Combinatorial Approximations for Cluster Deletion: Simpler, Faster, and Better

Vicente Balmaseda' Ying Xu? Yixin Cao? Nate Veldt '

Abstract

Cluster deletion is an NP-hard graph clustering ob-
jective with applications in computational biology
and social network analysis, where the goal is to
delete a minimum number of edges to partition a
graph into cliques. We first provide a tighter anal-
ysis of two previous approximation algorithms,
improving their approximation guarantees from 4
to 3. Moreover, we show that both algorithms can
be derandomized in a surprisingly simple way, by
greedily taking a vertex of maximum degree in an
auxiliary graph and forming a cluster around it.
One of these algorithms relies on solving a linear
program. Our final contribution is to design a new
and purely combinatorial approach for doing so
that is far more scalable in theory and practice.

1. Introduction

Graph clustering is a fundamental task in graph mining
where the goal is to partition nodes of a graph into disjoint
clusters that have dense internal connections but are only
sparsely connected to the rest of the graph. This has a wide
variety of applications which include detecting communities
in social networks (Fortunato, 2010), identifying related
genes in biological networks based on gene expression pro-
files (Ben-Dor et al., 1999), and finding groups of pixels in
an image that belong to the same object (Shi & Malik, 2000).
An idealized notion of a cluster in a graph is a set of nodes
that is completely connected internally (i.e., a clique) while
being completely disconnected from the rest of the graph.
Cluster graph modification problems (Shamir et al., 2004)
are a class of graph clustering objectives that seek to edit the
edges in a graph as little as possible in order to achieve this
idealized structure. One widely studied problem is correla-
tion clustering (Bansal et al., 2004), which can be cast as

'Department of Computer Science and Engineering, Texas
A&M University, College Station, Texas, USA 2Department
of Computing, Hong Kong Polytechnic University, Hong
Kong, China. Correspondence to: Vicente Balmaseda <vibal-
cam@tamu.edu>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

adding or deleting a minimum number of edges to convert
a graph into a disjoint union of cliques. This problem is
also known as cluster editing. Designing approximation
algorithms for different variants of correlation clustering
has a long history, and has also seen extensive interest in the
past few years in the machine learning community (Jafarov
et al., 2020; 2021; Bun et al., 2021; Cohen-Addad et al.,
2021; Veldt, 2022; Stein et al., 2023; Davies et al., 2023;
Assadi et al., 2023).

This paper focuses on a variant of correlation clustering
called CLUSTER DELETION, which seeks a minimum num-
ber of edges to delete so that the graph becomes a disjoint set
of cliques. CLUSTER DELETION was first motivated by ap-
plications in clustering gene networks (Ben-Dor et al., 1999)
and arises as an interesting special case of other more gen-
eral frameworks for clustering (Charikar et al., 2005; Puleo
& Milenkovic, 2015; Veldt et al., 2018). The problem is NP-
hard, but has been studied extensively from the perspective
of parameterized algorithms (Gramm et al., 2005; Dam-
aschke, 2009; Gao et al., 2013; Bocker & Damaschke, 2011;
Bathie et al., 2022) and approximation algorithms (Charikar
et al., 2005; Dessmark et al., 2007; Puleo & Milenkovic,
2015; Veldt et al., 2018; Veldt, 2022). We provide several
improved theoretical results and practical implementations
for combinatorial algorithms for this task.

Previous work. The first approximation algorithm for
CLUSTER DELETION was based on rounding a linear
programming (LP) relaxation and came with a factor 4-
approximation guarantee (Charikar et al., 2005). Other
approximation algorithms based on the same canonical LP
were subsequently developed (van Zuylen & Williamson,
2009; Puleo & Milenkovic, 2015), culminating in the
current-best approximation factor of 2 (Veldt et al., 2018).
One limitation of all of these algorithms is that the under-
lying LP relaxation has O(n?) constraints for a graph with
n nodes, and is prohibitively expensive to solve in practice
on large instances. Recently, Veldt (2022) provided faster
approximation algorithms by rounding different and less
expensive lower bounds for CLUSTER DELETION. The
first was a 4-approximation algorithm based on rounding
an LP relaxation for a related problem called Strong Tri-
adic Cluster (STC) labeling (Sintos & Tsaparas, 2014). The
STC LP relaxation has fewer constraints than the canoni-
cal CLUSTER DELETION LP relaxation, but still provides

Combinatorial Approximation Algorithms for Cluster Deletion

a lower bound on CLUSTER DELETION. Veldt also de-
veloped the first combinatorial approximation algorithm,
called MatchFlipPivot, which applies a fast algorithm for
STC labeling and then rounds the resulting edge labels into a
4-approximate CLUSTER DELETION solution. In numerical
experiments, solving and rounding the STC LP relaxation
using black-box LP software was shown to be roughly twice
as fast as solving and rounding the canonical LP, while
MatchFlipPivot was shown to be orders of magnitude faster.

Motivating questions. While these recent results lead to
more practical algorithms, there is still a gap between theory
and practice for CLUSTER DELETION algorithms, and sev-
eral open questions remain. Although the STC-based algo-
rithms are faster and more practical, their 4-approximation
guarantee is still noticeably worse than the 2-approximation
based on the canonical LP relaxation. In practice, the STC-
based algorithms tend to produce solutions that are much
better than just a 4-approximation (Veldt, 2022). A nat-
ural direction is to try to improve approximation factors
and bridge the gap between theoretical and practical perfor-
mance of STC-based methods.

Another direction is to address the performance gap between
MatchFlipPivot and the STC LP rounding algorithm. Match-
FlipPivot is far faster in practice while satisfying the same
worst-case approximation guarantee. At the same time, the
STC LP relaxation is guaranteed to return a tighter lower
bound for CLUSTER DELETION, and was shown to produce
higher quality results in practice. Furthermore, solving the
STC LP relaxation was observed to often return the optimal
solution for the canonical LP relaxation in practice. In these
cases, the LP rounding technique is guaranteed to return a
2-approximate solution. These observations motivate the
study of better approximation guarantees and faster tech-
niques for solving the STC LP relaxation.

Finally, existing implementations of the STC-based algo-
rithms are randomized, and their approximation guarantees
hold only in expectation. In theory these algorithms can be
made deterministic by leveraging existing derandomization
techniques (van Zuylen & Williamson, 2009). However,
the deterministic versions are more complicated and slower,
and as such have not been implemented in practice.

Our contributions. We significantly bridge the theory-
practice gap by presenting algorithms that are simpler,
faster, and have better approximation guarantees.

* We provide a simplified presentation and a tight anal-
ysis of the MatchFlipPivot algorithm, proving an im-
proved 3-approximation guarantee for the method and
providing instances on which the ratio is asymptoti-
cally 3.

* We show a similar tighter analysis for an STC LP
rounding algorithm, improving its approximation guar-

antee to 3.

* We improve the runtime of MatchFlipPivot by design-
ing a faster algorithm for a key step: computing a
maximal edge-disjoint set of open wedges in a graph.

* We prove that the STC LP relaxation can be reduced to
a minimum s-¢ cut problem, leading to a faster, purely
combinatorial version of our LP-based algorithm.

* We prove a simpler and faster new approach for deter-
ministically rounding a CLUSTER DELETION lower
bound into an approximate solution.

To put the last contribution into context, we note that pre-
vious approximations for CLUSTER DELETION rely on
(1) computing a lower bound on a graph G, (2) rounding the
lower bound into a new graph G, and (3) forming clusters
by pivoting in G (repeatedly select a node and cluster it with
its neighbors). We prove that selecting pivot nodes based
simply on degrees in G provides the same approximation
guarantee as other (more complicated and computationally
expensive) deterministic pivoting strategies.

We accompany our theoretical results with practical imple-
mentations and numerical experiments'. They include the
first implemented deterministic algorithms for CLUSTER
DELETION, which in practice produce solutions that are
typically much less than 3 times the optimal solution. We
also implement our combinatorial algorithm for solving the
STC LP relaxation and demonstrate in practice that it is
significantly faster than using black-box LP software and
scales to instances that are orders of magnitude larger.

2. Preliminaries and Related Work

Let G = (V, E) be an unweighted undirected graph with
n = |V|and m = | E|. We use the O(-) notation to suppress
logarithmic factors in runtimes, e.g., O(logn) = O(1). The
problems we consider rely on the concept of open wedges.
An open wedge centered at k is a node triplet (4, j, k) such
that (4, k) € E, (j,k) € Eand (i,j) ¢ E. The third node
indicates the center of the wedge. The order of the first
two nodes in an open wedge is irrelevant, hence (¢, j, k) =
(j,i, k). Let W(QG) be the set of open wedges in G, and
Wi(G) € W(QG) be the set of open wedges centered at k.
When G is clear from context we simply write V) and W.

2.1. Cluster Deletion

Given graph GG, CLUSTER DELETION seeks a set of edges
Ep C FE that minimizes |Ep| such that G’ = (V, E — Ep)
is a disjoint set of cliques. This is equivalent to forming
clusters in a way that minimizes the number of edges be-
tween clusters (known as “mistakes”) while ensuring all

lhttps ://github.com/vibalcam/
combinatorial-cluster—-deletion

https://github.com/vibalcam/combinatorial-cluster-deletion
https://github.com/vibalcam/combinatorial-cluster-deletion

Combinatorial Approximation Algorithms for Cluster Deletion

clusters are cliques. This can be formulated as a binary
linear program (BLP) as follows:

min E Lij

(i,J)EE
st xip+ x> x4 Vi, 5k (1
rye {01} Vi) e R,

This BLP has one variable for each pair of nodes, and
z;; = 0if and only if nodes ¢ and j are in the same clus-
ter. The canonical LP relaxation for CLUSTER DELETION
is obtained by replacing z;; € {0,1} with nonnegativity
constraints x;; > 0. Charikar et al. (2005) presented a
4-approximation based on this LP relaxation. The results
of van Zuylen & Williamson (2009) for constrained variants
of correlation clustering imply a 3-approximation algorithm
for CLUSTER DELETION by rounding the same LP. The
current best approximation factor for CLUSTER DELETION,
also obtained by rounding this LP, is 2 (Veldt et al., 2018).

2.2. Strong Triadic Closure Labeling

CLUSTER DELETION has a well-documented connection
to another NP-hard graph optimization problem (Sintos &
Tsaparas, 2014). The latter problem is derived from the
Strong Triadic Closure (STC) principle from social network
analysis (Granovetter, 1973; Easley & Kleinberg, 2010),
which states that if two individuals both have a strong con-
nection to a mutual friend, they are likely to share at least a
weak connection with each other.

