3 also
shows uncertain posteriors but with more "peaks" in parameter values that could be possible. In a
BOED context, this would indicate conducting experiments that could help elucidate between these
peaks to drive convergence to one set of parameters.

Figure 3: Pairplots for subsets of the K (left) and ε (right) parameters for the twostep model.
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