Published in Transactions on Machine Learning Research (05/2024)

Robust Distortion-free Watermarks for Language Models

Rohith Kuditipudi rohithk@stanford. edu
Department of Computer Science
Stanford University

John Thickstun jthickstun@stanford. edu
Department of Computer Science
Stanford University

Tatsunori Hashimoto thashim@stanford. edu
Department of Computer Science
Stanford University

Percy Liang pliang@cs.stanford.edu
Department of Computer Science
Stanford University

Reviewed on OpenReview: https: //openreview. net/ forum? id=FpaCL1MO2C

Abstract

We propose a methodology for planting watermarks in text from an autoregressive language
model that are robust to perturbations without changing the distribution over text up to a
certain maximum generation budget. We generate watermarked text by mapping a sequence
of random numbers—which we compute using a randomized watermark key—to a sample
from the language model. To detect watermarked text, any party who knows the key can
align the text to the random number sequence. We instantiate our watermark method-
ology with two sampling schemes: inverse transform sampling and exponential minimum
sampling. We apply these watermarks to three language models—OPT-1.3B, LLaMA-7B
and Alpaca-7TB—to experimentally validate their statistical power and robustness to various
paraphrasing attacks. Notably, for both the OPT-1.3B and LLaMA-7B models, we find
we can reliably detect watermarked text (p < 0.01) from 35 tokens even after corrupting
between 40-50% of the tokens via random edits (i.e., substitutions, insertions or deletions).
For the Alpaca-7B model, we conduct a case study on the feasibility of watermarking re-
sponses to typical user instructions. Due to the lower entropy of the responses, detection is
more difficult: around 25% of the responses—whose median length is around 100 tokens—
are detectable with p < 0.01, and the watermark is also less robust to certain automated
paraphrasing attacks we implement.!

1 Introduction

The ability of language models to mass produce human-like text creates an acute, renewed emphasis on
the importance of provenance of generated content. For example, the website StackOverflow has banned
users from posting answers using OpenAI’s ChatGPT model to mitigate the spread of misinformation on the
platform Vincent (2022). A reliable forensic tool for attributing text to a particular language model would
empower individuals—such as platform moderators and teachers—to enact and enforce policies on language
model usage; it would also better enable model providers to track the (mis)use of their models, e.g., to scrub
synthetic text from the training data of future language models.

IWe release all code publicly at https://github.com/jthickstun/watermark.

https://openreview.net/forum?id=FpaCL1MO2C
https://github.com/jthickstun/watermark

Published in Transactions on Machine Learning Research (05/2024)

User - Detector

"~ LM Provider @

Write an
essay about
World War 1.

wos T

war

e TT 171
most
ozadly I

Figure 1: We define the following watermarking protocol between three parties: the LM provider, the user,
the detector. The LM provider and the detector coordinate via a shared key, while the user is an untrusted
third party. The protocol consists of four steps: 1) the user sends a prompt to the LM provider; 2) the LM
provider generates watermarked text to the user; 3) the user edits the watermarked text (to avoid detection)
and publishes the edited text; 4) the detector verifies which of the published text came from the LM provider.

World War 1
stands as the
most deadly...

[TIIIT]
annnn
apnnnn

World War 1
was the most
deadly...

o —
annnn

To achieve provenance, a watermark is a signal embedded within some generated content—in our case, text
from a language model—that encodes the source of the content. We consider a setting where a (untrusted)
third party user queries a language model (LM) by sending prompts to a trusted provider (Figure 1): the LM
provider generates text from their language model with a watermark so that a detector may later identify
the source of the text if the user publishes it. The ideal watermark should satisfy at least the following three
desiderata:

1. distortion-free—the watermark should preserve the original text distribution;
2. agnostic—it should be detectable without the language model and/or prompt;

3. robust—it should withstand perturbations of the watermarked text.

Existing watermarks either distort the model’s sampling distribution, thus altering the API functionality
Kirchenbauer et al. (2023); Aaronson (2023), or are not robust to editing or cropping the text Christ et al.
(2023). Meanwhile, classical steganographic techniques for covertly encoding messages within samples of text
from a language model are neither agnostic nor robust Ziegler et al. (2019). We develop the first watermarks
for attributing text to a language model that achieve all three desiderata.

Our methodology consists of two components, which the LM provider and detector respectively use to execute
the two steps of the protocol in Figure 1 under their control: a generate method that deterministically maps
a sequence ¢ of random numbers encoded by a (secret) watermark key?—which we call the watermark key
sequence—to a sample from the language model, and a detect method that aligns a putative watermarked
text with the watermark key sequence using the shared key. Informally, our watermarks are distortion-free in
the sense that—marginalizing over the watermark key sequence—each call to generate is equal in distribu-
tion to a sample from the original language model, i.e., P(text) = fg 1{text = generate({, prompt)} dv(&)
is equal to the original language model’s sampling distribution.

The challenge of detecting watermarked text is that the detector cannot simply recompute generate and
compare its output against the text since they do not necessarily know the prompt which produced the text:
in practice, users often crop the prompt when publishing text from a language model. Our watermarks are
agnostic in the sense that they are easily detectable with a suitable model-agnostic and prompt-agnostic
test statistic ¢ such that ¢(generate({, prompt),§) < ¢(text,§) for any text that is independent of the
watermark key sequence. The idea here is that the detector may use ¢ within detect to compute a p-value
with respect to the null hypothesis that the text is independent of the watermark key sequence, i.e., that
the text is not watermarked.

To ensure detect is robust to edits of the watermarked text, the core idea underpinning the design of each
test statistic ¢ is to leverage techniques for robust sequence alignment to align a putative watermarked

2Whether the watermark key is secret or not (e.g., if the LM provider publishes the key to allow anyone to detect watermarked
text) is an implementation choice that does not affect the main parts of our analysis.

Published in Transactions on Machine Learning Research (05/2024)

text with the watermark key sequence; we quantify the quality of the alignment using an “alignment cost"
specific to each watermark. The sequence alignment procedure ensures the watermark is detectable from
even a small, corrupted block of watermarked text planted within some other larger text. Of course, a
sufficiently motivated and/or sophisticated user can still evade detection by simply rewriting the text from
scratch themselves (or, using another language model to generate the text); the point of a robust watermark
is simply that the amount of effort and/or resources a user requires to produce text that evades watermark
detection should be commensurate to what they would have expended had they not had access to the
watermarked language model in the first place.

Whereas generate is a deterministic function, if our watermark produced the same text every time for
each prompt it would not be very useful. We resolve this limitation by designing a wrapper shift-generate
around generate that calls generate using a randomly chosen subsequence of £ instead of generating tokens
from the same starting point each time. For the same reasons that detect is robust to editing and cropping
watermarked text, calling generate in this fashion does not affect watermark detectability. In practice,
the statistical power of our watermarks improves exponentially with respect to the length of the putative
watermarked text and diminishes only linearly with the length of the random number sequence; thus, by
increasing the length of the random number sequence, we can reduce the probability of reusing the same
random subsequence while still ensuring our watermark has good statistical power (i.e., that it yields low
p-values for watermarked text). So long as we do not reuse an element of the key sequence, successive calls
to shift-generate will be jointly indistinguishable from regular calls to the language model.

To remark briefly on the work most closely related to ours, we contrast the distortion-free property of our
watermarks with the hashing-based watermarks of Kirchenbauer et al. (2023) and Aaronson (2023) that bias
the distribution of watermarked text towards certain k-grams by hashing a sliding window of the previous
k — 1 tokens to determine the next token pseudorandomly. We give examples of prompts (e.g., “Give me a
list of 20 movies.") for which the bias due to hashing is clearly noticeable in our experiments. Christ et al.
(2023) propose a variation of hashing in which the window size changes based on the entropy of the generated
tokens to avoid hash collisions with high probability. Their motivation is similar to ours in that they focus
on preserving the original text distribution; however, like Kirchenbauer et al. (2023) and Aaronson (2023),
using larger window sizes hurts robustness as an adversary can break the watermark by replacing a single
token in each window. Our watermark is not only distortion-free but also robust to substantial corruption
of the text, which is crucial in practice. We defer a more thorough discussion of related work to the next
section (Section 1.1).

We describe the details of our methodology in Section 2, wherein we give two instantiations of watermarks—
using inverse transform sampling and exponential minimum sampling—and provide analyses of their statis-
tical power. We experimentally validate the power and robustness of our watermarks using the OPT-1.3B,
LLaMA-7B and Alpaca-7B language models in Section 3. Across all models, we find the second instantiation
using exponential minimum sampling to be the most powerful. For both the OPT-1.3B and LLaMA-7B
models, using this watermark we can reliably detect watermarked text (p < 0.01) from 35 tokens even af-
ter corrupting between 40-50% of the tokens via random edits (i.e., substitutions, insertions or deletions);
the watermark also remains detectable from 50 tokens even after paraphrasing the text by translating to
French/Russian and back. For the Alpaca-7B model, we conduct a case study on the feasibility of wa-
termarking responses to typical user instructions. Due to the lower entropy of the responses, detection is
more difficult: around 25% of the responses—whose median length is around 100 tokens—are detectable
with p < 0.01, and the watermark is also less robust to paraphrasing. We release code for implementing
the watermark and reproducing the experiments in this paper, as well as additional supplementary material
including an in-browser demo of the watermark detector.?

1.1 Related work

Text watermarking is a special case of linguistic steganography, in that the goal is to convey a hidden
message—the watermark—within a passage of text. Existing approaches to linguistic steganography fall
under two broad categories: edit-based methods that modify a pre-existing text, and generative methods that

3For assets and supplemental material, see: https://github.com/jthickstun/watermark.

https://github.com/jthickstun/watermark

Published in Transactions on Machine Learning Research (05/2024)

construct a distribution over cover text (Ueoka et al., 2021). Crucially, in contrast to steganography, the
literature on digital watermarking has historically foregrounded robustness to corruption as a key attribute
of a good watermark (Katzenbeisser & Petitcolas, 2000; Atallah et al., 2001). In this light, a text watermark
should be able to withstand some perturbations of the text, thus precluding the direct application of many
existing techniques for linguistic steganography (Dai & Cai, 2019; Ziegler et al., 2019; Shen et al., 2020).

Older work on text watermarking considers editing a pre-existing text to include a watermark (Rizzo et al.,
2019; Abdelnabi & Fritz, 2021; Yang et al., 2022); for a survey of edit-based watermarks, see Kamaruddin
et al. (2018). In contrast, we are interested in generating watermarked text while preserving the distribution
over the text from a language model. Work on generative watermarking is nascent, underwritten by recent
advances in open-ended text generation (Brown et al., 2020). Pioneering work by Venugopal et al. (2011)
proposed a generative watermark for the output of a machine translation system, biasing the system towards
translations with particular features that can later be detected using a hypothesis test.

Our work is most closely related to Kirchenbauer et al. (2023), who watermark text from a language model
by reweighting the token log-probabilities from the model at inference time as a function (i.e., hash) of
the previous k£ — 1 tokens, where k£ € N is a hyperparameter. In ongoing unpublished work concurrent to
ours, Aaronson (2023) describes a technique for watermarking language models using exponential minimum
sampling (a close relative of the Gumbel trick Papandreou & Yuille (2011)) to sample from the model, where
the inputs to the sampling mechanism are also a hash of the previous £ — 1 tokens. Neither watermark is
distortion-free, and in fact we show in our experiments that the distortions manifest noticeably in practice
(e.g., excessive repetition of certain tokens). Specifically, both Kirchenbauer et al. (2023) and Aaronson
(2023) bias the distribution toward a subset of k-grams. Increasing k makes the bias less noticeable but
hurts the robustness of both watermarks: an adversary can break the signal from a particular token by
replacing any one of the previous k — 1 tokens.

Also concurrent to our work, Christ et al. (2023) propose watermarking blocks of text from a language model
by hashing each block to seed a sampler for the next block. Christ et al. (2023) vary their block sizes—which
are analogous to the hyperparameter k of Kirchenbauer et al. (2023) and Aaronson (2023)—as a function
of the empirical entropy of the constituent tokens to avoid using the same seed twice with high probability.
Their work is similar to ours in that they preserve the original language model’s sampling distribution;
however, the resulting watermark is not robust since in order to mitigate the distortion induced by hashing
the block sizes must be sufficiently large to avoid hash collisions with high probability over all blocks and—
similar to Kirchenbauer et al. (2023) and Aaronson (2023)—replacing any token in the previous block breaks
the watermark in the next block. Whereas Christ et al. (2023)—who do not run experiments—choose their
block sizes to be sufficiently large to minimize distortion, Kirchenbauer et al. (2023) and Aaronson (2023)
recommend choosing k to be a small constant in practice, which ensures a moderate amount of robustness
by introducing some distortion. Finally, whereas our definition distortion-freeness implies exact equality in
distribution of watermarked text to unwatermarked text for a single query to the language model, Christ
et al. (2023) propose a definition of “undetectability” that implies approximate equality in distribution, i.e.,
approximate distortion-freeness, over multiple queries. Using shift-generate, we also achieve approximate
distortion-freeness in the multiple query setting, though the runtime of our watermark detection procedure
must grow with the number of queries; we discuss these trade-offs in more detail in Section 4.

An alternative approach for detecting synthetic text is to learn a classifier between synthetic and human
text (Jawahar et al., 2020; Mitchell et al., 2023). A key advantage of such methods over watermarking is
that they do not require coordination with the original producer of the text (i.e., the LM provider); however,
their effectiveness is distribution dependent and they do not provide a priori (distribution-free) guarantees
on the significance level of detection (i.e., Type I errors).

Finally, we note that our setting is different from the literature on planting watermarks in the training data
of machine learning models, e.g., to infer the model’s training set or otherwise influence the model’s output
(He et al., 2022a;b; Zhao et al., 2023). Such watermarks are not distortion-free by design, since the point is
to plant some learnable signal in the training data that influences the behavior of models which train on the
watermarked data.

Published in Transactions on Machine Learning Research (05/2024)

2 Methodology and theoretical analysis

Let V be a discrete set, i.e., the vocabulary, and let p € V* — A(V) be an autoregressive language model
which maps a string of arbitrary length to a distribution over the vocabulary, with p(- |) denoting the
distribution of the next token given the prefix x € V*. Let = denote the space in which the elements of the
watermark key sequence lie. Recall the main protocol (Figure 1) which defines our problem setting:

0. The LM provider shares a random watermark key sequence ¢ € =* with the detector;
1. The user sends a prompt x € V* to the LM provider;
2. The LM provider generates text Y € V* by Y = generate(z,§);

3. The user publishes text ¥ € V*, which may be either (i) (an edited version of) the generated text
Y or (ii) text independent of YV (e.g., text that they wrote themselves);

4. The detector determines if Y is watermarked—i.e., if Y depends on the watermark key sequence—by
computing a p-value p = detect(Y,£) with respect to the null hypothesis that Y is independent of
¢ (i-e., not watermarked).

2.1 Protocol details

In the protocol, the LM provider calls the generate method (Algorithm 1) to autoregressively generate text
from a language model using a decoder function T' : Zx A(V) — V which maps an element &; of the watermark
key and a distribution over the next token to a next token prediction. By design, over the randomness of &;
the prediction should constitute a sample from the distribution, i.e., P(I'(&;, 1) = vi) = wu(y;)-

Definition 1. A decoder I' : Ex A(V) — V is distortion-free with respect to (the distribution of) a random
variable £ € Z if for any p € A(V) and y € V it satisfies P(I'(&, u) = y) = p(y).

We relate Definition 1 to our informal definition of distortion-free text in the introduction through the
following simple lemma. Essentially, so long as the watermark key sequence is long enough that we do not
reuse any part of it to generate text, the only material difference between an LM provider using generate
versus sampling directly from the language model is that the sequence £ is an input to the method rather
than resampled i.i.d. within the method for each call. We treat the language model p, the decoder I, and
generation length m as internal parameters of the generate method.

Lemma 2.1. Let m,n € N with n > m. Let T be distortion free with respect to a distribution v € A(Z) and

let {&3, Ry, LetY = generate(&;m,p,). ThenY; ~p(- | Y,—1) fori € [m].
Proof. As n > m, we have {&;}, "k 1. The claim then follows immediately from applying Definition 1 to
Line 2 of generate for i € [m]. O

To simplify the remainder of the presentation, we do not pass a prompt as input to generate. As the
language model p is arbitrary and detect is model-agnostic, this simplification is without loss of generality
since p itself may model the distribution of text from some base model given an arbitrary prompt. Also,
unless stated otherwise, without loss of generality we let V = [N] throughout the paper, where N € N is the
vocabulary size.

The detector calls the detect method (Algorithm 2) to compute—via a permutation test with 7' resamples—
a p-value with respect to a test statistic ¢ : V* x Z* — R for the null hypothesis that Y is not watermarked,
i.e., that Y is independent of §. The output p of detect is a proper non-asymptotic p-value: if Y is
not watermarked, then each (Y,£®) constitutes an independent, identically distributed copy of (Y, £) and
therefore by symmetry p is uniformly distributed over {1/(T" + 1),2/(T + 1),...,1} for any (non-atomic)

Published in Transactions on Machine Learning Research (05/2024)

Algorithm 1: Watermarked text generation (generate)

Input : watermark key sequence £ € ="

Params: generation length m, language model p, decoder T’
Output: string y € V™

foriel,...,mdo

‘ Yi < F(fi%’rbap(' | y:i—l))

3 return y

L N U VL

test statistic.? If ¢ returns a small p-value (e.g., 0.0001) then the text is likely watermarked; if the p-value
is large (e.g., 0.25), then the text might not be.

