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Abstract. One of the challenges for neural networks in real-life appli-
cations is the overconfident errors these models make when the data
is not from the original training distribution. Addressing this issue is
known as Out-of-Distribution (OOD) detection. Many state-of-the-art
OOD methods employ an auxiliary dataset as a surrogate for OOD data
during training to achieve improved performance. However, these meth-
ods fail to fully exploit the local information embedded in the auxiliary
dataset. In this work, we propose the idea of leveraging the informa-
tion embedded in the gradient of the loss function during training to
enable the network to not only learn a desired OOD score for each sam-
ple but also to exhibit similar behavior in a local neighborhood around
each sample. We also develop a novel energy-based sampling method to
allow the network to be exposed to more informative OOD samples dur-
ing the training phase. This is especially important when the auxiliary
dataset is large. We demonstrate the effectiveness of our method through
extensive experiments on several OOD benchmarks, improving the ex-
isting state-of-the-art FPR95 by 4% on our ImageNet experiment. We
further provide a theoretical analysis through the lens of certified robust-
ness and Lipschitz analysis to showcase the theoretical foundation of our
work. Our code is available at https://github.com/o4lc/Greg-OOD.

Keywords: Out-of-Distribution Detection, Gradient Regularization, Energy-
based Sampling

1 Introduction

Neural networks are increasingly being utilized across a wide range of appli-
cations and fields, achieving unprecedented performance levels and surpassing
traditional state-of-the-art approaches. However, concerns about robustness and
safety, coupled with significant challenges in verifying robustness and ensuring
safe performance impede their use in more sensitive applications [2, 32]. One
concern that arises when deep models are deployed in the real world is their
tendency to produce over-confident predictions upon encountering unfamiliar
samples that are distant from the space in which they were trained [47, 51]. As
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Fig. 1: Left: Effect of the local structure of the score manifold on a two-dimensional
toy example for OOD detection. The grey plane depicts the score function’s decision
threshold. An equal amount of perturbation in these two scenarios results in different
OOD detections, highlighting the importance of the local structure of the score mani-
fold. Right: t-SNE plot showing the representation of ID and OOD datasets for CIFAR
experiments.

a result, the field of Out-of-Distribution (OOD) detection has emerged to study
and address this phenomenon.

Many works have been presented in recent years, trying different methods
and ideas to regulate the network’s output to OOD samples in terms of softmax
probability [22, 48, 76] or energy metrics [36]. One family of methods, known as
post-hoc approaches [1, 34, 37, 41, 49, 53, 60, 66, 72], operate on a given trained
network and employ certain statistics, such as the confidence level of the net-
work, the number of active neurons, the contribution of important pathways in
the network, etc., to perform OOD detection without using any samples from an
auxiliary distribution. Other methods [7, 23, 27, 36, 43] use OOD data for train-
ing or finetuning a network. The latter family usually tends to achieve better
performances in comparison to post-hoc methods, as their access to the aux-
iliary dataset provides them with additional information regarding the outlier
distribution. OOD detection is closely related to anomaly [54, 69] and novelty
detection [10, 39], each with slightly different problem formulations. Our work
focuses on the general OOD detection problem.

In this paper, we propose GReg, a novel Gradient Regularized OOD detec-
tion method, which aims to learn the local information of the score function to
improve the OOD detection performance. Using information from the gradient
of the score function, our method builds on top of current state-of-the-art OOD
detection methods (that require training) to incorporate local information into
the training process and lean the network towards a smoother manifold.

To motivate this idea, consider Figure 1a. This figure shows a two-dimensional
example of a possible scenario in OOD detection. In this example, x1 and x2 are
two OOD samples and the network has learned to assign the same OOD scores
(denoted by red dots in the figure) to both samples and detect them correctly
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as OOD. However, the difference in the local behavior of the network at these
points, leaves samples in the vicinity of x2 susceptible to misdetection, whereas,
samples close to x1 are always detected as OOD. To see this, consider the per-
turbations indicated by the red arrows, where the resulting points in each case
represent two possible samples with equal distance from points x1 and x2, re-
spectively. However, as can be seen in the figure, the OOD detection algorithm
cannot detect one of the samples correctly. This emphasizes the importance of
regulating the local behavior of deep learning models, especially when OOD ro-
bustness is crucial. Furthermore, Figure 1b shows the t-SNE plot of the CIFAR
and some of the well-known OOD benchmarks. This further confirms that even
in high dimensions the ID data (CIFAR) are well-separated from the OOD data.

On top of that, several recent works have shown the effectiveness of some
form of informative sampling or clustering on OOD detection [7, 27, 43]. Sam-
pling gains more importance specifically when a large dataset of outlier samples
is available and the network cannot be exposed to all of the data during train-
ing. Inspired by such works, we present GReg+, the coupling of GReg with an
energy-based clustering method aimed at making better use of the auxiliary data
during training. This is in line with our intuition of utilizing local information as
clustering enables the use of samples from diverse regions of the feature space.
The diversity put forward by the clustering mechanism allows GReg+ to achieve
its state-of-the-art performance in more regions of the space rather than only
performing well on regions well-represented in the dataset.
In summary, our key contributions are:

– We propose the idea of regularizing the gradient of the OOD score function
during the training (or fine-tuning). This allows the network to better learn
the local information embedded in ID and OOD samples.

– We propose a novel energy-based sampling method that chooses samples
–based on their energy levels– from the OOD dataset that represent more
vulnerable regions of the space using clustering techniques.

– We provide empirical results and ablation studies on a wide range of archi-
tectures and different datasets to showcase the effectiveness of our method,
along with an extensive comparison to the state-of-the-art. In addition, we
provide a detailed theoretical analysis to justify our results.

To the best of our knowledge, this is the first work that utilizes the norm of
the gradient of the score function during the training phase to learn the local be-
havior of the ID/OOD data aiming to improve the OOD detection performance.

2 Related Work

Several works have attempted to enable deep neural networks with OOD de-
tection capabilities in recent years [4, 6, 16, 31, 42, 50, 55, 64, 75, 77]. These works
can be divided into two main groups: methods that do not use auxiliary data
(post-hoc) and those that utilize auxiliary data.
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2.1 Post-hoc OOD Detection

In one of the earliest attempts to remedy the OOD detection problem, [22]
uses the maximum softmax probability (MSP) score to recognize OOD samples
during inference. ODIN [23] improves the MSP score’s separability by adding
small noise to the input and utilizing temperature scaling. [25, 35–37] aim to
formulate enhanced scoring functions to better distinguish OOD samples from
ID samples. For example in [36], the authors propose using energy as a powerful
OOD score. GradNorm [25] uses the vector norm of the gradient of the KL
divergence between the softmax output and a uniform probability distribution to
devise an OOD score. It was later observed by [58], that OOD data tend to have
different activation patterns. As a solution, they propose activation truncation to
improve OOD detection. Building on this observation, DICE [59] ranks weights
based on the measure of contribution, and selectively uses the most contributing
weights. LINe [1] further improves on DICE by using Shapley values [56] to more
accurately detect important and contributing neurons.

