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Abstract—Fine-grained visual classification aims to recognize
objects belonging to many subordinate categories of a supercat-
egory, where appearance alone often fails to distinguish highly
similar classes. We propose a unified framework that integrates
image, text, and metadata via cross-contrastive pre-training. We
first align the three modality encoders in a shared embedding
space and then fine-tune the image and metadata encoders for
classification. On NABirds [1], our approach improves over
the baseline by 7.83% and achieves 84.44% top-1 accuracy,
outperforming strong multimodal methods.

Index Terms—Fine-Grained Classification, Contrastive Learn-
ing, CNN, DistilBERT, Geo-prior

I. INTRODUCTION

Fine-grained visual classification (FGVC) separates in-
stances within a basic category into visually similar sub-
categories (e.g., bird species). The challenge is that inter-
class differences are subtle while intra-class variation (pose,
background, lighting) can be large. Vision–language en-
coders trained at scale have helped transfer to fine-grained
tasks as image–text pre-training continues to mature; for
instance, SigLIP 2 combines captioning-based pre-training,
self-distillation, masked prediction, and online data curation to
produce stronger image–text features than earlier CLIP-style
models [2].

A complementary line of work shows that where and
when an image was captured can be just as informative
as appearance. Aligning location encoders to images (e.g.,
GeoCLIP) embeds geospatial structure directly into the repre-
sentation [3], and recent methods learn multi-resolution geo-
embeddings with strong transfer across tasks and datasets [4].
In ecology and biodiversity monitoring, incorporating spatio-
temporal context consistently improves species mapping and
identification [5], and concurrent analyses report that explicit
geo priors can boost species-level FGVC [6].

This paper. We propose a cross-contrastive pre-training
framework that brings images, class text, and spatio-temporal
metadata into a single 256-D embedding space. Concretely,
we encode GPS and date with sinusoidal features followed
by a small MLP, project all three modalities into the shared
space, and optimize a six-term contrastive objective that aligns
every pair in both directions (image↔text, image↔metadata,
text↔metadata). After pre-training, we discard the text branch
and fine-tune a lightweight classifier on the concatenated

image+metadata embedding. On NABirds [1], the approach
reaches 84.44% top-1 accuracy (+7.83% over our vision-only
baseline), suggesting that coupling appearance with spatio-
temporal context helps disambiguate look-alike species whose
ranges differ by region or season.
Contributions.

• Tri-modal alignment for FGVC. A unified framework
that models image appearance, geospatial/date metadata,
and class text in one embedding space for fine-grained
recognition.

• Cross-contrastive objective. A six-term class-positive
contrastive loss that aligns each modality pair in
both directions (image↔text, image↔metadata,
text↔metadata), improving transfer over two-term
image–text objectives [2].

• Simple fine-tuning head. A small two-layer classifier
on the concatenated image+metadata embeddings yields
strong results with minimal overhead.

• Results on NABirds. 84.44% top-1 accuracy on
NABirds [1], a +7.83% gain over our vision-only base-
line.

II. RELATED WORK

Vision-only fine-grained classification. Early FGVC work
improved recognition along two complementary fronts: (i)
localizing subtle, part-level cues [7]–[11] and (ii) learning
feature representations that accentuate fine-grained differences
while down-weighting nuisance factors such as pose, back-
ground, and illumination [12]–[14]. Older pipelines leaned
on explicit part detectors and attribute supervision [15]; more
recently, strong backbones and supervised contrastive objec-
tives trained at scale have become standard practice [16], [17].
Even so, models that rely on appearance alone still struggle
with sister species whose plumage, shape, or coloring are
nearly indistinguishable—especially under difficult viewpoints
or lighting—which motivates bringing in signals beyond pix-
els.
Vision–language pre-training. Large image–text encoders
align images with natural language and transfer well to fine-
grained tasks [18], [19]. Ongoing work continues to refine
these recipes; for example, SigLIP 2 combines captioning-
style learning, self-distillation, masked prediction, and online