Following this principle, we can label the edges in G as
either weak or strong such that the STC principle is satisfied,
i.e., each open wedge has at least one weak edge. This is
called an STC labeling, and is encoded by a set of weak
edges By C E. The minimum weakness strong triadic
closure (MINSTC) problem (Sintos & Tsaparas, 2014) is
then the problem of finding a strong triadic closure labeling
of G that minimizes the number of weak edges. Formally
this is cast as the following BLP:

min g Tij

(i,7)€EE (2)
st g tai>1 V(i,j,]{J) ew
vy e {01) Vij)eE.

The variable z;; is equal to 1 if and only if edge (¢, j) is a
weak edge. The constraints in this BLP are in fact a subset
of the constraints in the CLUSTER DELETION BLP in (1).
This implies that every feasible solution Ep for CLUSTER
DELETION defines a valid STC labeling Fy = Ep, and
hence MINSTC lower bounds CLUSTER DELETION. How-
ever, deleting edges in an arbitrary STC labeling Ey does
not necessarily produce a disjoint union of cliques. The
relationship between MINSTC and CLUSTER DELETION

has been noted in several different contexts (Konstantinidis
et al., 2018; Veldt, 2022; Bengali & Veldt, 2023), and there
are known graphs where their optimal solutions differ by up
to a factor of 8/7 (Griittemeier & Komusiewicz, 2020).

Approximations based on vertex cover. Solving MINSTC
over a graph G = (V, E) is equivalent to finding a minimum
vertex cover in the Gallai graph of G, obtained by associat-
ing each edge (4, j) € F with a vertex v;; and introducing
an edge (v;k, v;)) in the Gallai graph if (7, j, k) defines an
open wedge in G (Le, 1996). Every algorithm for vertex
cover instantly implies an algorithm for MINSTC with the
same approximation factor. One simple 2-approximation
for MINSTC is to find a maximal edge-disjoint set of open
wedges in G, then label an edge (i,j) € E as weak if it
is in one of the open wedges in this set. This is equivalent
to applying a standard maximal matching 2-approximation
for vertex cover in the Gallai graph. Another simple 2-
approximation is to solve the LP relaxation of the BLP
in (2) and label (i,j) € E as weak if x;; > 1/2, analo-
gous to a standard LP rounding algorithm for vertex cover.
Nemhauser & Trotter (1975) showed that the LP relaxation
for vertex cover is half integral, meaning that every basic fea-
sible solution has LP variables satisfying x;; € {0,1/2, 1}.
This property therefore also holds for the STC LP relax-
ation, obtained by replacing binary constraints in (2) with
nonnegativity constraints x;; > 0.

2.3. STC + Pivot Framework

The Pivot algorithm repeatedly selects an unclustered node
(the pivor) in a graph and then clusters it with all of its un-
clustered neighbors. This was first designed as a way to
approximate correlation clustering. When pivots are chosen
uniformly at random and the procedure is applied directly to
a graph G, this is a randomized 3-approximation algorithm
for correlation clustering (Ailon et al., 2008). Many algo-
rithms for different variants of correlation clustering and
CLUSTER DELETION use Pivot as one step in a broader algo-
rithmic pipeline (van Zuylen & Williamson, 2009; Chawla
et al., 2015; Jafarov et al., 2020; Veldt, 2022). Choosing
random pivots leads to approximation guarantees that hold
only in expectation, but van Zuylen & Williamson (2009)
also showed techniques for carefully selecting pivot nodes
in order to obtain deterministic approximation guarantees
for different problem variants.

Veldt (2022) recently provided a general framework for
approximating CLUSTER DELETION by combining STC
labelings with pivoting procedures. The framework first
(1) obtains an approximately optimal STC labeling Eyy for
a graph G = (V, E), and then (2) runs Pivot on graph G=
(V, E— Ew) to form clusters. If pivoting on a node k places
two other nodes 7 and j inside a cluster, then both (i, k) and
(j, k) are strong edges, which guarantees (¢, j) € E. This

Combinatorial Approximation Algorithms for Cluster Deletion

Algorithm 1 Pivot(G = (V, E))

V'« VE « E,C+ 0
while V'’ not empty do
Select pivot k € V'’
Ch=kU{icV': (i,k) € E'}
C=CU{Cy}
Vi V' — Cy
E — En(V' xV')
end while
Return clustering C

// cluster

// update graph

WO FDIN AR

leads to a useful observation.

Observation 2.1. If Ew C E is an STC labeling for G =
(V, E), running Pivot on G = (V, E — Ey) with any pivot
selection strategy produces clusters that are cliques in G.

Veldt (2022) used this framework to design two 4-
approximation algorithms for CLUSTER DELETION: one
based on rounding the STC LP relaxation, and a faster purely
combinatorial algorithm called MatchFlipPivot based on
finding a maximal edge-disjoint set of open wedges. The
approximation guarantees hold in expectation when pivot
nodes are chosen uniformly at random. The derandomized
pivoting techniques of van Zuylen & Williamson (2009) can
be used to obtain deterministic approximation guarantees,
though this is more involved conceptually and far slower
computationally.

3. Improved Approximation Analysis

We prove tighter approximations and new deterministic
rounding schemes for combining STC labelings with Pivot.

3.1. Pivoting Lemma

Algorithm 1 shows the generic Pivot algorithm applied to a
graph G. The resulting clusters are typically not cliques in
G, but we will combine these strategies with STC labeling
techniques and Observation 2.1 in order to design CLUS-
TER DELETION approximation algorithms. Consider what
happens if we have an induced subgraph G’ = (V’, E’) of
G at some intermediate step of the Pivot algorithm and we
pivot on a node & € V' to form a new cluster C, C V",
Let deg;(G') = |Ck| — 1 be the degree of node k in G’
(the number of neighbors of k in V), and define two sets of
node pairs:

(©) =
G

By (j) e E: (’L,k’) S E/, (j,k;) §é El},
Np(G') =

{@
{(i,j) ¢ E': (i,k) € E', (j,k) € E'}.
The set By (G”) represents edges on the boundary of cluster
C), and Ni(G') is the set of non-edges inside the cluster.
We define three strategies for selecting pivots.

 Pivot Strategy 1. Select a pivot k& with the maximum
degree in G'.

* Pivot Strategy 2. Select a pivot k that minimizes
1Bk (G)|/INk(G)].

 Pivot Strategy 3. Select a pivot k£ uniformly at random.

Lemma 3.1. Let B be the set of edges between clusters
and N be the set of non-edges inside clusters that result
from running Algorithm 1. If Pivot Strategy 1 or 2 is used,
then |B| < 2|N|. If Pivor Strategy 3 is used, this holds in
expectation: E[|B|] = 2E[|N].

Proof. Consider the graph G’ = (V’, E’) at a fixed interme-
diate step of the algorithm. For an arbitrary node v € V' we
write N, = N,(G'), B, = B,(G') and deg,, = deg,(G")

Strategy 1 analysis. Assume that node k is chosen as the
pivot when applying Pivot Strategy 1. For an arbitrary node
u € Cy \ {k}, let b, be the number of edges in G’ that
are incident to u but not contained in C}, and let n,, be the
number of non-edges involving u that are in C,. Note that

by + (|ICx| — 1) — ny, = deg,, < deg, = |Ci| — 1,

which implies that b,, < n,,. Each non-edge in C}, involves
two nodes from Cy, \ {k}, so

1Bil = >

u€Cir\{k}

by <

> nu=2[Nyl.

u€Cir\{k}

Thus, the number of new boundary edges in each iteration
is bounded by twice the number of non-edges in the new
cluster. Summing across all iterations gives |B| < 2|V|.

Strategy 2 and 3 analysis. Let VW' be the set of open
wedges in G’. The following four statements are equivalent:
(1) (4, 4, k) is an open wedge; (2) (i, k) € B;, (3) (j, k) €
B;, and (4) (i,j) € Ni. Thus, >,y [Nk| = W[and
> kev | Br| = 2|W'|. In other words,

D UBe =2IN) = > [Be[=2) [Ne[=0. 3

kev’ keV’ kev’

Therefore, there is at least one node satisfying |Bjy| —
2|Ng| < 0, and applying Pivot Strategy 2 guarantees that
|B| < 2|Ny|, so summing across iterations again gives
|B| < 2|N/|. Regarding Pivot Strategy 3, Eq. (3) implies that
for a uniform random pivot, Excv-[| Bx| —2| Nk |] = 0. Thus,
at every iteration, the expected number of new boundary
edges is twice the expected number of non-edges inside the
cluster. By linearity of expectation, E[|B|] = 2E[|N]|]. O

3.2. Rounding a Disjoint Open Wedge Set

One way to approximate MINSTC over a graph G = (V, E)
is a straightforward adaptation of the matching-based ap-
proximation algorithm for vertex cover. We find a maximal

Combinatorial Approximation Algorithms for Cluster Deletion

Algorithm 2 MATCHFLIPPIVOT(G = (V, E))

1: W <+ maximal edge-disjoint set of open wedges in G.
2: Ew < edges contained in some open wedge of W.
3: Form G = (V, E — Ew)

4: Run Pivot(G) // for some pivot strategy

edge-disjoint set of open wedges W C W, and then for
each (i,7,k) € W, place edges (i, k) and (j, k) into the
weak edge set Eyy. Note that [W] is a lower bound for
MINSTC (and also CLUSTER DELETION) since each open
wedge in W must contain at least one weak edge (or in the
case of CLUSTER DELETION, one deleted edge) and no
two wedges in W share an edge. The edge set Eyy is there-
fore a 2-approximation for MINSTC since |Ey | = 2|W].
The randomized MatchFlipPivot (MFP) algorithm of Veldt
(2022) runs Pivot on G = (V,E — Ey) with uniform
random pivot nodes. The algorithm was shown to have an
expected approximation ratio of 4, and can be derandomized
using the techniques of van Zuylen & Williamson (2009) as
a black box. We note here that this corresponds to running
Algorithm 2 using Pivot Strategy 2.

Our next result improves on this prior work by providing a
tighter analysis of MFP to show an improved approxima-
tion guarantee of 3. Furthermore, we prove that our simple
new degree-based pivoting strategy also provides a deter-
ministic 3-approximation. This is significant given that the
bottleneck of the previous deterministic MFP algorithm was
computing and updating N and By, values.

Theorem 3.2. When using Pivot Strategy 1 or 2 on G, Al-
gorithm 2 is a deterministic 3-approximation for CLUSTER
DELETION. When selecting pivots uniformly at random, it
is a randomized 3-approximation algorithm.

