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Abstract
We study online finite-horizon Markov Decision
Processes with adversarially changing loss and ag-
gregate bandit feedback (a.k.a full-bandit). Under
this type of feedback, the agent observes only the
total loss incurred over the entire trajectory, rather
than the individual losses at each intermediate
step within the trajectory. We introduce the first
Policy Optimization algorithms for this setting.
In the known-dynamics case, we achieve the first
optimal regret bound of Θ̃(H2

√
SAK), where

K is the number of episodes, H is the episode
horizon, S is the number of states, and A is the
number of actions. In the unknown dynamics case
we establish regret bound of Õ(H3S

√
AK), sig-

nificantly improving the best known result by a
factor of H2S5A2.

1. Introduction
The standard model of reinforcement learning (RL) assumes
a rich feedback loop, where for each step within the episode
the agent observes the loss in that state as feedback. While
ideal, this is often not the case in real-world applications.
For example, in multi-turn dialogues with an LLM, feedback
is typically available only at the end of the entire dialogue,
not for each intermediate response. Similarly, in robotic
manipulation, feedback is often only available for the entire
trajectory, indicating whether the robot successfully com-
pleted its task, rather than providing feedback at every step
of the robot’s movement.

To address this challenge, Efroni et al. (2021) have initiated
the study of aggregate bandit feedback in a stochastic set-
ting where losses are generated in an i.i.d. manner. More
recently, Cassel et al. (2024) have extended this to linear
MDPs. Most related to our work is that of Cohen et al.
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(2021b), who considered the setting we study here, where
the losses are non-stochastic and may be chosen by an adver-
sary. They introduce a variant of bandit linear optimization
which they call Distorted Linear Bandits and provide a solu-
tion for it. Through the framework of occupancy measures,
they reduce the problem of adversarial MDPs with aggregate
bandit feedback to Distorted Linear Bandits. This approach
allows them to obtain a regret of Õ(H5S6A5/2

√
K), where

K is the number of episodes, H is the horizon, S is the
number of states and A is the number of actions. While
the dependency on K is optimal, the dependency on other
parameters is far from optimal.

In this paper, we revise the setting considered in Cohen et al.
(2021b), both in the known and unknown dynamics cases.
We present algorithms based on the Policy Optimization
framework (Cai et al., 2020; Shani et al., 2020; Luo et al.,
2021; Chen et al., 2022a), which has strong connections
to many practical algorithms such as NGP (Kakade, 2001),
TRPO (Schulman et al., 2015), and PPO (Schulman et al.,
2017). Our algorithms have a closed-form update and are
more efficient than that of Cohen et al. (2021b), which
requires solving a convex optimization problem in each
iteration. We obtain the first optimal bound under known
dynamics and significantly improve the regret bound of
Cohen et al. (2021b) in the unknown dynamics case.

Summary of Contributions. The main contributions of
the paper are as follows:

• We present the first Policy Optimization algorithms for
Online MDPs with aggregate bandit feedback.

• Under known dynamics we are the first to establish the
near-optimal regret bound of Θ̃(H2

√
SAK).

• In the unknown dynamics case, we achieve a regret
of Õ(H3S

√
AK). Surprisingly, this regret bound

matches the best known regret for Policy Optimiza-
tion with semi-bandit feedback (Luo et al., 2021).1

• We establish a new lower bound Ω(H2
√
SAK) for

online MDPs with aggregate bandit feedback. To the

1Luo et al. (2021) presents a slightly different dependence on
the horizon H . This is due to their assumption of a loop-free
MDP, which effectively enlarges their state space by a factor of H
compared to our model — see Remark 1.1.
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best of our knowledge, this is the first lower bound
for this setting that is not directly implied from the
semi-bandit case.

A comparison of our results to previous works is summa-
rized in Table 1.

Overview of techniques. Much of our algorithms’ de-
sign and analysis follows the seminal work of Luo et al.
(2021). As most of the regret minimization literature, they
built upon the fundamental value difference lemma (Kakade
& Langford, 2002; Even-Dar et al., 2009) that breaks the
total regret as a weighted sum of local regrets in each state
separately with respect to the Q-function. Our central ob-
servation is that the regret can be decomposed in a similar
manner but with respect to different quantities, which we
call the U -values. These quantities are particularly natural
in the context of aggregate bandit feedback. The U -function
at a given state and action is the expected cost on the entire
trajectory given that we visit this state-action pair. Our
decomposition with respect to the U -function is especially
useful in the setting of aggregate bandit feedback since the
U -function can be easily estimated using only the accu-
mulated trajectory loss. This is in contrast to Q-function
estimation that typically uses individual losses or the cost-
to-go from a state-action pair.

1.1. Related work

Aggregate bandit feedback with stochastic i.i.d losses
was first studied by Efroni et al. (2021) who obtained regret
of Õ(H3/2S2A3/2

√
K) with an efficient algorithm. Their

transition and loss functions are not horizon-dependent.
Adapting their bound for horizon-dependent losses and tran-
sitions as we consider here would effectively inflate the
number of states by a factor of H , resulting in a regret
bound of Õ(H7/2S2A3/2

√
K). Cassel et al. (2024) intro-

duced the first algorithm for Linear MDPs with stochastic
losses and aggregate bandit feedback. Their algorithm at-
tains regret of Õ(

√
d5H7K) where d is the dimension of

the feature map. In the special case of tabular MDPs, they
show a regret of Õ(H7/2S2A3/2

√
K).

Adversarial Linear bandits (see for example Lattimore
& Szepesvári (2020)) is a variant of the classical Multi-
armed Bandit problem where each action is associated with
a vector in Rd. The loss in each round is the inner product
of the action with an unknown parameter vector chosen
by an adversary. Through the concept of occupancy mea-
sures, online MDPs with aggregate bandit feedback and
known dynamics can be seen as a special case of Adver-
sarial Linear bandits. In terms of regret bounds, EXP2
(Dani et al., 2007; Cesa-Bianchi & Lugosi, 2012) with a
specific exploration distribution achieves the optimal bound
of Θ(B

√
dK logN) for any finite set of N actions in Rd,

where B is a bound on the losses (Bubeck et al., 2012).
Using a discretization argument, this bound can be extended
to Õ(Bd

√
K) for any compact convex set. However, the

EXP2 algorithm is not efficient in general. The latter bound
for general convex set is attainable with efficient algorithms
(polynomial in d) under mild assumptions (Hazan & Karnin,
2016). When using occupancy measures to reduce online
MDPs with aggregate bandit feedback to Linear bandits,
the decision set is of dimension d = HSA, the bound of
the loss in each round is B = H and the number of de-
terministic policies is N = ASH . This results in regret
of Õ(H2S

√
AK) and Õ(H2SA

√
K) with inefficient and

efficient algorithms, respectively. For the known dynamics
case, we improve these bounds to optimal Θ̃(H2

√
SAK)

regret with an efficient and more natural algorithm.

As mentioned before, Cohen et al. (2021b) have extended
the linear bandit model to Distorted Bandit Online Linear
Optimization (DBOLO). They show that online MDPs with
aggregate bandit feedback and unknown dynamics can be
reduced to DBOLO efficiently. Their algorithm is built upon
the SCRIBLE algorithm (Abernethy et al., 2008) and guar-
antees regret of Õ(H5S6A5/2

√
K). On the same setting,

we improve their regret bound to Õ(H3S
√
AK).

Regret minimization in MDPs with semi-bandit feedback
is extensively studied in the literature, initiated with the
seminal UCRL algorithm (Jaksch et al., 2010) for stochastic
losses. Their model was later extended to the more general
Online (adversarial) MDPs where the loss functions are ar-
bitrarily chosen by an adversary. Most algorithms for this
model are based either on the framework of occupancy mea-
sures (Zimin & Neu, 2013; Rosenberg & Mansour, 2019a;b;
Jin et al., 2020) or the Policy Optimization framework (Even-
Dar et al., 2009; Shani et al., 2020; Luo et al., 2021). In
the adversarial model with semi-bandit feedback and known
dynamics, the optimal regret bound is Θ̃(H

√
SAK) case

and is attained by an occupancy-measure based algorithm
(Zimin & Neu, 2013). With PO, the state-of-the-art re-
gret under known dynamics is Õ(H2

√
SAK). We achieve

the same bound with aggregate bandit feedback which in
this case is optimal. Under unknown dynamics, the best
known bound is Õ(H2S

√
AK) and is also attained by an

occupancy-measure based algorithm (Jin et al., 2020), while
the best known lower bound is Ω(H3/2

√
SAK) (Jin et al.,

2018). With policy optimization algorithm, the best known
bound is Õ(H3S

√
AK) (Luo et al., 2021). Although we

are in a setting with less informative feedback, we match
the latter bound.

Remark 1.1. We note that some of the literature on semi-
bandit feedback, such as Jin et al. (2020); Luo et al. (2021),
assumes loop-free MDPs. Under this assumption the state
space consists of H disjoint sets S = S1 ∪ S2 ∪ · · · ∪ SH

such that in step h the agent can only be found in states
from the set Sh. Effectively, this means that their state space
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Table 1. Comparison of regret bounds for online MDPs with ag-
gregate bandit feedback. In the ’Loss’ column, ’adv.’ denotes
adversarial (non-stochastic) losses, while ’stoc.’ denotes stochas-
tic i.i.d losses. The regret bounds presented in this table ignore
logarithmic and low-order terms.

Algorithm Dynamics Loss Regret
Reduction to Efficient
Linear Bandits algorithm known adv.

√
H4S2A2K

Algorithm 1 (ours) known adv.
√
H4SAK

Lower bound known adv.
√
H4SAK

UCBVI-TS
(Efroni et al., 2021) unknown stoc.

√
H7S4A3K †

REPO for tabular MDPs
(Cassel et al., 2024) unknown stoc.

√
H7S4A3K

Reduction to DBOLO
(Cohen et al., 2021b) unknown adv.

√
H10S12A5K

Algorithm 2 (ours) unknown adv.
√
H6S2AK

is larger than ours by a factor of H . So for example the
regret bound Õ(H2S

√
AK) in Luo et al. (2021) implies a

bound of Õ(H3S
√
AK) in the transition model presented

in this paper. We emphasize that these differences are rather
artificial and not due to an actual difference in the regret.