Algorithm 2: Watermarked text detection (detect)

Input : string y € V*, watermark key sequence ¢ € ="

Params: test statistic ¢; watermark key sequence distribution v € A(Z"); resample size T
Output: p-value p € [0, 1]

fortel,...,T do

f(t) ~ U

b1 By, €M)

~ T

P (14 S0 1o < 0(0.6)})

return p

The goal then is to design the test statistic ¢ (Algorithm 3) such that p will typically be small if Y is
watermarked. In particular, the goal is to identify an alignment cost d : (V x Z)* — R, which measures the
quality of a match between a subsequence of the input text and a subsequence of the watermark key, and
use this to define ¢ as the minimum cost alignment between length k subsequences of the text and key.

This alignment-based detection strategy makes the watermark robust, since even if the user crops or otherwise
corrupts Y, a single block of preserved watermarked text within some larger body of unwatermarked text
will suffice to trigger a low p-value from detect. The actual form of the alignment cost will be specific to
each watermark—in particular, it will depend on the nature of the decoder I' in generate. Our most robust
watermarks incorporate a soft notion of edit distance (i.e., Levenshtein distance) into the computation of
the alignment cost via dynamic programming, with runtime scaling quadratically in the block size. Thus,
letting m be the length of the input text y, n be the length of the watermark key sequence £, and k be the
block size, the cost of computing the test statistic is O(mnk?).

Algorithm 3: Test statistic (¢)
Input : string y € V*, watermark key sequence £ € ="
Params: alignment cost d, block size k
Output: test statistic value ¢(y,£) € R
foriel,...,len(y) —k+1do
for je€1,...,ndo
Y {yire}izy, € {€uromn iz
dij < d(y*, &)

return min; ; d; ;

4By non-atomic, we mean for any c € R that P(¢(Y, &) = ¢) = 0 so that almost surely we will not have to break ties (meaning,
if p(y,&) = ¢¢) when computing p. In case of ties (i.e., if the test statistic is atomic), we can either modify detect to break ties
uniformly at random, or simply report valid but conservative p-values by leaving detect as is.

Published in Transactions on Machine Learning Research (05/2024)

To illustrate how the decoder and the alignment cost fit together, we give a simple example for the toy
setting of a binary vocabulary.

Example 1: Consider a binary vocabulary V = {0,1}. To generate Y € {0,1}* from the model, the LM

provider shares {& 1}, Lig Unif([0, 1]) with the detector and let Y; = 0 if & < p(0 | YV;;—1) and ¥; = 1

otherwise. In particular, defining the decoder I" by

_J0 & <pu(0)
L(&,p) := {1 & > n(0),

let Y = generate(&;m,p,I") for some m < n. Then Y is a valid sample from the language model as
P(& <p(0]Y,_1)) =p(0]Y;_1), and crucially Y and & are correlated (i.e., if &; is sufficiently close to zero
then Y; = 0, and likewise if &; is sufficiently close to one then Y; = 1). Thus, we can define the alignment
cost d(y, &) = lly =<l

Assuming for the sake of this example that n = m and the user does not corrupt the watermarked text from
the LM provider, i.e., Y = Y, the detector can run detect to verify that Y is watermarked using the test
statistic ¢ with ~ahgnment cost d and block size k = m. The value of the test statistic will then be at most
the /1 normof Y — &£. O

2.2 Handling multiple queries

In the above example, the LM provider generates the same text each time from the watermark key sequence,
which is not ideal in practice. One solution for avoiding reusing elements of the watermark key sequence
across queries is to make generate stateful, thus enabling the LM provider to generate a total of |[n/m| in-
dependent watermarked text samples of m tokens each from the language model. Instead, to avoid persisting
state, we provide a randomized wrapper shift-generate (Algorithm 4) around generate and modify the
watermarking protocol from the start of the section to allow the LM provider to call the shift-generate
instead of generate in the second step of the protocol. The wrapper shift-generate randomly shifts the
watermark key sequence before passing the shifted sequence to generate. Shifting the watermark key se-
quence does not affect the value of the test statistic in detect, since to compute the test statistic the detector
anyways searches over all subsequences of the watermark key sequence to find the best match for each block
of text. There are n possible shifts, each of which may produce a distinct text; while in principle these n
texts will correlate with each other due to sharing elements of the watermark key sequence, in practice we
find the effects of these correlations are not noticeable. The so-called birthday paradox Elfving et al. (1966)
implies the LM provider can typically expect to call shift-generate Q(y/n) times, each time producing a
different text, before reusing the same offset twice. In fact, the provider can expect call shift-generate
Q(y/n/m) times before reusing a subsequence, in which case the constituent Q(y/nm) tokens in these texts
will be indistinguishable from regular samples from the language model.

In general, we can bound the distortion (i.e., statistical distance from regular samples) of shift-generate in
the multi-query setting by the probability of reusing an element of the watermark key sequence. Specifically,
for T' queries and a maximum generation length of m tokens per query, we will achieve negligible, i.e.,
o(1) distortion, so long as n = w(mT?). Thus, similar to Christ et al. (2023) we can achieve approximate
distortion-freeness in the multi-query setting. However, unlike Christ et al. (2023), to achieve approximate
distortion-freeness in this setting the computational cost of our watermark detection procedure must grow
with the target number of queries. In principle, this trade-off between the degree of distortion and the
runtime of watermark detection means at least in an asymptotic sense that the latter effectively upper
bounds the number of queries to the LM provider an attacker would require to learn information about the
watermark key sequence. In practice, we expect the cost per token of queries to the LM provider will be
significant enough to make such attacks expensive to implement.

Published in Transactions on Machine Learning Research (05/2024)

Algorithm 4: Randomized watermarked text generation (shift-generate)

Input : watermark key sequence £ € ="

Params: generation length m, language model p, decoder T’
Output: string y € V™

17~ Unlf([”])? 5/ — {f(iJr‘r)%n}?;l

2 return generate(¢’;m,p,T)

2.3 Terminology: watermark strategies and watermark potential

Henceforth, we use the term watermarking strategy to refer to a concrete instantiation of the shift-generate,
generate and detect methods by specifying the internal parameters of both algorithms (i.e., the decoder
I, the test statistic ¢ and the watermark key sequence distribution v). We give concrete watermarking
strategies in the following sections (Sections 2.4 and 2.5). For each watermarking strategy, we show two
main results: we prove the decoder is distortion-free and also obtain high probability upper bounds on the
p-values of watermarked text—as a function of the length of the text and the watermark key sequence. We
emphasize that only the former result (i.e., that the decoder is distortion-free) is critical to the validity of
our main claims; we intend the latter collection of results to provide intuition for when we would expect the
detector to have sufficient power and to anticipate the forthcoming experimental results in Section 3. The
strength of the p-value upper bounds will depend on the observed token probabilities of (watermarked) text,
through a quantity which we evocatively term the watermark potential.

Definition 2. (watermark potential) Define v : V* — R by

en(y)
a(y) =1 Z yz | Y.i— 1

len

The watermark potential of text from a deterministic language model will always be zero, whereas for a
high-entropy model it will approach one. The degree to which it is possible for the detector to reliably
distinguish watermarked text from unwatermarked text necessarily depends on the watermark potential of
the LM provider’s language model. For example, if the language model is deterministic, then any distortion-
free watermark will necessarily have zero statistical power. We formalize this intuition by establishing the
following general lower bound on the detection accuracy of any watermarking strategy as a function of the
watermark potential of the original language model. In particular, we lower bound the error of any classifier
h:V* x 2% — {—1,+1} that tries to distinguish watermarked (positive label) versus nonwatermarked text
(negative label) given some watermark key £ (we make no assumption on the distribution of ¢ except that
it is independent of unwatermarked text by definition). We defer the proof of Lemma 2.2 to Appendix A.

Lemma 2.2. Let Y/ ~ p(- | Y’) fori € [m]. LetY = LY and let £ € E* be a random variable that is
independent of Y'. Let h : V* X 2% — {—1,4+1} be a classifier. Let ¢ > 0 and define the set V. C V™ by

V. :={y:pWi|y.i_1) > exp(—c/2) for all i € [m]}.
Then

P(h(Y,€) = =1) + P(h(Y', &) = 1) > E[exp (—ema(Y)) 1{Y € V.}].

Lemma 2.2 implies it is impossible to test between any watermarked and non-watermarked text (i.e., between
Y versus Y’) that are equal in distribution (i.e., distortion-free) if the text typically has low watermark
potential, irrespective of the design of the watermark key; in particular, the sum of the Type I and II (resp.,
false positive/negative) error rates of h will be close to one if the watermark potential is close to zero.
The theorem is not tight: depending on the language model, its result may be vacuous for small values
of ¢ (e.g., the constants which appear in our upper bounds) since only texts whose token likelihoods all
exceed exp(—c/2) contribute to the lower bound. Also our upper bounds scale inverse exponentially with

Published in Transactions on Machine Learning Research (05/2024)

the square of the watermark potential, which will always be smaller than the watermark potential itself since
the watermark potential is bounded between zero and one.

The point of the forthcoming p-value upper bounds for the watermarking strategies in Sections 2.4 and
2.5 is to establish the existence of test statistics for each watermark such that the statistical power of the
watermark improves exponentially with the length of the text and decays at most linearly with the length
of the watermark key sequence. The test statistics we use to prove these upper bounds differ slightly from
those we employ in our experiments: in the former case, we prioritize the simplicity of stating the bounds
in terms of watermark potential, whereas in the latter case, we prioritize empirical performance.

2.4 Watermarking via inverse transform sampling

Inverse transform sampling is a general technique for sampling from a univariate distribution by taking
the pushforward of a uniform random variable through its inverse cumulative distribution function (CDF).
Crucially, the technique is valid irrespective of the ordering of the CDF, a property which we presently
leverage to construct a watermarking strategy in which generate is distortion-free and also detect is
agnostic. In particular, we implement generate with a decoder that maps a sequence of uniform random
variables and permutations to tokens using inverse transform sampling. To detect watermarked text, the
detector correlates the sequence of permuted indices of the tokens in the text with the sequence of uniform
random variables to detect watermarked text. Meanwhile, for any nonwatermarked text, the sequence of
permuted token indices will be i.i.d. uniform irrespective of the text itself and thus not correlate with the
sequence of uniform random variables.

Formally, with IT as the space of permutations over the vocabulary [N], for £ = (u,7) € [0,1] x IT =: = and
any distribution p € A([N]), define the decoder by

D(E,) =" (min {m(d) : u({j : 7 () < 7(0)}) > u}), (1)

ie., T'(&) is the token with the smallest index in the permutation 7 such that CDF of u with respect to
7 is at least u. Generalizing the intuition from Example 1, we show this decoder is distortion-free in the
following theorem.

Theorem 1. Define I' by equation (1). Let m € II be arbitrary and let U ~ Unif([0, 1]), with & := (U, 7).
Then T is distortion-free with respect to .

Proof. Recalling Definition 1, the result follows from showing for any p € A([N]) and y € [N] that
P(T'(u, &) = y) = p(y). To this end, by equation (1), we have I'(u,&) = y if and only if U lies in the
interval

{y" () <7}, n{y" : 7(y') <7(y)}))-

As the width of this interval is exactly p(y), the result follows immediately. O

Having shown that the decoder is distortion-free, we now proceed to analyze the detectability of the water-
mark. For convenience, define the normalization n : [N] — [0,1] by n(¢) := (¢ —1)/(N — 1). Analogous to
the toy example, the sequences {n(m;(¥;))}™, and U are correlated. Thus, for the sake of analysis, we define
alignment cost d : (V¥ x 2)* = R by

len(y)

d<y’ (ua ﬂ-)) = Z (ui - 1/2) ' (n(ﬁi(yi)) - 1/2)7 (2)

i=1
i.e., the negative covariance (each U; and n(m;(Y;)) both have expectation 1/2).

We exactly characterize in Lemma 2.3 the difference in the expected value of our alignment cost on some text
assuming the text is watermarked (i.e., generated using the same key as the detector) versus not watermarked
in terms of the watermark potential of the text (Definition 2). To state the result, we define the constant

Published in Transactions on Machine Learning Research (05/2024)

Co := Var(n(Unif([N]))), where we abuse notation slightly to temporarily treat 7 as a pushforward map over
distributions.” We defer the proof of Lemma 2.3 to Appendix B.

Lemma 2.3. Let m,n € N with n > m, where m is the generation length and n is the watermark key length.

Define the decoder T' by equation (1) and the alignment cost d by equation (2). Let £, &' S Unif(Z™) with
Y = generate(&;m,p,). Then almost surely for all i € [m] and j € [n] we have

E[d(Y;, &) —d(Yi, &) | Y] = Co - (1 = p(Y; | Yiio1)) = Coa(Yio124)-

Summing the result of Lemma 2.3 over ¢ € [m] implies for any j € [n] that
E[d(Y, ijH:jer)%n) —d(Y, &um) | Y] = Coma(Y).

Thus, we can upper bound the p-value output by detect in Lemma 2.4 using a standard concentration
argument and taking a union bound over j € [n]. We defer the proof of Lemma 2.4 to Appendix B. In fact,
we actually prove a more general result for £ < m wherein we allow Y to be a subsequence of Y which the
user may choose adaptively. We defer this more general result to Appendix B as it is more cumbersome to
state.

Lemma 2.4. Let m,n € N with n > m, where m is the generation length and n is the watermark key length.
Define the decoder T' by equation (1), alignment cost d by equation (2), and ¢ by Algorithm 3 with block size

k=m. Let £, & RS Unif(E™) with Y = generate(&;n,p,I') and Y =Y. Then almost surely

P(¢(Y,¢) < ¢(Y,€) | V) < 2nexp(—kCia(Y)?/2).

Lemma 2.4 implies that with high probability the value of the test statistic on watermarked text with the
correct key will be lower than with a resampled key. In particular, ignoring discretization errors due to the
finite number of resamples T in detect, the lemma implies watermarked samples with watermark potential
bounded away from zero (i.e., if the language model is not effectively deterministic) will have exponentially
small expected p-values with respect to the length m of the text. The bound grows only linearly with the
length n of the random number sequence, implying for moderately large m (e.g., m = 50) an LM provider
can generate plenty of distortion-free watermarked text (i.e., n = 292(m) total tokens) while still enabling
detection of the watermark from snippets of m tokens (e.g., 50 tokens typically amount to a couple sentences
of text). Of course, recall the computational complexity of detection scales linearly with n, which in practice
may be a more relevant limitation than the statistical power of the watermark.®

2.4.1 Robustness to substitutions, insertions and deletions

We show in Lemma 2.5 an analogous result to Lemma 2.4 holds even if an adversary corrupts the original
watermarked text by substituting tokens. To state the lemma, we introduce a quantity & which depends
on both the corrupted and original watermarked text and accounts for the decrease in the expected value
of the test statistic (which recall for the original text is equal up to a numerical constant to the watermark
potential of the text) due to token substitutions. We defer the proof of Lemma 2.5 to Appendix B.

Lemma 2.5. Let m,n € N with n > m, where m is the generation length and n is the watermark key length.
Define the decoder T' by equation (1), alignment cost d by equation (2), and ¢ by Algorithm 3 with k = m.
Let &,& RS Unif(Z™) with Y = generate(;m,p,I") and let Y € V™ be conditionally independent of & and
& given Y. Define

len(y)

Z Wy =3y (1= pyi | y:i-1)) — Hyi # ¥} ﬁ

i=1

1

W Ty

Then almost surely

P(o(Y.&) < ¢(Y,€) | YY) < 2nexp(—kCFa(Y,Y)?/2).

5Note that Co = Var(Unif([0,1])) 4+ on (1) = 1/12 + on(1).
6Note that both detect and the test statistic (Algorithm 3) are easily parallelizeable.

10

Published in Transactions on Machine Learning Research (05/2024)

Lemma 2.5 implies that even if an adversary replaces the vast majority of tokens in a watermarked text,
detection with low p-values will still be possible so long as the remaining tokens have watermark potential
bounded away from zero. In particular, the permuted indices of the original tokens will still positively
correlate with the corresponding uniform random variables from the watermark key sequence, while those of
the substituted tokens will exhibit a small negative correlation scaling as O(1/N).

To handle insertions and deletions, we can robustify our test statistic by incorporating a soft notion of edit
distance into our original alignment cost. The parameter 7 in Definition 3 assigns a cost to each insertion and
deletion operation when aligning the tokens y with the sequence &, while the base alignment cost dy defines
the quality of the alignment via a cost function over substitutions. In practice, we drop the minimizations
over 4y €V and & € E in the second and third cases respectively of the definition; we include them here to
make our subsequent theoretical analysis cleaner.

Definition 3. (Levenshtein cost) Let v € R and dp : V x E — R. For y € V* and £ € E*, define the
Levenshtein cost d : V* x E* — R by

do (Y2:5 §2:) + do(y1,§1)
d"/(y7 5) = min d’y(yv 52:) + miny/EV dO(y/a 51) + Y
dy (y2:,€) + mingrez do(y1, ') +,
with d. (y, (u, 7)) := 7 - len(y) if £ is empty and vice versa (as base cases).”
Redefining the test statistic ¢ using d, as the alignment cost—using dy from equation (2)—ensures detect is
robust not only to substituting tokens, but also inserting and deleting tokens from watermarked text, as we
show in Lemma 2.6. We defer the proof of Lemma 2.6 to Appendix B. To state the lemma, we first recursively

define a notion of edit distance between two strings. The definition is equivalent to the minimum number of
insertion and/or deletion operations needed to transform one string into the other (see Lemma B.2).

Definition 4. (edit distance) For y,y € V*, define the edit distance by

o (4,7) 1= dedit (Y2:, Y2:) =1
’ 1 + min{deait (y2:, ¥), deait (¥, ¥2:)} 1 # 1,

with deqit (¥,) = len(y) if ¥ is empty and vice versa.

Lemma 2.6. Let n,m € N with n > m, where m is the generation length and n is the watermark key
length. Define the decoder I' by equation (1), alignment cost d = d with dy from equation (2) and v > 1/2,

and ¢ by Algorithm 3 using block size k < m that divides evenly into m. Let &, & el Unif(E™) with Y =
generate(§;m,p,T'). Let Y € V™ be conditionally independent of & and &' given Y, with deqit(Y,Y) < em.
Then almost surely

P($(Y,€) < (Y. €) | Y,Y) < mn(2k)" @77 exp(—kCF (a(Y) —7e)3/2).