Proof. Let myy denote the number of weak edges between
clusters, and mg the number of other edges between clus-
ters. The three nodes in any open wedge W € WV must be
separated into at least two clusters. Thus, at least one of the
two edges of every wedge in W is between clusters. This
means that myy > |Ew|/2. As in Lemma 3.1, we let B be
the set of edges in G between clusters and A be the set of
non-edges in G inside clusters. Note then that mg = |B]|
and |[N| = |Ew| — my because non-edges of G inside
clusters are all weak edges. By Lemma 3.1, using Pivoting
Strategy 1 or 2 on G guarantees that

ms = [B| < 2IN| =2(|Ew| — mw).
The total number of edges between clusters is thus:

mw +ms < mw + 2(|Ew| — mw)
:2|Ew| — mw

3
< §|EW| = 3|W| < 30PTcp.

b) G

(a) G

Figure 1: The example for Theorem 3.3.

If we select pivot nodes uniformly at random, my, and mg
become random variables, but coupling Lemma 3.1 with the
fact that my, > |Ew|/2 for every choice of pivot nodes
provides the same guarantee in expectation. O

The following theorem proves that independent of the pivot
strategy used, Algorithm 2 cannot have a ratio better than 3.

Theorem 3.3. The asymptotic ratio of Algorithm 2 is at
least three.

Proof. For any even integer n > 8, we can construct
a graph of n vertices {v1,v2,...,Vp 2, U1, U2, .., Up/2}.
The vertex set {v1, vz, ...,v,/2} is a clique, and for each
it = 1,...,n/2, the vertex u; is adjacent to only v;. See
Figure 1 for the example when n = 12. The only optimal
solution is

ED = {(Ulyul)y (1}27’11,2)7 ey (vn/27un/2)}
and it has cost /2. On the other hand, it is easy to see that
W= {(Uh UQ’UQ)a (’U27U3,’U3), RN} (Un/2>u15 Ul)}

is a maximal edge-disjoint set of open wedges in G. The set

Eyy is accordingly {(u1,v1), (u2,v2), ..., (Un/2,Vns2),
(v1,v2), (V2,3), ..., (Vny2,v1)}. In G = (V,E — Ew),
for all i = 1,...,n/2, the vertex w; is isolated, and the

vertex v; has n/2 — 3 neighbors. When applying Algo-
rithm 2, whatever the pivot strategy is, the first pivot in

{v1,v2,...,vy,/2} decides the solution. The solution has
cost

n/2+2(n/2—-2)=3n/2—4.
Thus, the ratio is asymptotically three. O

3.3. Rounding the STC LP Relaxation

Recall that the LP relaxation of the BLP in (2) provides
a natural lower bound for both MINSTC and CLUSTER
DELETION. Since every basic feasible solution of (2) is half
integral, we can obtain a set of variables {;;} in polyno-
mial time with z;; € {0,1/2, 1} for every (i, j) € E, that

Combinatorial Approximation Algorithms for Cluster Deletion

Algorithm 3 STC-LP-ROUND(G = (V, E))
1: {z;}ijer + (half-integral) solution to STC LP
2: Set By < {(Z,]) cFE: Tij; € {1/2, 1}}
3: Form G = QV,E — Ew)
4: Run Pivot(G) // for some pivot strategy

minimizes (2). Given this solution, define E1 = {(4,j) €
E: Tij = 1} and F; = {(’L,]) € E: Tij = 1/2}, and
note that Eyy = Fq U Ej, defines an STC-labeling that is
a 2-approximation for MINSTC. We also refer to edges
in E}, as “half-edges.” Define Es = {(i,j) € E: z;; =
0} = E — Ew to be strong edges. Veldt (2022) showed that
with randomized pivot nodes, Algorithm 3 has an expected
approximation ratio 4, and can be derandomized using the
techniques of van Zuylen & Williamson (2009).2 Mirror-
ing Theorem 3.2, we provide an improved approximation
analysis and show that our (simpler and faster) degree-based
pivoting also gives a deterministic 3-approximation.

Theorem 3.4. When using Pivot Strategy 1 or 2 on G, Al-
gorithm 3 is a deterministic 3-approximation for CLUSTER
DELETION. When selecting pivots uniformly at random, it
is a randomized 3-approximation algorithm.

Proof. We begin by proving that for every choice of pivot
nodes in G, at most half of the edges in I, will end up inside
the clusters formed by Algorithm 3. Consider an arbitrary
choice of pivots. Let B;, be the set of half-edges between
clusters, and A}, the set of half-edges inside clusters. We
claim that the following set of variables is still feasible for
the STC LP:

Tij if Tij € {O, 1},
i’ij = 1 ifacij S Bh’
0 if Tij € Nh'

Consider an arbitrary open wedge (7, j, k) € V. Assume
without loss of generality that x;;, > 5. If 3, = 1, then
Z;, = 1 and &, + &5, > 1. Otherwise, ;; = ;i = 1/2.
The three nodes in W must be separated into at least two
clusters. Thus, at least one of z;; and x; is in By, and
hence #;; + &5 > 1. From the optimality of {z;;} and the
feasibility of {&;;} it follows that

Z l’ijg Z jij: Z IZ]+@7WT}L|

(i,j)EE (i,j)EE (i.J)EE
Bp| > [Nu| and [Ny| < (IBu] + |Nu|)/2 = |Enl/2.

2The deterministic STC-LP algorithm of Veldt (2022) incorpo-
rates LP values {z;; } more directly in choosing pivot nodes and
is different from running Algorithm 3 with Pivot Strategy 2. The
latter provides a simplified and unified approach for rounding both
types of CLUSTER DELETION lower bounds we consider.

Thus,

Let m; and mg be the numbers of edges between clusters
that are from the sets £y and Eg, respectively. Note that
|B| = mg and |N| = |E1| — my + [Nj|. Using Pivot
Strategy 1 or 2, Lemma 3.1 implies that mg < 2(|E4| —
my + |N4|). We can then bound the total number of edges
between clusters in G:

mi+|By| + mg
<mq + |Bu| + 2(|E1| — m1 + [N4a|)
=2|E1| —mq + |Bh| + 2| V4|

3

= Z 2z + Z 3T;j
(,5)EEL (i,5)EER
<3 Z Xij
(i,J)EE
< 30PT¢p.

Lemma 3.1 can similarly be used to show the same result in
expectation for random pivot nodes. O

4. Faster Algorithms for Lower Bounds

In addition to our improved approximation analysis, we
provide faster algorithms for computing a maximal edge-
disjoint sets of open wedges and for solving the STC LP.

4.1. Maximal Edge-Disjoint Open Wedge Set

A simple existing approach for finding a maximal edge-
disjoint open wedge set is to iterate through each node
k € V, and then iterate through pairs {i, j} of neighbors
of k. If (4, j, k) is an open wedge and edge-disjoint from
previously explored open wedges, we can add it to a growing
set W of open wedges. We maintain a list Fyy of edges
that come from wedges in 1W. This can be implemented
in O(}", ¢y d2)-time, which is always larger than [JV| and
can be as large as O(nm). While this is already fast in
practice, we can further improve the theoretical runtime.

Lemma 4.1. A maximal edge-disjoint set of open wedges
can be found in O(m*-®) time and O(m) space.

The appendix provides pseudocode and a full analysis for an
algorithm satisfying these bounds. Similar to the previous
approach, our procedure starts by iterating through nodes
k € V and then iterates through pairs of neighbors of k.
The key observation is that as soon as we encounter an
open wedge (i, j, k) and add its two edges (¢, k) and (j, k)
to Ey, we can effectively “delete” these edges and avoid
exploring triplets involving them in future iterations. Since
|W| is always at most m /2, the total amount of work for
adding edges to Ey and then deleting them is bounded
by O(m). Now, when visiting two neighbors {i,j} of k

Combinatorial Approximation Algorithms for Cluster Deletion

we may find that {4, j, k} is a triangle rather than an open
wedge. We therefore have nothing to add to W and no
edges to delete. However, the amount of work that goes into
finding these unwanted triangles is bounded in terms of the
number of triangles in the graph, which is known to be at
most O(m!®). The result is inspired by the recent work
of Cao et al. (2024), who provided the same type of bound
for finding a maximal set of disjoint open triangles in a
complete signed graph. See the appendix for further details
on the similarities and differences between these problems
and approaches.

4.2. Combinatorial Solver for the STC LP

Although the STC LP rounding algorithm produces the same
3-approximation guarantee as MFP, the LP relaxation pro-
duces a tighter lower bound for CLUSTER DELETION that
can be used to obtain better a posteriori approximation guar-
antees (approximate CLUSTER DELETION solution |Ep|
divided by the lower bound) in practice. However, previ-
ous implementations rely on simply applying black-box LP
solvers, which become a bottleneck both in terms of run-
time and memory requirements (Veldt, 2022). In this section
we present a faster and purely combinatorial approach for
solving the LP by reducing it to a minimum s-¢ cut prob-
lem. This can be accomplished by first proving that the
half-integral STC LP can be cast as a so-called monotone
IP2 problem—an integer program with two variables per
constraint with opposite signed coefficients. This can in turn
be cast as a maximum closure problem (Picard, 1976) and
then reduced to a maximum s-¢ flow problem following the
approach of Hochbaum (2021). The reduction we present in
this section merges several of these steps in order to provide
a simplified and more direct reduction for the STC LP.

Converting to BLP. The STC LP relaxation is obtained by
replacing constraint z;; € {0, 1} in (2) with z;; > 0. Since
every basic feasible solution of the LP is half-integral, we
can equivalently optimize over variables z,;; € {0,1/2,1}.
We will show that this is equivalent to the following BLP:

1 1
> i + 5 (1= z5)

min
(i,j)EE
Zik < Y “4)
ot =ik (i, j k) € Wy
Zjk < Yik

We prove the following result.
Lemma 4.2. If {y.;, zi; }ijer is feasible for (4), then

1 ..
Tij = i(yij —zij+1) V(i,j)€E (5)

defines a feasible half-integral solution for the STC LP with
the same objective value. Conversely, if {x;;}ijcr is a

feasible half-integral solution to the STC LP, the variables

(07].) lfx” =0
(Yij, zij) = (1,1) ifwy; =1/2 V(i,j) € E (6)
(1,0) ifz; =1

are feasible for (4) and have the same objective value.

Proof. First, suppose that {y;;, zi; }ijek is feasible for (4).
Then for an open wedge (4, j, k) we have

(yjk — Zjk + 1)

DO =

1
Tik + Tj = i(yik —zik +1)+
1 1
= §(yjk — Zik) + §(yik —zjk) + 1

> 1.

Thus, {x;; }ijer is feasible for the STC LP. It is obviously
half-integral and the objective value is the same.