Stochastic binary trajectory feedback was studied in Chat-
terji et al. (2021). In their model, the rewards are drawn from
a logistic model that depends on features of the trajectory.

Preference-based RL (PbRL) is a model where the feed-
back is given in terms of preferences over a trajectory pair
instead of rewards. This is partially related to our model in
motivation. A partial list of works on PbRL includes (Saha
et al., 2023; Chen et al., 2022b; Wu & Sun, 2023). For addi-
tional related work on the topic, see the above references.

2. Preliminaries
A finite-horizon episodic adversarial MDP is defined by a
tuple M = (S,A, H, sinit, p, {ℓk}Kk=1), where S and A
are state and action spaces of sizes |S| = S and |A| = A,
respectively, H is the horizon, sinit is the initial state and
K is the number of episodes. p : S ×A× [H] → ∆S is the
transition function such that ph(s′|s, a) is the probability
to move to s′ when taking action a in state s at time h.
{ℓk : S ×A× [H] → [0, 1]}Kk=1 are cost functions chosen
by an oblivious adversary, where ℓkh(s, a) is the cost for
taking action a at (s, h) in episode k.

A policy π : S × [H] → ∆A is a function that gives the
probability πh(a|s) to take action a when visiting state

†This regret bound is adapted to horizon-dependent transition
and losses - see the related work section for more details.

s at time h. The value V π
h (s; ℓ) is the expected cost of

π with respect to cost function ℓ starting from s in time
h, i.e., V π

h (s; ℓ) = E
[∑H

h′=h ℓh′(sh′ , ah′)|π, sh = s
]
,

where the expectation is with respect to policy π and tran-
sition function p, that is, ah′ ∼ πh′(·|sh′) and sh′+1 ∼
ph′(·|sh′ , ah′). The Q-function is defined by Qπ

h(s, a; ℓ) =

E
[∑H

h′=h ℓh′(sh′ , ah′)|π, sh = s, ah = a
]
. The occupancy

measure µπ
h(s, a) = Pr[sh = s, ah = a|π, s1 = sinit] is

the distribution that policy π induces over state-action pairs
in step h, and we denote µπ

h(s) =
∑

a∈A µπ
h(s, a).

Learning protocol and Feedback The learner interacts
with the environment for K episodes. At the beginning of
episode k, it picks a policy πk, and starts in an initial state
sk1 = sinit. In each time h ∈ [H], it observes the current
state skh, draws an action from the policy akh ∼ πk

h(·|skh)
and transitions to the next state skh+1 ∼ ph(·|skh, akh). There
are three types of loss feedback that are common in the
literature:

• In full-information feedback, at the end of episode k the
agent observes the full cost function ℓk ∈ [0, 1]HSA.

• Under bandit feedback (a.k.a semi-bandit), the agent
observes the loss function over the agent’s trajectory,
{ℓkh(skh, akh)}Hh=1.

• Under aggregate bandit feedback (a.k.a full-bandit),
the agent observes only the entire episode loss, Lk

1:H =∑H
h=1 ℓ

k
h(s

k
h, a

k
h).

In all three settings, the trajectory {skh, akh}Hh=1 is assumed
to be fully observed. In this work, we assume aggregate
bandit feedback, which is the least informative among the
three above.

The goal of the learner is to minimize the regret, defined
as the difference between the learner’s cumulative expected
cost and the best fixed policy in hindsight:

RK =

K∑
k=1

V πk

1 (sinit; ℓ
k)−

K∑
k=1

V π⋆

1 (sinit; ℓ
k),

where π⋆ = argminπ
∑K

k=1 V
π
1 (sinit; ℓ

k) is the best fixed
policy in hindsight.

Value difference lemma. The analysis of policy optimiza-
tion algorithms is often built upon a fundamental regret
decomposition that follows the following lemma:
Lemma 2.1 (Value Difference Lemma (Kakade & Langford,
2002; Even-Dar et al., 2009)). For any loss function ℓ and
any policies π and π′,

V π
1 (sinit; ℓ)− V π′

1 (sinit; ℓ)

=
∑
h,s

µπ′

h (s) ⟨πh(· | s)− π′
h(· | s), Qπ

h(s, ·; ℓ)⟩ . (1)
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where ⟨·, ·⟩ is the inner product.

As a direct consequence we can break the regret as,

RK =
∑
h,s

µπ⋆

h (s)

K∑
k=1

⟨πk
h(· | s)− π⋆

h(· | s), Qk
h(s, ·)⟩,

where, for each h and s, the internal sum over k can be seen
as regret of a Multi-armed bandit problem with respect to
the loss vectors Qk

h(s, ·).

Additional notations. Episode indices appear as super-
scripts and in-episode steps as subscripts. The notations Õ(·)
and ≲ hide poly-logarithmic factors including log(K/δ) for
confidence parameter δ. [n] = {1, 2, . . . , n}. The indica-
tor of event E is I{E} and we denote Ikh(s, a) = I{skh =
s, akh = s}. We use the notations V k

h (s), Qk
h(s, a), µ

k
h(s, a)

when the policy and cost are πk and ℓk, respectively. The
expectation conditioned on the policy πk is denoted by Ek.

3. The U -function
Policy Optimization algorithms build upon the Value differ-
ence lemma, but since the Q-function is unknown (due to the
bandit feedback), one would need to estimate it. The state-
of-the-art PO algorithm for semi-bandit case (Luo et al.,
2021) estimates the Q-function via importance sampling:

Q̂π
h(s, a; ℓ) =

I{sh = s, ah = s}Lh:H

µπ
h(s, a)

where Lh:H =
∑H

h′=h ℓh′(sh′ , ah′) is the realized loss-to-
go from time h. To be more precise, (Luo et al., 2021) add
a small bias at the denominator to better control its variance
and use an upper confidence bound of µπ

h(s, a) whenever
the dynamics is unknown. Indeed Q̂π

h(s, a; ℓ) is an unbiased
estimate of Qπ

h(s, a; ℓ). Note that with aggregate bandit
feedback Lh:H cannot be computed and it becomes unclear
how to directly estimate the Q-function. For this reason
we introduce a new quantity which we call the U -function.
While the Qπ

h(s, a; ℓ) is the expected cost-to-go from time
h given that we visit state s perform action a at that time;
the U -function is the expected cost on the entire trajectory
given that we visit s and perform a at time h. That is,

Uπ
h (s, a; ℓ) := E

[
H∑

h′=1

ℓh′(sh′ , ah′)
∣∣∣π, sh = s, ah = a

]
.

The following lemma shows that the difference Uπ
h (s, a)−

Qπ
h(s, a) does not depend on a.

Lemma 3.1. For any Markovian policy π, loss function ℓ
and (h, s, a) ∈ [H]×A× S,

Uπ
h (s, a; ℓ)−Qπ

h(s, a; ℓ) = Wπ
h (s; ℓ)

where Wπ
h (s; ℓ) := E[

∑h−1
h′=1 ℓh′(sh′ , ah′)|π, sh = s].

Proof. Due to the Markov property and the fact that π is a
Markovian policy, the trajectory up to time h− 1 does not
depend on the action taken at time h. Thus,

Uπ
h (s, a; ℓ)−Qπ

h(s, a; ℓ)

= E

[
h−1∑
h′=1

ℓh′(sh′ , ah′)
∣∣∣π, sh = s, ah = a

]

= E

[
h−1∑
h′=1

ℓh′(sh′ , ah′)
∣∣∣π, sh = s

]
= Wπ

h (s; ℓ).

As a corollary of Lemma 3.1 we obtain the Value Difference
Lemma with respect to the U -function.

Corollary 3.2. For any loss function ℓ and any policies π
and π′,

V π
1 (sinit; ℓ)− V π′

1 (sinit; ℓ)

=
∑
h,s

µπ′

h (s) ⟨πh(· | s)− π′
h(· | s), Uπ

h (s, ·; ℓ)⟩ .

Proof. For each h and s,
∑

a πh(a | s) =
∑

a π
′
h(a | s) =

1. Thus,

⟨πh(· | s)− π′
h(· | s), Uπ

h (s, ·; ℓ)−Qπ
h(s, ·; ℓ)⟩

=
∑
a∈A

(πh(a | s)− π′
h(a | s))Wπ

h (s; ℓ) = 0

Adding the above for each h and s in the sum on the right-
hand side of Equation (1) completes the proof.

As in the Q-function case, a direct consequence is that we
can break the regret as,

RK =
∑
h,s

µπ⋆

h (s)

K∑
k=1

⟨πk
h(· | s)− π⋆

h(· | s), Uk
h (s, ·)⟩

(2)

where similarly to other notations, we slightly abuse nota-
tion and write Uk

h (s, a) = Uπk

h (s, a; ℓk).

In the context of aggregate bandit feedback, the U -function
is much more useful as it can be estimated using the loss
of the entire trajectory. In particular, the following is an
unbiased estimator of Uπ

h (s, a; ℓ):

Ûπ
h (s, a; ℓ) =

I{sh = s, ah = s}L1:H

µπ
h(s, a)

where L1:H =
∑H

h=1 ℓh(sh, ah) is the aggregated feedback
of the trajectory. Later in the algorithms, we will use an
optimistic variant of this estimator.
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4. Known Dynamics
Our algorithm is based on the regret decomposition in Equa-
tion (2). Each internal sum can be seen as regret of a bandit
problem with loss vectors Uk

h (s, ·). Thus, we run a Multi-
plicative Weight Update with respect to an estimate of the
U -function that uses only the aggregated trajectory loss:
πk+1
h (· | s) ∝ exp(η(Ûk

h (s, ·) − Bk
h(s, ·))). Here η is a

learning rate, Ûk is the estimate of the U -function and Bk

is some bonus function that we’ll define later. The estimate
of the U -function is defined by,

Ûk
h (s, a) =

Ikh(s, a)
µk
h(s, a) + γ

Lk
1:H . (3)

where γ = Θ(1/
√
K) used to reduce the variance of the

estimator. We note that in the known dynamics case µk
h(s, a)

can be easily computed using dynamic programming.