We prove the result by showing there must exist a length &k substring of the corrupted text Y within edit
distance ke of a substring of Y that the detector will be able to distinguish as watermarked. For fixed k,
the set of strings within edit distance €k of an original block watermarked text blows up combinatorially
with e. To ensure we can detect the watermark, the result implies we must set v = Q(1/¢), which means
our bound on the expected p-value is vacuous as soon as € = (1/logk). Admittedly, our analysis is not
tight; for example, as a preview of the experimental results to come, in practice we find smaller values of
v (i.e., v < 1) to perform significantly better. However, one takeaway from the result is that using a block
size k < m, where here m is the length of the input text, for detection can be an effective strategy when the
user has substantially corrupted the text. The assumption that k£ divides evenly into m is an artifact of our
analysis and not important in practice.

"For y € V* (resp., £ € £%), we let Ylen(y)+1: (1€SD.; &1en(e)+1) denote the empty string/sequence.

11

Published in Transactions on Machine Learning Research (05/2024)

2.4.2 What we run in practice

In practice, to reduce overhead in both generate and detect, we use a single random permutation® instead
of a full sequence, i.e., we let m; =« for all ¢ € [n] for m ~ Unif(r). Recall Theorem 1 makes no assumption
about the distribution of the permutations; thus, the watermark is still distortion-free. Also, for the test
statistic, we find using

Len(y)
d(y, (u,m)) == Z lu; —n(mi(yi))l (3)

as the alignment cost performs better empirically than the alignment cost in equation (2). To reiterate, the
output of detect is a valid p-value irrespective of the test statistic we use.

Henceforth, we refer to this version of the watermarking strategy as ITS, and we refer to the corresponding
Levenshtein version as ITS-edit, wherein we define the base alignment cost dy by equation (3) and use the
following simplified notion of Levenshtein cost:

Definition 5. (simple Levenshtein cost) Let vy € R and dp : V x = = R. For y € V* and £ € Z*, define the
alignment cost function d, : V* x 2 — R by

dy (y2:, €2:) + do(y1, 1)
d»y(y,ﬁ) ‘= min d’y(ya§2:> + v
d’Y(yQHE) +’Y7

with d.,(y, (u, 7)) := v - len(y) if £ is empty and vice versa (as base cases).?

In summary, for ITS we use the decoder from equation (1), the test statistic from Algorithm 3 with the
alignment cost from equation (3), and the watermark key distribution as the uniform distribution over
[0,1]™ x TI, where recall n is the length of the watermark key sequence. Meanwhile, ITS-edit differs from
ITS only in that we define the test statistic using the Levenshtein cost from Definition 5 with the base cost
again from equation (3).

2.5 Watermarking via exponential minimum sampling

Aaronson (2023) proposes mapping variables in [0, 1]V to tokens in the vocabulary [N] using exponential
minimum sampling to generate watermarked text. Whereas Aaronson (2023) proposes the use of distortion-
inducing hashes much like Kirchenbauer et al. (2023), we use exponential minimum sampling to implement
the decoder in generate, which (after defining a suitable corresponding test statistic) enables an alternative

distortion-free and robust watermarking strategy to inverse transform sampling. In particular, for £ €
[0,1]Y =: = and p € A([N]), define the decoder by

I'(&, p) == argmin —log(&;)/p(i). (4)
i€[N]

We show this decoder is distortion-free in Theorem 2, whose proof we defer to Appendix C.

Theorem 2. Define the decoder T' by equation (4) and let & ~ Unif([0,1]"). Then T is distortion-free with
respect to .

For the sake of analysis, we define the alignment cost as a slight variation of the proposal of Aaronson (2023)
(see Section 2.5.2) by

Len(y)

d(y,€) =~ > log&y,, (5)
=1

81n principle, with a single random permutation the permuted token indices of both watermarked and nonwatermarked text
are no longer conditionally independent of each other, and so the results of Lemmas 2.4, 2.5 and 2.6 no longer apply. However,
in practice we observe no degradation in statistical power. Also, irrespective of the lemmas, the p-values from detect are still
valid by construction.

9For y € V* (resp., £ € =*), we let Ylen(y)+1: (1€SD.; &ren(e)+1) denote the empty string/sequence.

12

Published in Transactions on Machine Learning Research (05/2024)

again defining the test statistic ¢ by Algorithm 3. Similar to Lemma 2.3 for ITS, we exactly characterize
the difference in the expected values of the alignment cost on watermarked versus non-watermarked text in
terms of the watermark potential of the text. We defer the proof of Lemma 2.7 to Appendix C.

Lemma 2.7. Let n € N. Define T' by equation (4) and d by equation (5). Let &,¢& RSa Unif(E™) with
Y = generate(&;n,p,T"). Then almost surely for all i € [n] we have

E[d(Y;, &) —d(Yi, &) | Y] = 1= p(Yi | Y1) = a(Yio1a4).

Summing the result of Lemma 2.7 over ¢ € [m] implies for any j € [n] that

Eld(Y, &l 1.j4my%n) — AV &m) | Y] = ma(Y).

Thus, defining the test statistic ¢ by Algorithm 3 with respect to the alignment cost d from Eqn (5), we can
again upper bound the p-value output by detect in Lemma 2.8 using a standard concentration argument
and taking a union bound over j € [n]. We defer the proof of Lemma 2.8 to Appendix C. Once again, we
actually prove a more general result that allows Y to be any length k subsequence of Y.

Lemma 2.8. Let m,n € N with n > m. Define T by equation (4), d by equation (5), and ¢ by Algorithm 3
with k =m. Let £,& RS Unif(E™) with Y = generate(&;n,p,T') and Y =Y. Then almost surely

P(O(V,€) < 6(V,€) | V) < 2nexp (—minfma(V)?/8,ma(V)/4})

2.5.1 Robustness to corruptions

Showing high probability p-value upper bounds for corruptions of watermarked text that hold almost surely
given the corrupted text—i.e., analogues of Lemmas 2.5 and 2.6—is more difficult, primarily due to the fact
that the summands in the alignment metric from equation (5) are no longer bounded and thus bounding the
influence of each substitution and/or insertion operation on the test statistic requires more careful analysis.
Of course, we could in principle tweak the alignment metric by truncating the summands in order to prove
the analogous results; however, as the main intuitions would carry over from Lemmas 2.5 and 2.6 and the
results are not critical to the main thrust of the paper, we do not carry this plan out.

2.5.2 What we run in practice

As in the case of ITS, in practice we find using a slight variation of the alignment cost in equation (5)
performs better. Namely, following the prescription of Aaronson (2023), we modify the previous alignment
cost to instead be

k
d(y,€) =Y log(1 = &iu,). (6)

Henceforth, we refer to this version of the watermarking strategy as EXP, and we refer to the corresponding
Levenshtein version wherein we define the base alignment cost dy by equation (6) as EXP-edit.

In summary, for EXP we use the decoder from equation (4), the test statistic from Algorithm 3 with the
alignment cost from equation (6), and the watermark key distribution as the uniform distribution over &,
where recall n is the length of the watermark key sequence and = = [0,1]". Meanwhile, EXP-edit differs
from EXP only in that we define the test statistic using the Levenshtein cost from Definition 5 with the base
cost again from equation (6).

3 Experimental results

We empirically validate the statistical power of our watermarking strategies (i.e., ITS, ITS-edit, EXP, and
EXP-edit) via experiments with the OPT-1.3B (Zhang et al., 2022) and LLaMA-7B (Touvron et al., 2023)

13

Published in Transactions on Machine Learning Research (05/2024)

models.'® We run experiments using generate rather than shift-generate, mainly for the sake of re-

producibility; recall however that this choice has no impact on the p-values we report. We test for all
watermarks using a block size k (in Algorithm 3) equal to the length m of the text. Following the method-
ology of Kirchenbauer et al. (2023), we generate watermarked text continuations of prompts sampled from
the news-like subset of the C4 dataset (Raffel et al., 2020). We vary the generation length m (Experiment 1)
and the random number sequence length n (Experiment 2), and we report median p-values of watermarked
text over 500 samples.'!

We also evaluate robustness to four kinds of paraphrasing attacks: randomly substituting a fraction of the
generated tokens with tokens chosen uniformly at random from the vocabulary (Experiment 3); randomly
inserting a fraction of tokens among the generated tokens (Experiment 4); randomly deleting a fraction of the
generated tokens (Experiment 5); using another language model to translate the text from English to French
and back (Experiment 6). The first three attacks allow us to systematically vary the level of corruption,
while the last attack is an example of an attack we might encounter in the wild. We defer the details of the
translation procedures to Appendix D.2.

Finally, using the Alpaca-7B model and evaluation dataset Taori et al. (2023), we conduct a case-study
on the feasibility of watermarking the responses of a performant instruction-tuned language model to user
queries. We also show for certain kinds of instructions that hashing-based watermarks produce noticeably
worse responses than our distortion-free watermarks, thus underlining the importance of the distortion-free
property in practice.

In all our experiments—except for Experiment 2, where the control variable n is a hyperparameter that
is unique to our watermarks—we also replicate the watermark of Kirchenbauer et al. (2023) as a baseline,
setting the greenlist fraction v = 0.25 and varying the logit bias § € {1.0,2.0}. We respectively refer to these
versions of their watermark as KGW-1.0 and KGW-2.0 after the first three authors’ last names. We emphasize
their watermark is not directly comparable to our watermarks as it is not distortion-free (e.g., Kirchenbauer
et al. (2023) report that even the weakest version we employ with 6 = 1.0 and v = 0.25 typically increases
perplexity by 5-10%).

In their work, Kirchenbauer et al. (2023) report approximate p-values, which they obtain from computing
the z-score of a certain test statistic. To ensure a fair comparison, we use detect (with 7' = 5000) to
report p-values for all watermarks;'? in the case of KGW-1.0 and KGW-2.0, we run detect using the original
inexact p-values they report as the test statistic. We report error bars for the median p-value based on a
bootstrapped estimate of the standard deviation using 1000 resamples.

Instead of recomputing the test statistic 7" times for each prompt—as we originally prescribe in detect—
to save computation we simply sample T prompts and compute the test statistic once for each ground-
truth length m completion; we then use the empirical distribution of these test statistics as the reference
distribution within detect, which gives a proper p-value with respect to the null hypothesis that the text
is an original completion from the dataset. For reference, we include the full pseudocode for this modified
version of detect in Appendix D.3, and we also plot the full distributions of p-values for nonwatermarked
generations (i.e., regular samples from the language models) to verify they are indeed roughly uniform over
the interval [0, 1].

We defer further details regarding our experimental protocol to Appendix D.
3.1 Varying text and watermark key length
We vary the length m of watermarked text in Figure 2, fixing the watermark key length n = 256 for each

of our watermarks and setting v = 0.4 for ITS-edit and v = 0.0 for EXP-edit (see Appendix D.4 for the
details of tuning 7). Our ITS watermarks slightly outperform KGW-1.0 while our EXP watermarks slightly

10We will also at times collectively refer to ITS and ITS-edit as the ITS watermarks and/or strategies and EXP and EXP-edit
as the EXP watermarks and/or strategies.

HThe median p-value corresponds to the significance level (i.e., Type I error rate) at which the power of our watermark
detector is at least 0.5.

12This setting of 7' means we never report p-values less than 1/5000 (i.e., 0.0002) in any of our experiments.

14

Published in Transactions on Machine Learning Research (05/2024)

1.0 10
— Exp — Exp
—=—- EXP-edit ——- EXP-edit
— s — s
0.8 -—- MS-edit 08 -—- MS-edit
KGW-1.0 KGW-1.0
—— KGW-2.0 —— KGW-2.0
[@
2 06 2 0.6
5 T
z B
o a
£ &
204 B o4
= =

0.2

02
‘

0.0

0.0

20 25 30 35 40 5 10 15 20 25 30 35 40
Text length (m) Text length (m)
(a) OPT-1.3B (b) LLaMA-7B

Figure 2: Median p-value of watermarked text relative to varying the text length m, for OPT-1.3B and
LLaMA-7B models. Our watermark strategies are competitive with those of Kirchenbauer et al. (2023),
despite the fact that they distort the text distribution to generate watermarked text whereas we do not.

outperform KGW-2.0, despite the fact that KGW-1.0 and KGW-2.0 both distort the text distribution. The EXP
watermarks are notably more powerful than the ITS watermarks, requiring roughly two to three times fewer
tokens to achieve a comparably low median p-value. One conceivable advantage of the ITS watermarks over
the EXP watermarks is that they have comparatively less overhead: the watermark key for EXP and EXP-edit
is a sequence of n vectors in [0, 1], where recall N is the size of the vocabulary, while for ITS and ITS-edit
it is simply a sequence of n numbers in [0, 1]. All watermarking strategies perform worse on LLaMA-7B than
OPT-1.3B, due to the fact that LLaMA-7B typically produces lower entropy text than OPT-1.3B. Due to
the discrete nature of the test statistic of Kirchenbauer et al. (2023), i.e., the number of tokens in the text
belonging to a “greenlist" versus a “redlist”, the median p-values for the KGW-1.0 and KGW-2.0 watermarks
are occasionally unstable, particularly for small values of m.

We vary the length n of the watermark key sequence ¢ in Figure 3 for different lengths m of watermarked
text from the ITS and EXP watermarks respectively. Recall n corresponds to the total number of tokens
we can generate while maintaining our distortion-free guarantee. As our theory predicts, the p-values of
watermarked text grow linearly with n. The rate of growth is fairly mild and decreases rapidly with m; even
for n = 4096, which is larger than the maximum generation length of both the OPT-1.3B and LLaMA-7B
models, slightly increasing the number of tokens (by 4-8 tokens in the case of EXP, and 10-20 tokens in the
case of ITS) suffices to distinguish watermarked text with roughly the same statistical power as n = 64.

3.2 Robustness to corruption and paraphrasing

We now proceed to evaluate the robustness of our watermark strategies to various forms of corruption
and paraphrasing. We focus on comparing our strongest watermarks (EXP and EXP-edit) against KGW-2.0,
deferring results for all other watermarks to Appendix D.5. As larger n increases the computational overhead
of computing our test statistics and the effect of larger n on statistical power is mild (as shown in Figure 3),
we run all experiments with n = 256, which in any case is sufficiently large to ensure the watermarked text
across all experiments is distortion-free. Decreasing the insertion/deletion penalty v improves robustness
(at least up to a point) but hurts the statistical power of the ITS-edit and EXP-edit watermarks for larger
n, since reducing the penalizer for edits effectively increases the number of candidate alignments under
consideration. We run ITS-edit and EXP-edit with the same choices of v as in the previous section. We
defer the details of tuning v to Appendix D.4.

15

Published in Transactions on Machine Learning Research (05/2024)

0.035 e
0150 || mE30
0.030 — m=60 1]
0.025 0.125
E L
S 0.020 5 100
= 7
a a
c c
0.075
£ 0015 2
L7 LU
= =
0.010 0.050
0.005 0.025
0.000 0.000
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Watermark key length (n) Watermark key length (n)
(a) OPT-1.3B: ITS (solid) and ITS-edit (dashed) (b) LLaMA-7B: ITS (solid) and ITS-edit (dashed)
— m=8 0.200
— m=10
0.08 e 0.175
-
// 0.150
g
-
g 0.06 //’ ¥ 0125
E E
a e 2 0.100
g - g
2 0.04 - 2 0075
= =
0.050
0.02
0.025
0.00 0.000
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Watermark key length (n) Watermark key length (n)
(c) OPT-1.3B: EXP (solid) and EXP-edit (dashed) (d) LLaMA-7B: EXP (solid) and EXP-edit (dashed)

Figure 3: Median p-value of watermarked text for varying the watermark key length n. Across all watermarks
for both the OPT-1.3B and LLaMA-7B models, the median p-values grow linearly with n but decay rapidly
with increasing text length m.

16

Published in Transactions on Machine Learning Research (05/2024)

0.5

— EXP 05 —— EXP
——- EXP-edit ——- EXP-edit
— KGW-2.0 — KGW-2.0

0.4
0.4

0.3

=4
w

0.2

Median p-value
Median p-value

<]
]

0.1 0.1

0.0 0.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Fraction of substitutions Fraction of substitutions

(a) OPT-1.3B (b) LLaMA-7B

Figure 4: Median p-value of watermarked text relative to the fraction of substitution errors, for OPT-1.3B
and LLaMA-7B models with m = 35. Both versions of the EXP watermark significantly outperform KGW-2.0,
again despite KGW-2.0 distorting the text distribution.

We vary the fraction of substituted tokens in Figure 4, and we vary the fraction of inserted and deleted
tokens in Figures 5 and 6 respectively. For the insertion experiment, we pass only the first m tokens to the
detector; similarly, for the deletion experiment, we initially generate more than m watermarked tokens so
that even after deleting a fraction thereof, there are at least m tokens remaining. The EXP and EXP-edit
watermarks are comparably robust to substitution errors, but the latter is far more robust to insertion and
deletion errors.

We compare our watermarks against the most robust version of KGW-2.0, in the sense that we hash only
the previous token to determine the next token distribution and thus bias the distribution towards some
subset of bigrams. If instead we hash the previous k tokens for k£ > 1, then substituting any one of the
previous k tokens will break the watermark signal in a particular token, and thus the statistical power of
their watermark will be worse than what we report in our experiments.

Finally, in Figures 8 and 9 we implement a “roundtrip translation” attack, wherein we attempt to paraphrase
watermarked texts of varying lengths by translating the (English) texts into another language (i.e., French
and Russian respectively) and back again using a machine translation model (details in Appendix D.2).
We include a representative example of the original and (re-)translated texts in Figure 7. Using Russian
is a noticeably more effective attack than French: none of the watermarks aside from EXP-edit are able to
reliably detect watermarked text with p < 0.05 irrespective of m. In fact, for Russian the power of both
EXP and KGW-2.0 stagnates (or even diminishes) with increasing text length, perhaps due to the inherent
ambiguity in translating longer texts.