2.2 OOD Detection with Auxiliary Outlier Dataset

When an auxiliary dataset is available, this group of methods [13,14,22,36,63,68,
71, 74, 80] use this data to train the model to improve the network’s robustness
against OOD data. OE [22] and Energy [8,36] propose their respective loss func-
tions to be used during the training of the network. Recently, [9] improved [36]
by proposing balanced Energy loss that balances the number of samples of the
auxiliary OOD data across classes. Furthermore, [52] increases the expected
Frobenius Jacobian norm difference between ID and OOD. This is in sharp con-
trast with our intuition as we aim to decrease the norm of the score function in
all regions. Another line of work [15, 19, 29, 44, 45] focuses on generating artifi-
cial samples that resemble the real OOD data, using various generative models
such as GANs. Most recently, OpenMix [79] was proposed as a misclassification
detection method, teaching the model to reject pseudo-samples generated from
the available outlier samples.

Outlier Sampling: When large amounts of auxiliary data are available, choos-
ing an informative and diverse set of samples to perform training becomes a
priority. Many of the state-of-the-art OOD methods use their custom sampling
techniques. NTOM [7] uses greedy outlier sampling where outliers are selected
based on the estimated confidence. POEM [43] proposes a posterior sampling-
based outlier mining framework for OOD detection. Most recently DOS [27]
used K-Means [38] to perform clustering on the auxiliary dataset to provide the
network with diverse informative OOD samples.

3 Preliminaries

3.1 Notation

We consider a classification setup where X ∈ Rd denotes the input space and
Y ∈ {1, 2, ...,K} denotes the labels. We define a neural network f : Rd → RK
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where fi(x) denotes the i-th logit of the neural network to an input x. We
denote the feature extractor of the neural network as h, which is followed by a
classification layer. We use f(x) = Wh(x) + b for all the models in this paper.
We denote the norm of a vector x as ∥x∥. The log-sum-exp function is defined
as LSE(x) = log

∑n
i=1 exp(xi). For simplicity, for a given score function S, we

use S(x) as a shorthand for S(f(x)).
The In-Distribution (ID), Out-of-Distribution (OOD) and Auxiliary distribu-

tion over X are denoted by Din, Dout and Daux, respectively. The corresponding
datasets are assumed to be sampled i.i.d from their respective distributions. We
denote the indicator function of an event e ≤ 0 as Ie≤0, i.e., if e ≤ 0 then
Ie≤0 = 1, and otherwise, Ie≤0 = 0. We denote B(x, ε) = {y|∥y−x∥ ≤ ε}. Finally,
a function f is said to be locally Lipschitz continuous on X if there exists a
positive constant L such that ∥f(x)− f(y)∥ ≤ L∥x− y∥ ∀x, y ∈ X . The smallest
such constant is called the local Lipschitz constant of f .

3.2 Out-of-Distribution Detection

It has been observed that when neural networks are faced with samples from a
different distribution compared to their training distribution, they produce over-
confident errors [21]. The goal of OOD detection is to differentiate the ID data
from the OOD data. To achieve this goal, the main approach in the literature
is to define a scoring function S and use a threshold γ to distinguish different
samples. That is, for a sample x, if S(x) ≤ γ, we label it as ID, and label it as
OOD otherwise.
Most relevant to our setup, [36] uses the scoring function SEn(x) = −LSE(f(x)),
and defines the following loss function to train the network to better differentiate
the ID and OOD samples,

LSEn = E(xin,yin)∼Din [ISEn(xin)≥min(SEn(xin)−min)
2] (1)

+ E(xaux,yaux)∼Daux [ISEn(xaux)≤maux(maux − SEn(xaux))
2],

where min and maux define two thresholds to filter out points that already have
an acceptable level of energy, i.e., if the energy score of an ID (OOD) sample is
low (high) enough, it will be excluded from the energy loss.

4 Method

In this section, we propose our method which consists of regularizing the gradient
of the score function by adding a new term to the loss, coupled with a novel
energy-based sampling method to allow us to choose more informative samples
during training. Figure 2 provides an overview of our method GReg+ with a
simple illustration of how the sampling algorithm utilizes clustering to provide
more informative samples.
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Fig. 2: Overview of GReg+. The gradient loss allows the method to obtain more local
information from the training data. The sampling algorithm uses the normalized fea-
tures of the OOD samples to perform clustering and choose the sampled data based
on the energy score (see Algorithm 1) which will be used to calculate the gradient loss
to expose the network to samples that can improve the performance of the model.

4.1 Gradient Regularization

Many of the current state-of-the-art methods focus only on the value of their
scoring function S and aim at minimizing or maximizing it on different regions
of the input space [9, 23, 27, 36, 43, 79]. We argue that by optimizing only based
on the value of the score function, we are not utilizing all of the information that
is embedded in the data. As such, the generalization of the model requires the
auxiliary dataset to be a good representation of the actual OOD distribution
and its corresponding support in the image space (which is extremely high-
dimensional). In response, we aim to use the local information embedded in the
data and propose to do so by leveraging the gradient of the score function S.
In other words, we focus not only on the value of the score function S on the
auxiliary samples but also on the local behavior of the score function around
these data points. The rationale behind this approach is that, based on the
definition of the problem, the distribution of ID and the OOD tends to be well
separated. Therefore, the area close to an ID sample most likely does not include
any OOD samples, and vice versa. Driven by this insight, we propose to add a
regularization term L∇S that promotes the smoothness of the score function
around the training samples by penalizing the norm of its gradient.

Suppose x is a training sample. Using the first-order Taylor approximation
of the score function around x, we have

S(x′) ≃ S(x) +∇S(x)⊤(x′ − x), (2)

for x′ sufficiently close to x. As a result, if ∥∇S(x)∥ is small, then equation
(2) hints that the difference |S(x′) − S(x)| would likely remain small, implying
stability of the score manifold around the point x. To this end, we propose the
following regularizer. The specific definition of L∇S is a design choice, however,
for the case of the energy loss, which is the main focus of this paper, we use the
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following formulation.

L∇SEn = E(xin,yin)∼Din∥ISEn(xin)≤min∇xinSEn(xin)∥
+ E(xaux,yaux)∼Daux∥ISEn(xaux)≥maux∇xauxSEn(xaux)∥

(3)

To elaborate on the intuition behind this choice, consider the following cases:

1. If an ID (OOD) sample is correctly detected, we would want the local area
around it to be detected the same.

2. If an ID (OOD) sample is mis-detected as OOD (ID), we do not want its
local area to behave the same.

Hence, we select thresholds such that the loss only penalizes the gradient of the
correctly detected samples. This is in sharp contrast to (1), where the aim is
to penalize the energy score of the samples that have undesired energy levels.
Therefore, by designing the gradient loss as (3), we allow the energy loss to train
the samples that are not yet well learned and only use the samples whose score
values are properly learned. Having specified L∇S , we train our model using the
following loss L = LCE+λSLS +λ∇SL∇S , where λS and λ∇S are regularization
constants and LCE is the well-known cross-entropy loss.