Note that the regret decomposition in Equation (2) is av-
eraged with respect to the state occupancy of π⋆, while
the second moment of the estimator is roughly scaled in-
versely with the state occupancy of πk. In order to con-
trol this distribution mismatch, we reduce from our U -
estimate a bonus term Bk

h(s, a) similar to Luo et al. (2021).
Bk

h(s, a) is essentially a Q-function with respect to a known
loss function bk. In the known dynamics case we set
bkh(s) =

∑
a∈A

3γHπk
h(a|s)

µk
h(s)π

k
h(a|s)+γ

, where the reason for this
particular choice will become clearer later in the analysis.
Bk

h(s, a) is computed using standard Bellman equations
(e.g., as in Lancewicki et al. (2023)), which is simpler and
more intuitive than the dilated version of Luo et al. (2021).

Theorem 4.1. Under known dynamics, running Algorithm 1
with η = (H

√
SAK +H2

√
K)−1 and γ = 2ηH , guaran-

tees with probability 1− δ,

RK ≤ Õ(H2
√
SAK +H3

√
K).

If SA ≥ H2 (which is typically the case since for any prac-
tical application S ≫ H), the first term dominates and our
bound is optimal up to logarithmic terms. A straightfor-
ward reduction of our problem to linear bandits that uses the
efficient algorithm of Hazan & Karnin (2016) guarantees
expected regret of Õ(H2SA

√
K). Our algorithm improves

that by a factor of
√
SA and guarantees regret with high

probability rather than only in expectation. In addition, our
algorithm is more computationally efficient since it has a
closed form update as opposed to the reduction that requires
solving a convex optimization problem in each iteration.

Before we outline the proof of Theorem 4.1, let us first show
that Ûk

h (s, a) is a nearly unbiased estimator of Uk
h (s, a).

Algorithm 1 Policy Optimization with Aggregated Bandit
Feedback and Known Transition Function

Input: state space S , action space A, horizon H , learning
rate η > 0, exploration parameter γ > 0, confidence
parameter δ > 0.
Initialization: Set π1

h(a | s) = 1/A for every (h, s, a) ∈
[H]× S ×A.
for k = 1, 2, . . . ,K do

Play episode k with policy πk and observe aggregated
bandit feedback Lk

1:H =
∑H

h=1 ℓ
k
h(s

k
h, a

k
h).

Ûk
h (s, a) =

Ikh(s,a)
µk
h(s,a)+γ

Lk
1:H

# Bonus Computation
Set Bk

H+1(s, a) = 0 for every (s, a) ∈ S ×A.
for h = H,H − 1, . . . , 1 do

for (s, a) ∈ S ×A do
bkh(s) =

∑
a∈A

3γHπk
h(a|s)

µk
h(s)π

k
h(a|s)+γ

Bk
h(s, a) = bkh(s)
+
∑

s′,a′ ph(s
′ | s, a)πk

h+1(a
′ | s′)Bk

h+1(s
′, a′)

end for
end for
# Policy Improvement
For every (s, a, h) ∈ S ×A× [H]:

πk+1
h (a | s) = πk

h(a | s)e−η(Ûk
h (s,a)−Bk

h(s,a))∑
a′ πk

h(a
′ | s)e−η(Ûk

h (s,a′)−Bk
h(s,a

′))
.

end for

Lemma 4.2. Under Algorithm 1, for any h, s, a and k,

Ek

[
Ûk
h (s, a)

]
=

µk
h(s, a)

µk
h(s, a) + γ

Uk
h (s, a)

Proof. By definition Pr(Ikh(s, a) = 1 | πk) = µk
h(s, a). Us-

ing the law of total expectation and the fact that Ûk
h (s, a) =

0 whenever Ikh(s, a) = 0 we get,

Ek

[
Ûk
h (s, a)

]
= Ek

[
Ûk
h (s, a) | Ikh(s, a) = 1

]
· µk

h(s, a)

+ Ek

[
Ûk
h (s, a) | Ikh(s, a) = 0

]
· (1− µk

h(s, a))

= Ek

[∑H
h′=1 ℓ

k
h′(skh′ , akh′)

µk
h(s, a) + γ

| Ikh(s, a) = 1

]
· µk

h(s, a)

=
µk
h(s, a)

µk
h(s, a) + γ

Ek

[
H∑

h′=h

ℓkh′(skh′ , akh′)
∣∣∣ skh = s, akh = a

]

=
µk
h(s, a)

µk
h(s, a) + γ

Uk
h (s, a).

Given our novel regret decomposition in Equation (2) and
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the lemma above, the rest of the analysis follows similar
steps as those in (Luo et al., 2021).

Proof sketch of Theorem 4.1. Using Equation (2), we can
break the regret of the algorithm as follows:∑
k,h,s

µ⋆
h(s)

〈
πk
h(· | s), Uk

h (s, ·)− Ûk
h (s, ·)

〉
︸ ︷︷ ︸

BIAS1

+
∑
k,h,s

µ⋆
h(s)

〈
π⋆
h(· | s), Ûk

h (s, ·)− Uk
h (s, ·)

〉
︸ ︷︷ ︸

BIAS2

+
∑
k,h,s

µ⋆
h(s)

〈
πk
h(· | s)− π⋆

h(· | s), Ûk
h (s, ·)−Bk

h(s, ·)
〉

︸ ︷︷ ︸
REG

+
∑
k,h,s

µ⋆
h(s)

〈
πk
h(· | s)− π⋆

h(· | s), Bk
h(s, ·)

〉
︸ ︷︷ ︸

BONUS

, (4)

From Lemma 4.2 we immediately get that Ek[BIAS2] ≤ 0.
Since ∥Ûk

h∥∞ ≤ H/γ we can also bound with high prob-
ability BIAS2 ≤ Õ(H2/γ) using standard concentration
bounds (see Lemma B.4). Again, using Lemma 4.2 the
expectation of BIAS1 equals the following,

K∑
k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)

(
Uk
h (s, a)− Ek

[
Ûk
h (s, a)

])

=

K∑
k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)Uk

h (s, a)

(
1− µk

h(s, a)

µk
h(s, a) + γ

)

=

K∑
k=1

∑
h,s,a

µ⋆
h(s)U

k
h (s, a)

γπk
h(a | s)

µk
h(s, a) + γ

Bounding Uk
h (s, a) by H we get that Ek[BIAS1] ≤

1
3

∑K
k=1

∑
h,s µ

⋆
h(s)b

k
h(s). Using a form of Freedman’s

inequality that takes into account the second moment of
the estimator, we can also bound BIAS1 − Ek[BIAS1] ≤
1
3

∑K
k=1

∑
h,s µ

⋆
h(s)b

k
h(s)+ Õ(H2/γ). In total we get that,

BIAS1 ≤ 2

3

K∑
k=1

∑
h,s

µ⋆
h(s)b

k
h(s)︸ ︷︷ ︸

(i)

+Õ(H2/γ)

Term (i) is challenging due to the distribution mismatch be-
tween µ⋆

h(s) and µk
h(s) in the denominator of bkh(s). How-

ever, we will later see that the BONUS term will cancel it
out, essentially allowing us to replace µ⋆

h(s) with µk
h(s).

Before we turn to the BONUS term, let’s consider REG.
Using the standard entropy-regularized OMD guarantee

(Lemma E.5), REG can be bounded by,

H lnA

η
+ 2η

∑
k,h,s,a

µ⋆
h(s)π

k
h(a | s)

(
Ûk
h (s, a)−Bk

h(s, a)
)2

≤ Õ

(
H

η
+ ηH5K

)
+ 2η

∑
k,h,s,a

µ⋆
h(s)π

k
h(a | s)Ûk

h (s, a)
2

In the inequality we’ve used the fact that bkh(s) ≤ 3H ,
and thus, Bk

h(s, a) ≤ 3H2 since it is a Q-function with
respect to bkh(s). Once again, the second sum here may
not be bounded due to the mismatch between µ⋆

h(s) and
µk
h(s) in the denominator of Ûk

h (s, a). However, note that
Ek[Û

k
h (s, a)

2] ≤ H2/(µk
h(s, a) + γ) and using standard

concentration inequalities we can bound the the last term in
the last display by,

2ηH2
∑

k,h,s,a

µ⋆
h(s)π

k
h(a | s)

µk
h(s, a) + γ

+ Õ

(
η
H3

γ2

)

=
1

3

∑
k,h,s

µ⋆
h(s)b

k
h(s)︸ ︷︷ ︸

(ii)

+Õ

(
H2

γ

)
,

where we’ve set η = γ/(2H) as in the statement of the theo-
rem. Finally, recall that Bk

h is the Q-function with respect to
bk as losses. Applying the standard value difference lemma
(Lemma 2.1) we have,

BONUS =
∑
k

V πk

1 (sinit; b
k)− V π⋆

(sinit; b
k)

=
∑
k,h,s

µk
h(s)b

k
h(s)−

∑
k,h,s

µ⋆
h(s)b

k
h(s).

The negative term exactly cancels out (i) and (ii) from
BIAS1 and REG. The positive term is bounded by,

3γH

K∑
k=1

∑
h,s,a

µk
h(s)π

k
h(a | s)

µk
h(s)π

k
h(a | s) + γ

≤ 3γH2SAK.

Summing all the terms and setting η and γ as in the state-
ment of the theorem completes the proof.

Computational complexity of Algorithm 1. The state
occupancy measure can be computed using the following
recursive formula:

µπ
h+1(s

′) =
∑
s,a

µπ
h(s)πh(a | s)P (s′ | s, a),

so that the full occupancy measure can be computed in
O(HS2A). The bonus Bk is calculated via backward dy-
namic programming also in O(HS2A), and the policy com-
putation is done in O(HSA). Thus, the total complexity
per iteration is O(HS2A).
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5. Unknown Dynamics
The adaptation of our algorithm to the unknown dynamics
case is relatively straightforward. Since we do not know
the transition function, we cannot compute µk and can’t
perform the Bellman backup in the computation of Bk.
As standard in the literature, we employ Bernstein-style
confidence sets for the transition function (e.g. Shani et al.
(2020); Luo et al. (2021); Jin et al. (2020)). Specifically, let
Pk = {Pk

h(s, a)}s,a,h such that p′h(· | s, a) ∈ Pk
h(s, a) if

and only if p′h(· | s, a) ∈ ∆S and for every s′ ∈ S:

|p′h(s′ | s, a)− p̄kh(s
′ | s, a)|

≤ 4

√
p̄kh(s

′ | s, a) log 10HSAK
δ

nk
h(s, a) ∨ 1

+
10 log 10HSAK

δ

nk
h(s, a) ∨ 1

,

where nk
h(s, a, s

′) is the number of times we visited s, a at
time h and transitioned to s′, nk

h(s, a) =
∑

s′ n
k
h(s, a, s

′)
and p̄kh(s

′ | s, a) = nk
h(s, a, s

′)/nk
h(s, a) is the empirical

transition probability. Based on Pk, we replace µk
h(s) in

the definition of Ûk
h (s, a) with an upper confidence bound

µk
h(s) := maxp′∈Pk µπk,p′

h (s) (see Algorithm 3). Here, the

notation µπk,p′

h (s) represents the occupancy measure with
respect to the transition p′ (instead of p). The local bonus
bkh(s) is adapted correspondingly and is exactly as in Luo
et al. (2021) - see definition in Algorithm 2. Finally, the
bonus Bk is estimated optimistically based on the transi-
tion p′ ∈ Pk that maximizes it, as described in the update
computation of B̂k in Algorithm 2.