In many cases, both using French and Russian, the roundtrip translation still preserves large chunks of the
original text, which suffices for watermark detection even using EXP, which is substantially less robust to
insertion and deletion errors than EXP-edit. Aside from inspecting a few examples, we did not verify that the
roundtrip translations preserve the basic semantics of the original text; thus, it is possible our results provide
an overly pessimistic view of the robustness of our watermarks to these attacks, since in practice users would
presumably not publish such examples. It is also possible that using different machine translation models—or
more generally, different forms of automated paraphrasing—might be far more effective in evading watermark
detection than those we employed. We publish the full set of watermarked generations for each watermarking
strategy, along with their (roundtrip) translations, as part of our code release.

17

Published in Transactions on Machine Learning Research (05/2024)

035 —— EXP — EXP
——- EXP-edit ——- EXP-edit
— KGW-2.0 0.4 —— KGW-2.0
0.30

0.25

w w 0.3
= =
£ 020 g
(=3 (=3
g g
T 0.15 5 0.2
@ @
= =
0.10
0.1
oos & LS ey Ay s
L 00 po———————=S
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Fraction of insertions Fraction of insertions
(a) OPT-1.3B (b) LLaMA-7B

Figure 5: Median p-value of watermarked text relative to the fraction of insertion errors, for OPT-1.3B and
LLaMA-7B models with m = 35. EXP-edit is by far the most robust.

JE—— 040 oo
020 ——. Exp-edit --- EXp-edit
— KoW-2.0 035 kew-2.0
0.30
0.15
H] L 025
© ©
7 =
e 2 0.20
% 0.10 g
ki B o1s
= =
0.05 0.10
0.05
0.00 — e e 0.00
0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6
Fraction of deletions Fraction of deletions
(a) OPT-1.3B (b) LLaMA-7B

Figure 6: Median p-value of watermarked text relative to the fraction of deletion errors, for OPT-1.3B and
LLaMA-7B models with m = 35. EXP-edit is again the most robust.

18

Published in Transactions on Machine Learning Research (05/2024)

original text

French translation

roundtrip translation

Figure 7: An illustrative example of a roundtrip translation attack via French. Given the first 50 tokens of
the roundtrip translation (highlighted in green, in addition to the closest matching snippets to these tokens

dependent on the private sector. That helps them preserve the advantages their industry has in government healthcare
contracting, while decreasing to near extinction the government's ability to regulate the private sector’s cost-driving practices.
Hence, his proposal was not was not designed to prevent socialized medicine. It's designed to make it harder and more
expensive than ever to get socialized medicine. That will help keep democrats out of power by making them seem soft on
dependency and the soclal good. If you want to prevent socialized medicine, go for the Republicans’ heads, not the
bureaucrats' feet. In the meantime, though, the Republican plan is to redefine "govern

dépendant du secteur privé Cela les aide a préserver les avantages de leur industrie dans les contrats de soins de santé du
gouvernement, tout en diminuant jusqu'a la quasi-extinction la capacité du gouvernement a réglementer les pratiques de
conduite des colts du secteur privé. Il est congu pour rendre plus difficile et plus cher que jamais d'obtenir la médecine
socialisée Cela aidera & garder les démocrates hors du pouvoir en les faisant paraftre doux sur la dépendance et le bien
social. Si vous voulez empécher la médecine socialisée, optez pour les tétes des républicains, pas les pieds des bureaucrates
En attendant, cependant, le plan républicain est de redéfinir « le gouvernement ».

This helps them preserve the benefits of their industry in government health care contracts, while reducing the govermment's
ability to regulate private sector cost-management practices to near extinction. It's designed to make it harder and more
expensive than ever to get socialized medicine that will help keep Democrats out of power by making them look gentle on
addiction and social good. If you want to prevent socialized medicine, opt for the heads of Republicans, not the feet of
bureaucrats In the meantime, however, the Republican plan is to redefine “the government.”

from the original text), detect returns p < 0.0002.

0.20

4
1
w

— EXP — EXP
——- EXP-edit ——- EXP-edit
— KGW-2.0 0.4 —— KGW-2.0

u 03
T T
T T
a a
B 0.10 <
5 5 0.2
@ @
= =
0.05
0.1
0.00 0.0
10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50

(a) OPT-1.3B

Figure 8: Median p-value of watermarked text relative to the text length, after roundtrip translation via
French, for OPT-1.3B and LLaMA-7B models with m = 35. EXP performs comparably to EXP-edit, indi-

Text length (m) Text length (m)

(b) LLaMA-7B

cating that the roundtrip translation attack tends to preserve at least some snippets of the original text.

19

Published in Transactions on Machine Learning Research (05/2024)

0.40

0.40 — EXP — EXP
——- EXP-edit 0.35 ——- EXP-edit
0.35 — KGW-2.0 — KGW-2.0

0.30

Y025 3025
T ©
7 b
2 020 Q 0.20
c c
o o
B g
2 o015 g o0as

0.10 0.10

0.05 0.05

0.00 0.00

10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50
Text length (m) Text length (m)
(a) OPT-1.3B (b) LLaMA-7B

Figure 9: Median p-value of watermarked text relative to the text length, after roundtrip translation via
Russian, for OPT-1.3B and LLaMA-7B models with m = 35. In contrast to French, EXP-edit noticeably
outperforms EXP. Overall, the attack is noticeably more effective than using French.

3.3 Case study: instruction following

In the wild, most users interact with language models by prompting the model with instructions (e.g., “give
me code for..”), and the most widely-used language models (e.g., ChatGPT) are specifically fine-tuned to
follow such instructions. Thus, using the instruction fine-tuned Alpaca-7B model, we presently conduct a
case study on the effectiveness of watermarking a performant instruction following model. In particular, we
sample 200 instructions from the Alpaca-7B evaluation dataset and generate watermarked responses of at
most 200 tokens for each. We then compute conditionally valid p-values for each response using the original
version of detect with T'= 500. We also replicate the roundtrip translation attack from Experiment 6. We
publish the full set of watermarked generations for each method, along with their (roundtrip) translations,
and the instruction prompts as part of our code release.

We plot the distribution of p-values for the EXP-edit and KGW-2.0 watermarks in Figure 10, as well as the
p-values versus the watermark potential of the watermarked text in Figure 11. In general, the Alpaca-7B
responses have considerably lower per-token watermark potential than both the OPT-1.3B and LLaMA-7B
models, and thus the statistical power of our watermark is worse despite the responses typically being longer
than in the previous experiments (i.e., Experiments 1 and 6). In particular, based on the same random
sample of 200 prompts (from the Alpaca evaluation set in the case of Alpaca-7B, and from the news-like
subset of the C4 dataset in the cases of LLaMA-7B and OPT-1.3B), the average per-token watermark
potential of text from Alpaca-7B is 0.28, compared to 0.59 for LLaMA-7B and 0.67 for OPT-1.3B. Unlike
the previous experiments, KGW-2.0 noticeably outperforms the EXP-edit watermark. Figure 11 indicates this
difference in performance is largely due to the fact KGW-2.0 distorts the distribution of the text and produces
responses with noticeably larger watermark potential than regular responses from the model. For responses
whose unnormalized watermark potential (i.e., watermark potential multiplied by the number of tokens in
the response, to account for the varying lengths of the responses) exceeds roughly 60, both watermarks tend
to yield p-values close to zero. Paraphrasing the responses via roundtrip translation attacks into both French
and Russian degrades the statistical power of both watermarks, as we show in Figures 12 and 13.

Finally, recall the main distinguishing feature of our watermark compared to Kirchenbauer et al. (2023) and
Aaronson (2023) is that we do not hash previous tokens to determine the distribution of the next token.
To demonstrate the pitfalls of hashing, we implement a version of the watermark Aaronson (2023) proposes
by modifying the generate method of EXP to obtain the vector &; € [0,1]" from seeding a random number
generator using the previous k tokens instead of using the watermark key; we call this version EXP-hash. We

20

Published in Transactions on Machine Learning Research (05/2024)

140

60

120

100

80

Count
Count

60

20 a0

=
o

20

o IIIIIII.I.II.. I-l._l.-. 0 I—_--_- —-———— — _
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2

0.4 0.6 0.8 1.0
p-value p-value

(a) EXP-edit (b) KGW-2.0

Figure 10: Histogram of p-values of watermarked text from Alpaca-7B. KGW-2.0 is noticeably better than
EXP-edit, though again the results are not strictly comparable as KGW-2.0 is not distortion-free.

100 ° o KGW-2.0 KGW-2.0
- © EXP-edit 35 EXP-edit

= o
«
£ 80 30
E
=]
£ 25
2 60
= €
2 ° 520
g 8 - 5
e s > e
2 40 > e T . ™ 15
& ~
E P b ®e o ¢ ° o ® . 10
& 20 ° > e S § o’ ©0°%o
= 183 ® 0 & o o0 .

o > T o 0 ® . ® 5

% % © s % o6 °
0 FAEIP L O A o
0
0.0 0.2 0.4 0.6 0.8 10 0 20 40 60 80 100
p-value Watermark potential (unnormalized)
(a) Scatterplot of p-values. (b) Histogram of watermark potential.

Figure 11: Watermark potential versus statistical power of EXP-edit versus KGW-2.0. KGW-2.0 noticeably
distorts the text distribution, tending to produce higher watermark potential text overall than the original
language model (and consequently, EXP-edit).

21

Published in Transactions on Machine Learning Research (05/2024)

35

80
30

25

Count
~N
=}

15 40

20
. II II =HERNNNIL. . |
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8

p-value

=
o

p-value

(a) EXP-edit (b) KGW-2.0

Figure 12: Histogram of p-values of watermarked text after roundtrip translation via French. KGW-2.0
outperforms EXP-edit, albeit by noticeably distorting the text distribution.

25
20

15

Count
Count
w
=}

o

-

2
o Ill o IIII I.-Il l-l-l--ll-_
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0

p-value p-value

(a) EXP-edit (b) KGW-2.0

Figure 13: Histogram of p-values of watermarked text after roundtrip translation via Russian. KGW-2.0 again
does significantly better than EXP-edit.

22

Published in Transactions on Machine Learning Research (05/2024)

Here is the list of 20 ideas for the title of a paper on watermarking language models:
1. Watermarking Deep Learning Models: A Review . “ . .
2. Understanding and Evaluating Watermarking Techniques for Neural Networks 1. "Understanding Watermarking Techniques for Language Models”
3. Towards Unobtrusive and Invisible Watermarking for Neural Networks § %;‘;mrmﬁgs_'r":cE&’ﬁ;"gy@&mﬁ;ﬁggggig%aﬁgf?em
g' %vmeﬂzg:ﬁn\gﬁim@m%gﬁuﬂﬁmmms 4. "A Survey of Watermarking Techniques for Language Models"
g .g 9 i = 5. "Exploring the Potential of Watermarking for Language Models"

B. Understa.ndmg and Exgloltlng Watermarking Attacks on Neural Networks 6. "Implementing Watermarking for Language Model Optimization”
7. Combatting Watermarking Attacks on Neural Networks 7. "Watermarking Strategies for Enhancing Language Models"
8. Customizable Watermarking for Neural Networks 8. "Investigating the Possibilities of Watermarking for Language Models"
9. Customizable Watermarking for Neural Networks 9. "Advanced Watermarking Approaches for Language Models"
10. Customizable Watermarking for Neural Networks 10. "Exploring the Use of Watermarking for Language Model Validation™
11. Customizable Watermarking for Neural Networks 11. "Understanding the Benefits of Watermarking for Language Model Ensemble”
12. Customizable Watermarking for Neural Networks 12. "Leveraging Watermarking Techniques for Enhanced Language Model Performance”
13. Customizable Watermarking for Neural Networks ISR nhancing LanguapeVodelshih iatenmarkng]
14. Customizable Watermarking for Neural Networks 14. "Evaluating the Impact of Watermarking Techniques on Language Models"
15. Customizable Watermarking far Neural Networks 15. "Analyzing the Feasibility of Watermarking for Language Model Comparison”

. f 7 16. "Exploring the Possibilities of Watermarking for Optimizing Language Models"
1s. Custom!zab\e Watermark!ng for Neural Networks 17. "Exploiting Watermarking to Enhance Language Mode! Accuracy”
17. Customizable Watermarking for Neural Networks 18. "Advantages of Using Watermarking for Validating Language Models"
18. Customizable Watermarking for Neural Networks 19. "The Promise of Watermarking for Evaluating Language Model Performance”
19. Customizable Watermarking for Neural Networks

(a) EXP-hash (b) EXP

Figure 14: Example responses from Alpaca-7B to the prompt: “Give me 20 ideas for the title of a paper on
watermarking language models.” We generate (a) by hashing the previous token to determine the inputs to
the EXP decoder, while (b) is a regular sample from our EXP strategy. Hashing causes the model to degenerate
into repetition.

then prompt Alpaca-7B with requests for various kinds of lists. Because Alpaca-7B tends to separate items
in lists by the same recurring token, e.g., a comma or a newline character, and because this recurring token
determines the next token, for k = 1 the lists degenerate into repetition (Figure 14).'3

From inspection, hashing with £ > 1 substantially improves the quality of samples; however, even using k = 4
can sometimes produce noticeably repetitive text. We reiterate that while increasing k£ may improve sample
quality by making the distortions of watermarked text less noticeable, doing so harms the robustness of the
watermark (e.g., replacing just 20% of the tokens would suffice to evade detection for k = 4). Moreover,
using a more robust hash function does not avoid this trade-off between robustness and distortion-freeness,
as there is a direct trade-off between the likelihood of a hash collision and the robustness of the hash. In
addition to Figure 14, we include more examples (for both ¥ = 1 and k£ = 4) and different prompts in
Appendix D.5.5 and our code release.

4 Discussion

In this paper, we give the first distortion-free watermarking strategies for language models that are robust to
editing and/or cropping. The key idea underpinning our approach is to leverage methods for robust sequence
alignment to align a putative watermarked text to a watermark key sequence which the LM provider uses to
generate watermarked text. The statistical power of our watermarks improves exponentially with respect to
the length of the text and diminishes only linearly with respect to the length of the watermark key sequence.

The core assumption underlying watermarking is that the LM provider and the watermark detector coor-
dinate by sharing information in advance, e.g., a watermark key. Indeed, the main inherent limitation of
watermarking is that the detector must trust the LM provider to faithfully apply the watermark when gen-
erating text. A second limitation, which is not inherent to watermarking language models but does presently
apply to all known watermarks, is that the LM provider cannot release the model weights, since then users
could simply query the model directly instead of through the LM provider. Planting robust watermarks
directly into the weights of a language model without degrading the quality of the model is an important
direction for future work.

13The authors would like to pat themselves on the back by drawing the reader’s attention to the fact that the title of this
paper is not among those suggested by Alpaca-7B.

23

Published in Transactions on Machine Learning Research (05/2024)

4.1 Trade-offs among watermarks

Hashing-based watermarks (Aaronson, 2023; Kirchenbauer et al., 2023; Christ et al., 2023) incur a direct
trade-off between the degree of distortion versus robustness: larger hash windows reduce distortion but
hurt robustness. We avoid sacrificing distortion-freeness for robustness by choosing to formulate watermark
detection as a sequence alignment problem; however, this design choice introduces a new trade-off: the
computational complexity of our watermark detection algorithms grows linearly with the length of the
watermark key sequence. In contrast, the complexities of the watermark detection algorithms of both Christ
et al. (2023) and also Aaronson (2023) and Kirchenbauer et al. (2023) depend (in essence) only on the length
of the input text. Just as the watermark key length imposes a cap on both the total number of distortion-free
watermarked tokens the LM provider may generate for a single query as well as the expected total they can
generate across multiple queries before reusing a part of the key sequence, the the window size imposes a
cap on the number of (distortion-free) tokens one can expect to generate using a hashing-based watermark
without incurring a hash collision. Whether this apparent tension between detection complexity, robustness
and (approximate) distortion-freeness is due to fundamental trade-offs is an interesting open question.

To illustrate how these trade-offs manifest in practice, suppose an LM provider responds with m = 100
tokens to a sequence of T' = 10 user queries (which may be adaptively chosen). Recall from Section 2.2 that
we must set the key length n = w(mT?) to achieve approximate distortion-freeness using our watermarks,
where here m7? = 10000; for n. = 10000, the runtimes'* of our implementation of the test statistics for ITS,
ITS-edit, EXP, EXP-edit are 0.004 & 0.0002, 0.60 & 0.01, 2.20 + 0.01 and 3.21 £ 0.01 seconds respectively.'®

In order to achieve approximate distortion-freeness using a hashing-based watermark in the same setting, the
LM provider must set the window size k to be sufficiently large as a function of m and T'. For example, Christ
et al. (2023) argue that the probability of incurring the same sequence of tokens twice decays exponentially
with the observed entropy of the token sequence (which will depend on the previous tokens); thus, they
dynamically adjust the window size k& during generation to ensure the observed entropy of the constituent
tokens in the window is sufficiently large such that the probability of a hash collision with any of the other
windows is negligible across all mT tokens. Specifically, letting h denote the expected observed per-token
entropy (i.e., log-probability), the typical window size for a hashing-based watermark would need to be at
least k ~ IOngT in order to ensure approximate distortion-freeness in our setting. Concretely, in the setting
of Section 3.3, we have h ~ 0.70 for Alpaca-7B, in which case such a hashing-based watermark would not be
robust to replacing more than roughly 10% of watermarked tokens.