4.2 OOD Sampling

One concern faced by OOD training schemes is that the OOD data may outnum-
ber the ID data by orders of magnitude. Having access to such a large auxiliary
dataset begs the question of which samples should the network see during the
training phase. This creates two possible scenarios. Either the training algorithm
exposes the model to an equal number of both ID and OOD data points, which
means that the model cannot fully utilize the OOD dataset as most of the OOD
dataset remains unseen. Alternatively, the algorithm may provide disproportion-
ately more OOD samples, leading to bias in the model due to the imbalance in
the samples [62]. These observations hint towards employing a more informative
sampling strategy [7, 33] that utilizes as much of the dataset as possible while
avoiding the pitfalls caused by imbalanced datasets. Whilst the first option that
comes to mind is to perform a greedy sampling based on the score function S, it
has been observed [27] that such greedy samples could bias the model to some
specific regions of the image space, resulting in a model unable to generalize
well.

To address these issues, we present Algorithm 1, which uses clustering (to
discourage greedy behavior) alongside energy-based scoring to sample more in-
formative images. Next, we explain the sampling algorithm in more detail.
Clustering: Given samples {xi}nOOD

i=1 , we first calculate the features zi = h(xi)
and the scores si = −LSE(f(xi)). The next step is to perform clustering in the
feature space. To perform clustering, we use K-Means with a fixed number of
clusters. As K-Means assigns clusters based on Euclidean distances, we normal-
ize the features to ẑi = zi

∥zi∥2
to avoid skewed clusters towards samples with

disproportionate feature values.
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As for the number of clusters, we use the number of samples in each mini-
batch of training, i.e., if in a training iteration the model is presented with nID
ID samples, we cluster the nOOD OOD samples into k = nID clusters. We study
the choice of the number of clusters in the Supplementary Material. Finally,
given a clustering {Cj}kj=1, we can acquire cluster labels li for each data point
xi, i = 1, · · · , nOOD.

Algorithm 1 Energy-Based Sampling

Input: Auxiliary dataset X ∼ Daux with nOOD

samples, number of clusters k, feature extractor
h, score function S
Output: Selected samples: X̄ ⊂
X ;
1: zi ← h(xi), si ← S(xi), i = 1, · · · , nOOD.
2: (ẑ1, · · · , ẑnOOD)← hN (z1, · · · , znOOD)
3: Labels li ← K-Means({ẑi}nOOD

i=1 , k).
4: for j = 1 · · · k do
5: I ← {i : li = j}
6: X̄j ← Sample {xi}i∈I based on {si}i∈I

7: end for
8: return X̄ ← ∪k

j=1X̄j

Energy-Based Sampling: The
final step in our sampling algo-
rithm is to choose the best sam-
ples from each cluster with re-
spect to some criterion. As we
use the energy scores si to per-
form OOD detection, we use the
same scores for sample selection.
Given our choice of loss functions
in (1) and (3), we use the samples
with the smallest energy scores si
of each cluster to provide sam-
ples useful for the loss term (1),
and we use the samples with the
largest energy scores to provide
samples that are useful for the loss
term (3). Intuitively, LSEn aims to
increase the energy score of the
OOD samples, and so, we need
to provide samples whose energy
scores are small. On the other hand, L∇SEn focuses on samples that already have
high energy scores to make the model locally behave similarly, and so, we need
to also provide samples with high energy scores.

Overall, by clustering, we ensure that the model is exposed to diverse regions
of the feature space, and by sampling using the scores we ensure that from each
region more informative samples are used.

5 Theoretical Analysis

In this section, we focus on the theoretical implications of gradient regularization.
Traditionally, during the training phase, there is no control over the smoothness
of the network and the score function, which can lead to overly sensitive OOD
detection. The smoothness of networks has been studied in depth in certified
robustness [17, 26, 40, 57] and has been deemed as a desired or even necessary
property for the robustness of neural networks. The desirable properties sought
by smoothness consequently follow over to OOD detection; simply because OOD
detection can be cast as a simple classification task that the aforementioned lit-
erature studies. Intuitively, the lack of smoothness decreases the network’s OOD
robustness as the score values can abruptly change with small perturbations in
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Fig. 3: The evolution of the Energy loss and the norm of the gradient with respect to
the input of the score function during training with and without gradient regularization.
Gradient regularization reduces the slope of the increase of the gradient norm, without
negatively affecting the reduction in energy loss. The sudden change in the behavior
of the plots towards the final iterations is due to learning rate scheduling.

the image space. To support our intuition, consider Figure 3 which portrays the
evolution of the energy loss and the norm of its gradient with respect to the
input in two cases, with and without GReg. Although the energy loss decreases
in a similar fashion in both scenarios, the norm of the gradient increases much
more rapidly in the absence of gradient regularization. The excess increase in
the average norm of the gradient potentially points to a more sensitive score
manifold. Note that the general increasing trend of the norm of the gradient in
Figure 3 is not unexpected as the network is initialized randomly.

We further motivate our idea using the concept of penalizing the norm of
the gradient [5] or upper bounds on the norm of the gradient, like the Lipschitz
constant [17, 26] for achieving robustness. In other words, if the gradient of the
score function S is bounded around some arbitrary point x, there exists an ε-
neighborhood in which our prediction of ID/OOD would not change. This means
that if the point x is detected as ID (OOD), then all the points x′ ∈ B(x, ε) are
also provably ID (OOD). This is desirable for us as it is usually assumed that the
ID and OOD data are well separated. Formally, suppose S satisfies the following
local Lipschitz property on B(x, ε) where x ∼ Din

|S(x′)− S(x)| ≤ LS∥x′ − x∥, ∀x′ ∈ B(x, ε),

where LS > 0. Suppose x ∼ Din is correctly classified by the score function as
ID, i.e., S(x) < γ. If we want x′ to be also labeled as ID, it is sufficient to satisfy
S(x) + LS∥x′ − x∥ ≤ γ, which in turn gives the following certificate

∥x′ − x∥ ≤ ε∗ = min{ε, γ − S(x)

LS
}, (4)

i.e., all points x′ within ε∗ distance to x will also be labeled correctly as
ID. A similar argument follows for OOD samples. This bound suggests that we
can increase the certified radius by controlling LS during training, e.g., through
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penalizing LS . There exists a vast literature on Lipschitz estimations for neural
networks [17,18,28]. However, using these methods on deep models increases the
computational load of training. Instead, we penalize the norm of the gradient,
which can be considered as a proxy to the local Lipschitz constant.

Furthermore, for piecewise-linear networks like ReLU and LeakyReLU net-
works, the local Lipschitz constant is equal to the norm of the gradient. More
specifically, for every point x*, there exists an ε̂ > 0 such that the network
remains linear in this region, i.e.,

f(x′) = Ax′ + b, ∀x′ ∈ B(x, ε̂).

In such a region, the local Lipschitz constant is equal to the norm of the gradient
of the points [3], i.e., Lf = ∥A∥. This further motivates directly penalizing
the norm of the gradient of S. Thus, for such networks, minimizing ∥∇S(x)∥
decreases the local Lipschitz constant in the neighborhood of x, which in turn
could increase the maximum certified perturbation radius in (4). Note that our
argument for using the norm of the gradient in practice does not require the
knowledge of ε̂. We just use the fact that such an ε̂ exists and that in the
corresponding region, the network will be linear, and as a result, minimizing the
norm of the gradient is equivalent to minimizing the local Lipschitz constant for
this local neighborhood.