The regret guarantee of our algorithm is established in the
following theorem.

Theorem 5.1. Under unknown dynamics, running Algo-
rithm 2 with η = (H

√
SAK +H2

√
K)−1 and γ = 2ηH ,

guarantees with probability 1− δ,

RK ≤ Õ(H3S
√
AK +H4S3A).

The second term of the regret is typically of low order for
sufficiently large K. The above regret improves upon Cohen
et al. (2021b) by a factor of H2S5A2 and provides a high-
probability regret bound instead of an expected one. Cohen
et al. (2021b) uses a reduction to distorted linear bandits
and requires solving a convex optimization problem in each
iteration. In contrast, our algorithm benefits from a more
computationally efficient, closed-form update. Our bound
also improves upon Efroni et al. (2021) and Cassel et al.
(2024) for the case of tabular MDPs by a factor of SA

√
H

even though they consider stochastic i.i.d losses as opposed
to adversarial losses in our setting. The gap from the lower
bound is a factor H

√
S, but it is worth noting that even in the

semi-bandit case, the best-known regret is H2S
√
AK (Jin

et al., 2020) which is achieved by a less efficient occupancy-
measure-based algorithm. In fact, even though we consider

Algorithm 2 Policy Optimization with Aggregated Bandit
Feedback and Unknown Transition Function

Input: state space S , action space A, horizon H , learning
rate η > 0, exploration parameter γ > 0, confidence
parameter δ > 0
Initialization: Set π1

h(a | s) = 1/A for every (h, s, a)
for k = 1, 2, . . . ,K do

Play episode k with policy πk and observe aggregated
bandit feedback Lk

1:H =
∑H

h=1 ℓ
k
h(s

k
h, a

k
h)

µk
h(s) = maxp′∈Pk µπk,p′

h (s)

µk
h
(s) = minp′∈Pk µπk,p′

h (s)

Ûk
h (s, a) =

Lk
1:H

µk
h(s,a)+γ

Ikh(s, a)
# Bonus Computation
Set B̂k

H+1(s, a) = 0 for every (s, a) ∈ S ×A.
for h = H,H − 1, . . . , 1 do

for (s, a) ∈ S ×A do
b̃kh(s) =

∑
a∈A

3γHπk
h(a|s)

µk
h(s)π

k
h(a|s)+γ

b̄kh(s) =
∑

a∈A
Hπk

h(a|s)(µ
k
h(s,a)−µk

h
(s,a))

µk
h(s)π

k
h(a|s)+γ

bkh(s) = b̃kh(s) + b̄kh(s)

B̂k
h(s, a) = bkh(s)

+ max
p′∈Pk

h(s,a)

∑
s′∈S,a′∈A

p′h(s
′ | s, a)πk

h+1(a
′ | s′)

· B̂k
h+1(s

′, a′)

end for
end for
# Policy Improvement
For every (s, a, h) ∈ S ×A× [H] by:

πk+1
h (a | s) = πk

h(a | s)e−η(Ûk
h (s,a)−B̂k

h(s,a))∑
a′ πk

h(a
′ | s)e−η(Ûk

h (s,a′)−B̂k
h(s,a

′))
.

end for

less informative feedback, we match the state-of-the-art
regret for PO with semi-bandit feedback (Luo et al., 2021).

The proof of Theorem 5.1 follows similar steps as in the
known dynamics case, but includes additional steps to con-
trol the transition estimation error. These utilize standard
techniques that we highlight in the following proof sketch.

Proof sketch. We utilize the same regret decomposition
as in Equation (4) but replace Bk with B̂k in the Reg
and Bonus terms. The estimator Ûk remains optimistic
(i.e., in expectation it is smaller than Uk) since with high
probability µk

h(s) ≥ µk
h(s) for any h, s, and k. Thus,

BIAS2 ≤ Õ(H2/γ) with high probability in a similar way
to the known dynamics case. In Bias1, on the other hand,

7
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using µk
h(s) instead of µk

h(s) introduces additional bias of
order of,

∑
k,h,s,a

µ⋆
h(s)π

k
h(a | s)Hµk

h(s, a)− µk
h(s, a)

µk
h(s, a) + γ

≤
∑

k,h,s,a

µ⋆
h(s)π

k
h(a | s)H

µk
h(s, a)− µk

h
(s, a)

µk
h(s, a) + γ

,

where the inequality follows from the fact that
µk
h
(s, a) ≤ µk

h(s, a) w.h.p. Note that this is exactly∑
k,h,s,a µ

⋆
h(s)b̄

k
h(s). This term is in addition to the terms

we already had in Bias1 in the known dynamics case. In
total we have,

BIAS1 ≤ 2

3

∑
k,h,s

µ⋆
h(s)b̃

k
h(s)+

∑
k,h,s

µ⋆
h(s)b̄

k
h(s)+Õ

(
H2

γ

)

Reg is bounded in a similar way to the known dynamics
case. Given that the estimator is optimistic and exhibits
lower variance when using the upper confidence bound on
the occupancy measure, we get that Reg is bounded by,

H lnA

η
+ 16ηH5K +

1

3

∑
k,h,s

µ⋆
h(s)b̃

k
h(s) + Õ

(
H2

γ

)
.

Finally, note B̂k is not an exact Q-function since we
don’t know the actual transition function. Thus, we can
not directly use the value difference lemma to show that
Bonus =

∑
k,h,s µ

k
h(s)b

k
h(s)−

∑
k,h,s µ

⋆
h(s)b

k
h(s). How-

ever, using the fact that we update B̂ with a transition func-
tion in the confidence set that maximizes it, we are able to
show that w.h.p,

BONUS ≤
∑
k,h,s

µk
h(s)b

k
h(s)−

∑
k,h,s

µ⋆
h(s)b

k
h(s).

Once again, the negative term above cancels the terms
that depend on bk in Bias1 and Reg. Recall that
bkh(s) = b̃kh(s) + b̄kh(s). Exactly as in the known dynam-
ics case,

∑
k,h,s µ

k
h(s)b̃

k
h(s) ≤ O(γH2SAK). The term∑

k,h,s µ
k
h(s)b̄

k
h(s) equals to,

H
∑
k,h,s

µk
h(s, a)

µk
h(s, a)− µk

h
(s, a)

µk
h(s, a) + γ

≤ H
∑
k,h,s

|µk
h(s, a)− µk

h
(s, a)|.

The last is a standard transition estimation error and is
bounded by Õ(H3S

√
AK + H3S3A) (Jin et al., 2020).

Summing all the terms and setting η and γ as in the state-
ment of the theorem completes the proof.

Computational complexity of Algorithm 2. The up-
per/lower confidence occupancy measure computation can
be done using (Jin et al., 2020, Algorithm 3), with a com-
plexity of O(HS2A) per state. The same can be done for
the computation of the bonus B̂k. The policy update is
done in O(HSA). Thus, the total complexity per iteration
is O(HS3A).

6. Lower Bound
Our lower bound uses a lower bound for the multi-task
bandit problem (see for example Lattimore & Szepesvári
(2020)). In the multitask bandit problem, the learner faces
simultaneously H instances of the A-armed bandit prob-
lem. At each round k ∈ [K], the learner selects H ac-
tions, one for each bandit problem, and observes the sum of
the losses associated with these H actions. This scenario
can be seen as analogous to MDPs with a single state (i.e.,
S = 1) and aggregate bandit feedback. This is due to the
fact that whenever we have only a single state no informa-
tion is gained within the episode. (Recall that the losses are
horizon-dependent, so we have ℓh(s0, a), for each action a,
time h ∈ [H] and using the single state s0.)
Lemma 6.1 (Theorem 1 in Cohen et al. (2017)). Assume
that A ≥ 2. Any learning algorithm for the multi-task
bandit problem must incur at least Ω̃(H2

√
AK) expected

regret in the worst case.

With that in hand, we obtain the following for online MDPs
with aggregate bandit feedback.
Theorem 6.2. Assume that H,S,A ≥ 2 and K ≥ 2S. Any
learning algorithm for the online MDPs with known dynam-
ics and aggregate bandit feedback problem must incur at
least Ω(H2

√
SAK) expected regret in the worst case.

The above lower bound shows that our regret upper bound
for the known dynamics case is tight up to poly-logarithmic
factors whenever

√
SA ≥ H . For unknown dynamics,

clearly the same lower bound holds, and we have a multi-
plicative gap of H

√
S. We note that determining the exact

optimal bound for the unknown dynamics case remains an
open problem, both with aggregate bandit feedback as well
as with the well-studied semi-bandit feedback.

Due to space limitations, the proof is deferred to Ap-
pendix D. At a high level, the proof is constructed as follows:
Consider an MDP where in the first step of each episode, the
agent transitions to each state with an equal probability of
1/S, regardless of the chosen action. From the second step
onward, the agent remains in the same state for the remain-
der of the episode, wherein a hard multi-task bandit problem
is encoded in each state. Roughly speaking, each state is
visited approximately K/S times. Using Lemma 6.1, the re-
gret from visits to each state is approximately H2

√
AK/S.

Summing the regret across all states gives a lower bound of

8
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H2
√
SAK.

7. Discussion and Future Work
In this paper, we introduced the concept of U -functions,
which allows us to establish the first regret bounds for online
MDPs with aggregate bandit feedback using PO algorithms.
One of the advantages of the PO framework is its natu-
ral extension to function approximation (Luo et al., 2021;
Sherman et al., 2023; Dai et al., 2023; Liu et al., 2024).