4.2 Recommendations in practice and combining watermarks

We conclude with some salient recommendations for practitioners aiming to watermark their deployed lan-
guage models. First, though in principle the length of the watermark key sequence n—which recall imposes
a cap on the total number of distortion-free watermarked tokens the LM provider can generate—can grow
(nearly) exponentially in the block size k of the test statistic while still enabling watermark detection from
as few as k tokens, in practice we find that using a fairly small watermark key sequence (e.g., n = 256) does
not noticeably affect the quality of watermarked text (i.e., even when generating more than n tokens total)
while allowing for fast detection and improved robustness. In settings where robustness is important (e.g.,
discouraging students from using a language model for homework assistance) we recommend practitioners
use our EXP-edit watermark, as it is by far the most robust watermark of those we tested. Meanwhile,
in settings where throughput of detection is important (e.g., scrubbing synthetic text from a large train-
ing corpus), we recommend practitioners use our ITS watermark: its detection is essentially an instance of
maximum inner-product search, a problem for which there exist various fast implementations and indexing
structures (e.g., via vector databases).

4We report average runtimes and the associated standard deviations across 5 calls on an Apple M2 Macbook Pro Laptop.
We include benchmarking scripts with our code release.

15In principle, running detect requires recomputing the test statistic for each resampled watermark key in order to obtain
an exact p-value. However, as we discuss in Section D and Appendix D.3, we can avoid this recomputation and still obtain
approximate p-values with respect to some reference distribution of unwatermarked text, in which case we need only compute
the single test statistic once (using the original watermark key) during watermark detection (Algorithm 5).

24

Published in Transactions on Machine Learning Research (05/2024)

Finally, we remark that for certain hashing-based watermarks we can combine our watermark with the
hashing-based watermark to generate watermarked text that is detectable using either of the two correspond-
ing watermark detection algorithms. For example, we can use the hashing-based watermark of Kirchenbauer
et al. (2023), which biases the distribution of the next token by upweighting certain logits over others, to
determine the distribution of the next token and then use our watermarks to sample from this next token
distribution. One can then later determine which detection procedure to run for a collection of putative
watermarked text depending on whether throughput or robustness is a higher priority. Similarly, we can
combine our watermarks with the watermark of Christ et al. (2023) by alternating tokens between the wa-
termarks (and only hashing the alternate tokens). The resulting watermarked text will be approximately
distortion-free since both watermarks are approximately distortion-free. One can choose between the two
detection procedures to optimize precision versus recall in adversarial settings; in particular, the watermark
of Christ et al. (2023) is hard to spoof (due to its multi-query undetectability guarantee) while our water-
marks are harder to remove (due to our robustness guarantees). Exploring such combinations of watermarks
with complementary strengths is an exciting direction for future work.

Acknowledgement

We thank Saminul Haque, Gary Cheng and Padma Kuditipudi for pointing out errors in preliminary drafts
of this work and for their helpful feedback in general. This work is supported by an Open Philanthropy
Project Award (OpenPhil) and an NSF Frontier Award (NSF Grant no. 1805310).

References

Scott Aaronson. ‘Reform’ AT Alignment with Scott Aaronson. AXRP - the AI X-risk Research Podcast, 2023.
URL https://axrp.net/episode/2023/04/11/episode-20-reform-ai-alignment-scott-aaronson.
html.

Sahar Abdelnabi and Mario Fritz. Adversarial watermarking transformer: Towards tracing text provenance
with data hiding. In IEEE Symposium on Security and Privacy, 2021.

Mikhail J Atallah, Victor Raskin, Michael Crogan, Christian Hempelmann, Florian Kerschbaum, Dina Mo-
hamed, and Sanket Naik. Natural language watermarking: Design, analysis, and a proof-of-concept im-
plementation. In Information Hiding: 4th International Workshop, IH 2001 Pittsburgh, PA, USA, April
25-27, 2001 Proceedings 4, pp. 185—200. Springer, 2001.

Diane Bartz and Krystal Hu. OpenAl, Google, others pledge to watermark AI content for
safety, White House says. Reuters, 2023. URL https://www.reuters.com/technology/
openai-google-others-pledge-watermark-ai-content-safety-white-house-2023-07-21.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in Neural Information Processing Systems 33, 33:1877-1901, 2020.

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. arXiv preprint
arXiv:2306.09194, 2023.

Falcon Dai and Zheng Cai. Towards near-imperceptible steganographic text. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pp. 4303—-4308, 2019.

Gustav Elfving, Garrett Birkhoff, and Richard von Mises. Vol. 2. probability and statistics, General. In
Selected Papers of Richard von Mises. American Mathematical Society, 1966.

Xuanli He, Qiongkai Xu, Lingjuan Lyu, Fangzhao Wu, and Chenguang Wang. Protecting intellectual prop-
erty of language generation APIs with lexical watermark. In Proceedings of the Thirty-Sizth AAAI Con-
ference on Artificial Intelligence, 2022a.

25

https://axrp.net/episode/2023/04/11/episode-20-reform-ai-alignment-scott-aaronson.html
https://axrp.net/episode/2023/04/11/episode-20-reform-ai-alignment-scott-aaronson.html
https://www.reuters.com/technology/openai-google-others-pledge-watermark-ai-content-safety-white-house-2023-07-21
https://www.reuters.com/technology/openai-google-others-pledge-watermark-ai-content-safety-white-house-2023-07-21

Published in Transactions on Machine Learning Research (05/2024)

Xuanli He, Qiongkai Xu, Yi Zeng, Lingjuan Lyu, Fangzhao Wu, Jiwei Li, and Ruoxi Jia. Cater: Intellectual
property protection on text generation apis via conditional watermarks. In Advances in Neural Information
Processing Systems 35, 2022b.

Ganesh Jawahar, Muhammad Abdul-Mageed, and VS Laks Lakshmanan. Automatic detection of machine
generated text: A critical survey. In International Conference on Computational Linguistics, 2020.

Nurul Shamimi Kamaruddin, Amirrudin Kamsin, Lip Yee Por, and Hameedur Rahman. A review of text
watermarking: theory, methods, and applications. IEEE Access, 2018.

S Katzenbeisser and FAP Petitcolas. Digital watermarking. Artech House, London, 2:2, 2000.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, ITan Miers, and Tom Goldstein. A watermark
for large language models. arXiv preprint arXiv:2301.10226, 2023.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and Chelsea Finn. Detectgpt:
Zero-shot machine-generated text detection using probability curvature. arXiv preprint arXiv:2301.11305,
2023.

George Papandreou and Alan Loddon Yuille. Perturb-and-map random fields: Using discrete optimization
to learn and sample from energy models. 2011 International Conference on Computer Vision, pp. 193-200,
2011.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yangi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
The Journal of Machine Learning Research, 21(1):5485-5551, 2020.

Stefano Giovanni Rizzo, Flavio Bertini, and Danilo Montesi. Fine-grain watermarking for intellectual prop-
erty protection. EURASIP Journal on Information Security, 2019.

Jiaming Shen, Heng Ji, and Jiawei Han. Near-imperceptible neural linguistic steganography via self-adjusting
arithmetic coding. In Proceedings of Empirical Methods for Natural Language Processing, pp. 303-313,
2020.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model. https://github.com/
tatsu-lab/stanford_alpaca, 2023.

Jorg Tiedemann and Santhosh Thottingal. OPUS-MT — Building open translation services for the World.
In Proceedings of the 22nd Annual Conference of the European Association for Machine Translation, 2020.

Jorg Tiedemann, Mikko Aulamo, Daria Bakshandaeva, Michele Boggia, Stig-Arne Gronroos, Tommi Niem-
inen, Alessandro Raganato, Yves Scherrer, Raul Vazquez, and Sami Virpioja. Democratizing machine
translation with opus-mt. arXiv preprint arXiv:2212.01956, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

Honai Ueoka, Yugo Murawaki, and Sadao Kurohashi. Frustratingly easy edit-based linguistic steganography
with a masked language model. In Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, 2021.

Ashish Venugopal, Jakob Uszkoreit, David Talbot, Franz J Och, and Juri Ganitkevitch. Watermarking the
outputs of structured prediction with an application in statistical machine translation. In Proceedings of
Empirical Methods for Natural Language Processing, 2011.

James Vincent. Al-generated answers temporarily banned on coding Q&A site Stack
Overflow. The Verge, 2022. URL https://www.theverge.com/2022/12/5/23493932/
chatgpt-ai-generated-answers-temporarily-banned-stack-overflow-1llms-dangers.

26

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://www.theverge.com/2022/12/5/23493932/chatgpt-ai-generated-answers-temporarily-banned-stack-overflow-llms-dangers
https://www.theverge.com/2022/12/5/23493932/chatgpt-ai-generated-answers-temporarily-banned-stack-overflow-llms-dangers

Published in Transactions on Machine Learning Research (05/2024)

Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge University
Press, 2019.

Xi Yang, Jie Zhang, Kejiang Chen, Weiming Zhang, Zehua Ma, Feng Wang, and Nenghai Yu. Tracing text
provenance via context-aware lexical substitution. In Proceedings of the Thirty-Sizth AAAI Conference
on Artificial Intelligence, 2022.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan,
Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068, 2022.

Xuandong Zhao, Yu-Xiang Wang, and Lei Li. Protecting language generation models via invisible water-
marking. arXiv preprint arXiw:2302.03162, 2023.

Zachary Ziegler, Yuntian Deng, and Alexander M Rush. Neural linguistic steganography. In Proceedings of
Empirical Methods for Natural Language Processing, pp. 1210-1215, 2019.

A Proof of Lemma 2.2

Proof. To show the claim, we first lower bound the probability that Y = Y. In particular,

:Y’):ZP(Y:y)P(Y’:y)
—Z]P’Y) T »(i | yia)

i€[m)]
- Z]P’ v) IT 0= =pwi [9:i-1))
i1€[m]
(*)
>ZIED Y) exp —czl— Wi | g:i-1)
yEV, i€[m]

> E [exp (—ema(Y)) 1{Y € V°}],

where (%) follows from exp(—cz) < 1—x for 0 <z <1 — exp(—c¢/2). It then follows immediately that we
can bound the total variation distance between the joint distributions of (Y, ¢) and (Y, &) by

Drv((V,OII(Y,) < P((Y,€) # (Y',))
<1—Efexp(—cma(Y))1{Y € V°}].

Observe for any event A that

Dy (Y, OII(Y",€)) =2 P((Y,¢) € A) = P((Y',£) € A),

and thus, combining the previous two displays, we have

P((Y,€) € A) +P((Y',€) ¢ A) > P((Y.€) € A) + P((Y,€) € A) — Drv((V,9)II(Y,€))
> E[exp (—ema(Y)) 1{Y € V¢}].

The desired result thus follows from letting A be the event that h predicts —1. O

B Analysis of inverse transform sampling

We first introduce the following supporting lemma. Recall Cy = Var(n(Unif([N]))) for n(i) = (i—1)/(N —1).

27

Published in Transactions on Machine Learning Research (05/2024)

Lemma B.1. Let u € A([N]). Let (Umr) ~ Unif([0,1]) x Unif(Il) and ¥ = T'((U,xw),u). Then
C%]COV(U, n(m(Y))|Y)=1—pu(Y) almost surely.

Proof. We first characterize the conditional distribution of 7 given Y and the conditional distribution of U
given both 7 and Y, where recall m# and Y are discrete. Applying Bayes’ formula and Theorem 1, we have
R | mP(r) () p(Y)B()

P |Y) = =55y = iy =E) (7)

Also, defining the interval
1Y, 7) = [p({y : 7(y) <7(V)}), n({y : 7(y) <7 (Y)})],
for any interval I C [0,1] we have

@ P(Y | U € I,M)P(U € DP(r) ») [INI(Y,7)| (o) [INI(Y,7)]
PUel|Y,n) = 1(Y)P(r) N n(Y))| ¥

where (a) follows from Bayes’ formula and the independence of U and 7; (b) follows from the definition (1)
of the decoder I'; and (¢) follows from I(Y,7) C [0, 1] having width equal to p(Y). The displays (7) and (8)
respectively imply 7 | Y ~ Unif(Il) and U | 7, Y ~ Unif(I(Y, 7)), from which it follows that

1(

BIU | ¥,n(V)] = B |ul{y) < w0} + L5 | vy

_ @) -1 A= py) | pl)
n—1 2
=1/24 (n(7(Y)) = 1/2) (1 — u(Y)).

By symmetry, we have E[U] = E[n(n(Y))] = 1/2, the former because P(Y | U) =P(Y | 1 - U) for any U and
the latter because recall 7 | Y is uniform over II. Thus, marginalizing the preceding display over 7(Y") gives

Cov(U,n(m(Y)) | Y) =E[(U = 1/2) (n(w(Y)) = 1/2) | Y]
= (1= u(Y))Var(n(r(Y)) [Y),

from which the desired result follows immediately from recalling 7(Y") | Y ~ Unif([N]) and the definition of
the constant Cy. O

B.1 Proof of Lemma 2.3
Proof. Recall by definition
d(Y;, &) = —(Ui = 1/2) - (n(mi(Y3)) — 1/2),

where (as in the proof of Lemma B.1) we have E[U; | Y] = E[n(m;(Y;)) | Y] = 1/2. Lemma B.1 thus implies
E[d(Y:, &) | Y] = —Co - (1 = p(Yi | Yii—1)), while trivially E[d(Y;, ;) | Y] = 0 as Y and ¢ are independent.
The result follows immediately. O

B.2 Proof of Lemma 2.4

We prove the following more general result, from which Lemma 2.4 follows as a corollary.

Lemma B.2. Let m,n € N with n > m, where m is the generation length and n is the watermark key
length. Define the decoder T' by equation (1), alignment score d by equation (2), and ¢ by Algorithm 3 with
block size k < m. Let &, & RSh Unif(E™) with Y = generate(&;n,p,T'). Let Y be a substring of Y of length
at least k that is conditionally independent of & and &' given Y, i.e., Y = Y i 1..40 for £ > k. Then for

a:=1-— %Zz—ierlp(Y; | Yiio1), almost surely

P(¢(Y, &) <$(Y,€) | Y,Y) < 2nexp (~kC3a*/2) .

28

Published in Transactions on Machine Learning Research (05/2024)

Proof. Recall by definition

len(y)

d(y, (u,m) = = D (u; = 1/2) - (n(mi(ys)) — 1/2), 9)

i=1

Lemma 2.3 and the conditional independence of 7 and & given Y imply for any j € [n] that
E[d(i}l?k’gzj-‘rl:j-&-k)%n) | Y7}7] - E[d(},‘;ltk?fT"rl:T-‘rkf) | Y?i;] = kcoa

Each summand in equation (9) lies between —1/4 and 1/4, and also (U;, ;) is conditionally independent of
U_; and m_; given Y. Thus, Hoeffding’s inequality (Wainwright, 2019, Proposition 2.5) implies for j € [n]
that

P (d(i;’ §Ej+1:j+k)%n) < d(i;a §T+1:T+k) ‘ Y; i;>
<P (Y€1) — E[(Y 1)) = kCod/2| V.Y
+ P (BT, € 1ym)] = AT & rgm) = KCo@/2| YY)
< 2exp (—mC3a*/2).
Recalling the definition of the test statistic ¢ via Algorithm 3, the main claim then follows from taking a

union bound over all j € [n]. O

B.3 Proof of Lemma 2.5

Proof. We begin with the following observation for a single token.
Observation B.1. Let P € A([N]). Let (U, 7) ~ Unif([0,1]) x Unif(I) and Y = D((U, =), P). Let Y € [N]
be conditionally independent of (U,7) given Y. If Y #Y, then almost surely

1
N -1

Cov(U,n(m(Y)) | Y,Y) = — Cov(U,n(n(Y)) | Y,Y).

Let X be a random variable that is equal to n(7(Y")) with probability 1/N and otherwise equal to n(n (Y
Observe X is independent of Y and thus also U by assumption—in particular, (N —1)X 41| Y ~ Unif(]
irrespective of the value of Y. The claim thus follows from rearranging terms in the equality

N -1

Proof of Observation B.1. Observe the conditional distribution of 7(Y) given Y is uniform over [N]\ {x(Y)}.
))-
)

Cov(U,n(r(Y)) | Y,Y).

0= Cov(U, X | V,Y) = %COV(U, (= (V) | V.7) +

Lemma 2.3 and Observation B.1 together imply for any j € [n] that
E[d(Y, & 154m) | VY]~ E[d(Y, €m) | VY] = mCoa(Y,Y),

i.e., by adding the two results together using Observation B.1 to account for the influence of each substituted
token on the expectation. Using the same concentration argument as in the proof of Theorem 2.4, we then
have

P (4T, & 1,14m) < AT €1m) | 7,Y)
<P (A(V 1) — E[A(Y 1)) = ma(Y,7)/2| V.Y

+ P (Bl rgm)] = AV §prjm) = ma(y,V)/2| ¥, Y)
< 2exp (~mCa(v,V)?/2).

Recalling the definition of the test statistic ¢ via Algorithm 3, the main claim then follows from taking a
union bound over all j € [n] and recalling k¥ = m by assumption. O

29

Published in Transactions on Machine Learning Research (05/2024)

B.4 Proof of Lemma 2.6

Proof. We begin with the following useful facts about edit distance. Throughout, let S(y) denote the set of
substrings of a string y € V*, including the empty string.

Observation B.2. Let y,y € V*. Then deqait(y,y) is the length of the smallest sequence of insertion and/or
deletion operations to obtain y from y.

Proof of Observation B.2. We proceed via induction on the sum len(y) + len(y). The base case where y
and y are both empty is trivial. Now suppose the claim holds all strings whose lengths sum to at most
len(y) + len(y) — 1. Recalling the definition of deg;y (Definition 4), there are three cases.

First, suppose deqit (Y, §) = deait (y2:, J2:). Then by induction there exists a sequence of deqis(y, y) insertion
and/or deletion operations to obtain s, from y... Because y; = ¥1, the same sequence suffices to obtain 7
from y and thus the claim follows.

Second, suppose dedit (Y,) = 1 + dedit (y2:,¥). Again by induction, there exists a sequence of deqit (y,y) — 1
insertion and/or deletion operations to obtain ¥ from ys.. It follows immediately (i.e., by first deleting y;)
there exists a sequence of deqit(y, ¥) such operations to obtain g from y, and so the claim holds.