Now suppose that {x;; }i;ck is a feasible half-integral so-
lution to the STC LP. Consider an open wedge (4,7, k).
Assume without loss of generality that x;;, > .

o If z;, = 1/2, then z;;, = 1/2. By Eq. (6), we have
Yik = zjk = Land y;, = 2z = 1.

e If 25, = 1, then by Eq. (6), we have y;, = 1 > zj;,
and y;, > z;, = 0.

Thus, {yi;, zi; }+je g, Which is integral, is feasible for (4).
Since %(ym + 1 — z;;) = x;; for all the possible values of
245, the objective value is the same. O

We can therefore turn our attention to solving (4), and use
Eq. (5) to convert back to a solution to the STC LP.

Casting as a minimum s-¢ cut problem. The BLP in (4)
is equivalent to a minimum s-¢ cut problem on a graph G ;.
To construct the graph, we introduce a source node s and
a sink node ¢. Then for each (i,j) € E, we introduce a
node Y;; and a node Z;;, then construct two directed edges
(s, Z;j) and (Y;;, t) each with weight 1/2. Finally, for every
(1,7, k) € Wy, we introduce two infinite-weight directed
edges: (Zix, Yjr) and (Zji, Yir).

Every s-t cutin G4 corresponds to a feasible solution to (4),
where the weight of cut edges in G; equals the resulting
objective score for (4). In more detail, nodes Y;; and Z;;
correspond to binary variables y;; and z;; in (4). Setting
a binary variable to 1 corresponds to placing its node on
the s-side of the cut. For example, setting 3;; = 1 means
placing Y;; on the s-side, which cuts the edge (Y;;, ¢). This
contributes a 1/2 to the cut penalty of G4, just as setting
y;; = 1 contributes 1/2 to the objective of (4). A similar
penalty arises from setting z;; = 0, which is equivalent to

Combinatorial Approximation Algorithms for Cluster Deletion

placing Z;; on the t-side of an s-t cut in G;. The infinite
weight edges in G; encode the constraints of (4). The edge
(Zik, Yji) has infinite weight to ensure that if Z, is on the
s-side of the cut, then Y}y, is as well, just as z;;, = 1 forces
Yk = 1, required by the constraint z;;, < ;.

To understand how this relates to MINSTC, note that an
edge (s, Z;;) encourages z;; to be 1 and edge (Y;;,t) en-
courages y;; to be zero. If both these preferences are sat-
isfied, then z;; = 0 meaning that x;; is a strong edge. If
neither preference is satisfied, then x;; = 1 and the edge is
weak, whereas satisfying one preference but not the other
leads to z;; = 1/2. The reason these preferences typi-
cally cannot all be satisfied is because an edge (Z;x, Yix)
indicates that if z;; = 1, this forces y;;, = 1.

4.3. Runtime and Space Analysis

We briefly summarize several improvements in runtime
and space requirements that are obtained using our new
techniques. More details for proving these bounds are in-
cluded in the appendix. Lemma 4.1 improves the runtime
for computing the MFP lower bound to O(m!®). This
is always at least as fast as the previous O(mn) runtime
and is strictly faster for sparse graphs. The previous de-
terministic pivoting scheme (Pivot Strategy 2) has space
and runtime requirements that are Q(m + |W|), which can
be Q(n?) in the worst case, whereas degree-based pivot-
ing can be implemented in O(m) time and space. The
most expensive step of Algorithm 3 is solving the STC LP.
Hence, the runtime for our combinatorial STC LP solver
is also the asymptotic runtime for Algorithm 3. Using our
reduction to minimum s-t cut, we can can get a random-
ized solver that runs in (m + [W|)!T°(}) time by apply-
ing recent nearly linear time algorithms for maximum s-¢
flows (Chen et al., 2022). Using the algorithm of Goldberg
& Rao (1998) we can get a deterministic algorithm with run-
time O (min{ (m +|W|)"?, (m+|W)|) -m?/3). For compar-
ison, even the best recent theoretical solvers for general LPs
would lead to runtimes that are Q((m + |[W|)?) (van den
Brand, 2020; Jiang et al., 2021; Cohen et al., 2021).

5. Experimental Results

Veldt (2022) previously showed experimental results for
the randomized variants of Algorithms 2 and 3 on a large
collection of real-world graphs. For these experiments, the
STC LP was solved using Gurobi optimization software.
For our work we implement both deterministic schemes
(Pivot Strategies 1 and 2) and compare them against each
other and the randomized variant. We also show that our
combinatorial approach for solving the STC LP is much
faster and scales to much larger graphs than using a black-
box LP solver. Our algorithms are implemented in Julia.
Our experiments were run on a laptop with 16 GB of RAM.

+ DegMFP

RanMFP-Avg

A R PRI SRRy P TR I
e ‘Qéi‘i\?@‘%é%@? %ggg"%\@gé‘} x&%@ga%@&o%%%
X & L d
O

x\e:\'\‘% XO% O o
& RN (}"?N‘\S 2 N Do AN S
S IR R SR
<L &

TN T T T T T A B

RSB

IS !

S AN S

¥ & & ¢ «c\,:‘\.gg\e & RO
POEY &P

Figure 2: Approximation ratios (|Ep|/|W]) for MFP.

10%7
3| % RanMFP-100
—~ 1071 4 pegmFp N
L | 2| ORatMFP X
o 10 RanMFP-Avg **ﬁ'
E 10"} #Axx Hi
1= 10° »
o}
a4 —1/ ﬂﬁ
1071 %
102t ‘ ‘
10° 108

Number of edges |E|

Figure 3: Runtimes of the MFP algorithms using different
pivoting strategies. Each point represents one graph.

For the most direct comparison with previous work (Veldt,
2022), we consider the same collection of large graphs from
the SNAP Repository (Leskovec & Krevl, 2014), the largest
of which (soc-Livejournall) has 4.2 million nodes and 4.7
billion edges. We also run experiments on one even larger
graph (com-Orkut) with 117.2 billion edges. The appendix
includes additional details about datasets, implementations,
and experimental results.

Comparing pivot strategies. Our degree-based pivoting
strategy is fast and practical. In addition to enjoying a
deterministic approximation guarantee, it is comparable in
speed to choosing random pivot nodes, while achieving
much better approximations. Figure 2 shows approximation
ratios and Figure 3 shows runtimes achieved by MFP with
degree-based pivots (DegMFP), pivots that minimize the
ratio | By|/|N| (RatMFP), and two different approaches
to using random pivots. RanMFP-100 runs the random
pivot strategy 100 times and takes the best solution found.
This is a natural strategy to use since running randomized
pivot once is very fast. RanMFP-Avg represents the average
performance of the algorithm over these 100 trials.

DegMFP is almost identical to RatMFP in terms of approx-
imation ratio, but is faster by an order of magnitude or
more. DegMFP finds better solutions that RanMFP-100 and
RanMFP-Avg, and is faster than RanMFP-100. Choosing
random pivots once is faster (see runtimes for RanMFP-

Combinatorial Approximation Algorithms for Cluster Deletion

2.00 |-HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

=4

S 105

m .

X LR *° 0%0.0.

2 1.90 IOMTR IR N ARG ol 2o

2 304 . RanMFP-Deg
0’0 *

< 1.85 + Merge

““““““““““““““““““““““““““

RS TR %
e o%@\\“&,ﬁ?&z{\g}foﬁgsgﬁx

SRR R e
& X N
)

X
& AT

Figure 4: Improved approximation ratios when incorporat-
ing a cluster merging step after DegMFP.

Avg), but especially for larger graphs DegMFP has compa-
rable runtimes. A benefit of DegMFP is that by choosing
high-degree nodes, it terminates in fewer pivot steps.

Most approximation ratios achieved by MFP are very close
to 2. This can be explained by noting that the method labels
a large percentage of edges as weak—between 63.4% and
99.7% for graphs in Figure 2. As a result, MFP deletes
nearly all edges for some graphs, which is roughly a 2-
approximation since |E| & 2|W/|. It is especially interesting
to observe the behavior of different pivoting strategies when
fewer edges are labeled weak and approximations factors
deviate more from 2 (left- and right-most graphs in Figure 2).
In these cases, RanMFP tends to have approximations that
are worse than 2, while the deterministic schemes perform
the best in these cases and detect more meaningful clusters.
This highlights the utility of having a very fast deterministic
rounding scheme for CLUSTER DELETION algorithms.

Cluster merging heuristic. Figure 4 shows results for
DegMFP on Facebook100 graphs (Traud et al., 2012) with
up to 351k edges. For these graphs, finding an edge-disjoint
open wedge set labels between 99.6% and 99.95% of edges
as weak. MFP essentially achieves a 2-approximation by
deleting nearly all edges. We also implement a heuristic
for checking when clusters output by MFP can be merged
into larger cliques (see appendix for details). Our current
implementation is a proof of concept and not optimized
for runtime. Nevertheless, this leads to noticeably better
approximation ratios for these graphs, as well as for other
graphs where a smaller percentage of edges are labeled weak
(see appendix). Developing more scalable techniques for
improving MFP is a promising direction for future research.

STC LP solvers. Our combinatorial solver for the STC
LP enables us to run Algorithm 3 more quickly and on a
much larger scale than was previously possible. Figure 5
shows runtimes for solving this LP using our combinatorial
min-cut approach (Comb-LP) versus using general-purpose
Gurobi optimization software (Gurobi-LP). The resulting
objective score is the same for both since they are both
finding an optimal solution for the LP. The main bottleneck

10°%r
ACOI’T‘Ib-LP S UD BB ee oo

o 104,‘Gumb-L.LL,:::;:tt:::,
1) e
£ 2| 2 M
£ 10 24
c A
2 10° o2

—2

10 ‘ ‘ ‘ ‘ ‘

100 10* 100 10® 10" 108

Number of edges |E|

Figure 5: Runtimes of two different solvers for the STC
LP. Each point represents a graph. Points above the black
dashed line indicate graphs for which the given STC LP
solver did not find a solution. The two vertical dashed lines
indicate the size of the largest graph (in terms of edges) for
which each method was able to successfully solve the LP.

of both algorithms is memory. For smaller graphs where
both algorithms terminate without memory overflow, our
combinatorial approach is roughly twice as fast. Overall,
Gurobi-LP can only solve the STC LP on 6 of 34 graphs,
while Comb-LP can solve it for 21 of 34. The largest graph
for which Gurobi finds a solution has 34,546 nodes and
420,877 edges, while our combinatorial approach was able
to find solutions for many of the larger graphs, the largest
of which has 1,971,281 nodes and 2,766,607 edges. Thus,
in addition to being faster, this approach allows us to tackle
problems that are an order of magnitude larger.