It would be interesting to see whether the U -function con-
cept could be useful in achieving regret bounds with aggre-
gate bandit feedback for environments with infinitely many
states under a function approximation assumption. We note
that the main challenge in extending our results to linear
MDPs, for example, is that the U -function is not linear un-
der this assumption. Still, it is possible that in such settings,
the U -function would have certain properties that would
allow achieving sub-linear regret.

Moreover, it would be interesting to study the incorporation
of the U -function in deep reinforcement learning algorithms
and explore whether it can provide practical benefits or im-
proved performance in large-scale, real-world RL problems
with aggregate bandit feedback.
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A. Summery of notations
For convenience, the table below summarizes most of the notation used throughout the paper.

H Horizon length of each episode
K Total number of episodes
S Number of states in the MDP
A Number of actions in the MDP
p Transition function of the MDP
ℓk Loss function in episode k
RK Cumulative regret over K episodes

V π
h (s; ℓ) Value function at state s and time h under policy π and loss function ℓ

V k
h (s) Value under policy πk and loss function ℓk. I.e., V k

h (s) = V πk

h (s; ℓk)
Qπ

h(s, a; ℓ) Q-function at state s, action a, and time h under policy π and loss function ℓ

Qk
h(s, a) Q-function under policy πk and loss function ℓk. I.e., Qk

h(s, a) = Qπk

h (s, a; ℓk)
Uπ
h (s, a; ℓ) Expected total loss of the episode, conditioned on taking action a in state s at time h under policy π

Uk
h (s, a) Conditional expected total loss with respect to πk and ℓk. I.e., Uk

h (s, a) = Uπk

h (s, a; ℓk)
Wπ

h (s; ℓ) Expected cumulative loss up to time h− 1, conditioned on reaching state s at time h under policy π

W k
h (s) Conditional expected loss with respect to πk and ℓk. I.e., W k

h (s) = Wπk

h (s; ℓk)
µπ
h(s, a) Occupancy measure: probability of being in state s and taking action a at time h under policy π

µk
h(s, a) Occupancy measure under πk: µk

h(s, a) = µπk

h (s, a)

µπ,p′

h (s) Occupancy measure with respect to a transition function p′

Ek[·] Expectation condition on the policy πk: Ek[·] = E[· | πk]
Ikh(s, a) The indicator for visiting s and taking a at time h in episode k: Ikh(s, a) = I{skh = s, akh = a}
Ûk
h (s, a) Estimator of Uk

h (s, a) - See Algorithms 1 and 2
bkh(s) Intermediate bonus function - See Algorithms 1 and 2

Bk
h(s, a) Bonus function, defined as the Q-function with respect to bk - See Algorithm 1

B̂k
h(s, a) Estimator of Bk

h(s, a) - See Algorithm 2
Pk Confidence set of transition functions at episode k

µk
h(s, a) Upper confidence bound on the occupancy measure - See Algorithm 2

µk
h
(s, a) Lower confidence bound on the occupancy measure - See Algorithm 2
ι A logarithmic factor of log HSAK

δ
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B. Known Dynamics

Theorem B.1 (Restatement of Theorem 4.1). Under known dynamics, running Algorithm 1 with η =
√
ι

H
√
SAK+H2

√
K

and

γ = 2ηH for ι = log HSAK
δ , guarantees with probability 1− δ,

RK ≲ H2
√
SAKι+H3

√
Kι.

Proof. Using Equation (2), we can break the regret of the algorithm as,

RK =

K∑
k=1

∑
h,s

µ⋆
h(s)

〈
πk
h(· | s)− π⋆

h(· | s), Uk
h (s, ·)

〉
=

K∑
k=1

∑
h,s

µ⋆
h(s)

〈
πk
h(· | s), Uk

h (s, ·)− Ûk
h (s, ·)

〉
︸ ︷︷ ︸

BIAS1

+

K∑
k=1

∑
h,s

µ⋆
h(s)

〈
π⋆
h(· | s), Ûk

h (s, ·)− Uk
h (s, ·)

〉
︸ ︷︷ ︸

BIAS2

+

K∑
k=1

∑
h,s

µ⋆
h(s)

〈
πk
h(· | s)− π⋆

h(· | s), Ûk
h (s, ·)−Bk

h(s, ·)
〉

︸ ︷︷ ︸
REG

+

K∑
k=1

∑
h,s

µ⋆
h(s)

〈
πk
h(· | s)− π⋆

h(· | s), Bk
h(s, ·)

〉
︸ ︷︷ ︸

BONUS

,

Due to the optimism of the estimator BIAS2 ≤ Õ(H2/γ) under the good event G3 which holds with high probability (see
Lemma B.4). In Lemmas B.6 to B.8 we bound BIAS1, REG and BONUS. Overall we get that,

RK ≲
H lnA

η
+ ηH5K + γH2SAK +

H2ι

γ

Plugging η and γ completes the proof.

B.1. Good event

We define the following good event G =
⋂3

i=1 Gi which holds with high probability (Lemma B.5):

G1 =


K∑

k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)

(
Ek

[
Ûk
h (s, a)

]
− Ûk

h (s, a)
)
≤ 1

3

K∑
k=1

∑
h,s

µ⋆
h(s)b

k
h(s) +

H2 log 6
δ

γ


G2 =


K∑

k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)

µk
h(s, a) + γ

(
I{skh = s, akh = a}

µk
h(s, a) + γ

− 1

)
≤

H ln 6H
δ

2γ2


G3 =


K∑

k=1

∑
h,s

µ⋆
h(s)

〈
π⋆
h(· | s), Ûk

h (s, ·)− Uk
h (s, ·)

〉
≤ H2

2γ
ln

6H

δ


Under the good event the regret will be deterministically bounded.

Lemma B.2 (Event G1). With probability 1− δ,

K∑
k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)

(
Ek

[
Ûk
h (s, a)

]
− Ûk

h (s, a)
)
≤ 1

3

K∑
k=1

∑
h,s

µ⋆
h(s)b

k
h(s) +

H2 log 1
δ

γ

Proof. Let Yk =
∑

h,s µ
⋆
h(s)

〈
πk
h(· | s), Ûk

h (s, ·)
〉

. Note that Ek[Yk]− Yk is a martingale difference sequence. To bound∑
k Ek[Yk]−

∑
k Yk we’ll use a form of Freedman’s Inequality (Lemma E.2). For that, we need to bound the absolute value

12
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of the difference and its variance. For the absolute value of the difference we have |Ek[Yk]−Yk| ≤ max{Ek[Yk], Yk} ≤ H2

γ .
For the variance, note that it is bounded by the second moment of Yt: Ek[(Ek[Yk]− Yk)

2] ≤ Ek[Y
2
k ]. We further bound

Ek[Y
2
k ] as follows:

Ek[Y
2
k ] = Ek


∑

h,s,a

µ⋆
h(s)π

k
h(a | s)Ûk

h (s, a)

2


≤ Ek

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)

(
Ûk
h (s, a)

)2 (Cauchy–Schwarz inequality)

= HEk

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)

(
Ûk
h (s, a)

)2
= HEk

∑
h,s,a

µ⋆
h(s)π

k
h(a | s) (Lk

1:H)2

(µk
h(s, a) + γ)2

Ikh(s, a)


≤ H3Ek

∑
h,s,a

µ⋆
h(s)π

k
h(a | s) Ikh(s, a)

(µk
h(s, a) + γ)2

 (Lk
1:H ≤ H)

= H3
∑
h,s,a

µ⋆
h(s)π

k
h(a | s) µk

h(s, a)

(µk
h(s, a) + γ)2

(Ek[Ikh(s, a)] = µk
h(s, a))

≤ H3
∑
h,s,a

µ⋆
h(s)

πk
h(a | s)

µk
h(s, a) + γ

.

Using Lemma E.2 with probability 1− δ,

∑
k

Ek[Yk]−
∑
k

Yk ≤ α
∑
k

Ek[Y
2
k ] +

log 1
δ

α

where α ∈ (0, 1/R] for R such that |Ek[Yk]− Yk| ≤ R for any k. In our case, |Ek[Yk]− Yk| ≤ H2

γ . And so,

∑
k

Ek[Yk]−
∑
k

Yk ≤ 1

3

K∑
k=1

∑
h,s

µ⋆
h(s)b

k
h(s) +

H2 log 1
δ

γ
.

Lemma B.3 (Event G2). With probability 1− δ,

∑
k,h,s,a

µ⋆
h(s)π

k
h(a | s)

µk
h(s, a) + γ

(
I{skh = s, akh = a}

µk
h(s, a) + γ

− 1

)
≤

H ln H
δ

2γ2

Proof. Follows directly from Lemma E.4 with Zk
h(s, a) = zkh(s, a) =

µ⋆
h(s)π

k
h(a|s)

µk
h(s,a)+γ

≤ 1
γ and µ̃k

h(s, a) = µk
h(s, a).

Lemma B.4 (Event G3). With probability 1− δ,

K∑
k=1

∑
h,s

µ⋆
h(s)

〈
π⋆
h(· | s), Ûk

h (s, ·)− Uk
h (s, ·)

〉
≤ H2

2γ
ln

H

δ

13
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Proof. By invoking Lemma E.4 with Zk
h(s, a) = µ⋆

h(s)π
k
h(a, s)[Ikh(s, a)Lk

1:H + (1− Ikh(s, a))Uk
h (s, a)] ≤ H , zkh(s, a) =

Ek[Z
k
h(s, a)] = µ⋆

h(s)π
k
h(a, s)U

k
h (s, a) and µ̃k

h(s, a) = µk
h(s, a), we get,

K∑
k=1

∑
h,s

µ⋆
h(s)

〈
π⋆
h(· | s), Ûk

h (s, ·)− Uk
h (s, ·)

〉

=

K∑
k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a, s)Ikh(s, a)Lk

1:H

µk
h(s, a) + γ

−
K∑

k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a, s)U

k
h (s, a) ≤

H2

2γ
ln

H

δ

Lemma B.5. Under Algorithm 1, the good event G =
⋂3

i=1 Gi holds with probability of at least 1− δ.

Proof. The proof directly follows from invoking Lemmas B.2 to B.4 with δ/3 and taking the union bound.

B.2. Bound on BIAS1

Lemma B.6. Under the good event G1,

BIAS1 ≤ 2

3

K∑
k=1

∑
h,s

µ⋆
h(s)b

k
h(s) +

H2 log 6
δ

γ
.