The third case follows by symmetry with the second case. O
Observation B.3. Let y,y € V*. Then for any T < len(y), we have

dcdit (ya g) Z min~ dcdit (y:T, y/) + mlIlN dcdit (y'r+1:7 yl)
y'€S(y) y'e€S(y)

Proof of Observation B.3. Observation B.2 implies there exists a sequence of deait(y,) insertion and/or
deletion operations to obtain 7 from y. We may partition this sequence of operations into sequences based
respectively on whether they occur on y.; or y,11.. Let ypre be the result of performing the first sequence of
operations on y.; and let Ys,s be the result of performing the second sequence of operations on y,41.. Then
y is the concatenation of ypre and Ysus, and so the claim follows from the fact that

dedit (ya @/) = dedit (y:Ta gpre) + dedit (y'r+1:a gsuf)

Z min~ dedit (yzrv y/) + miHN dedit (y'r+1:7 yl)
y'€S(y) y'€S(y)

Observation B.4. Let y,y € V* and £ € =*. Then d(y,&) < vdeais(y,y) + dy (7,).

Proof of Observation B.4. The case deqit(y,y) = 0 is trivial as we then have y = §. Now suppose deqit (y, §) =
1, and let ¢ be the first index such that y; # ;. Then, unrolling the recursive definition of d(¥;:,&;.), there
must exist ¢ € R and an index j such that both d,(y,§) = ¢+ d(¥::,&;.) and dy(y,€) < ¢+ dy(vi:,€;.)-
Moreover, from the definition of edit distance, either y; 1. = ;. or vice versa.

We claim d (yi:,&5:) < dy(¥i:, €5:) +7- If Yip1. = s, then the claim obtains as
dy(Yi:, &) < dy(Yig1:, &Gi) + gnelf:l do(y &)+

(%)
< d’y(yiJrl:a gj:) + Y

= d’y(gi:a gj) + v
with (%) following from the fact that do(y;,&’) = 0 for £ = (1/2, 7) irrespective of y; and .

Otherwise, if y;; = ¥;41., then from unrolling the recursive definition of d~(y;.,&;.) there must exist some
index j’ > j such that either

dy (is, &5:) = dy (Yirr:, &5:) 7 + min do(@n)+ D v+ Inin do(y', &)
- i<e<y’

30

Published in Transactions on Machine Learning Research (05/2024)

or
dy (T &) = dy(Figrs, &r1) +do(@i &)+ Y, v+ min do(y', &e)-
je<yr Y
In the first case, we have vy + ming ez do(y;, &) > 0 since v > 1/2 by assumption, and so the claim follows as
d'y(yizagj:) S d'y(yi:,gj/:) + Z Y + melg do(yl,f[)
j<e<y Y
=dy ([T,)+ Y v+ min do(y', &)
je<y
< d’y(gizv E])
In the second case, we have do(¥;) the claim follows as
dv(yi:agj:) < d'y(yi:agjurl:) + Z 'y+1n/1€i%d0(y/7€f>
j<e<i+1 Y
= dy(Yi+1,&57+1:) + Z v+ ;r’lé% do(y', &)
J<e<G+1
S d'y(,gin gj) + -
Thus, assuming deait(y,y) < 1, we have shown d,(yi.,&;.) < dy(¥i:,&;.) + 7, from which it follows that
dy(y,&) < dy(y,&) +v. The general result follows immediately by applying Observation B.2 and summing

the bound for a single edit over the (smallest) sequence of edits to obtain ¥ from y. O

Proceeding with the main proof, define for convenience the quantity

k
Qr = ;;p(YT+i | Yiryio1).
Observe
aY) = Ld mgzl a, (10)
mo= ’
while Observation B.3 together with our assumption that deqit (Y, f/) < em implies
LS

- min~ dedit(Yk‘r+1:kT+k;Y/) < ke. (11)
m T vYes(y)

The displays (10) and (11) together imply there exists an index 7 and Y’ € S(Y) such that &, —

%minwes&) doait (Yrt1.74%,Y') > a(Y) — e. Reusing the same concentration argument as in the proof

of Theorem 2.4, for t > 0 we have
P (do(Yri1irth: Erprrin) = —k (Codr +1) | V) <exp (—2kt?)
and thus from Observation B.4 it follows that
P (dw(y’,gfﬂﬂk) >k (CoalY) — 7 +) | ?,Y) < exp (—2Kkt?) .
Letting t = (Coar — 7ye)/2 and recalling the definition of the test statistic, we have

P (¢(f/,§) >k (CoalY) —7e) /2 | ?,Y) < exp (—k(Coa(Y) — 72)2 /2) . (12)

All that remains to bound the probability of (b(f/,{“’) exceeding the threshold from the above display. To
this end, define the set-valued map Ng(y) :={y’ : deait(y,y’) < B/(4y — 1)}. Then we make the following
observation.

31

Published in Transactions on Machine Learning Research (05/2024)

Observation B.5. For any y € V* and £ € Z*, there exists y' € Nlen(g) (y) such that

d’Y<y7 6) =7" dedit (y7 y/) + dO(yla 6)

Proof. We proceed via induction. The base case where y and £ both have length 1 follows trivially by taking
y' = y; in particular, v > 1/2 implies d(y,&) < v + min, d(y’, §) and likewise d(y,&) < v + ming d(y, &’).
Now suppose the result holds so long as len(y) + len(§) < n — 1. We claim that the result must then also
hold if the lengths sum to at most n.

We prove this inductive claim by considering three exhaustive cases. First, suppose that d,(y,§) =
dvy(y2:,&2:) + d(y1,&1). By our induction hypothesis, there exists § € Mien(e)—1(y2:) such that d.(ya:, &) =
v - deait (Yo, §) + d(§,&2.). The desired result then obtains with y’ as the concatenation of y; and 9.
Second, suppose d(y,§) = dy(y,&:) + minge=d(y1,£’) + . By our induction hypothesis, there exists
g € Nlen(ﬁ):l(y) such that d'y(y2:7§) =7 dedit(y2:7 g) + d(g7£2) The result obtains with yl = :lj Fina11Y7
suppose d(y,§) = dy(y2:,€) + d(y”, &) + v for some y” € V. By our induction hypothesis, there exists
U € Nien(e)—1(y) such that d-(y2:,§) = 7 - dedit (Y2:, §) +d(7,£). The result then obtains by concatenating y”
with 7. O

Let Z; := {(j +i)%n}t_,. For any 0 <i < len(Y)—k and j € [n], Observations B.4 and B.5 together imply
that

d"/(i}i-‘rl:i—i-ka 5/@) = min v dedit(5~/i+1:z'+k, y) +do(y, flzj) (13)
YENL (Yig1iitr)
> . >
& min 7 - deait (9 Yiraan) + do(y, &), (14)

YEN L ja(v—1) Yig1:itk)

where (%) follows from the fact that deqit (Yit1:64%,y) > k/4(y — 1) implies

7 - dedit (Yittiivk y) + do(y, €7,) > k/4 > do(Yitrin, €7,),

and therefore the minimizer in equation (13) must be an element of Nk/4(,y_1)(Y;+1:i+k).

By construction, Ng(y) consists of the set of strings obtainable from y by a sequence of at most 5 insertion
and/or deletion operations. Now define another set-valued map N _(y) as the restriction of N3(y) such
that we may only insert a particular token into y (which token is immaterial). As the specific identity of
each token we insert into y can only influence the value of d, by +1/2, for any 3 it follows that

min 5 deait(y, Yisrsion) + do(y,€7,) > min _ do(y, &),
YENE (Yit1:itk) yeENs,—(Y)

and so, letting 5 = k/4(y — 1), from equation (14) we have

d»y(Yz‘-s-l:Hk,flzj) Z m,ivn do(y7£/Ij)
yeENB, - (Yig1:itr)

Let Y (i,¢) denote the ¢-th element of NB7_(}H}7;+1;1'+]€) for some Y-measurable indexing. From the indepen-
dence of Y and ¢, we have E[do(Y (i,£),£z,) | Y] = 0 for any £ and j. The cardinality of N _(Yiy1:i4x) is
equal to the number of possible combinations of locations for § insertion and/or deletion operations on 17,

of which there are at most (k + 3)? < (2k)?. Thus, applying the same concentration argument as in the
proof of Theorem 2.4 and taking a union bound over all i <m —k, j < n and £ < (2k)?, we have

B((Y, &) < —a(Y)/2+7e | ¥,Y) < mn(2k)*/ 0D exp(~kC3(alY) = 7e)2/2). (15)

Combining the displays (12) and (15) via another union bound gives the desired result. O

32

Published in Transactions on Machine Learning Research (05/2024)

C Analysis of exponential minimum sampling

To prove the main theorems, we introduce the following supporting lemma. The result is well known and
we restate it here only for completeness.

Lemma C.1. Let u € A([N]) and & ~ Unif([0,1]V). Then for any y € [N] we have

P(L(&, 1) =y, —log(&y)/uly) > t) = p(y) exp(—t).

Proof. Suppose u(y) > 0 as otherwise the claim is trivial. Recalling &; S Unif([0, 1]), for any A > 0 we
Lid. .
have —Alog¢&; "~ Exp()), i.e.,

P(—MAlog&; > t) = P(& < exp(—At)) = exp(—At).
Thus, the claim follows as

P(T(§, 1) =y, —log(&y)/n(y) > t)
(y = argmin —log(&;)/u(i), —log(&,)/u(y) > t)

= ,u(y) exp(—,u(y)u) : Hiesupp(u),iiyp(_ log(ﬁ,)/,u(z) > u)
= /> M(y) exp(—,u(y)u) : Hiesupp(u),i;éy exp(—u(i)u)
= /u'(y) />t HiEsupp(u) exp(—u(i)u)

() | _exp(-u
u>t
= u(y) exp(—t),
where in (*) we use the fact that the density of —log(&,)/p(y) at w is p(y) exp(—p(y)u). O
C.1 Proof of Theorem 2

Proof. The result follows immediately from integrating the result of Lemma C.1 over ¢ > 0. O

C.2 Proof of Lemma 2.7

Proof. Lemma C.1 implies —log(&;)/p(Y; | Y1) | Y ~ Exp(1), and thus E[—log(&;) | Y] = p(Y; | Yi—1).
Meanwhile, as £/ ~ Unif([0, 1]) independently of Y, we have

P(—log& > t|Y) =P(& < exp(—t)) = exp(—t),
implying —log(&}) | Y ~ Exp(1) and so E[—log(&}) | Y] = 1. The result follows immediately, recalling
a(Yi—1.4) =1 —p(Y; | Yi—1) by definition. O

C.3 Proof of Lemma 2.8

We prove the following general result, from which Lemma 2.8 follows as a corollary.

Lemma C.2. Let m,n € N with n > m, where m is the generation length and n is the watermark key
length. Define the decoder T' by equation (4), alignment score d by equation (5), and ¢ by Algorithm 3 with

block size k < m. Let &, & g Unif(E™) with Y = generate(&;n,p,I"). Let Y be a substring of Y of length
at least k that is conditionally independent of & and &' given Y, i.e., Y = Yri1..4¢ for £ > k. Then for
a:=1- %Z:if+lp(lfz | Yiio1), almost surely

P(p(Y,€) < ¢(Y,€) | Y,Y) < 2nexp (— min{ka?/8, ka/4}) .

33

Published in Transactions on Machine Learning Research (05/2024)

Proof. Recall by definition
len(y)

d(y,&) =— > logéiy,.
i=1

Lemma 2.7 and the conditional independence of 7 and & given Y imply for any j € [n] that

E[d(y752j+1:j+k)%n) | YvY] - E[d(Y7£T+1:T+k’) | Y,Y] = ka.

i T | Y,Y ~ Exp(v;) for some ~; < 1 for all i € [m]. Also, from the

independence of Y and &', we have —log¢’ s | Y,Y ~ Exp(1) for all i € [m] and j € [n]. The following
2, ¥

From Lemma C.1, we have —log¢&

observation thus implies —log¢, & \ }7,Y and — log f’? | ?,Y are both (2,2)-subexponential random
2, Y4 1 Yi
variables.

Observation C.1. Let X ~ Exp(1l). Then X is a (2,2) subexponential random variable.

Proof of Observation C.1. For t < 1/2, we have

E[eHX-EX])] — /OO o) g gy
0

®) 2 2
< (1 —t+2)(1 41t +2t2)

(©
< (1+42t%)

where (a) follows from the fact that ¢ < 1 (otherwise, the integral would not be finite); (b) follows from
Taylor expanding e~* and 1/(1 —t) and applying the fact that ¢ < 1/2 to bound the higher-order terms; and
(c) again follows from ¢ < 1/2. The claim follows immediately. O

Thus, using the fact that & is conditionally independent of £_; given Y, a standard Chernoff bound (Wain-
wright, 2019, Proposition 2.9) implies for each j € [n] that

P (47, € 1540) S AV rirrin) | V,Y)
<P (Y, &m) — B, &) 2 ka/2 | V,Y)

+P (BT, & rgm)] — AT rgm) = KG/2| T, Y)
< 2exp (— min{k@”/8, ka/4}) .

Recalling the definition of the test statistic ¢ via Algorithm 3, the main claim then follows from taking a
union bound over all j € [n]. O

D Details of experiments

D.1 Experimental protocol

In Experiments 1-6, for each watermark we first generate a sequence tokens, decode the tokens into text (i.e.,
a string) using the appropriate tokenizer for the language model, and then encode the text back into tokens
before running detect. Each generation is coditioned on a prompt; we obtain the prompts by sampling

34

Published in Transactions on Machine Learning Research (05/2024)

documents from the news-like subset of the C4 dataset and truncating the last m tokens. We enforce a
minimum prompt size of 50 tokens in all experiments; we skip over any document that is not long enough.
The retokenization is not always equal to the original tokens generated by the model;'® in order to ensure
detect always receives at least m tokens, we pad its input with special pad tokens (specific to each model’s
tokenizer). We also initially generate a number of buffer tokens beyond m, so in most cases the padding
is unnecessary. We set the number of buffer tokens to be 20 in every experiment except for Experiment 5,
where we set it to be 100 in order to ensure that even after deleting tokens there are typically still at least m
tokens remaining. We always truncate the number of tokens given to detect to be at most m, irrespective
of the number of buffer tokens.

D.2 Roundtrip translation
In Experiment 6, we perform round-trip translations from English to French and from English to Russian
using the OPUS-MT collection of translation models (Tiedemann & Thottingal, 2020; Tiedemann et al.,

2022). Specifically, we use the versions of these models hosted on the HuggingfaceHub,'” associated with
the identifiers:

o Helsinki-NLP/opus-mt-tc-big-en-fr - English to French,

e Helsinki-NLP/opus-mt-tc-big-fr-en - French to English,

e Helsinki-NLP/opus-mt-en-ru - English to Russian,

o Helsinki-NLP/opus-mt-ru-en - Russian to English.

D.3 Computing p-values

As we mention previously, to save computation we modify detect to use a fixed reference distribution
to compute p-values. For the sake of concreteness, we give the full pseudocode for the modified version
of detect in Algorithm 5; in Experiments 1-6, we compute p-values using Algorithm 6 to construct the
reference distribution using the news-like subset of the C4 dataset as the text distribution.

Algorithm 5: Watermarked text detection with fixed reference distribution

Input : string y € V*, seed sequence £ € ="
Params: test statistic ¢; reference distribution {¢;}7_,
Output: p-value p € [0, 1]

~ T
1P 7 2 Ho(y:€) < o}

return p

As a sanity check, we include histograms of the p-values we compute for nonwatermarked text for each
method to verify that they are roughly uniformly distributed on the interval [0,1] (setting m = 50 and
sampling prompts from the news-like subset of the C4 dataset, as in Experiment 1). In the cases of KGW-1.0
and KGW-2.0, the distribution is not quite uniform due to the discrete nature of their test statistics.

16Byte-pair tokenizations of text (used by both the OPT and LLaMA) are not unique, due to the fact that they augment a
base vocabulary (e.g., characters) with extra tokens to represent common substrings.
Thttps:/ /huggingface.co/

35

3

4
5
6
7
8
9

Published in Transactions on Machine Learning Research (05/2024)

Algorithm 6: Reference distribution construction

Input : resample size T € N, text length m € N, watermark key sequence distribution v € A(E™)
Params: test statistic ¢; text distribution P; minimum prompt length mg

Output: reference distribution {¢;}7_; € RT

1t+1

2 while ¢t <7T do

Y~P

if len(Y) < mgy + m then
continue

€W~y

b1 G(Yoms, €1)
t+—t+1

return {¢;}7,

Count

Count

30

25
25
20
20
E 15
15 8
10 10
5 5
0 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
p-value p-value
(a) OPT-1.3B (b) LLaMA-7B
Figure 15: Distribution of p-values for nonwatermarked text using ITS detector.
30 25
25
20
20

Count
-
o

=
o

w

I I I 0 |
0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

10

5

]
0.0

p-value p-value

(a) OPT-1.3B (b) LLaMA-7B

Figure 16: Distribution of p-values for nonwatermarked text using ITS-edit detector.

36

Published in Transactions on Machine Learning Research (05/2024)

30

30

25 25

20 20
€ E
=2 =2 15
g1 8

10 10

5 I 5 I I

0 0

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
p-value p-value
(a) OPT-1.3B (b) LLaMA-7B

Figure 17: Distribution of p-values for nonwatermarked text using EXP detector.

N
o

Count
= ~N
w =}
Count

-
o

=

o
=
o

w
w

o |||||||||||||I||||‘||‘||| 0 |“l‘ll“‘l“‘l‘|||‘|““
0.0 02 04 0.6 0.8 10 0.0 0.2 04 0.6 0.8 10

p-value p-value

(a) OPT-1.3B (b) LLaMA-7B

Figure 18: Distribution of p-values for nonwatermarked text using EXP-edit detector.