Post-hoc Methods and Gradient Regularization: So far, we have provided
a certified robustness radius against OOD misdetection using the Lipschitz con-
stant of the network. This radius (4) is proportional to the inverse of the Lipschitz
constant of the score function, and by regularizing the gradient we aim to reduce
the Lipschitz constant to increase this radius. Here, we note that many of the
state-of-the-art OOD detection methods can also be analyzed in this framework.
For example, DICE [59] and LINe [1] use activation pruning and sparsification
to remove noisy neurons. It has been shown [26] that for a given matrix, remov-
ing a row or column of it results in a reduction of the Lipschitz constant. As
activation pruning is essentially a form of masking the weights of the network,
methods utilizing activation pruning reduce the upper bound on the Lipschitz
constant, acquiring a network with a smaller Lipschitz upper bound.

6 Experiments

We perform extensive OOD detection experiments on CIFAR [30] and Ima-
geNet [12] benchmarks. In our comparisons, we use a wide range of CNN-based
architectures. We also provide ablation analysis to demonstrate the effect of each
component within our framework.

6.1 Setup

Datasets. For CIFAR experiments, we use CIFAR-10 and CIFAR-100 as ID
datasets. We evaluate the models on six different OOD datasets including Tex-

*We discard the negligible case of points on the boundaries of multiple piecewise-linear spaces.
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Table 1: Comparison on the CIFAR-10 benchmark. Mean AUROC and FPR95
percentages on various benchmarks. The experimental results are reported over three
trials. The best mean results are bolded and the runner-up is underlined. AUROC and
FPR95 are percentages.

Dataset Method ResNet WRN DenseNet

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

CIFAR-10

MSP [ICLR17] [22] 58.04 90.49 51.52 90.8 52.56 91.7
ODIN [ICLR18] [34] 34.46 91.59 35.23 89.82 24.88 94.42
Energy Score [Neurips20] [36] 39.32 92.24 33.4 91.76 28.99 94.09
ReAct [NeurIPS21] [58] 39.44 92.30 37.54 91.49 25.83 95.27
Dice [ECCV22] [59] 42.40 91.25 34.12 91.74 26.37 94.61
LINe [CVPR23] [1] 45.25 90.59 36.27 90.2 14.84 96.95

OE [ICLR18] [23] 19.92 95.71 21.12 95.55 21.76 95.8
Energy Loss [NeurIPS20] [36] 11.14 97.53 13.11 97.14 11.26 97.43
OpenMix [CVPR23] [79] 22.24 96.26 21.92 96 22.86 95.65

GReg 7.9 97.95 7.95 98.1 7.93 98.12

Table 2: Comparison on the CIFAR-100 benchmark. Mean AUROC and FPR95
percentages on various benchmarks. The experimental results are reported over three
trials. The best mean results are bolded and the runner-up is underlined.

Dataset Method ResNet WRN DenseNet

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

CIFAR-100

MSP [ICLR17] [22] 74.66 80.10 80.39 75.37 85.87 68.78
ODIN [ICLR18] [34] 64.00 84.33 67.95 79.86 69.97 81.55
Energy Score [Neurips20] [36] 68.46 84.15 74.15 79.26 78.91 76.12
ReAct [NeurIPS21] [58] 59.38 87.59 70.65 80.2 76.27 80.1
Dice [ECCV22] [59] 77.29 80.35 72.32 79.62 69.80 80.50
LINe [CVPR23] [1] 72.09 82.93 67.5 80.9 35.16 88.72

OE [ICLR18] [23] 77.32 63.89 74.22 65.70 60.52 84.21
Energy Loss [NeurIPS20] [36] 62.77 84.05 65.62 80.18 64.37 83.86
POEM [ICML22] [43] 61.11 82.43 62.58 79.74 59.33 79.81
OpenMix [CVPR23] [79] 59.64 88.09 73.12 79.23 67.29 84.47
DOS [ICLR24] [27] 54.62 88.30 45.26 90.76 34.92 93.22

GReg 59.6 82.92 58.26 86.56 56.29 87.35
GReg+ 50.78 88.75 48.12 91.02 30.55 93.38

tures [11], SVHN [46], Places365 [78], LSUN-cropped, LSUN-resized [70], and
iSUN [67]. Following [59], at test time, we use 10000 randomly selected samples
from each of these 6 datasets. Following [79], instead of the recently retracted
TinyImages, we use the 300K RandomImages [23] as the auxiliary outlier dataset.

For the ImageNet experiments, following [27], we consider a set of 10 random
classes from ImageNet-1K as the ID dataset and the rest of the dataset as the
auxiliary outlier dataset. For evaluation, we use 10000 randomly selected samples
from Textures, Places, SUN [65], and iNaturalist [61] as OOD datasets.

Experimental Setup: For the experiments of GReg on CIFAR, we use a pre-
trained model of the corresponding architecture and finetune for 20 epochs using
SGD with cosine annealing. For the experiments of GReg+ on CIFAR, we train
a model from scratch for 50 epochs with a learning rate of 0.1 and then further
train for another 10 epochs with a learning rate of 0.01, using the same opti-
mizer. Following [36], we set λS = 0.1 and set λ∇S = 1 .
For the ImageNet experiment, we only perform finetuning on a pre-trained
DenseNet-121. See the Supplementary Material for more details.
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Table 3: Comparison on the ImageNet benchmark. The experimental results
are reported over three trials. The best mean results are bolded and the runner-up is
underlined. AUROC and FPR95 are percentages.

Method
OOD Datasets AverageiNaturalist SUN Places Textures

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
MSP [ICLR17] [22] 62.6 87.09 64.3 86.64 62.3 86.72 78.3 75.03 66.87 83.87
ODIN [ICLR18] [34] 48.5 92.07 53.9 90.77 49.3 91.06 69.6 80.77 55.32 88.66
Energy Score [Neurips20] [36] 54 90.77 52.5 90.7 46.6 91.37 73.1 77.54 56.55 87.59
ReAct [NeurIPS21] [58] 51.88 91.52 52.48 90.81 49.56 90.92 64.61 83.77 54.63 89.25
DICE [ECCV22] [59] 32.86 93.6 41.35 92.9 45.82 91.58 65.2 78.61 46.3 89.17
LINe [CVPR23] [1] 29.47 93.77 37.29 92.85 38.85 92.16 52.32 86.38 39.48 91.29

OE [ICLR18] [23] 34.56 92.75 54.63 89.75 54.86 89.05 76.2 75.55 55.06 86.78
Energy Loss [Neurips20] [36] 18.44 95.91 50.19 90.37 49.32 90.47 62.96 77.78 45.23 88.63
DOS [ICLR24] [27] 61.63 88.68 42.69 93.23 45.49 93.37 47.45 92.63 49.31 91.97

GReg 29.54 94.94 45.86 92.53 45.35 92.06 68.29 80.98 47.26 90.13
GReg+ 24.11 95 33.98 92.31 32.89 92.7 49.32 88.22 35.08 92.06

For the CIFAR experiments, we evaluate our results on ResNet-18 [20], WRN-
40 [73], and DenseNet-101 [24] to span a wide range of architectures and param-
eter numbers.