Let Yk =
∑

h,s µ
⋆
h(s)

〈
πk
h(· | s), Ûk

h (s, ·)
〉

BIAS1 =

K∑
k=1

∑
h,s

µ⋆
h(s)

〈
πk
h(· | s), Uk

h (s, ·)
〉
−
∑
k

Ek[Yk] +
∑
k

Ek[Yk]−
∑
k

Yk

Under the good event G1,
∑

k Ek[Yk]−
∑

k Yk ≤ 1
3

∑K
k=1

∑
h,s µ

⋆
h(s)b

k
h(s) +

H2 log 6
δ

γ . Using Lemma 4.2,

∑
h,s

µ⋆
h(s)

〈
πk
h(· | s), Uk

h (s, ·)
〉
− Ek[Yk] =

K∑
k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)

(
Uk
h (s, a)− Ek

[
Ûk
h (s, a)

])

=

K∑
k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)Uk

h (s, a)

(
1− µk

h(s, a)

µk
h(s, a) + γ

)

≤ H

K∑
k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)

(
1− µk

h(s, a)

µk
h(s, a) + γ

)
(Uk

h (s, a) ≤ H)

=

K∑
k=1

∑
h,s,a

µ⋆
h(s)

γHπk
h(a | s)

µk
h(s, a) + γ

=
1

3

K∑
k=1

∑
h,s

µ⋆
h(s)b

k
h(s).

B.3. Bound on REG

Lemma B.7. For η ≤ γ
2H , under the good G2,

REG ≤ H lnA

η
+ 9ηH5K +

1

3

∑
k,h,s

µ⋆
h(s)b

k
h(s) +O

(
H2ι

γ

)
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Proof. Using standard entropy regularized OMD guarantee (Lemma E.5),

REG ≤ H lnA

η
+ 2η

K∑
k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)

(
Ûk
h (s, a)−Bk

h(s, a)
)2

≤ H lnA

η
+ 2η

K∑
k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)Ûk

h (s, a)
2 + 9ηH5K,

where the second inequality is since bkh(s) ≤ 3H and thus Bk
h(s, a) ≤ 3H2. For the middle term,

2η
∑

k,h,s,a

µ⋆
h(s)π

k
h(a | s)Ûk

h (s, a)
2 ≤ 2η

∑
k,h,s,a

µ⋆
h(s)π

k
h(a | s)H

2I{skh = s, akh = a}
(µk

h(s, a) + γ)2
(Lk

1:H ≤ H)

≤ 2ηH2
∑

k,h,s,a

µ⋆
h(s)π

k
h(a | s)

µk
h(s, a) + γ

+O

(
η
H3ι

γ2

)
(Under event G2)

=
2η

3γ
H
∑
k,h,s

µ⋆
h(s)b

k
h(s) +O

(
η
H3ι

γ2

)

≤ 1

3

∑
k,h,s

µ⋆
h(s)b

k
h(s) +O

(
H2ι

γ

)
.

The last inequality is since η ≤ H
2γ as in the statement of the lemma.

B.4. Bound on BONUS

Lemma B.8. It holds that,
BONUS ≤ 3γH2SAK −

∑
k,h,s

µ⋆
h(s)b

k
h(s).

Proof. Recall that Bk
h is the Q-function of policy πk with respect to the cost function bk. Hence, by the value difference

difference lemma (Lemma 2.1),

BONUS =

K∑
k=1

∑
h,s

µ⋆
h(s)

〈
πk
h(· | s)− π⋆

h(· | s), Bk
h(s, ·)

〉
=
∑
k

V πk

1 (sinit; b
k)− V π⋆

(sinit; b
k)

=
∑
k,h,s

µk
h(s)b

k
h(s)−

∑
k,h,s

µ⋆
h(s)b

k
h(s).

For last,

K∑
k=1

∑
h,s

µk
h(s)b

k
h(s) = 3γH

K∑
k=1

∑
h,s,a

µk
h(s)π

k
h(a | s)

µk
h(s)π

k
h(a | s) + γ

≤ 3γH2SAK.
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C. Unknown Dynamics

Algorithm 3 Policy Optimization with Aggregated Bandit Feedback and Unknown Transition Function
(detailed version of Algorithm 2)

Input: state space S , action space A, horizon H , learning rate η > 0, exploration parameter γ > 0, confidence parameter
δ > 0.
Initialization: Set π1

h(a | s) = 1
A and visit counters n1

h(s, a, s
′) = 0, n1

h(s, a) = 0 for every (h, s, a, s′) ∈ [H]× S ×
A× S .
for k = 1, 2, . . . ,K do

Play episode k with policy πk and observe aggregated bandit feedback Lk =
∑H

h=1 ℓ
k
h(s

k
h, a

k
h).

Update visit counters for every (h, s, a, s′) ∈ [H]× S ×A× S:

nk
h(s, a, s

′) = nk−1
h (s, a, s′) + Ik−1

h (s, a, s′) ; nk
h(s, a) = nk−1

h (s, a) + Ik−1
h (s, a).

Compute empirical transition function p̄kh(s
′ | s, a) = nk

h(s,a,s
′)

max{nk
h(s,a),1}

and confidence set Pk = {Pk
h(s, a)}s,a,h such

that p′h(· | s, a) ∈ Pk
h(s, a) if and only if

∑
s′ p

′
h(s

′ | s, a) = 1 and for every s′ ∈ S:

|p′h(s′ | s, a)− p̄kh(s
′ | s, a)| ≤ 4

√
p̄kh(s

′ | s, a) log 10HSAK
δ

nk
h(s, a) ∨ 1

+
10 log 10HSAK

δ

nk
h(s, a) ∨ 1

.

Compute occupancy measures µk
h(s) = maxp′∈Pk µπk,p′

h (s) and µk
h
(s) = minp′∈Pk µπk,p′

h (s).
# Policy Evaluation
Ûk
h (s, a) =

Lk
1:H

µk
h(s,a)+γ

Ikh(s, a)
# Bonus computation
Set B̂k

H+1(s, a) = 0 for every (s, a) ∈ S ×A.
for h = H,H − 1, . . . , 1 do

for (s, a) ∈ S ×A do

b̃kh(s) =
∑

a∈A
3γHπk

h(a|s)
µk
h(s)π

k
h(a|s)+γ

; b̄kh(s) =
∑

a∈A
Hπk

h(a|s)(µ
k
h(s,a)−µk

h
(s,a))

µk
h(s)π

k
h(a|s)+γ

.

bkh(s) = b̃kh(s) + b̄kh(s).
Bk

h(s, a) = bkh(s) + maxp′∈Pk
h(s,a)

∑
s′∈S,a′∈A p′h(s

′ | s, a)πk
h+1(a

′ | s′)B̂k
h+1(s

′, a′).
end for

end for
# Policy Improvement
Define the policy πk+1 for every (s, a, h) ∈ S ×A× [H] by:

πk+1
h (a | s) =

πk
h(a | s) exp

(
−η(Ûk

h (s, a)−Bk
h(s, a))

)
∑

a′∈A πk
h(a

′ | s) exp
(
−η(Ûk

h (s, a
′)−Bk

h(s, a
′))
) .

end for

Theorem C.1 (Restatement of Theorem 5.1). Under unknown dynamics, running Algorithm 3 with η =
√
ι

H
√
SAK+H2

√
K

and γ = 2ηH , guarantees with probability 1− δ,

RK ≲ H3S
√
AKι+H4S3Aι2.
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Proof. Using Equation (2), we can break the regret of the algorithm as,

RK =

K∑
k=1

∑
h,s

µ⋆
h(s)

〈
πk
h(· | s)− π⋆

h(· | s), Uk
h (s, ·)

〉
=

K∑
k=1

∑
h,s

µ⋆
h(s)

〈
πk
h(· | s), Uk

h (s, ·)− Ûk
h (s, ·)

〉
︸ ︷︷ ︸

BIAS1

+

K∑
k=1

∑
h,s

µ⋆
h(s)

〈
π⋆
h(· | s), Ûk

h (s, a)− Uk
h (s, ·)

〉
︸ ︷︷ ︸

BIAS2

+

K∑
k=1

∑
h,s

µ⋆
h(s)

〈
πk
h(· | s)− π⋆

h(· | s), Ûk
h (s, ·)−Bk

h(s, ·)
〉

︸ ︷︷ ︸
REG

+

K∑
k=1

∑
h,s

µ⋆
h(s)

〈
πk
h(· | s)− π⋆

h(· | s), Bk
h(s, ·)

〉
︸ ︷︷ ︸

BONUS

,

Due to optimism of the estimator BIAS2 ≤ Õ(H2/γ) under the good event G3. In Lemmas C.7, C.8 and C.10 we bound
BIAS1, REG and BONUS. Overall we get that,

RK ≤ 2

3

K∑
k=1

∑
h,s

µ⋆
h(s)b̃

k
h(s) +

K∑
k=1

∑
h,s

µ⋆
h(s)b̄

k
h(s) +O

(
H2

γ
ι

)
︸ ︷︷ ︸

BAIS1

+O

(
H2

γ
ι

)
︸ ︷︷ ︸

BAIS2

+
H lnA

η
+

1

3

∑
k,h,s

µ⋆
h(s)b̃

k
h(s) +O

(
ηH5K +

H2

γ
ι

)
︸ ︷︷ ︸

REG

+O
(
γH2SAK +H3S

√
AKι+H4S3Aι2

)
−

K∑
k=1

∑
h,s

µ⋆
h(s)b

k
h(s)︸ ︷︷ ︸

BONUS

≤ O

(
H lnA

η
+ γH2SAK + ηH5K +

H2

γ
ι+H3S

√
AKι+H4S3Aι2

)

Plugging η and γ completes the proof.