37

Published in Transactions on Machine Learning Research (05/2024)

80

60
60 | |
0 II I | II 0 I I | | II
0.0 02 0.4 0.6 0.8 10 0.0 0.2 04 0.6 0.8 10

p-value p-value

Count
=]
Count
8 & 8

~
o
[N}
o

=
o

(a) OPT-1.3B (b) LLaMA-7B

Figure 19: Distribution of p-values for nonwatermarked text using KGW-1.0 detector.

80

70
60
60
40
] 0 I
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0

p-value p-value

(a) OPT-1.3B (b) LLaMA-7B

Count
o

Count
5 8 & 8

=
o

Figure 20: Distribution of p-values for nonwatermarked text using KGW-2.0 detector.

D.4 Hyperparameter tuning

There are two hyperparameters involved in computing each of our watermark test statistics (i.e., Algo-
rithm 3), the block size k and the alignment score d. We do not tune the block size k for our experiments,
instead simply letting k& = m, i.e., the text length, and the alignment score is also fixed for each of our
watermarks, except for the hyperparameter v in both ITS-edit and EXP-edit. Smaller values of 7 (at least
to a certain point) tend to make these watermarks more robust to insertion and deletion errors, as Figure 21
illustrates, but also hurts their statistical power for large values of n, i.e., the watermark key length, as
Figure 22 illustrates. We set v = 0.4 for ITS-edit and v = 0.0 for EXP-edit to balance these two competing
desiderata.

38

Published in Transactions on Machine Learning Research (05/2024)

0.06
0.07
\
0.05 ¢
006 % /
\ 7
\ ’
\ '
o 0.05 1 u 0.04 .
= 1 =)
T A © /
> \\ B /
o 0.04 \ c 003 7
o \ il 7
3 003 - K J
= =
o 0.02 ':'
Ay
0.02 \ =1
\ -
\ -
\ i 0.01 e
L -
0.01 \‘_‘-‘--‘. “—"‘ ‘/’/
0.00 S 000 [
01 0.2 03 0.4 0.5 0.6 -0.50 -0.25 000 025 050 075 100 125 150
Y Y
(a) ITS-edit (b) EXP-edit

Figure 21: Median p-value of watermarked text for varying v, with OPT-1.3B models and m = 70 for ITS-
edit and m = 35 for EXP-edit, after corrupting the text with random insertions (fraction of inserted tokens
is 0.1 for ITS-edit and 0.6 for EXP-edit).

0.35

0.005 Vishso
— y=0.0
0.30 — y=05
— y=1.0
0.25 0.004 — y=15
2 g
g 0.20 T 0.003
a a
c c
.8 0.15]
o o
2 £ o002
0.10
0.05 0.001
0.00 0.000
0 250 500 750 1000 1250 1500 1750 2000 200 400 600 800 1000
Watermark key length (n) Watermark key length (n)
(a) ITS-edit (b) EXP-edit

Figure 22: Median p-value of watermarked text, varying v and n, with OPT-1.3B model and m = 40 for
ITS-edit and m = 10 for EXP-edit.

39

Published in Transactions on Machine Learning Research (05/2024)

D.5 Deferred results

D.5.1 Experiment 3

05 — s = W3
—=- M5-edit -——= ——- [MS-edit
—— KGW-1.0 g’ 05 ' — kew10 =
0.4
0.4
o o
=] =]
w 0.3 3
> >
2 203
c c
]]
g o2 K
= =
0.2
0.1
0.1
0.0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Fraction of substitutions Fraction of substitutions
(a) OPT-1.3B (b) LLaMA 7B

Figure 23: Median p-value of watermarked text relative to the fraction of substitution errors, for OPT-1.3B
and LLaMA 7B models with m = 35.

p-values vs. substitution errors

040 — EXP 0.40 —— Gumbel
——- EXP-edit ——- Gumbel-edit
0.35 —— KGW-2.0 0.35 —— KGW-2.0
0.30 0.30
4
=2 025 L 025
z ©
& z
= 020 & 020
.5 k=1
o w
2 015 £ 015
0.10 0.10
0.05 0.05
0.00 0.00
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Fraction of substitutions corruption rate
(a) OPT-1.3B (b) LLaMA 7B

Figure 24: Median p-value of watermarked text relative to the fraction of substitution errors, for OPT-1.3B
and LLaMA 7B models with m = 70.

40

Published in Transactions on Machine Learning Research (05/2024)

0.5
= = o5 — M5
—-—- [MS-edit = ——- [TS-edit
— KGW-1.0 o — KGW-1.0
0.4
0.4
E E
223 5 03
> >
a a
c c
]]
g oz B o2
= =
0.1 0.1
0.0 0.0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Fraction of substitutions Fraction of substitutions
(a) OPT-1.3B (b) LLaMA 7B

Figure 25: Median p-value of watermarked text relative to the fraction of substitution errors, for OPT-1.3B
and LLaMA 7B models with m = 70.

D.5.2 Experiment 4

— s — s
03 ——. ms-edit 05 --- MS-edit —
—— KGW-1.0 —— KGW-1.0 T
0.4
0.4
[:*] 1]
= =
% 0.3 2
o a 0.3
c c
T]
g T
0.2
= = 0.2
0.1
0.1
s
4
/
0.0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Fraction of insertions Fraction of insertions
(a) OPT-1.3B (b) LLaMA 7B

Figure 26: Median p-value of watermarked text relative to the fraction of insertion errors, for OPT-1.3B and
LLaMA 7B models with m = 35.

41

Published in Transactions on Machine Learning Research (05/2024)

035 —— EXP — EXP
——- EXP-edit 04 |--- EXP-edit
— KGW-2.0 — KGW-2.0

0.30

0.25 0.3
o o
2 2
2 020 g
(=3 (=3
E S 02
T 0.15 b=
L L
= =

0.10

0.1
0.05
0.00 0.0 e e e e e
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Fraction of insertions Fraction of insertions
(a) OPT-1.3B (b) LLaMA 7B

Figure 27: Median p-value of watermarked text relative to the fraction of insertion errors, for OPT-1.3B and
LLaMA 7B models with m = 70.

05 — s
--- MMS-edit 05
—— KGW-1.0
e & e
0.4
E E
= 03 =2
g 2 o3
a a
[= =
T]
T o2 k]
2 202
0.1 01
— =
—=- [S-edit
0.0 00 —— KGW-1.0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Fraction of insertions Fraction of insertions
(a) OPT-1.3B (b) LLaMA 7B

Figure 28: Median p-value of watermarked text relative to the fraction of insertion errors, for OPT-1.3B and
LLaMA 7B models with m = 70.

42

Published in Transactions on Machine Learning Research (05/2024)

D.5.3 Experiment 5

0.5
— (=2 — s
--- S-edit = 02 . msedit
—— KGW-1.0 ~ — KGW-1.0 o el
04— BT e e/ S S
0.4
EXE! H
2 g
z zo03
c c
©]
T 02 2
= =
0.2
0.1
0.1
0.0
0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6
Fraction of deletions Fraction of deletions
(a) OPT-1.3B (b) LLaMA 7B

Figure 29: Median p-value of watermarked text relative to the fraction of deletion errors, for OPT-1.3B and
LLaMA 7B models with m = 35.

0.25
— EXP 030 EXP
——- EXP-edit —-- EXP-edit
— KGW-2.0 — KGW-2.0
0.20 0.25
% 015 ¥ 0.20
© ©
> >
a a
c c 015
] T
T 0.10 h=1
@ L]
= =
0.10
0.05
0.05
[y——— ————— 0.00
0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6
Fraction of deletions Fraction of deletions
(a) OPT-1.3B (b) LLaMA 7B

Figure 30: Median p-value of watermarked text relative to the fraction of deletion errors, for OPT-1.3B and
LLaMA 7B models with m = 70.

43

Published in Transactions on Machine Learning Research (05/2024)

05 — s — s
=== [TS-edit 0.5 =—=-- [TS-edit
—— KGW-1.0 — KGW-1.0

0.4
L R |
E E
= 03 =2
g 2 o3
(=N (=3
= =
]]
= =
£ 0.2 2o
0.1 0.1
0.0 0.0
0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6
Fraction of deletions Fraction of deletions
(a) OPT-1.3B (b) LLaMA 7B

Figure 31: Median p-value of watermarked text relative to the fraction of deletion errors, for OPT-1.3B and
LLaMA 7B models with m = 70.

D.5.4 Experiment 6

0.6 — s — ms
——- M5-edit ——- [M5-edit
—— KGW-1.0 05 — KGW-1.0
0.5
w Y04
2 04 E
> >
a a
[= =
T]
T o3 T 03
= =
0.2 0.2
0.1 0.1
10 15 20 25 30 35 40 a5 50 10 15 20 25 30 35 40 45 50
Text length (m) Text length (m)
(a) OPT-1.3B (b) LLaMA 7B

Figure 32: Median p-value of watermarked text relative to the fraction of insertion errors, after roundtrip
translation via French, for OPT-1.3B and LLaMA 7B models with m = 35.

44

Published in Transactions on Machine Learning Research (05/2024)

— M5
0.6 ——- M5-edit
KGW-1.0

0.50

0.45

0.4

Median p-value
o €
w
&
Median p-value

o
W
o

0.3

025 — ms
—=- [MS-edit
KGW-1.0 0.2
0.20
10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50
Text length (m) Text length (m)
(a) OPT-1.3B (b) LLaMA 7B

Figure 33: Median p-value of watermarked text relative to the text length, after roundtrip translation via
Russian, for OPT-1.3B and LLaMA 7B models with m = 35.

D.5.5 Instruction following case study

We give three examples of instructions for which hashing produces qualitatively worse responses than regular
samples from the language model:

1. “Give me 20 ideas for the title of a paper on watermarking language models.”
2. “Give me 20 ideas for startup names.”

3. “Give me a list of 20 movies.”

We format each of the instructions as described by Taori et al. (2023) before calling the model.

We compare samples from our EXP watermark strategy,'® which are equivalent to regular samples from the
language model, to samples from KGW-2.0 and the hashing-based version of EXP we describe in the main
text (i.e., the watermark of Aaronson (2023)), i.e., EXP-hash. For both EXP and KGW-2.0, we generate the
samples using five different random seeds (the hash function in KGW-2.0 is fixed in the implementation of
Kirchenbauer et al. (2023)), whereas in the case of EXP-hash we use five different hash functions (namely,
we let the previous k tokens {y;}%_; hash to j + Zle y; for 7 € {0,...,4}). We label each sample using the
seed/hash we used to generate it. We include samples from two versions of EXP-hash: one where we hash
the previous tokens (k = 1) and another where we hash the previous four tokens (k = 4). For KGW-2.0, we
only hash the previous token since the public implementation of Kirchenbauer et al. (2023) does not include
the option to hash more tokens.

We find that EXP-hash with k£ = 1 often produces qualitatively worse responses that degenerate into repe-
tition. With k = 4, the repetition is substantially less noticeable, though occasionally it still manifests. In
contrast, even when we only hash the previous token, the repetition of KGW-2.0 is not nearly as noticeable as
in EXP-hash. We speculate this is due to stochasticity of KGW-2.0 (i.e., KGW-2.0 biases the distribution over
the next token to a subset of tokens but still ultimately samples from this distribution randomly). Of course,
this stochasticity comes at a price: KGW-2.0 was generally less powerful compared to the EXP and EXP-edit
strategies in our other experiments.

We include sample sheets for all methods for the first instruction below. To avoid excessive clutter, we defer
the sample sheets for the remaining two instructions to our code release.

18Recall both EXP and EXP-edit use the same generate method.

45

Published in Transactions on Machine Learning Research (05/2024)

Method

Seed

Response

EXP-hash
(k=1)

1. Watermarking Deep Learning Models: A Review 2. Understanding and Evaluating Wa-
termarking Techniques for Neural Networks 3. Towards Unobtrusive and Invisible Water-
marking for Neural Networks 4. Customizable Watermarking for Neural Networks 5. Reverse
Engineering Watermarked Neural Networks 6. Understanding and Exploiting Watermark-
ing Attacks on Neural Networks 7. Combatting Watermarking Attacks on Neural Networks
8. Customizable Watermarking for Neural Networks 9. Customizable Watermarking for
Neural Networks 10. Customizable Watermarking for Neural Networks 11. Customizable
Watermarking for Neural Networks 12. Customizable Watermarking for Neural Networks
13. Customizable Watermarking for Neural Networks 14. Customizable Watermarking for
Neural Networks 15. Customizable Watermarking for Neural Networks 16. Customizable
Watermarking for Neural Networks 17. Customizable Watermarking for Neural Networks
18. Customizable Watermarking for Neural Networks 19. Customizable Watermarking for
Neural Networks

EXP-hash
(k=1)

1. Exploiting Watermarks in Language Modeling 2. Watermarking Language Models: State
of the Art 3. Keys to the Kingdom: Refining Watermarking Language Models 4. Exploiting
Watermarks in Natural Language Processing 5. Keys to the Kingdom: Refining Watermark-
ing Language Models 6. Keys to the Kingdom: Refining Watermarking Language Models 7.
Keys to the Kingdom: Refining Watermarking Language Models 8. Keys to the Kingdom:
Refining Watermarking Language Models 9. Keys to the Kingdom: Refining Watermarking
Language Models 10. Keys to the Kingdom: Refining Watermarking Language Models 11.
Keys to the Kingdom: Refining Watermarking Language Models 12. Keys to the Kingdom:
Refining Watermarking Language Models 13. Keys to the Kingdom: Refining Watermarking
Language Models 14. Keys to the Kingdom: Refining Watermarking Language Models 15.
Keys to the Kingdom: Refining Watermarking Language Models 16. Keys to the Kingdom:
Refining Watermarking Language Models 17. Keys to the Kingdom: Refining Watermarking
Language Models 18. Keys to the Kingdom: Refining Watermarking Language Models 19.
Keys to the Kingdom: Refining Watermarking Language Models 20. Keys to the Kingdom:
Refining Watermarking Language Models

EXP-hash
(k=1)

1. "Making Watermarks: Creative Approaches to Watermarking Language Models" 2. "Mak-
ing Watermarks: Creative Approaches to Watermarking Language Models" 3. "Making
Watermarks: Creative Approaches to Watermarking Language Models" 4. "Making Water-
marks: Creative Approaches to Watermarking Language Models" 5. "Making Watermarks:
Creative Approaches to Watermarking Language Models" 6. "Making Watermarks: Cre-
ative Approaches to Watermarking Language Models" 7. "Making Watermarks: Creative
Approaches to Watermarking Language Models" 8. "Making Watermarks: Creative Ap-
proaches to Watermarking Language Models" 9. "Making Watermarks: Creative Approaches
to Watermarking Language Models" 10. "Making Watermarks: Creative Approaches to Wa-
termarking Language Models" 11. "Making Watermarks: Creative Approaches to Water-
marking Language Models" 12. "Making Watermarks: Creative Approaches to Watermark-
ing Language Models" 13. "Making Watermarks: Creative Approaches to Watermarking
Language Models" 14. "Making Watermarks: Creative Approaches to Watermarking Lan-
guage Models" 15. "Making Watermarks: Creative Approaches to Watermarking Language
Models" 16. "Making Watermarks: Creative Approaches to Watermarking Language Mod-
els" 17. "Making Watermarks: Creative Approaches to Watermarking Language Models" 18.
"Making Watermarks: Creative Approaches to Watermarking Language Models" 19. "Mak-
ing Watermarks: Creative Approaches to Watermarking Language Models" 20. "Making
Watermarks: Creative Approaches to Watermarking Language Models'

46

Published in Transactions on Machine Learning Research (05/2024)

EXP-hash
(k=1)

1. Watermarking Language Models: A Review 2. Watermarking Language Models for Copy-
right Protection 3. Watermarking Language Models for Forensic Analysis 4. Watermarking
Language Models for Audio Signals 5. Watermarking Language Models for Video Signals 6.
Watermarking Language Models for Documents 7. Watermarking Language Models for Soft-
ware 8. Watermarking Language Models for Big Data 9. Watermarking Language Models
for Natural Language Processing 10. Watermarking Language Models for Machine Learning
11. Watermarking Language Models for Deep Learning 12. Watermarking Language Models
for Speech Recognition 13. Watermarking Language Models for Audio Synthesis 14. Wa-
termarking Language Models for Computer Vision 15. Watermarking Language Models for
Robotics 16. Watermarking Language Models for Autonomous Driving 17. Watermarking
Language Models for Medical Image Processing 18. Watermarking Language Models for
Medical Diagnostics 19. Watermarking Language Models for Text Translation

EXP-hash
(k=1)

1. Image based watermarking for language models 2. Steganographic watermarking for
language models 3. Timestamps for language models 4. Watermarking for language model
improvisation 5. Secure watermarking for language model sharing 6. Image based water-
marking for language model improvisation 7. Timestamps for language model improvisation
8. Watermarking for language model evolution 9. Secure watermarking for language model
evolution 10. Image based watermarking for language model evolution 11. Timestamps for
language model evolution 12. Watermarking for language model generation 13. Image based
watermarking for language model generation 14. Timestamps for language model genera-
tion 15. Watermarking for language model understanding 16. Image based watermarking
for language model understanding 17. Timestamps for language model understanding 18.
Watermarking for language model improvisation and understanding 19. Image based water-
marking for language model improvisation and understanding

Table 1: Responses from EXP-hash with &k = 1 to the prompt: “Give me 20 ideas for the title of a paper on
watermarking language models.”