6. Conclusion

We have developed two combinatorial approximation al-
gorithms for the CLUSTER DELETION problem, with a
common degree-based pivoting strategy for derandomiza-
tion. We managed to show that both algorithms have an
approximation guarantee of 3. While the analysis for Match-
FlipPivot is tight, it is not for the other. One open question
is whether the ratio can be improved by a tighter analysis.
Another major open problem is obtaining more efficient
implementations of our algorithms. For example, can we
exploit the special structure of the minimum s-¢ cut problem
to avoid calling an off-the-shelf algorithm? Another inter-
esting direction for future work is to see whether we can
adapt these ideas to obtain faster approximation algorithms
for CLUSTER EDITING.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Combinatorial Approximation Algorithms for Cluster Deletion

References

Ailon, N., Charikar, M., and Newman, A. Aggregating
inconsistent information: ranking and clustering. Jour-
nal of the ACM, 55(5):23, 2008. doi: 10.1145/1411509.
1411513.

Assadi, S., Shah, V., and Wang, C. Streaming algorithms
and lower bounds for estimating correlation clustering
cost. In Advances in Neural Information Processing Sys-
tems, NeurIPS ’23, 2023.

Bansal, N., Blum, A., and Chawla, S. Correlation clustering.
Machine Learning, 56:89—113, 2004. doi: 10.1023/B:
MACH.0000033116.57574.95.

Bathie, G., Bousquet, N., Cao, Y., Ke, Y., and Pierron,
T. (Sub)linear kernels for edge modification problems
toward structured graph classes. Algorithmica, 84:3338—
3364, 2022. doi: 10.1007/s00453-022-00969-1.

Ben-Dor, A., Shamir, R., and Yakhini, Z. Clustering gene
expression patterns. Journal of computational biology, 6
(3-4):281-297, 1999. doi: 10.1089/106652799318274.

Bengali, V. and Veldt, N. Faster approximation algorithms
for parameterized graph clustering and edge labeling. In
Proceedings of the 32nd ACM International Conference
on Information and Knowledge Management, CIKM ’23,
pp. 78-87, New York, NY, USA, 2023. ACM. doi: 10.
1145/3583780.3614878.

Bocker, S. and Damaschke, P. Even faster parameterized
cluster deletion and cluster editing. Information Process-
ing Letters, 111(14):717-721, 2011. doi: 10.1016/j.ipl.
2011.05.003.

Bun, M., Elias, M., and Kulkarni, J. Differentially private
correlation clustering. In International Conference on
Machine Learning, ICML *21, pp. 1136-1146, 2021.

Cao, N., Huang, S.-E., and Su, H.-H. Breaking 3-factor ap-
proximation for correlation clustering in polylogarithmic
rounds. In Proceedings of the 2024 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 4124—
4154. SIAM, 2024. doi: 10.1137/1.9781611977912.143.

Charikar, M., Guruswami, V., and Wirth, A. Clustering
with qualitative information. Journal of Computer and
System Sciences, 71(3):360 — 383, 2005. doi: 10.1016/j.
jcss.2004.10.012. Learning Theory 2003.

Chawla, S., Makarychev, K., Schramm, T., and Yaroslavtsev,
G. Near optimal LP rounding algorithm for correlation
clustering on complete and complete k-partite graphs.
In Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, pp. 219-228. ACM,
2015. doi: 10.1145/2746539.2746604.

10

Chen, L., Kyng, R., Liu, Y. P,, Peng, R., Gutenberg, M. P,,
and Sachdeva, S. Maximum flow and minimum-cost
flow in almost-linear time. In 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS),
pp. 612-623. IEEE, 2022. doi: 10.1109/FOCS54457.
2022.00064.

Cohen, M. B., Lee, Y. T,, and Song, Z. Solving lin-
ear programs in the current matrix multiplication time.
Journal of the ACM (JACM), 68(1):1-39, 2021. doi:
10.1145/3424305.

Cohen-Addad, V., Lattanzi, S., Mitrovié, S., Norouzi-Fard,
A., Parotsidis, N., and Tarnawski, J. Correlation clus-
tering in constant many parallel rounds. In Interna-
tional Conference on Machine Learning, pp. 2069-2078.
PMLR, 2021.

Damaschke, P. Bounded-degree techniques accelerate
some parameterized graph algorithms. In Parameter-
ized and Exact Computation: 4th International Work-
shop, IWPEC °09, pp. 98-109. Springer, 2009. doi:
10.1007/978-3-642-11269-0_8.

Davies, S., Moseley, B., and Newman, H. Fast combina-
torial algorithms for min max correlation clustering. In
International Conference on Machine Learning, ICML
’23, 2023.

Davis, T. A. and Hu, Y. The university of florida sparse
matrix collection. ACM Trans. Math. Softw., 38(1), dec
2011. ISSN 0098-3500. doi: 10.1145/2049662.2049663.

Dessmark, A., Jansson, J., Lingas, A., Lundell, E.-M., and
Person, M. On the approximability of maximum and
minimum edge clique partition problems. International
Journal of Foundations of Computer Science, 18(02):217-
226, 2007.

Easley, D. and Kleinberg, J. Networks, crowds, and markets.
Cambridge university press Cambridge, 2010. ISBN
9781139490306.

Fortunato, S. Community detection in graphs. Physics
reports, 486(3-5):75-174, 2010.

Gao, Y., Hare, D. R., and Nastos, J. The cluster deletion
problem for cographs. Discrete Mathematics, 313(23):
2763-2771, 2013. doi: 10.1016/j.disc.2013.08.017.

Goldberg, A. V. and Rao, S. Beyond the flow decomposition
barrier. Journal of the ACM (JACM), 45(5):783-797,
1998. doi: 10.1145/290179.290181.

Gramm, J., Guo, J., Hiiffner, F., and Niedermeier, R. Graph-
modeled data clustering: Exact algorithms for clique
generation. Theory of Computing Systems, 38(4):373—
392, Jul 2005. doi: 10.1007/s00224-004-1178-y.

Combinatorial Approximation Algorithms for Cluster Deletion

Granovetter, M. S. The strength of weak ties. American
Jjournal of sociology, 78(6):1360—1380, 1973. doi: 10.
1086/225469.

Griittemeier, N. and Komusiewicz, C. On the relation
of strong triadic closure and cluster deletion. Al-
gorithmica, 82(4):853-880, 2020. doi: 10.1007/
s00453-019-00617-1.

Hochbaum, D. S. Applications and efficient algorithms for
integer programming problems on monotone constraints.
Networks, 77(1):21-49, January 2021. doi: 10.1002/net.
21983.

Jafarov, J., Kalhan, S., Makarychev, K., and Makarychev,
Y. Correlation clustering with asymmetric classification
errors. In International Conference on Machine Learning,
ICML ’20, pp. 4641-4650, 2020.

Jafarov, J., Kalhan, S., Makarychev, K., and Makarychev,
Y. Local correlation clustering with asymmetric classifi-
cation errors. In International Conference on Machine
Learning, ICML ’21, pp. 4677-4686, 2021.

Jiang, S., Song, Z., Weinstein, O., and Zhang, H. A faster
algorithm for solving general LPs. In Proceedings of
the 53rd Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2021, pp. 823-832, 2021. ISBN
9781450380539. doi: 10.1145/3406325.3451058.

Konstantinidis, A. L., Nikolopoulos, S. D., and Papadopou-
los, C. Strong triadic closure in cographs and graphs of
low maximum degree. Theoretical Computer Science,
740:76-84, 2018. doi: 10.1016/j.tcs.2018.05.012.

Le, V. B. Gallai graphs and anti-gallai graphs. Discrete
Mathematics, 159(1-3):179-189, 1996. doi: 10.1016/
0012-365X(95)00109-A.

Leskovec, J. and Krevl, A. SNAP Datasets: Stan-

ford large network dataset collection. http://snap.

stanford.edu/data, June 2014.

Nemhauser, G. L. and Trotter, L. E. Vertex packings: struc-
tural properties and algorithms. Mathematical Program-
ming, 8(1):232-248, 1975. doi: 10.1007/BF01580444.

Picard, J.-C. Maximal Closure of a Graph and Applications
to Combinatorial Problems. Management Science, 22
(11):1268-1272, 1976. doi: 10.1287/mnsc.22.11.1268.

Puleo, G. and Milenkovic, O. Correlation clustering with
constrained cluster sizes and extended weights bounds.
SIAM Journal on Optimization, 25(3):1857-1872, 2015.
doi: 10.1137/140994198.

Shamir, R., Sharan, R., and Tsur, D. Cluster graph modifica-
tion problems. Discrete Applied Mathematics, 144(1-2):
173-182, 2004. doi: 10.1016/j.dam.2004.01.007.

11

Shi, J. and Malik, J. Normalized cuts and image seg-
mentation. [EEE Transactions on pattern analysis
and machine intelligence, 22(8):888-905, 2000. doi:
10.1109/34.868688.

Sintos, S. and Tsaparas, P. Using strong triadic closure
to characterize ties in social networks. In Proceedings
of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’14, pp.
1466-1475, 2014. doi: 10.1145/2623330.2623664.

Stein, D., Di Gregorio, S., and Andres, B. Partial opti-
mality in cubic correlation clustering. In International
Conference on Machine Learning, ICML *23, 2023.

Traud, A. L., Mucha, P. J., and Porter, M. A. Social structure
of Facebook networks. Physica A: Statistical Mechanics
and its Applications, 391(16):4165-4180, 2012.

van den Brand, J. A deterministic linear program solver in
current matrix multiplication time. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 259-278. SIAM, 2020.

van den Brand, J., Lee, Y. T., Liu, Y. P.,, Saranurak, T.,
Sidford, A., Song, Z., and Wang, D. Minimum cost
flows, MDPs, and ¢;-regression in nearly linear time
for dense instances. In Proceedings of the 53rd An-
nual ACM SIGACT Symposium on Theory of Computing,
STOC 2021, pp. 859-869, 2021. doi: 10.1145/3406325.
3451108.

van Zuylen, A. and Williamson, D. P. Deterministic piv-
oting algorithms for constrained ranking and clustering
problems. Mathematics of Operations Research, 34(3):
594-620, 2009. doi: 10.1287/moor.1090.0385.

Veldt, N. Correlation clustering via strong triadic closure
labeling: Fast approximation algorithms and practical
lower bounds. In International Conference on Machine
Learning, pp. 22060-22083. PMLR, 2022.