C.1. Good event

We define the following good event G =
⋂5

i=1 Gi which holds with high probability (Lemma C.5):
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G1 =

∀(k, s′, s, a, h).
∣∣ph(s′ | s, a)− p̄kh(s

′ | s, a)
∣∣ ≤ 4

√
p̄kh(s

′ | s, a) log 6HSAK
δ

max{nk
h(s, a), 1}

+ 10
log 6HSAK

δ

max{nk
h(s, a), 1}


G2 =

 ∑
h,s,a,k

|µk
h(s, a)− µk

h
(s, a)| ≤ O

(√
H4S2AK log

6KHSA

δ
+H3S3A log2

6KHSA

δ

)
G3 =


K∑

k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)

(
Ek

[
Ûk
h (s, a)

]
− Ûk

h (s, a)
)
≤ 1

3

K∑
k=1

∑
h,s

µ⋆
h(s)b̃

k
h(s) +

H2 log 6
δ

γ


G4 =


K∑

k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)I{skh = s, akh = a}
(µk

h(s, a) + γ)2
− µ⋆

h(s)π
k
h(a | s)

µk
h(s, a) + γ

≤
H ln 6H

δ

2γ2


G5 =


K∑

k=1

∑
h,s

µ⋆
h(s)

〈
π⋆
h(· | s), Ûk

h (s, ·)− Uk
h (s, ·)

〉
≤ H2

2γ
ln

6H

δ



Under the good event the regret will be deterministically bounded.

Event G1 holds with high probability by standard Bernstein inequality (see, e.g., Lemma 2 in Jin et al. (2020)). As a
consequence of event G1, p ∈ Pk for all k. In particular, µk

h(s, a) ≥ µk
h(s, a) for all k, h, s and a. G2 Holds with high

probability by a standard techniques by Jin et al. (2020) of summing the confidence radius on the trajectory. G3, G4 and G5

follow similar techniques as in Luo et al. (2021), adapted to our case.

Lemma C.2 (Event G3). With probability 1− δ,

K∑
k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)

(
Ek

[
Ûk
h (s, a)

]
− Ûk

h (s, a)
)
≤ 1

3

K∑
k=1

∑
h,s

µ⋆
h(s)b

k
h(s) +

H2 log 1
δ

γ

Proof. Similarly to Lemma B.2, let Yk =
∑

h,s µ
⋆
h(s)

〈
πk
h(· | s), Ûk

h (s, ·)
〉

. To bound
∑

k Ek[Yk] −
∑

k Yk we’ll use a
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form of Freedman’s Inequality (Lemma E.2). For that we need to bound Ek[(Yk − Ek[Yk])
2]:

Ek[(Yk − Ek[Yk])
2] ≤ Ek[Y

2
k ]

= Ek


∑

h,s,a

µ⋆
h(s)π

k
h(a | s)Ûk

h (s, a)

2


≤ Ek

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)

(
Ûk
h (s, a)

)2 (Cauchy–Schwarz)

= HEk

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)

(
Ûk
h (s, a)

)2
= HEk

∑
h,s,a

µ⋆
h(s)π

k
h(a | s) (Lk

1:H)2

(µk
h(s, a) + γ)2

Ikh(s, a)


≤ H3Ek

∑
h,s,a

µ⋆
h(s)π

k
h(a | s) Ikh(s, a)

(µk
h(s, a) + γ)2

 (Lk
1:H ≤ H)

= H3
∑
h,s,a

µ⋆
h(s)π

k
h(a | s) µk

h(s, a)

(µk
h(s, a) + γ)2

(Ek[Ikh(s, a)] = µk
h(s, a))

≤ H3
∑
h,s,a

µ⋆
h(s)

πk
h(a | s)

µk
h(s, a) + γ

. (µk
h(s, a) ≤ µk

h(s, a) under G1)

By Lemma E.2 with probability 1− δ,

∑
k

Ek[Yk]−
∑
k

Yk ≤ α
∑
k

Ek[(Yk − Ek[Yk])
2] +

log 1
δ

α

where α ∈ (0, 1/R] for R such that |Yk − Ek[Yk]| ≤ R for any k. In our case, |Yk − Ek[Yk]| ≤ H2/γ. And so,

∑
k

Ek[Yk]−
∑
k

Yk ≤ 1

3

K∑
k=1

∑
h,s

µ⋆
h(s)b̃

k
h(s) +

H2 log 1
δ

γ
.

Lemma C.3 (Event G4). With probability 1− δ,

K∑
k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)I{skh = s, akh = a}
(µk

h(s, a) + γ)2
− µ⋆

h(s)π
k
h(a | s)

µk
h(s, a) + γ

≤
H ln H

δ

2γ2

Proof. Follows directly from Lemma E.4 with with Zk
h(s, a) = zkh(s, a) =

µ⋆
h(s)π

k
h(a|s)

µk
h(s,a)+γ

≤ 1
γ and µ̃k

h(s, a) = µk
h(s, a).

Lemma C.4 (Event G5). With probability 1− δ,

K∑
k=1

∑
h,s

µ⋆
h(s)

〈
π⋆
h(· | s), Ûk

h (s, ·)− Uk
h (s, ·)

〉
≤ H2

2γ
ln

H

δ
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Proof. Similar to Lemma C.4, we invoke Lemma E.4 with Zk
h(s, a) = µ⋆

h(s)π
k
h(a, s)[Ikh(s, a)Lk

1:H + (1 −
Ikh(s, a))Uk

h (s, a)] ≤ H , zkh(s, a) = Ek[Z
k
h(s, a)] = µ⋆

h(s)π
k
h(a, s)U

k
h (s, a) and µ̃k

h(s, a) = µk
h(s, a), we get,

K∑
k=1

∑
h,s

µ⋆
h(s)

〈
π⋆
h(· | s), Ûk

h (s, ·)− Uk
h (s, ·)

〉

=

K∑
k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a, s)Ikh(s, a)Lk

1:H

µk
h(s, a) + γ

−
K∑

k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a, s)U

k
h (s, a) ≤

H2

2γ
ln

H

δ

Lemma C.5. Under Algorithm 3, the good event G =
⋂5

i=1 Gi holds with probability of at least 1− δ.

Proof. The proof directly follows from invoking Lemmas C.2 to C.4, E.6 and E.7 with δ/5 and taking the union bound.

C.2. Bound on BIAS1

Lemma C.6. For any h, s, a and k,

E
[
Ûk
h (s, a) | πk

]
=

µk
h(s, a)

µk
h(s, a) + γ

Uk
h (s, a)

Proof. By definition Pr(Ikh(s, a) = 1 | πk) = µk
h(s, a). Using the law of total expectation and the fact that Ûk

h (s, a) = 0
whenever Ikh(s, a) = 0 we get,

Ek

[
Ûk
h (s, a)

]
= Ek

[
Ûk
h (s, a) | Ikh(s, a) = 1

]
· µk

h(s, a) + Ek

[
Ûk
h (s, a) | Ikh(s, a) = 0

]
︸ ︷︷ ︸

=0

(1− µk
h(s, a))

= Ek

[∑H
h′=1 ℓ

k
h′(skh′ , akh′)

µk
h(s, a) + γ

| Ikh(s, a) = 1

]
· µk

h(s, a)

=
µk
h(s, a)

µk
h(s, a) + γ

Ek

[
H∑

h′=h

ℓkh′(skh′ , akh′)
∣∣∣ skh = s, akh = a

]

=
µk
h(s, a)

µk
h(s, a) + γ

Uk
h (s, a).

Lemma C.7. Under the good event,

BIAS1 ≤ 2

3

K∑
k=1

∑
h,s

µ⋆
h(s)b̃

k
h(s) +

K∑
k=1

∑
h,s

µ⋆
h(s)b̄

k
h(s) +O

(
H2

γ
ι

)
.

Proof. Let Yk =
∑

h,s µ
⋆
h(s)

〈
πk
h(· | s), Ûk

h (s, ·)
〉

. It holds that,

BIAS1 =

K∑
k=1

∑
h,s

µ⋆
h(s)

〈
πk
h(· | s), Uk

h (s, ·)
〉
−

K∑
k=1

Ek[Yk] +

K∑
k=1

Ek[Yk]−
K∑

k=1

Yk.

Under the good event, G3, it holds that

K∑
k=1

Ek[Yk]−
K∑

k=1

Yk ≤ 1

3

K∑
k=1

∑
h,s

µ⋆
h(s)b̃

k
h(s) +

H2

γ
ln

10

δ
.
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Using Lemma C.6, and the fact that under the good event µk
h
(s, a) ≤ µk

h(s, a),

K∑
k=1

∑
h,s

µ⋆
h(s)

〈
πk
h(· | s), Uk

h (s, ·)
〉
−

K∑
k=1

Ek[Yk] =

K∑
k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)Uk

h (s, a)

(
1− µk

h(s, a)

µk
h(s, a) + γ

)

=

K∑
k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)Uk

h (s, a)
γ + µk

h(s, a)− µk
h(s, a)

µk
h(s, a) + γ

≤
K∑

k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)Uk

h (s, a)
γ

µk
h(s, a) + γ

+

K∑
k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)Uk

h (s, a)
µk
h(s, a)− µk

h
(s, a)

µk
h(s, a) + γ

(under the good event µk
h
(s, a) ≤ µk

h(s, a))

The first term above is bounded by,

K∑
k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)Uk

h (s, a)
γ

µk
h(s, a) + γ

≤
K∑

k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a | s) Hγ

µk
h(s, a) + γ

=
1

3

K∑
k=1

∑
h,s,a

µ⋆
h(s)b̃

k
h(s)

The second term is bounded by,

K∑
k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)Uk

h (s, a)
µk
h(s, a)− µk

h
(s, a)

µk
h(s, a) + γ

≤
K∑

k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)H

µk
h(s, a)− µk

h
(s, a)

µk
h(s, a) + γ

=

K∑
k=1

∑
h,s,a

µ⋆
h(s)b̄

k
h(s)

C.3. Bound on REG

Lemma C.8. For η ≤ γ
2H , under the good event of Lemma B.3,

REG ≤ H lnA

η
+ 16ηH5K +

1

3

∑
k,h,s

µ⋆
h(s)b

k
h(s) +O

(
H2ι

γ

)

Proof. Using standard entropy regularized OMD guarantee (Lemma E.5),

REG ≤ H lnA

η
+ 2η

K∑
k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)

(
Ûk
h (s, a)− B̂k

h(s, a)
)2

≤ H lnA

η
+ 2η

K∑
k=1

∑
h,s,a

µ⋆
h(s)π

k
h(a | s)Ûk

h (s, a)
2 + 16ηH5K,
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where in the second inequality we use the fact that bkh(s) ≤ 4H and thus, B̂k
h(s, a) ≤ 4H2. For the middle term,

2η
∑

k,h,s,a

µ⋆
h(s)π

k
h(a | s)Ûk

h (s, a)
2 ≤ 2η

∑
k,h,s,a

µ⋆
h(s)π

k
h(a | s)H

2I{skh = s, akh = a}
(µk

h(s, a) + γ)2

≤ 2ηH2
∑

k,h,s,a

µ⋆
h(s)π

k
h(a | s)

µk
h(s, a) + γ

+O

(
η
H3ι

γ2

)

=
2η

3γ
H
∑
k,h,s

µ⋆
h(s)b̃

k
h(s) +O

(
η
H3ι

γ2

)

≤ 1

3

∑
k,h,s

µ⋆
h(s)b̃

k
h(s) +O

(
H2ι

γ

)
.