Sampling Details: Following the explanations in Section 4.2, we cluster the
auxiliary samples into nID clusters and choose the lowest and highest scoring
samples of each cluster, i.e., in each iteration, we present 2nID auxiliary samples
for the training of that iteration. For the CIFAR experiments, we use the whole
auxiliary dataset in each epoch for clustering. In other words, at each epoch,
the 300K images are split into mini-batches, and clustering is performed on
each mini-batch at each iteration so that no auxiliary sample is missed. For
the ImageNet experiment, in each epoch, we sample 600K randomly selected
images from the remaining (990) classes as the auxiliary dataset and perform
the clustering on each mini-batch.

Evaluation Metrics: We report the following metrics: 1) FPR95 : the false
positive rate of the OOD samples when the true positive rate of ID samples is
at 95%. 2) AUROC : the area under the receiver operating characteristic curve.

Comparison Methods: For comparison with post-hoc OOD methods, we com-
pare to MSP [22], ODIN [23], Energy (score) [36], ReAct [58], DICE [59] and
LINe [1]. For the methods that use auxiliary data, we compare with OE [23], En-
ergy (loss) [36], POEM [43], OpenMix [79] and DOS [27]. MSP uses the maximum
softmax probability to detect the OOD samples. ODIN improves upon MSP by
introducing noise and temperature scaling. Energy proposes a score function for
OOD detection. ReAct uses activation clipping. DICE and LINe build up on that
idea by also detecting the important neurons and activation to improve OOD
detection. OE and Energy train based on their respective loss functions. POEM
uses posterior sampling and DOS proposes diverse sampling to improve OOD
detection. OpenMix uses pseudo-samples to improve misclassification detection.
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Table 4: Ablation Study of GReg. AUROC and FPR95 percentages on CIFAR
benchmarks averaged over all OOD datasets and three runs on DenseNet.

Method CIFAR-10 CIFAR-100

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

OE 21.76 95.8 60.52 84.21
OE + Grad 18.79 96.32 62.54 84.71

Energy 11.26 97.43 64.37 83.86
Energy + Grad 7.93 98.12 56.29 87.35

POEM 29.15 94.18 59.33 79.81
POEM + Grad 23.87 95.41 47.94 86.63

6.2 Results

Evaluation on CIFAR-10: We first evaluate the performance of our method
on the CIFAR-10 dataset. Following the literature [1], Table 1 shows the aver-
age results over the six commonly used OOD datasets. The detailed results on
individual OOD datasets can be found in the Supplementary Material. As the
results on CIFAR-10 are saturated, in Table 1 we focus on the effectiveness of
gradient regularization and report the rest of the methods in the Supplementary
Material. It can be seen that GReg outperforms all the methods in both of the
reported metrics. Specifically, GReg decreases the FPR95 of [36] by 3.9%.
Evaluation on CIFAR-100: For the results of this part, we use the same ex-
perimental setup and only change the ID dataset to CIFAR-100. The average
results of this experiment set are presented in Table 2 and the individual re-
sults can be found in the Supplementary Material. In this setup, GReg provides
competitive results on the ResNet and WRN architectures with state-of-the-
art methods that do not employ sampling. Moreover, coupled with sampling,
GReg+ outperforms all current state-of-the-art methods on almost all metrics of
the different architectures. On average, GReg+ outperforms the FPR95 metric of
DOS [27] by 1.8%, which showcases the effectiveness of energy-based sampling.
Results on each OOD dataset can be found in the Supplementary Material.
Evaluation on ImageNet: For this experiment, we randomly select 10 classes
of Imagenet-1K as ID and use the rest as the auxiliary data. The results of this
large-scale experiment are presented in Table 3. We can see that in terms of
FPR95, GReg+ outperforms DOS and LINe by large margins of 14.23% and
3.68%, respectively, while achieving state-of-the-art AUROC performance. The
energy-based sampling approach enables our method to acquire more informative
samples compared to the sampling method in [27], resulting in improved FPR95.

6.3 Ablation Study

In this section, we perform extensive experiments to show the effectiveness of
components within our framework, individually. That is, we show the effect of
regularizing the gradient on other methods and then compare our proposed
sampling method with the state-of-the-art. We also study the effect of our OOD
schemes on the ID accuracy of the models.
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Table 5: Ablation Study on Sam-
pling. Comparison among sampling
methods on CIFAR-100 on DenseNet
averaged over six OOD datasets.

Method CIFAR-100

FPR95 ↓ AUROC ↑

POEM 59.33 79.81
DOS 34.92 93.22
Energy only clustering 31.77 93.20
GReg+ 30.55 93.38

Table 6: Ablation Study on ID
Accuracy. Accuracy comparison on
CIFAR-10 on two architectures.

Method CIFAR-10

WRN DenseNet

Clean 94.84 94.03
Energy loss 88.15 91.82
GReg 89.55 92.14
DOS 78.90 87.06
GReg+ 83.06 89.89

Gradient Regularization: Due to the generality of the idea of gradient regu-
larization, our method can be used in conjunction with many existing methods.
To leverage the gradient regularization idea, one needs to define a suitable loss
function based on the norm of the gradient of the score, to promote a smoother
score manifold. To show the effectiveness of GReg on different OOD training
schemes, we choose three well-known OOD detection methods, Energy, OE, and
POEM, and train a DenseNet with and without gradient regularization on both
CIFAR benchmarks. Table 4 shows the overall improvement of all these methods
with gradient regularization, in both the FPR95 and AUROC, supporting our
claim that coupling GReg with other methods could improve their performance.

Sampling Methods: To study the effect of various sampling methods, we com-
pare POEM and DOS to our method with and without gradient regularization.
We denote GReg+ without gradient regularization as Energy-only-clustering. Ta-
ble 5 compares different methods that utilize some form of sampling and shows
the impact of energy-based clustering. On top of that, the comparison between
Energy-only-clustering and GReg+ further encourages gradient regularization.

ID Accuracy: To study the effect of gradient regularization on accuracy, we
compare the ID accuracy of our methods to the most relevant state-of-the-art on
WRN and DenseNet architectures. Table 6 shows that gradient regularization
(GReg) improves the ID accuracy of energy on both architectures and GReg+
also has superior ID accuracy in comparison with DOS.

7 Conclusions

In this paper, we presented the idea of gradient regularization of the score func-
tion in OOD detection. We also developed an energy-based sampling algorithm
to improve sampling quality when the auxiliary dataset is large. We demon-
strate that GReg exhibits superior performance compared to methods that do
not require clustering, and GReg+ outperforms all state-of-the-art methods. Fur-
thermore, our experiments show that regularizing the gradient could result in
robust models capable of extracting local information from the ID and OOD
data. We also provide detailed analytical analysis and ablation studies to sup-
port our method.
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8 Supplementary Materials

In the supplementary materials, we provide detailed implementation details and
experimental results for both CIFAR and ImageNet benchmarks. Furthermore,
we present an analysis to show the effectiveness of our OOD sampling strategy.
We then analyze the energy distribution of the ID and OOD samples.