Method

Seed

Response

EXP-hash
(k=4)

1. "Safeguarding Language Models: Exploring Watermarking for Vertext and Image Models"
2. "Watermarking Language Models: Protecting Your Creations" 3. "The Future of Water-
marking Language Models: Ethical and Practical Considerations" 4. "Securing Language
Models: Exploring Emerging Technologies" 5. "Watermarking Language Models: Balanc-
ing Creativity and Security" 6. "Watermarking Language Models: Balancing Security and
Accessibility" 7. "Watermarking Language Models: Defending your Creativity" 8. "Wa-
termarking Language Models: Defending your Creativity with Emerging Technologies" 9.
"Protecting Language Models: Exploring Emerging Technologies" 10. "Securing Language
Models: Balancing Security and Accessibility" 11. "The Future of Watermarking Language
Models: Ethical and Practical Considerations" 12. "Watermarking Language Models: Bal-
ancing Security and Accessibility" 13. "Watermarking Language Models: Balancing Security
and Accessibility with Emerging Technologies" 14. "Watermarking Language Models: De-
fending your Creativity with Emerging Technologies" 15. "Watermarking Language Models:
Defending your Creativity with Emerging Technologies" 16. "Securing Language Models:
Balancing Security and Accessibility with Emerging Technologies" 17. "Exploring Water-
marking for Vertext and Image Models" 18. "Watermarking Language Models: Balancing
Security and Accessibility with Emerging Technologies" 19. "Defending your Creativity with
Emerging Technologies"

47

Published in Transactions on Machine Learning Research (05/2024)

EXP-hash
(k= 4)

1. Towards a New Era of Transparent Language Models 2. A Review of the State of Water-
marking Language Models 3. The Benefits of Embedding Watermarks in Language Models
4. Protecting Language Models with Multiscale Watermarks 5. Impact of Watermarking on
the Performance of Language Models 6. A Survey on Watermarking for Language Models 7.
Practical Perspectives on Watermarking for Language Models 8. A Comprehensive Study
on Designing Watermarks for Language Models 9. Overview of Techniques for Adding Wa-
termarks to Language Models 10. Exploring the Possibilities of Watermarking for Language
Models 11. How to Incorporate Watermarks in Your Language Model 12. The Science be-
hind Watermarking for Language Models 13. Al for Insertion of Watermarks in Language
Models 14. The Role of Machine Learning in Watermarking for Language Models 15. Future
Trends in Watermarking for Language Models 16. A Review on Watermarking for Language
Models 17. Applications of Watermarking in Language Modeling 18. A Comprehensive
Study on Designing Robust Watermarks for Language Models 19. A Novel Approach to
Incorporate Watermarks in Your Language Model.

EXP-hash
(k=4)

1. Securing Your Language Model 2. Stamping Out Unauthorized Use 3. Coloring Outside
the Lines: Creative Watermarks 4. Avoiding Watermarks: Best Practices 5. Authentication
Made Easy with Watermarks 6. Defending Your Language Model 7. Unique Identifiers:
Adding Value to your Model 8. Connected Learning: Leveraging Watermarks 9. The Prob-
lem with Open Access 10. How to Effectively Mark a Language Model 11. Making a Splash
with Creative Watermarks 12. Understanding the Benefits of Watermarking 13. Utilizing
Watermarks for Better Attribution 14. Stewarding Your Language Model 15. The Role of
Technology in Watermarking 16. Beyond the Horizon: Adaptive Watermarking 17. The
Art of Discretion in Watermarking 18. Harnessing the Power of Invisible Watermarks 19.
Practical Considerations for Watermarking

EXP-hash
(k=4)

1. Elucidating Watermarking Strategies for Language Models 2. Innovative Techniques for
Watermarking Language Models 3. Intelligent and Innovative Watermarking Strategies for
Language Models 4. Overview of Watermarking Strategies for Language Models 5. Emerg-
ing Technologies in Watermarking for Language Models 6. Practical Perspectives on Wa-
termarking Language Models 7. Reducing Watermarking Strategies for Language Models 8.
Robust Techniques for Watermarking Language Models 9. Security Factors in Watermark-
ing Language Models 10. Understanding Watermarking Strategies for Language Models 11.
Evaluation of Watermarking Strategies for Language Models 12. Exploring Watermarking
Strategies for Language Models 13. Innovations in Watermarking Language Models 14. In-
telligent Techniques for Watermarking Language Models 15. Methods for Watermarking
Language Models 16. Overlapping Security Factors in Watermarking Language Models 17.
Understanding Watermarking Strategies for Language Models 18. Emerging Technologies
in Watermarking Language Models 19. Exploring Watermarking Strategies for Language
Models 20. Intelligent and Innovative Watermarking Strategies for Language Models

EXP-hash
(k=4)

1. Securing Language Models 2. Extra Secure Language Models 3. Defending Language
Models 4. Protecting Language Models 5. Cryptographic Language Models 6. Unique Lan-
guage Models 7. Robust Language Models 8. Marking Language Models 9. Preventing
Language Models 10. Hiding Language Models 11. Invisible Language Models 12. Stegano-
graphic Language Models 13. Watermarking Language Models 14. Preserving Language
Models 15. Uniquely Identifiable Language Models 16. Characterizing Language Models 17.
Distinguishable Language Models 18. Language Model Defence 19. Ultra Defence Language
Models

Table 2: Responses from EXP-hash with & = 4 to the prompt: “Give me 20 ideas for the title of a paper on
watermarking language models.”

| Method | Seed | Response

48

Published in Transactions on Machine Learning Research (05/2024)

KGW-2.0

1. Steganography in Language Models: A Review 2. Combating Model Piracy with Wa-
termarking 3. Techniques for Traceability and Watermarking 4. Salient Features for Trace-
ability and Watermarking 5. Reflections on Model Security and Watermarking 6. Insights
on Model Security and Watermarking 7. Protecting Models with Watermarking 8. Tech-
niques for Esoteric Traceability and Watermarking 9. Ins and Outs of Steganography in
Language Models 10. Technologies for Efficient Watermarking 11. Vision Beyond Model
Piracy: Watermarking Perspectives 12. Impact of Model Security on Watermarking 13.
Emerging Trends in Watermarking of Language Models 14. Future of Watermarking Tech-
niques for Language Models 15. Drivers for Success in Watermarking Language Models 16.
Robustness of Models against Watermarking 17. Taking Security beyond Watermarking 18.
Leveraging Model History and Watermarking 19. Techniques for Secure Watermarking 20.
Comprehensive Overview of Model Security and Watermarking.

KGW-2.0

1. Embedding Digital Signatures: Towards Traceable and Transparent Language Mod-
els 2. Stamping Out Deception: Recording Attribution in Language Models 3. Defining
Your Digital Dashboard: Watermarking for Traceability 4. Scaling Trust in Language Mod-
els: Watermarking for Traceability and Transparency 5. Taking an East Asian Approach
to Transparency in Language Models 6. Riding the Big Five: Towards Transparency in
Language Models 7. Measuring the "Ps" of Language Models: Perceptual and Practical
Transparency 8. Marking a Mark: Comprehensive Examination of Attribution in Language
Models 9. Visualizing Deception: Comprehensive Examination of Deceptive Language Mod-
els 10. Peak Performance: Evaluating Language Models for Transparency 11. Closing the
Loop: Examining the Long-term Impacts of Language Models 12. Diversifying Perspec-
tive: Impacts of Modelling Language 13. Disclosing the Hidden Layers: Understanding
Transparency in Language Models 14. Auditable: Making Language Models Accountable
15. Labelling Human Language: Exploring the Capabilities of Language Models 16. Setting
the Record: Estimating the Real-world Impacts of Language Models 17. Language Models:
Towards Traceable, Transparent and Accountable Systems 18. Think Outside the Box: Ex-
ploring Future Trends in Language Models 19. Embedding Trust: Towards Traceable and
Transparent Language Models.

KGW-2.0

1. Defending Latent Space with Secure Watermarks 2. Emergent Waveforms: A Watermark-
ing Approach 3. Embedding Digital Identities in Neural Networks 4. Marking up Models:
A Survey on Watermarking 5. Leveraging Linked Data for Watermarking 6. Stamping Out
Superfluous Models 7. Inspecting and Marking Models 8. Rethinking Digital Identity with
Watermarks 9. Marking Up Models: A Usage-Driven Approach 10. Bridge the Distance
with Digital Watermarks 11. Introducing Transparency in Model Formation 12. Unlock-
ing Models with Secure Watermarks 13. Giving Visible Identity to Models 14. Unveiling
Dark Knowledge with Watermarks 15. Linking Models: A Visual Approach 16. Visualizing
Dark Knowledge through Watermarks 17. Leveraging Physical World for Model Tracking
18. Augmented Reality for Model Tracking 19. Securing Deep Models with Watermarks

KGW-2.0

1. Providing Type-Safe Watermarks 2. Constructing Robust Watermarks for Multimedia
Applications 3. Adding Security Features to Text Vectors 4. Stretching Visible Watermarks
5. Embedding Watermarks in Natural Language Models 6. Training Recurrent Neural
Networks with Watermarks 7. Detection of Unsupervised Watermarks in Text Sequences
8. Interactive Visualization of Watermarks 9. Observe Hidden Watermarks with Machine
Learning 10. Extracting Information from Unseen Watermarks 11. Building Robust Water-
marks for the Blockchain 12. Adding Dynamic Watermarks to Video Streams 13. Storing
Watermarks in Individual Dataset Elements 14. Extracting Pertinent Information from Un-
wanted Watermarks 15. Decoding Hidden Digital Watermarks 16. Introducing Watermarks
to Secure Semi-honest Adversaries 17. Genuine Components with Integrated Watermarks
18. Intelligent Techniques for Steganography 19. Protecting Quality with Data-Driven Wa-
termarks

49

Published in Transactions on Machine Learning Research (05/2024)

1. Embedding Watermarks in Language Models 2. Secure Language Models using Water-
marks 3. Steganographic watermarking of natural language models 4. Exploring Water-
marking Techniques for Natural Language Models 5. Analyzing Natural Language Models
using Watermarking Techniques 6. Detecting Watermarks in Natural Language Models 7.
Supervised Learning of Watermarks for Natural Language Models 8. Unsupervised Learning
of Watermarks for Natural Language Models 9. Multiple watermarks for secure language
KGW-2.0 4 models 10. Generative watermarking techniques for natural language models 11. Evaluation
of watermarks for secure natural language models 12. Efficacy of watermarks in preventing
model poisoning 13. Robustness of watermarks for natural language models 14. Compari-
son of watermarking techniques for natural language models 15. Linking of natural language
models with watermarks 16. Extraction of hidden information from natural language models
17. Universality of watermarks for different languages 18. Learning watermarked natural
language models 19. Reduced Dimensionality Modeling using Watermarks

Table 3: Responses from KGW-2.0 to the prompt: “Give me 20 ideas for the title of a paper on watermarking
language models.”

Method | Seed | Response

Here is the list of 20 ideas for the title of a paper on watermarking language models:

1. "Understanding Watermarking Techniques for Language Models" 2. "A Comprehensive
Study on Watermarking for Language Models" 3. "Watermarking Techniques for Optimiz-
ing Language Models" 4. "A Survey of Watermarking Techniques for Language Models"
5. "Exploring the Potential of Watermarking for Language Models" 6. "Implementing Wa-
termarking for Language Model Optimization" 7. "Watermarking Strategies for Enhancing
Language Models" 8. "Investigating the Possibilities of Watermarking for Language Mod-
els" 9. "Advanced Watermarking Approaches for Language Models" 10. "Exploring the Use
EXP 0 of Watermarking for Language Model Validation" 11. "Understanding the Benefits of Wa-
termarking for Language Model Ensemble" 12. "Leveraging Watermarking Techniques for
Enhanced Language Model Performance" 13. "Enhancing Language Models with Water-
marking" 14. "Evaluating the Impact of Watermarking Techniques on Language Models" 15.
"Analyzing the Feasibility of Watermarking for Language Model Comparison" 16. "Exploring
the Possibilities of Watermarking for Optimizing Language Models" 17. "Exploiting Water-
marking to Enhance Language Model Accuracy" 18. "Advantages of Using Watermarking for
Validating Language Models" 19. "The Promise of Watermarking for Evaluating Language
Model Performance"

Title ideas for a paper on watermarking language models: 1. Hidden Messages: Protecting
Language Models with Watermarking 2. Securing Language Models with Watermarking
3. Defending Language Models against Tampering 4. Watermarking Language Models for
Better Protection 5. Verifying the Integrity of Language Models 6. Utilizing Watermark-
ing to Boost Language Model Security 7. Ensuring the Authenticity of Language Models
8. Safekeeping Language Models with Watermarking 9. Defending Against Model Tam-
EXP 1 pering with Watermarking 10. A Review of Model Security Techniques: Watermarking 11.
Utilizing Watermarks to Protect Language Models 12. Protective Techniques for Language
Models: Watermarking 13. Implementing Watermarks to Boost Language Model Security
14. Preventing Model Tampering with Watermarking 15. Methods for Verifying Language
Model Integrity 16. Analyzing the Security of Language Models 17. Techniques for Secur-
ing Language Models 18. Investigating Model Security with Watermarking 19. Extending
Language Model Security with Watermarking

50

Published in Transactions on Machine Learning Research (05/2024)

1. "Deep Watermarks: Towards Pervasive Protection for Language Models" 2. "Adding
Transparency to Language Models: A Watermarking Approach" 3. "Watermarking Lan-
guage Models for Traceability and Verification" 4. "A Comprehensive Review on Water-
marking Methods for Language Models" 5. 'The Power of Watermarking for Language
Model Protection" 6. "Attributing Authorship in Language Models with Watermarking" 7.
"Understanding the Promise of Watermarking for Language Model Security" 8. "Watermark-
ing Language Models: A Survey" 9. "Watermarking Language Models for Better Security"
10. "Mitigating Plagiarism in Language Models with Watermarking" 11. "Watermarking
Language Models: Exploring the Possibilities” 12. "A Generative Approach to Watermark-
ing Language Models" 13. "Watermarking Strategies for Protecting Language Models" 14.
"Watermark Detection for Language Model Security" 15. "Making Language Model Secu-
rity Watertight with Watermarking" 16. "Leveraging Watermarking for Enhancing Language
Model Security" 17. "Understanding the Role of Watermarking in Language Model Security"
18. "A Novel Approach to Watermarking Language Models" 19. "Exploring the Possibilities
of Watermarking for Language Model Security"

1. A Comprehensive Review of Watermarking Techniques for Language Models 2. A Survey
of Watermarking Approaches for Language Modeling 3. A Normative Analysis of Water-
marking for Language Modeling 4. Investigating Watermarking Techniques for Language
Modeling 5. An Overview of Watermarking Methods for Language Modeling 6. Exploring
Watermarking Solutions for Language Modeling 7. A Taxonomy of Watermarking Methods
for Language Modeling 8. A Comparative Study of Watermarking Approaches for Language
Modeling 9. Evaluating Watermarking Methods for Language Modeling 10. A Theoretical
Analysis of Watermarking for Language Modeling 11. Investigating Watermarking Tech-
niques for Natural Language Modeling 12. An Analytical Study of Watermarking for Lan-
guage Modeling 13. Exploring Watermarking Methods for Natural Language Modeling 14.
A Review of Watermarking Techniques for Natural Language Modeling 15. A Compara-
tive Study of Watermarking Approaches for Natural Language Modeling 16. Investigating
Watermarking Solutions for Natural Language Modeling 17. A Survey of Watermarking
Techniques for Natural Language Modeling 18. Evaluating Watermarking Methods for Nat-
ural Language Modeling 19. A Review of Watermarking for Natural Language Modeling 20.
Exploring Watermarking Solutions for Natural Language Modeling

EXP 2
EXP 3
EXP 4

1. Towards a Unified Watermarking Mechanism for Natural Language Processing Mod-
els 2. A Review of Methods for Watermarking Natural Language Models 3. Extracting
Invariant Features for Watermarking Language Models 4. The Use of Steganography for
Watermarking Natural Language Models 5. Introducting Secure Watermarking Techniques
for Natural Language Models 6. A Comprehensive Study on Watermarking Techniques for
Natural Language Models 7. Toward Remarkably Visible Watermarks for Natural Language
Models 8. Analyzing the Impact of Watermarking on Natural Language Models 9. A Prac-
tical Guide to Marking Language Models 10. Enhancing the Accuracy of Watermarking
Natural Language Models 11. Evaluating Strategies for Watermarking Natural Language
Models 12. A Comparison of Watermarking Approaches for Natural Language Models 13.
Promising Solutions for Securely Watermarking Natural Language Models 14. Generative
and Discriminative Approaches for Watermarking Natural Language Models 15. Explor-
ing the Possibilities of Steganography for Natural Language Models 16. Understanding the
Challenges of Watermarking Natural Language Models 17. Evaluating the Effectiveness of
Watermarking Techniques for Natural Language Models 18. Enhancing the Transparency
of Watermarking Techniques for Natural Language Models 19. Extending the Capabilities
of Watermarking Techniques for Natural Language Models 20. Assessing the Sophistication
of Watermarking Techniques for Natural Language Models

Table 4: Responses from EXP to the prompt: “Give me 20 ideas for the title of a paper on watermarking

language models.”

o1

	Introduction
	Related work

	Methodology and theoretical analysis
	Protocol details
	Handling multiple queries
	Terminology: watermark strategies and watermark potential
	Watermarking via inverse transform sampling
	Robustness to substitutions, insertions and deletions
	What we run in practice

	Watermarking via exponential minimum sampling
	Robustness to corruptions
	What we run in practice

	Experimental results
	Varying text and watermark key length
	Robustness to corruption and paraphrasing
	Case study: instruction following

	Discussion
	Trade-offs among watermarks
	Recommendations in practice and combining watermarks

	Proof of Lemma 2.2
	Analysis of inverse transform sampling
	Proof of Lemma 2.3
	Proof of Lemma 2.4
	Proof of Lemma 2.5
	Proof of Lemma 2.6

	Analysis of exponential minimum sampling
	Proof of Theorem 2
	Proof of Lemma 2.7
	Proof of Lemma 2.8

	Details of experiments
	Experimental protocol
	Roundtrip translation
	Computing p-values
	Hyperparameter tuning
	Deferred results
	Experiment 3
	Experiment 4
	Experiment 5
	Experiment 6
	Instruction following case study