The second inequality above is under the good event G4, and the last inequality is since η ≤ H
2γ .

C.4. Bound on BONUS

Lemma C.9. Under the good event,

BONUS ≤
∑
k,h,s

µk
h(s)b

k
h(s)−

∑
k,h,s

µ⋆
h(s)b

k
h(s).

Proof. Let p̂k be the transition function chosen by the algorithm when calculating B̂k. It holds that∑
h,s

µ∗
h(s)

〈
πk
h(· | s)− π∗

h(· | s), B̂k
h(s, ·)

〉
=

=
∑
h,s,a

µ∗
h(s)π

k
h(a | s)B̂k

h(s, a)−
∑
h,s,a

µ∗
h(s)π

∗
h(a | s)B̂k

h(s, a)

=
∑
h,s,a

µ∗
h(s)π

k
h(a | s)B̂k

h(s, a)−
∑
h,s,a

µ∗
h(s)π

∗
h(a | s)

bkh(s) +
∑
s′,a′

p̂kh(s
′ | s, a)πk

h+1(a
′ | s′)B̂k

h+1(s
′, a′)


≤
∑
h,s,a

µ∗
h(s)π

k
h(a | s)B̂k

h(s, a)−
∑
h,s,a

µ∗
h(s)π

∗
h(a | s)

bkh(s) +
∑
s′,a′

ph(s
′ | s, a)πk

h+1(a
′ | s′)B̂k

h+1(s
′, a′)


=
∑
h,s,a

µ∗
h(s)π

k
h(a | s)B̂k

h(s, a)−
∑
h,s,a

µ∗
h+1(s)π

k
h+1(a | s)B̂k

h+1(s, a)︸ ︷︷ ︸
(i)

−
∑
h,s

µ∗
h(s)b

k
h(s) (∗)

where the inequality is since p ∈ Pk under event G1, and p̂k maximizes the term in the parentheses. (∗) uses∑
s,a µ

⋆
h(s)π

⋆
h(a | s)ph(s′ | s, a) = µ⋆

h+1(s
′) and then change the variables s′ and a′ to s and a. (i) is a telescopic

sum, and recall that B̂k
H+1 ≡ 0. Thus,

(i) =
∑
s,a

µ∗
1(s)π

k
1 (a | s)B̂k

1 (s, a) =
∑
a

πk
1 (a | sinit)B̂k

1 (sinit, a) (µ∗
1(s) = I{s = sinit})

= V πk,p̂k

1 (sinit)

=
∑
h,s

µπk,p̂k

h (s)bkh(s)

≤
∑
h,s

µk
h(s)b

k
h(s),

where the inequality is since p̂k ∈ Pk, and µk
h(s) is the maximal occupancy with respect to transitions in Pk. Plugging (i)

back in the last display completes the proof.
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Lemma C.10. Under the good event,

BONUS ≤ O
(
γH2SAK +H3S

√
AKι+H4S3Aι2

)
−
∑
k,h,s

µ⋆
h(s)b

k
h(s).

Proof. From lemma Lemma C.9,

BONUS ≤
∑
k,h,s

µk
h(s)b̃

k
h(s) +

∑
k,h,s

µk
h(s)b̄

k
h(s)−

∑
k,h,s

µ⋆
h(s)b

k
h(s).

The first term is bounded by,

K∑
k=1

∑
h,s

µk
h(s)b̃

k
h(s) = 3γH

K∑
k=1

∑
h,s,a

µk
h(s)π

k
h(a | s)

µk
h(s)π

k
h(a | s) + γ

≤ 3γH2SAK.

For the second term we use the good event G2,

∑
k,h,s

µk
h(s)b̄

k
h(s) = H

∑
k,h,s

µk
h(s, a)

µk
h(s, a)− µk

h
(s, a)

µk
h(s, a) + γ

≤ H
∑
k,h,s

|µk
h(s, a)− µk

h
(s, a)|

≤ H3S
√
AKι+H4S3Aι2,

where the last inequality is by Lemma E.7.
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D. Lower Bound
Theorem D.1 (Restatement of Theorem 6.2). Assume that H,S,A ≥ 2 and K ≥ 2S. Any learning algorithm for the online
MDPs with known dynamics and aggregate bandit feedback problem must incur at least Ω(H2

√
SAK) expected regret in

the worst case.

Proof. Consider an MDP with S states: s1, s2, . . . , sS where s1 is the initial state. The idea is to encode a hard multitask
bandit problem with H − 1 tasks in each of the states. The agent starts in the initial state s1 where the loss is 0 and any
action transitions to each of the states s1, . . . , sS with probability 1/S. I.e., p1(s′ | a, s1) = 1/S for any s′ and a. From
time h ≥ 2 the agent stays at the same state, ph(s′ | s, a) = I{s′ = s}. Each state si encodes a hard multitask bandit
problem with H − 1 tasks. That is, the losses are generated (independently for each state) from the (randomized) instance
that attains the lower bound of Lemma 6.1.

Denote by Ti the number of times we transition to si. From Lemma 6.1 the expected regret from visits at si is at least
Ω(E[H2

√
ATi]). In total, we have a lower bound on the regret of

Ω

(
E

[
H2

S∑
i=1

√
SATi

])
= Ω

(
H2S

√
AE[

√
X]
)
,

for X ∼ Bin(n = K, p = 1/S) since each Ti is a binomial random variable with parameters K and 1/S. By Lemma E.8,
we have E[

√
X] ≥ Ω̃(

√
np) = Ω̃(

√
K/S) for K ≥ 2S which proves the lower bound Ω(H2

√
SAK).
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E. Auxiliary Lemmas
Lemma E.1 (Azuma–Hoeffding inequality). Let {Xt}t≥1 be a real valued martingale difference sequence adapted to a
filtration F1 ⊆ F2 ⊆ ... (i.e., E[Xt | Ft] = 0). If |Xt| ≤ R a.s. then with probability at least 1− δ,

T∑
t=1

Xt ≤ R

√
T ln

1

δ
.

Lemma E.2 (A special form of Freedman’s Inequality, Theorem 1 of Beygelzimer et al. (2011)). Let {Xt}t≥1 be a real
valued martingale difference sequence adapted to a filtration F1 ⊆ F2 ⊆ ... (i.e., E[Xt | Ft] = 0). If |Xt| ≤ R a.s. then
for any α ∈ (0, 1/R), T ∈ N it holds with probability at least 1− δ,

T∑
t=1

Xt ≤ α

T∑
t=1

E[X2
t | Ft] +

log(1/δ)

α
.

Lemma E.3 (Consequence of Freedman’s Inequality, e.g., Lemma E.2 in (Cohen et al., 2021a)). Let {Xt}t≥1 be a sequence
of random variables, supported in [0, R], and adapted to a filtration F1 ⊆ F2 ⊆ .... For any T , with probability 1− δ,

T∑
t=1

Xt ≤ 2E[Xt | Ft] + 4R log
1

δ
.

Lemma E.4 (Lemma A.2 of Luo et al. (2021)). Given a filtration F0 ⊆ F1 ⊆ . . . , let zkh(s, a) ∈ [0, R] and µ̃k
h(s, a) ∈ [0, 1]

be sequences of Fk-measurable functions. If Zk
h(s, a) ∈ [0, R] is a sequence of random variables such that E[Zk

h(s, a) |
Fk] = zkh(s, a) then with probability 1− δ,

K∑
k=1

∑
h,s,a

I{skh = s, akh = s}Zk
h(s, a)

µ̃k
h(s, a) + γ

−
K∑

k=1

∑
h,s,a

µk
h(s, a)z

k
h(s, a)

µ̃k
h(s, a)

≤ RH

2γ
ln

H

δ

Lemma E.5 (Standard entropy regularized OMD guarantee, see e.g., (Hazan et al., 2016)). Let η > 0, and an arbitrary
sequence {gk}Kk=1 such that for all k ∈ [K], a ∈ [d], gk ∈ Rd and ηgk(a) ≥ −1. Let xk ∈ ∆d be a sequence of vectors
such that for all a, x1(a) = 1/n, for all k ∈ [K], a ∈ [d],

xk+1(a) =
xk(a)e

−ηgk(a)∑
a′∈[n] xk(a′)e−ηgk(a′)

.

Then for any x⋆ ∈ ∆d,
K∑

k=1

⟨gk, xk − x⟩ ≤ log d

η
+ η

K∑
k=1

d∑
i=1

xk(i)gk(i)
2.

Lemma E.6 (Lemma 2 in Jin et al. (2020)). With probability 1− δ, for all (k, s′, s, a, h),

∣∣ph(s′ | s, a)− p̄kh(s
′ | s, a)

∣∣ ≤ 4

√
p̄kh(s

′ | s, a) log HSAK
δ

max{nk
h(s, a), 1}

+ 10
log HSAK

δ

max{nk
h(s, a), 1}

Lemma E.7 (Lemma 4 in Jin et al. (2020)). With probability 1− δ,∑
h,s,a,k

|µk
h(s, a)− µk

h
(s, a)| ≤ O

(√
H4S2AK log

KHSA

δ
+H3S3A log2

KHSA

δ

)

Lemma E.8. Let X ∼ Bin(n, p) and assume that n ≥ 2
p . Then, E[

√
X] ≥ 1

4

√
np.

Proof. By Markov inequality we have:

E[
√
X] ≥

√
np

2
Pr

[√
X ≥

√
np

2

]
=

√
np

2
Pr
[
X ≥ np

4

]
=

√
np

2

(
1− Pr

[
X <

np

4

])
.

Thus, it suffices to show that Pr
[
X < np

4

]
≤ 1/2 which follows immediately from Multiplicative Chernoff bound and the

assumption that n ≥ 2/p.
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