8.1 Additional Implementation Details

For the experiments on CIFAR we use SGD with a momentum of 0.9, and a
weight decay of 0.0001. For GReg on CIFAR, similar to [36], we decrease the
learning rate following a cosine annealing strategy, with a maximum learning
rate of 1 and a minimum of 0.001. We use a batch size of 64 and 32 for the
CIFAR and ImageNet experiments, respectively.
For both GReg and GReg+ on the ImageNet dataset we perform fine-tuning
of a pre-trained DenseNet-121 model (in contrast to the CIFAR benchmarks
where we train GReg+ from scratch) using the ADAM optimizer with an initial
learning rate of 10−4 and decrease the learning rate to 10−5 at epoch 10. We
then run GReg and GReg+ to reach epochs 20 and 15, respectively. The other
hyperparameters are the same as the CIFAR benchmarks.

To reproduce the results of MSP, ODIN, and Energy, we used the codebase
of Energy*. For the case of ReAct and DICE, we utilize the codebase of DICE*,
and to reproduce the results of LINe*, and DOS*, we utilize their corresponding
codebases. In the spirit of fairness, we run their codes with multiple specifications
similar to the original manuscript and report the best results in our tables.
Furthermore, experiments requiring training are conducted with 3 different seeds
and we report the average values in the tables. All other methods are run with
their corresponding default parameters outlined in their manuscript.

8.2 Detailed CIFAR-10/100 Benchmark Results

Table 10 and Table 11 show the complete and detailed performance of vari-
ous OOD detection approaches on each of the six OOD test datasets. Table 12
compares the sampling methods on the CIFAR-10 dataset. As it can be seen,
especially on the WRN and DenseNet architectures, the performance of different
methods is saturated.

8.3 Distribution Analysis

To further study the effectiveness of our method, we perform the following anal-
ysis. We choose a WRN model pre-trained on CIFAR-10 and fine-tune it with

*https://github.com/wetliu/energy_ood
*https://github.com/deeplearning-wisc/dice
*https://github.com/YongHyun-Ahn/LINe-Out-of-Distribution-Detection-by-

Leveraging-Important-Neurons
*https://github.com/lygjwy/DOS
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Fig. 4: Distributions of energy scores. The left figure shows the distribution of the pre-
trained model, the middle shows the same for Energy loss and the right figure shows
the distribution for GReg.

Table 7: Ablation study on the number of clusters. FPR95 and AUROC per-
centages reported on CIFAR benchmarks on DenseNet.

Num. of Clusters CIFAR-10 CIFAR-100

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

No Clustering 7.93 98.12 56.29 87.35
16 9.88 97.68 58.97 82.88
32 12.1 97.15 46.41 88.433
64 11.27 97.54 30.55 93.38

the energy loss and GReg. Next, we plot the distribution of energy scores for ID
(CIFAR-10 test) and OOD (SVHN) datasets and compare the results. As it can
be seen from Figure 4, adding gradient regularization to the energy loss enables
the network to better distinguish ID samples from the OOD since the distance
between the two distributions has increased, i.e., the OOD data are assigned
higher energy scores, resulting in further distanced score distributions.

8.4 Sampling

In our setting, we are presented with three main possible clustering spaces: the
image space, the feature space, or the logit space. The image space contains
the most information but there are two main drawbacks to using it. Firstly, the
image space is far too large and high-dimensional, typically in the order of tens of
thousands. Secondly, although all the information is in the image, no processing
has been done on the image and the features have not been extracted, meaning
that in effect, there is also a lot of noise irrelevant to our task. The logit space is
not suitable from the opposite perspective, i.e., most of the information has been
stripped and only label-relevant information remains. The feature space presents
a sweet spot; reasonable dimensionality, relevant features, and smaller levels of
noise. Consequently, we choose to cluster the samples in the feature space.

Another parameter of interest in the experiments is the number of clusters.
In Table 7 we examine the effect of the number of clusters on the performance
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of our method on both CIFAR benchmarks using the DenseNet architecture.
It can be observed that our sampling significantly improves the results on the
CIFAR-100 benchmark, but does not have the same effect on CIFAR-10. Our
intuition suggests that one reason behind this observation might be that the
CIFAR-10 benchmark is so simple that the DenseNet model can observe all the
auxiliary data during the training phase and learn the information. However, in
the case of CIFAR-100, as the benchmark is harder, sampling the data helps the
model extract more informative samples. Note that the perplexity in comparing
CIFAR-100 vs CIFAR-10 is that the datasets contain the same number of samples
(60000 total images in both) but CIFAR-100 has 10 times the number of classes
of CIFAR-10. This can also be seen in our ImageNet experiments (see Table 3).
That is, as the task is harder, sampling using GReg+ is more effective and
improves upon GReg by large margins of 12% and 2% on FPR and AUROC,
respectively.

8.5 Near-OOD vs Far-OOD Experiments

Apart from the previous experiments, another way to categorize the OOD exper-
iments is by grouping them into Near-OOD (hard-OOD) and Far-OOD (easy-
OOD). The intuition behind this grouping is that if the ID data is close to the
OOD data, it will be much harder to distinguish between them. Therefore, a
powerful OOD method should perform well in both Near-OOD and Far-OOD
benchmarks.

To evaluate our performance on the Near-OOD benchmarks, we followed the
setup of [75]. In Table 8, we set CIFAR10 as ID and report the metrics on Near-
OOD benchmarks (CIFAR100 and Tiny ImageNet) using a ResNet architecture.
On average, GReg+ improves the FPR of DOS by 4% with comparable results
in terms of AUROC.

To further compare our method with more auxiliary-based baselines, we
use the setup of [75] to perform additional experiments. Table 9, compares our
method versus three new benchmarks (MCD [71], UDG [68], MixOE [74]) that
use auxiliary data. On average, GReg+ improves the FPR on CIFAR10 and
CIFAR100 by 2.5% and 2.4%, respectively, and achieves comparable AUROC.
Note that, unlike DOS, GReg+ achieves these results with minimal decrease in
ID accuracy. Furthermore, GReg+ outperforms the new benchmarks by large
margins.
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Method CIFAR-100 TIN Average

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

C
IF

A
R

-1
0

ReAct [58] 75.5 85.2 67.61 87.70 71.56 86.47
Energy score [36] 72.69 85.55 62.41 88.31 67.55 86.93

Dice [59] 84.29 76.05 75.97 79.53 80.13 77.79

Energy Loss [36] 48.11 88.24 36.33 91.86 42.22 90.05
DOS [27] 29.24 93.38 16.08 96.16 22.66 94.77
GReg+ 23.87 93.23 13.12 95.32 18.49 94.28

Table 8: Near-OOD comparison with CIFAR-10 as ID.