Veldt, N., Gleich, D. E,, and Wirth, A. A correlation cluster-
ing framework for community detection. In Proceedings
of the 2018 World Wide Web Conference, pp. 439—448,
2018. doi: 10.1145/3178876.3186110.

http://snap.stanford.edu/data
http://snap.stanford.edu/data

Combinatorial Approximation Algorithms for Cluster Deletion

Algorithm 4 Faster maximal edge-disjoint open wedge set
Input. Graph G = (V, E)

1:

2: Output. Maximal edge-disjoint set of open wedges W C W(G)

3 W=10 // edge-disjoint open wedge set
4: By =10 //edges within W, will be labeled "weak"
5: forv e Vdo

6: S, < array of neighbors u of v such that (u,v) ¢ Ew

7. if|S,| < 2 then

8: continue // no open wedges centered at v
9: endif

10: next =[2,3,---,|S,|, NIL] // mnext[t] = neighbor of v to visit after S,[f]

—
—_

i=1j=2joa=1
12: finished = FALSE
13: while finished = FALSE do

14: u = Sy[i]; w = Sy[j] // (u,w,v) is the current wedge under consideration
15: if (u, w) € E then

16: // triangle found; do normal increment

17: [¢y 7, Jod, finished] = TRIANGLEINCREMENT (%, j, joid, next, finished)

18: else

19: // open wedge found; do special increment

20: Ew < Ew U{(u,v), (w,v)}

21: W« WU {(u,w,v)}

22: [i, 7, Jotd, next, finished] = OPENWEDGEINCREMENT (%, j, j 014, next, finished)
23: end if

24: end while

25: end for

26: Return W

A. Finding a Maximal Open Wedge Set
Algorithm 4 is pseudocode for our O(m!-?)-time algorithm for finding a maximal edge-disjoint set of open wedges.

Related work. Our algorithm is loosely inspired by the recent work of (Cao et al., 2024), who provided the same type
bound for finding a maximal set of open triangles (i.e., {+, 4, —} triangles) in a complete signed graph. This is equivalent
to finding a pair-disjoint set of open wedges in a graph G = (V, E'), which is more restrictive than finding an edge-disjoint
set. The setting considered by Cao et al. (2024) is also slightly different in that they associate lengths to different edges and
restrict their search to open triangles satisfying certain length restrictions. Nevertheless, two key ideas remain the same:
(1) once we add an open wedge to W, we never have to explore triplets of nodes involving its edges ever again, and (2) the
amount of time we spend exploring node triplets that turn out to be triangles can be bounded in terms of number of triangles
in the graph, which is O(m!-).

Algorithm explanation. For our analysis we fix an ordering of the vertices V' = {vy, vo, ... v,}. We also assume that for
each node v;,¢ = 1,...,n, we have an array that stores the neighborhood of v; in this same order. The basic structure of
Algorithm 4 is outlined in the main text: for each node v € V/, iterate through pairs of neighbors {u, w} of v, checking each
time if (u,w, v) is an open wedge that can be added to a growing edge-disjoint open wedge set TW. The key idea is that we
must find a way to effectively “delete” the edges (u, v) and (w, v) if we add (u, w,v) to W, so that we never waste time
visiting another open wedge that involves either of these edges. This will ensure that we can charge all of the work done by
the algorithm to an iteration where we add a new open wedge to W (which happens O(m) times), or to an iteration where
we “visit” a triangle (which will happen O(m?!%) times).

When we first visit a node v € V, we extract an array of neighbors S, (ordered by node label) with the property that for every
node u in S, (u,v) is not in Eyy (the set of edges from the open wedge set). This is the first way in which we “delete”
edges adjacent to v that we no longer wish to consider. As we iterate through pairs of nodes of v, we may encounter new
open wedges, leading to other edges we must “delete”” and skip over as we explore pairs of neighbors of v. We keep track of
edges to skip over using an array next, where next[t] represents the next index in .S, to visit—in other words, the neighbor

12

Combinatorial Approximation Algorithms for Cluster Deletion

Algorithm 5 [i, §, j,14, finished] = TRIANGLEINCREMENT(%, 4, joid, next, finished)

1: if next[j] # NIL then
2 Jod =17 // record joq such that next[jo] ==j
3 j = nextlj] // increment j
4: else if next[j] == NIL and nezt[i] # j then
5: i = next[i] // increment 1
6: j = next[i] // i comes right after
T Jold =1
8: else
9: finished = TRUE // done exploring neighbors since j = nezt[i] and next[j| == NIL
10: end if

11: Return i, j, joiq, finished

Algorithm 6 [i, j, j,i4, next, finished] = OPENWEDGEINCREMENT(4, 7, o4, next, finished)

next|jorq] = next[j] // skip past (v,v;) in the future
i = next[i] // increment 1
if i == NIL or next[i] == NIL then

finished = TRUE
else

J = next[i]

Jold =1
end if
Return i, j, j,1q, next, finished

PRI DIUN AR

of v that we should visit directly after visiting the neighbor S, [t]. The array is initialized to next = (2,3, ...,|S,|, NIL]
when we begin iterating through neighbors of v, which signifies that we default to visiting node S,,[i + 1] after visiting S, [¢].
Including NIL at the end of the array tells us when we have reached the end of v’s neighbor list.

We maintain two indices 7 and j that point to distinct neighbors of v: S, [i] and S,[j]. If {Sy[i], Su[j], v} is a triangle, no
edges are deleted and we just update indices 7 and j with help from nezt to determine which new pair of neighbors of v
to explore next. If however this node triplet defines an open wedge, then we delete (.S, [i], v) and (S, [j],v) by updating
next so that we skip over S, [i] and S,[j] (see Algorithm 6) as we continue to iterate over pairs of neighbors of v. With this
careful update, we ensure that every time we consider a new pair of neighbors of v, it defines either a new open wedge to
add to W or a triangle.

Runtime bound. The time it takes to initialize S,, and next for each v € V is O(d,), where d,, is the degree of v. The
overall runtime for these steps (and all of the work done in lines 612 of Algorithm 6) is therefore O(m). The bottleneck of
the algorithm comes from the while loop in lines 13-24. The total number of times we call TRIANGLEINCREMENT (line
17) is O(m1'5), since each triangle is visited at most 3 times (once for every node in the triangle) over the course of the
algorithm. Each call to TRIANGLEINCREMENT takes O(1) time. We call OPENWEDGEINCREMENT at most O(m) times,
which again takes O(1) time each time. Finally, in order to figure out which of these two increment subroutines to call, we
must check if there is an edge between two given neighbors of v (line 15). This can be done in O(1) time and O(n?) space
by storing the full adjacency matrix. We improve this to O(1) time and O(m) space by storing all of the edges in a hash
table that is queried to check adjacency.

B. Theoretical Runtime Analysis

Here we provide additional details behind the runtime and space analysis in Section 4.3.

MFP algorithms. Appendix A provided a detailed analysis to show that we can find a maximal edge-disjoint set of open
wedges in O(m!-®) time and O(m) space. This is always at least as fast as the previous runtime of O(mn) and is strictly
better for sparse graphs. Computing this lower bound is the most expensive step for the randomized variant of MFP, so our
work improves the best runtime for this randomized variant, while maintaining the same O(m) space requirement.

13

Combinatorial Approximation Algorithms for Cluster Deletion

Algorithm 7 Combinatorial solver for STC LP

Input. Graph G = (V, E)
Output. Optimal solution to STC LP
Initialize graph G5; with two nodes Vy; = {s,t}
for (i,7) € E do
Add nodes Z;;,Y;; to Vy
Add edges (s, Z;;) and (Y}, t) with weight 1/2
end for
for (i,4,k) € Wy, do
Add edges (Z;x, Y1) and (Z;1, Y,) with weight oo
end for
Find min s-f cut set S C Vi of G
: for (i,7) € Edo
Setyij = x(Yij € 5). zij = x(Zij € 5)
Set Tij = %(yij +1-— Zij)
: end for
: Return {xij}(i,j)EE

—_ =
e A R G EEANE AN R

O S S ey s—

For deterministic MFP, our runtime (and space) improvement is even more dramatic, thanks to our simplified deterministic
rounding scheme. The previous deterministic rounding scheme (Pivot Strategy 2) requires identifying all open wedges
and storing a map back and forth between open wedges and edges they contain. This means that the space and runtime
requirements are both Q(|W| + m). In contrast, pivoting based on degrees can be implemented in O(m) time and space.
This is done by computing node degrees and then placing nodes in one of n bins based on their degree. We can then iterate
through bins, greedily selecting a node with the highest degree and forming a cluster around it. For each node u added to a
cluster, we can update the degrees of its neighbors, and update their location in the bins, in O(d,,) time. Overall the runtime
is O(m). With this new approach, we now have randomized and deterministic variants of MFP with a runtime of O(m'-®)
and space constraint of O(m).

STC LP solvers. Algorithm 7 is the pseudocode for the combinatorial procedure for solving the STC LP relaxation given
in Section 4.2. When finding a minimum s-t cut of G5, we can double the weight of edges adjacent to s and ¢ and replace
infinite weight edges with edges of weight m + 1, without changing the optimal solution. This means we are solving an s-t
cut problem in a directed graph with 2m + 2 nodes and and 2m + 2|W)| edges, where all edge weights are integers that
are polynomially bounded in the input size. Using the nearly linear time maximum s-¢ flow solver of Chen et al. (2022),
the STC LP relaxation can be solved in (m + |[W|)'t°())-time. We can also obtain a runtime of O(|)W| + m!?) using the
results of van den Brand et al. (2021), which is slightly better if m'-5 = O(|W|). We get a deterministic algorithm with a
runtime of O (min{(m + |[W|)'%, (m + |[W|) - m?/3) by using the well-known maximum s-¢ flow algorithm of Goldberg &
Rao (1998). Note that the relative size of (m + [W|)!/? and m?/? depends on the graph. For example, it is possible for |[W|
to be very small (even zero), in which case the former is better. It is also possible to have |W| = ©(n?) and m = O(n?), in
which case m?/3 is smaller.

There are several recent theoretical algorithms for solving an LP of the form minax—p:x>0 ¢”'x, that run in current matrix
multiplication time (van den Brand, 2020; Jiang et al., 2021; Cohen et al., 2021). When written in this format, the STC LP
has (m + |[W)|) constraints, and applying these solvers yields runtimes that are all at least Q((m + |[W|)?).

C. Additional Implementation and Experimental Details

Implementation details. Section 4.3 and Appendix B provide details for the best runtimes that can be obtained in theory.
As is often the case, there is a gap between the best theoretical algorithms and the most practical approaches. As a key
example, the current best algorithms for maximum s-¢ flows do not come with practical implementations. For solving
minimum s-t cut problems in practice, we instead apply a fast Julia implementation of the push-relabel algorithm for
maximum s-t flows. When computing a maximal edge-disjoint set of open wedges in practice, we apply the simpler
approach that iterates through nodes and then pairs of neighbors of nodes to check for open wedges. In our experimental
results, computing this lower bound tends to be very fast, and is often even faster than the pivot step.