Method Near-OOD Far-OOD Average ID Acc
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

C
IF

A
R

-1
0 MCD [71] 30.17 91.03 32.03 91.00 31.1 91.0 94.9

UDG [68] 35.34 89.91 20.35 94.06 27.8 91.9 92.3
MixOE [74] 51.45 88.73 33.84 91.93 42.6 90.3 94.5
DOS [27] 22.66 94.77 8.01 97.75 15.3 96.2 78.5
GReg+ 18.49 94.28 7.47 96.72 12.9 95.5 91.1

C
IF

A
R

-1
00 MCD [71] 55.88 77.07 54.39 74.72 55.1 75.8 75.8

UDG [68] 61.42 78.02 59.00 79.59 60.2 78.8 71.5
MixOE [74] 55.22 80.95 63.88 76.40 59.5 78.6 75.3
DOS [27] 56.33 79.63 35.52 87.73 45.9 83.6 47.7
GReg+ 48.26 82.50 38.79 86.4 43.5 84.5 72.4

Table 9: Additional Experiments on Near-OOD and Far-OOD.

Table 10: Comparison on the CIFAR-10 benchmark. The experimental results
are reported over three trials. AUROC and FPR95 are percentages.

Network Method
OOD Datasets

Average
Textures SVHN Places LSUN-c LSUN-r iSUN

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

ResNet

MSP [22] 58.78 90.03 73.02 89.42 61.56 87.98 43.88 94.21 53.31 91.38 57.73 89.95 58.04 90.49
ODIN [34] 50.42 86.89 40.27 91.84 48.65 86.56 7.81 98.21 26.48 94 33.14 92.06 34.46 91.59

Energy score [36] 53.26 89.12 58.36 91.01 44.51 89.45 12.57 97.64 30.48 94.11 36.77 92.16 39.32 92.24
ReAct [58] 52.04 89.68 60.2 90.46 44.68 89.26 13.36 97.51 29.95 94.29 36.43 92.63 39.44 92.30
DICE [59] 54.73 88.34 59.4 89.81 44.09 89.39 22.38 95.72 33.32 93.17 40.52 91.08 42.40 91.25
LINe [1] 56.97 88.07 66.57 87.4 46.05 88.62 24.9 95.13 34.66 93.12 42.38 91.21 45.25 90.59
OE [23] 19.46 95.98 13.94 97.22 38.38 90.76 8.15 98.20 21.03 95.87 18.58 96.26 19.92 95.71

Energy Loss [36] 12.95 97.17 4.22 98.89 27.31 94.05 5.47 98.69 7.87 98.24 9.04 98.16 11.14 97.53
OpenMix [79] 17.76 96.77 41.12 94.44 27.68 94.4 8.33 98.32 19.06 96.87 19.54 96.79 22.24 96.26

GReg 5.96 98.36 3 98.83 22.76 94.8 3.03 99 6.5 98.4 6.2 98.33 7.91 97.95

WRN

MSP [22] 59.53 88.45 48.53 91.74 59.86 88.29 31.15 95.6 53.22 91.14 56.87 89.58 51.52 90.8
ODIN [34] 54.52 80.45 46.6 85.68 48.57 86.04 10.19 97.84 22.86 95.05 28.64 93.87 35.23 89.82

Energy score [36] 52.52 85.38 36.58 90.73 39.88 89.87 8.2 98.34 28.8 93.87 34.47 92.38 33.40 91.76
ReAct [58] 53.47 86.58 41.46 89.34 41 90.51 13.21 97.4 34.95 93.30 41.15 91.82 37.54 91.49
DICE [59] 58.97 84.24 46.09 88.22 42.55 89.69 2.87 99.27 23.6 95.29 30.66 93.78 34.12 91.74
LINe [1] 57.13 83.81 50.2 83.11 47.35 87.67 2 99.47 27.32 94.32 33.65 92.82 36.27 90.2
OE [23] 22.56 95.24 27.41 95.13 33.65 92.24 8.88 98.19 17.58 96.22 16.68 96.27 21.12 95.55

Energy Loss [36] 11.47 97.3 23.93 94.93 22.6 95.37 5.07 98.83 8.07 98.17 7.53 98.27 13.11 97.14
OpenMix [79] 21.17 95.85 26.63 95.65 27.17 94.13 14.32 97.35 21.8 96.42 20.45 96.61 21.92 96

GReg 7.83 98.16 6.23 98.4 19.9 95.66 3.8 98.93 5.26 98.7 4.66 98.76 7.95 98.10

DenseNet

MSP [22] 66.3 87.09 44.64 93.86 63.16 88.35 43.34 94.17 48.9 93.4 49.05 93.35 52.56 91.70
ODIN [34] 55.62 85.03 29.03 94.86 42.44 91.11 11.94 97.67 4.86 98.96 5.39 98.9 24.88 94.42

Energy score [36] 60.03 85.17 35.2 94.76 40.9 91.58 9.5 98.17 13.78 97.51 14.57 97.4 28.99 94.09
ReAct [58] 50.47 90.53 29.81 95.56 40.35 92.05 10.04 98.11 11.44 97.79 12.92 97.62 25.83 95.27
DICE [59] 56.26 86.42 40.47 93.99 39.6 91.82 3.79 99.15 8.71 98.19 9.42 98.11 26.37 94.61
LINe [1] 23.35 95.11 12.22 97.56 43.72 91.13 0.61 99.83 4.09 99.1 5.06 99.02 14.84 96.95
OE [23] 20.93 96.04 12.19 97.68 39.18 91.69 7.15 98.57 25.45 95.42 25.72 95.41 21.77 95.8

Energy Loss [36] 13.43 97.04 20.08 95.52 20.09 95.41 3.53 99.19 4.55 98.84 5.87 98.63 11.26 97.44
OpenMix [79] 24.8 95.3 40.59 92.58 29.13 93.88 12.39 97.64 15.4 97.23 14.9 97.31 22.87 95.66

GReg 8.3 97.9 3.7 98.83 20.13 95.66 3.1 99.23 6.36 98.53 6.03 98.56 7.93 98.12



24 Sharifi et al.

Table 11: Comparison on the CIFAR-100 benchmark. The experimental results
are reported over three trials. AUROC and FPR95 are percentages.

Network Method
OOD Datasets

Average
Textures SVHN Places LSUN-c LSUN-r iSUN

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

ResNet

MSP [22] 82.18 75.44 70.19 82.53 82.09 75.06 64.37 85.43 74.74 81.24 74.39 80.94 74.66 80.1
ODIN [34] 76.44 77.59 65.24 84.61 83.37 74.62 41.63 93.07 59.85 88 57.48 88.09 64 84.33

Energy score [36] 81.82 77.71 57.08 89.09 84.12 75.4 50.24 91.71 69.73 85.49 67.77 85.5 68.46 84.15
ReAct [58] 67.69 85.5 48.94 91.8 82.29 77.2 31.54 94.61 63.9 88.53 61.96 87.95 59.38 87.59
DICE [59] 88.92 71.5 69.78 85.12 87.81 72.13 59.78 89.08 77.69 82.87 79.81 81.42 77.29 80.35
LINe [1] 78.71 79.96 66.2 86.98 87.71 72.88 43.98 91.09 78.27 83.48 77.69 83.19 72.09 82.93
OE [23] 73.91 73.14 86.45 70.18 69.28 77.75 44.44 86.51 94.55 38.80 95.30 36.98 77.32 63.89