14

Combinatorial Approximation Algorithms for Cluster Deletion

Table 1: Improved approximation ratios (CLUSTER DELETION solution divided by MFP lower bound) for several small
graphs when using the merge heuristic. The % weak column reports the percentage of edges that MFP labels weak before
performing the pivot step.

Graph 4 |E| % weak MFP approx +merge approx
Netscience 379 914 68.93 1.72 1.58
Harvard500 500 2043 7597 1.95 1.79
football 115 613 83.52 1.79 1.47
Erdos991 446 1413 954 1.99 1.67
celegansmetabolic 453 2025 9541 1.99 1.78
polbooks 105 441 95.69 1.98 1.68
email 1133 5451 95.98 1.98 1.80
SmaGri 1024 4916 98.05 2.00 1.85
Roget 994 3640 98.24 2.00 1.69
celegansneural 297 2148 98.88 2.00 1.81
adjnoun 112 425 99.29 2.00 1.76
polblogs 1222 16714 99.75 2.00 1.92

The example in the proof of Theorem 3.3 motivates the following postprocessing step. After a set of clusters is obtained, we
check each pair of them. If all the edges between two clusters are present in the input graph, we merge them into a single
cluster. If the algorithm above has produced c clusters, this step may take 2(c?) time, which can be prohibitive. Since this
preprocessing can be stopped anytime safely, in practice, we can apply it with a fixed time. It can be completely turned
off to save time, or carried out exhaustively to achieve the best effect. Our experiments, shown in Table 1 and Figure 4,
demonstrate that for most graphs, it significantly improves the outcomes. It is worth noting that this postprocessing is
independent on the algorithms used to produce the clusters, and can be used for other algorithms for CLUSTER DELETION.

All of our algorithms are implemented in Julia. Code for our algorithms and experiments can be found at https:
//github.com/vibalcam/combinatorial-cluster—deletion. Given the overlap with the previous work,
our new implementations build directly on and improve the open source implementations of Veldt (2022), available
athttps://github.com/nveldt/FastCC-via—-STC, released under an MIT License.

Datasets. The graphs in Figure 2 all come from the SNAP network repository (Leskovec & Krevl, 2014) and come from
several different types of graph classes. This includes social networks, road networks, citation networks, collaboration
networks, and web graphs. All graphs have been standardized to remove weights, directions, and self-loops. The number of
nodes and edges for each dataset are shown in Table 2. The graphs in Figure 4 are from the Facebook100 dataset (Traud et al.,
2012). We specifically consider 46 smallest graphs in terms of the number of edges. The largest of these is Cal65, which
has 11,247 nodes and 351,358 edges. Running MFP is very fast on all of these graphs (always less than 0.02 seconds for
DegMFP). We only considered the smallest graphs in the collection since (in its current form) our cluster merging heuristic
does not scale as easily (taking over 2 hours for the largest graph). The small graphs considered in Table 1 are all available
from the Suitesparse matrix collection (Davis & Hu, 2011). We specifically consider graphs from the Arenas collection
(email, celegansmetabolic), Newman collection (Netscience, polblogs, polbooks, football, adjnoun, celegansneural), Pajek
collection (Erdos991, Roget, SmaGri), and Mathworks collection (Harvard500).

Additional experimental results. In Table 1 we display improved approximation ratios that can be achieved using our
cluster merging heuristic on several small graphs. Although our current implementation of the algorithm is not optimized
for runtime, it leads to noticeably better approximation ratios for all graphs where we ran it.

In Table 2 we provide a more detailed look at the performance of our algorithms on the large SNAP graphs. This includes
runtimes for computing lower bounds, the value of lower bounds, and the a posteriori approximation ratios (CLUSTER
DELETION solution divided by the lower bound computed by each method) achieved using our STC LP rounding method
and MFP with three different pivoting strategies. For rounding the STC LP, we use the degree-based pivoting strategy as this
is both fast and deterministic.

It is interesting to note that rounding the output to our combinatorial STC LP solver (the Comb-LP column in Table 2) tends
to produce worse approximation ratios than MFP because it produces worse CLUSTER DELETION solutions. This may be

15

https://github.com/vibalcam/combinatorial-cluster-deletion
https://github.com/vibalcam/combinatorial-cluster-deletion
https://github.com/nveldt/FastCC-via-STC

Combinatorial Approximation Algorithms for Cluster Deletion

because the STC LP rounding technique is somewhat simplistic in that it treats all edges in By, = {(¢,j) € E: z;; = 1/2}
and By = {(¢,j) € E: x;; = 1} in the same way (namely, delete these edges and then perform a pivoting step). One open
question is whether it is possible to develop an improved rounding scheme that better leverages the difference between
edges in Fj, and edges in F/;. As a related observation, rounding the STC LP solution returned by Gurobi tends to produce
better results, beating MFP in some cases. This is likely due to slight differences in which solution each method finds for the
STC LP. An interesting direction for future research is to better understand how different optimal solutions to the LP affect
downstream CLUSTER DELETION solutions, and then design techniques for quickly finding the most favorable LP solution
for CLUSTER DELETION.

It is worth noting that despite the lower approximation ratios produced by Comb-LP, the STC LP lower bound for CLUSTER
DELETION is always at least as tight as the lower bound computed by MFP. Furthermore, this lower bound is strictly tighter
for all instances observed in practice. Thus, by combining the output of MFP with the tighter STC LP lower bound, we
immediately obtain strictly better approximation guarantees than we obtain by running either method by itself.

Table 2: Detailed results (n = |V|, and m = | E/|). Asterisks indicate the method ran out of memory. Dashes indicate Gurobi
failed to produce an optimal solution for a reason other than memory. For all graphs, we allotted a maximum runtime of 2
days. The RanMFP column shows results specifically for RanMFP-100.

Graph RanMFP DegMFP RatMFP Comb-LP Gur-LP
AMAZON0302 LB 402,933 402,933 402,933 438,400.0 Ak
UB 814,852 779,652 779,523 855,620.0 o
n =262,111 Ratio 2.022 1.935 1.935 1.952 o
m = 899,792 Run LB 0.262 0.196 0.282 488.675 HA
Run round 2.043 0.927 23.413 0.848 Ak
Run total 2.305 1.123 23.694 489.523 o
AMAZONO0312 LB 1,099,863 1,099,863 1,099,863 1.1616155e6 o
UB 2,216,290 2,150,602 2,150,294 2.292491e6 HAE
n = 400,727 Ratio 2.015 1.955 1.955 1.974 HAK
m = 2,349,869 Run LB 0.673 0.608 0.685 5,170.367 o
Run round 3.406 1.231 39.710 0.166 Ak
Run total 4.079 1.839 40.395 5,170.533 Ak
AMAZONO0505 LB 1,141,860 1,141,860 1,141,860 1.205665e6 o
UB 2,300,995 2,232,537 2,232,231 2.378196e6 o
n =410,236 Ratio 2.015 1.955 1.955 1.973 o
m = 2,439,437 Run LB 0.660 0.812 0.645 5,204.671 o
Run round 3.435 1.290 46.796 0.152 o
Run total 4.095 2.102 47.441 5,204.823 HAE
AMAZON0601 LB 1,142,262 1,142,262 1,142,262 1.2069215e6 HAK
UB 2,302,232 2,232,009 2,231,696 2.37985e6 Ak
n = 403,394 Ratio 2.016 1.954 1.954 1.972 o
m = 2,443,408 Run LB 0.669 0.618 0.672 5,102.761 HAE
Run round 3.535 1.258 41.885 0.180 HAK
Run total 4.204 1.876 42.557 5,102.941 o

‘ Continued on next page

16

Combinatorial Approximation Algorithms for Cluster Deletion

Graph RanMFP DegMFP RatMFP Comb-LP Gur-LP
CA-ASTROPH LB 87,632 87,632 87,632 91,260.0 91,260.0
UB 176,099 162,552 162,550 175,540.0 175,078.0
n = 18,772 Ratio 2.01 1.855 1.855 1.924 1.918
m = 198,050 Run LB 0.073 0.074 0.075 41.889 132.727
Run round 0.155 0.159 0.570 0.043 0.458
Run total 0.228 0.233 0.645 41.933 133.185
CA-CONDMAT LB 39,764 39,764 39,764 42,019.0 42,019.0
UB 80,464 75,133 75,127 81,989.0 80,860.0
n = 23,133 Ratio 2.024 1.889 1.889 1.951 1.924
m = 93,439 Run LB 0.023 0.022 0.021 7.961 18.080
Run round 0.158 0.132 0.532 0.067 0.161
Run total 0.181 0.154 0.553 8.028 18.241
CcA-GRQC LB 4,789 4,789 4,789 5,196.0 5,196.0
UB 9,336 8,424 8,424 9,046.0 8,528.0
n = 5,242 Ratio 1.949 1.759 1.759 1.741 1.641
m = 14,484 Run LB 0.005 0.004 0.005 0.318 1.038
Run round 0.037 0.018 0.119 0.018 0.054
Run total 0.042 0.022 0.123 0.336 1.092
CA-HEPPH LB 37,602 37,602 37,602 41,1475 41,1475
UB 64,101 55,102 55,141 61,117.0 60,556.0
n = 12,008 Ratio 1.705 1.465 1.466 1.485 1.472
m = 118,489 Run LB 0.307 0.322 0.314 32.220 110.161
Run round 0.111 0.040 2.110 0.031 0.132
Run total 0.418 0.362 2.424 32.251 110.293
CA-HEPTH LB 10,855 10,855 10,855 11,516.5 11,516.5
UB 21,806 21,006 21,006 22,538.0 21,870.0
n =9,877 Ratio 2.009 1.935 1.935 1.957 1.899
m = 25973 Run LB 0.005 0.005 0.005 0.815 2.033
Run round 0.112 0.056 0.199 0.026 0.069
Run total 0.117 0.061 0.204 0.841 2.101
CIT-HEPPH LB 208,953 208,953 208,953 210,366.0 -
UB 418,074 417,075 417,069 420,702.0 -
n = 34,546 Ratio 2.001 1.996 1.996 2.0 -
m = 420,877 Run LB 0.097 0.095 0.100 123.203 -
Run round 0.247 0.049 0.908 0.008 -
Run total 0.345 0.145 1.008 123.210 -
CIT-HEPTH LB 174,612 174,612 174,612 175,975.5 -
UB 349,413 348,385 348,383 351,817.0 -
n = 27,770 Ratio 2.001 1.995 1.995 1.999 -
m = 352,285 Run LB 0.089 0.143 0.100 141.213 -
Run round 0.187 0.033 0.946 0.013 -
Run total 0.276 0.176 1.046 141.226 -

Continued on next page

17

Combinatorial Approximation Algorithms for Cluster Deletion

Graph RanMFP DegMFP RatMFP Comb-LP Gur-LP
CIT-PATENTS LB 8,141,691 8,141,691 8,141,691 Hkok Fiok
UB 16,288,581 16,267,462 16,267,460 kK Hakk
n = 3,774,768 Ratio 2.001 1.998 1.998 Hokeok Hkok
m = 16,518,947 Run LB 6.331 6.125 6.969 Hokok Hkok
Run round 44.362 8.704 410.382 *kk Hakk
Run total 50.693 14.830 417.351 Hkk Hkok
COM-AMAZON LB 426,524 426,524 426,524 455,045.5 Heok
UB 859,596 834,788 834,693 897,651.0 Fkck
n = 334,863 Ratio 2.015 1.957 1.957 1.973 Hkok
m = 925,872 Run LB 0.243 0.234 0.282 472.103 Hkok
Run round 2.812 0.871 26.045 0.213 Hkok
Run total 3.056 1.104 26.327 472.316 Hkok
coM-DBLP LB 404,019 404,019 404,019 449,921.5 Hkok
UB 825,495 737,218 737,172 853,743.0 Hkok
n = 317,080 Ratio 2.043 1.825 1.825 1.898 Fxk
m = 1,049,866 Run LB 0.344 0.374 0.396 631.427 Hakk
Run round 2.811 1.937 41.965 0.985 HHE
Run total 3.155 2.311 42.362 632.412 Fakk
COM-LIVEJOURNAL LB 16,772,636 16,772,636 16,772,636 Hkok Fikok
UB 33,608,381 33,275,587 33,277,914 kK Hakok
n = 3,997,962 Ratio 2.004 1.984 1.984 kK Hkok
m = 34,681,189 Run LB 17.002 17.034 25.346 Hokok Hkok
Run round 48.159 23.847 1,742.355 koK Hkok
Run total 65.161 40.880 1,767.701 Hkk Hkok
COM-ORKUT LB 58,505,482 58,505,482 58,505,482 okt Hck
UB 117,026,574 116,953,503 116,953,361 Hkk Fkk
n = 3,072,441 Ratio 2.0 1.999 1.999 koK Hkok
m = 117,185,083 Run LB 122.594 121.138 135.962 ook Hkok
Run round 215.619 17.428 17,305.204 Hkk Fxk
Run total 338.213 138.566 17,441.166 Hokok Hkok
COM-YOUTUBE LB 1,429,785 1,429,785 1,429,785 Hkok Hakok
UB 2,860,915 2,855,070 2,855,066 Hokeok Hkok
n = 1,134,890 Ratio 2.001 1.997 1.997 ook Hkok
m = 2,987,624 Run LB 0.775 0.788 1.024 kK Hakok
Run round 9.276 3.136 63.352 Hokeok Hokok
Run total 10.051 3.924 64.376 Hokok Hkok
EMAIL-ENRON LB 84,385 84,385 84,385 87,861.0 87,861.0
UB 169,567 165,774 165,765 174,693.0 172,762.0
n = 36,692 Ratio 2.009 1.964 1.964 1.988 1.966
m = 183,831 Run LB 0.041 0.042 0.042 113.530 339.700
Run round 0.257 0.266 1.067 0.069 0.238
Run total 0.298 0.307 1.109 113.599 339.938

Continued on next page

18

Combinatorial Approximation Algorithms for Cluster Deletion

Graph RanMFP DegMFP RatMFP Comb-LP Gur-LP
EMAIL-EUALL LB 174,651 174,651 174,651 ok ok
UB 349,298 349,296 349,296 wokok HoAk
n = 265,214 Ratio 2.0 2.0 2.0 wokok HoAk
m = 364,481 Run LB 0.088 0.087 0.098 oHE HoAk
Run round 1.822 0.348 5.963 *HE HoHk
Run total 1.911 0.435 6.061 *oxk HoAk
LOC-BRIGHTKITE LB 101,924 101,924 101,924 106,429.0 Ak
UB 204,011 203,016 203,016 212,545.0 Hokk
n = 58,228 Ratio 2.002 1.992 1.992 1.997 HokE
m = 214,078 Run LB 0.042 0.041 0.043 76.008 HAE
Run round 0.387 0.197 1.306 0.018 o
Run total 0.428 0.238 1.349 76.026 HoHE
LOC-GOWALLA LB 456,499 456,499 456,499 *okk HoAk
UB 914,484 907,916 907,897 woEk HAE
n = 196,591 Ratio 2.003 1.989 1.989 HoEk o
m = 950,327 Run LB 0.203 0.245 0.213 *okok HoAk
Run round 1.539 0.701 7.949 ok HAE
Run total 1.742 0.946 8.162 ok HAE
ROADNET-CA LB 1,275,870 1,275,870 1,275,870 1.379125e6 HoHk
UB 2,556,485 2,536,702 2,536,702 2.745368e6 HoAk
n = 1,971,281 Ratio 2.004 1.988 1.988 1.991 HoAk
m = 2,766,607 Run LB 0.547 0.985 0.406 6,263.413 Hokk
Run round 16.925 7.356 188.404 1.377 HoHE
Run total 17.472 8.341 188.810 6,264.791 HoAk
ROADNET-PA LB 711,585 711,585 711,585 769,226.0 Ak
UB 1,425,699 1,414,908 1,414,908 1.531777e6 o
n = 1,090,920 Ratio 2.004 1.988 1.988 1.991 HoAE
m = 1,541,898 Run LB 0.193 0.195 0.189 1,367.728 HAE
Run round 9.130 2911 70.004 0.570 o
Run total 9.323 3.106 70.193 1,368.297 HoAk
ROADNET-TX LB 883,250 883,250 883,250 958,145.5 Ak
UB 1,769,957 1,755,407 1,755,407 1.9056e6 HAE
n = 1,393,383 Ratio 2.004 1.987 1.987 1.989 HEE
m = 1,921,660 Run LB 0.245 0.245 0.239 3,041.782 HoAk
Run round 11.510 4.519 106.177 0.749 HAk
Run total 11.755 4.764 106.416 3,042.530 HAE
SOC-EPINIONS1 LB 197,337 197,337 197,337 202,521.0 HAk
UB 394,809 394,032 394,031 404,825.0 HoAk
n = 75,888 Ratio 2.001 1.997 1.997 1.999 HoAk
m = 405,740 Run LB 0.091 0.091 0.103 808.772 o
Run round 0.516 0.413 1.706 0.035 o
Run total 0.607 0.504 1.809 808.807 HoHE

Continued on next page

19

Combinatorial Approximation Algorithms for Cluster Deletion

Graph RanMFP DegMFP RatMFP Comb-LP Gur-LP
SOC-LIVEJOURNAL1 LB 20,681,921 20,681,921 20,681,921 ook Hkk
UB 41,452,776 40,988,289 40,999,181 Hokk Hk
n = 4,847,571 Ratio 2.004 1.982 1.982 otk w3k
m = 42,851,237 Run LB 41.378 38.295 21.741 otk Rk
Run round 97.697 47.469 3,212.986 otk ok
Run total 139.075 85.764 3,234.728 otk Hokk
SOC-SLASHDOTO0811 LB 229,500 229,500 229,500 234,429.5 HAE
UB 459,048 458,653 458,653 468,752.0 HAE
n = 77,360 Ratio 2.0 1.998 1.998 2.0 HEE
m = 469,180 Run LB 0.101 0.101 0.104 488.743 HAE
Run round 0.698 0.186 1.594 0.024 HAE
Run total 0.800 0.287 1.697 488.767 HkE
SOC-SLASHDOT(0902 LB 247,059 247,059 247,059 251,944.0 HkE
UB 494,192 493,777 493,778 503,815.0 HAE
n = 82,168 Ratio 2.0 1.999 1.999 2.0 HAE
m = 504,230 Run LB 0.103 0.103 0.112 604.756 HoAk
Run round 0.560 0.190 1.844 0.030 HAE
Run total 0.663 0.293 1.956 604.786 HAE
WEB-BERKSTAN LB 3,101,047 3,101,047 3,101,047 Hokk HkE
UB 6,217,043 6,148,769 6,148,776 ok ok
n = 685,230 Ratio 2.005 1.983 1.983 ek w3
m = 6,649,470 Run LB 3.144 3.179 2.982 otk ko
Run round 6.065 1.077 75.884 otk ok
Run total 9.209 4.256 78.866 otk kK
WEB-GOOGLE LB 1,889,936 1,889,936 1,889,936 otk Hk
UB 3,820,726 3,652,072 3,652,510 otk ko
n = 916,428 Ratio 2.022 1.932 1.933 otk ko
m = 4,322,051 Run LB 2.109 2.534 2.151 otk Hokk
Run round 9.049 1.851 125.882 Hok Hkk
Run total 11.158 4.385 128.034 otk ok
WEB-NOTREDAME LB 414,253 414,253 414,253 Hkok Hkok
UB 829,768 820,767 820,771 otk Hk
n = 325,729 Ratio 2.003 1.981 1.981 otk HkH
m = 1,090,108 Run LB 0.479 0.472 0.642 otk Hk
Run round 2.574 0.593 21.478 HEE ook
Run total 3.053 1.064 22.120 otk Hokk
WEB-STANFORD LB 948,859 948,859 948,859 kK HkE
UB 1,903,048 1,877,270 1,877,228 Hokk ko
n = 281,903 Ratio 2.006 1.978 1.978 ek Hk
m = 1,992,636 Run LB 0.961 1.035 0.911 otk ko
Run round 2.476 0.587 13.140 otk ok
Run total 3.437 1.621 14.052 otk kst

Continued on next page

20

Combinatorial Approximation Algorithms for Cluster Deletion

Graph RanMFP DegMFP RatMFP Comb-LP Gur-LP
WIKI-TALK LB 2,313,080 2,313,080 2,313,080 kK ko
UB 4,626,181 4,626,014 4,626,014 otk Hokok
n = 2,394,385 Ratio 2.0 2.0 2.0 otk ok
m = 4,659,565 Run LB 1.546 1.600 1.557 kK ko
Run round 22.358 1.233 103.372 otk ok
Run total 23.904 2.834 104.929 ook ok
WIKI-TOPCATS LB 12,689,197 12,689,197 12,689,197 otk ok
UB 25,380,869 25,369,215 25,369,203 *oHk sk
n = 1,791,489 Ratio 2.0 1.999 1.999 otk *okk
m = 25,444,207 Run LB 8.091 8.290 8.534 stk ok
Run round 19.867 1.737 104.694 Hdk Hkk
Run total 27.958 10.026 113.228 okok ok

21