Energy Loss [36] 57.3 83.9 75.06 84.33 82.2 75.8 35.03 93.93 62.06 83.4 65 82.93 62.77 84.05
POEM [43] 67.92 77.69 78.72 78.6 89.07 68.76 41.97 92.24 46.27 88.31 42.72 89.01 61.11 82.43

OpenMix [79] 59.87 87.54 72.91 86.76 75.73 80 48.75 91.31 48.02 92.25 52.56 90.71 59.64 88.09
DOS [27] 52.29 88.1 47.57 91.44 77.99 81.42 54.75 89 45.5 90.76 49.62 89.08 54.62 88.30

GReg 58.73 83.73 42 91.7 78.4 76.7 28.56 94.6 74.56 75.2 75.33 75.63 59.6 82.92
GReg+ 48.74 88.2 42.2 92.45 69.61 83.35 43.86 90.75 46.04 89.94 54.22 87.8 50.78 88.75

WRN

MSP [22] 83.05 73.75 83.88 71.97 82.03 73.91 66.59 83.71 83.11 74.12 83.66 74.77 80.39 75.37
ODIN [34] 76.57 75.13 90.37 67.08 81.12 74.21 36.44 93.32 62 84.55 61.23 84.89 67.95 79.86

Energy score [36] 79.78 76.47 85.57 74.43 80.07 75.69 36.09 93.4 80.6 77.72 82.82 77.86 74.15 79.26
ReAct [58] 67.12 82.97 74.45 88.28 81.21 74.24 36.63 91.67 81.23 72 83.31 72.07 70.65 80.20
DICE [59] 85.32 72.84 87.21 71.39 81.02 74.95 16.73 96.83 79.86 81.64 83.82 80.08 72.32 79.62
LINe [1] 67.34 81.98 81.73 83.6 84.03 71.03 16.93 96.61 77.98 76.26 77 76.37 67.50 80.97
OE [23] 73.24 72.47 71.6 81.3 69.2 77.97 40.46 87.26 95.04 38.36 95.77 36.84 74.22 65.7

Energy Loss [36] 68.96 80.66 87.7 73.6 83.26 74.36 55.53 88.53 47.7 81.96 50.6 82 65.62 80.18
POEM [43] 79.23 70.17 90.37 67.89 85.89 70.51 26.09 94.35 45.3 88.59 48.59 86.92 62.58 79.74

OpenMix [79] 64.91 83.61 87.25 70.34 73.17 78.14 59.18 87.77 75.19 78.46 79.02 77.05 73.12 79.23
DOS [27] 41.89 91.58 15.07 97.33 59.18 88.24 32.12 94.38 61.31 86.78 62 86.22 45.26 90.76

GReg 54.5 85.53 57.33 89.76 74.36 79.53 43.86 91.73 58.33 86.8 61.16 86.03 58.26 86.56
GReg+ 51.6 90 25.73 95.96 65.16 87.56 41.68 93.42 51.61 89.96 52.93 89.24 48.12 91.02

DenseNet

MSP [22] 86.12 70.66 85.55 72.33 83.25 74.01 77.45 78 92.18 57.09 90.71 60.59 85.87 68.78
ODIN [34] 80.14 73.74 80.63 83.75 76.78 78.75 43.87 91.25 69.6 80.44 68.8 81.4 69.97 81.55

Energy score [36] 84.81 70.29 88.6 80.99 78.12 77.48 51.08 88.73 84.56 69.31 86.3 69.96 78.91 76.12
ReAct [58] 78.22 77.9 88.02 78.76 81.98 73.53 53.51 88.13 76.23 81.32 79.7 80.97 76.27 80.10
DICE [59] 84.34 71.02 87.51 81.86 78.19 78.15 14.75 97.44 75.36 77.77 78.7 76.8 69.80 80.50
LINe [1] 39.24 87.91 31.6 91.7 88.48 63.82 5.75 98.85 23.33 94.95 22.6 95.13 35.16 88.72
OE [23] 74.55 77.07 61.17 87.34 66.75 81.56 24.98 95.1 65.02 83.12 70.65 81.11 60.52 84.21

Energy Loss [36] 70.03 81.3 70.78 88.42 62.45 85.15 26.09 95.38 77.59 75.23 79.32 77.69 64.37 83.86
POEM [43] 75.48 73.04 83.57 71.49 83.6 73.99 33.96 93.43 39.74 83.58 39.61 83.33 59.33 79.81

OpenMix [79] 63.66 84.05 72.27 85.77 73.17 80.19 48.79 90.8 71.76 83.77 74.1 82.23 67.29 84.47
DOS [27] 38.3 91.72 11.57 97.88 57.06 88.91 25.32 95.58 38.43 92.75 38.85 92.49 34.92 93.22

GReg 64.63 81.74 45.79 92.53 78.1 78.1 31.27 94.53 55.98 89.43 61.96 87.8 56.29 87.35
GReg+ 41.83 90.19 14.44 97.06 53.56 89.11 19.49 95.8 26.01 94.36 27.95 93.77 30.55 93.38

Table 12: Comparison of methods with sampling on the CIFAR-10 bench-
mark. The experimental results are reported over three trials. AUROC and FPR95
are percentages.

Network Method
OOD Datasets

Average
Textures SVHN Places LSUN-c LSUN-r iSUN

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

ResNet
POEM [43] 33.24 93.51 58.95 89.58 61.82 86.26 62.78 90.13 11.22 97.96 10.53 98.03 39.76 92.58
DOS [27] 7.76 98.74 4.82 99.19 21.3 95.50 9.68 98.39 10.86 97.93 12.31 97.68 11.12 97.91

GReg 5.96 98.36 3 98.83 22.76 94.8 3.03 99 6.5 98.4 6.2 98.33 7.91 97.95
GReg+ 7.70 98.47 5.65 98.79 24.25 94.80 9.54 98.18 14.56 97.30 15.04 97.11 12.79 97.44

WRN
POEM [43] 31.08 93.84 64.09 87.23 57.86 87.62 29.51 95.01 25.97 95.08 23.17 95.48 38.61 92.38
DOS [27] 4.33 99 1.78 99.32 10.89 97.16 3.73 98.98 9.18 98.2 9.86 98.17 6.63 98.47

GReg 7.83 98.16 6.23 98.4 19.9 95.66 3.8 98.93 5.26 98.7 4.66 98.76 7.95 98.10
GReg+ 4.19 98.52 2.92 98.59 11.38 96.71 3.88 98.63 5.63 98.47 6.57 98.27 5.76 98.2

DenseNet
POEM [43] 36.79 91.31 31.69 94.34 53.69 88.34 43.57 92.84 5.06 99.03 4.11 99.23 29.15 94.18
DOS [27] 2.61 99.39 0.67 99.65 7.16 97.90 0.88 99.56 1.61 99.21 1.53 99.27 2.41 99.16

GReg 8.3 97.9 3.7 98.83 20.13 95.66 3.1 99.23 6.36 98.53 6.03 98.56 7.93 98.12
GReg+ 6.21 98.29 2.19 98.73 21.5 95.1 6.87 98.27 15.53 97.45 15.36 97.43 11.27 97.54
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