data curation to strengthen image–text features over CLIP-
style models [2]. However, text alone does not encode where
and when a photo was taken, and short class prompts often
miss ecological or seasonal context that helps separate look-
alike taxa.
Geospatial and metadata priors. A complementary thread
incorporates location and time as priors. GeoCLIP aligns
location encoders with image features so that geospatial struc-
ture is captured directly in the embedding space [3], while
newer approaches learn multi-resolution geo-embeddings with
strong transfer across datasets and tasks [4]. In ecology and
biodiversity monitoring, spatio-temporal context reliably im-
proves species mapping and identification [5], and concurrent
analyses show that explicit geo priors can boost species-level
FGVC [6]. Beyond raw GPS and date, prior knowledge such
as ecoregions, elevation bands, or seasonality calendars can
be folded into the metadata encoder to provide useful locality
and periodicity biases.
Multimodal fusion for FGVC. Many multimodal systems
inject metadata either early (as extra channels or conditioning
inside the vision backbone) or late (via feature concatenation
near the classifier), and some combine separate predictors
with a learned prior [15]. These strategies can help, but
they neither ensure that metadata is semantically aligned with
visual/text cues nor guarantee that it shapes the representation
geometry consistently across classes. Our approach instead
aligns image, text, and metadata in a shared space be-
fore classification using a six-term cross-contrastive objective
(image↔text, image↔metadata, text↔metadata), and then
applies a lightweight head to the concatenated image+metadata
embedding. This tri-modal alignment couples spatio-temporal
context with visual and textual cues, helping to separate look-
alike species that chiefly differ by range or season.
Positioning and compatibility. Relative to two-term image–
text objectives, our design ties metadata to both image and
text, encouraging the model to resolve visually ambiguous
classes using geo-temporal context. The objective is model-
agnostic and can pair with recent vision–language encoders
and geo-embedding methods (e.g., SigLIP 2 [2], GeoCLIP [3],
RANGE [4]) without changing the loss.

III. PROPOSED MODEL

In this section, we discuss the proposed model architecture
for fine-grained classification. We train the model in two steps:
First, we train the model using cross-contrastive pre-training,
which is inspired by the CLIP [18] model. Then, we use
the embeddings of image and metadata encoder as input to
a shallow fully connected layer for the classification of 555
classes [1].

A. Cross-Contrastive Pre-Training

Fig. 1 illustrates our pre-training stage. The objective aligns
embeddings across modalities for samples that share the same
class label. Image Embedding: We use a ResNet-50 pre-
trained on ImageNet [16] and append a linear head to project
2048-D features to a 256-D embedding. Meta Embedding:

We first convert longitude, latitude, and date into multi-
frequency sine–cosine features and feed them to a small MLP
with a residual skip. The metadata encoder outputs a 256-D
embedding. We then compute three B × B cosine-similarity
matrices (image–text, image–metadata, text–metadata) and op-
timize both directions for each pair, yielding six losses with
temperature τ . Text Embedding: We use the prompt “This is
a photograph of a bird called [CLASS]” [18], encode it with
DistilBERT [20], and project the 1024-D output to 256-D.
Loss Function: For each batch B, we compute the embedding
of image, text, and metadata from their corresponding encoder
models. Then, we project those embeddings to a shared 256-
D space and normalize them. We utilized these outputs to
compute three correlation matrices of B ×B [18] to find the
similarity between each of the vector pairs. Corresponding to
the computed matrix, we also calculated the label matrix. We
put label 1 when the label corresponding to both embeddings
are the same, otherwise zero
Normalization: we use ℓ2-normalized embeddings in the loss,

z← z̃/∥z̃∥2 for image, text, and metadata encoders. (1)

Ltotal = LI,T + LT,I + LM,T + LT,M + LM,I + LI,M (2)

LI,T = − 1

|I|
∑
i∈I

1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

a∈T exp(zi · za/τ)
.

(3)

The remaining five terms are defined analogously.
where P (i) = { p ∈ T | yT (zp) = yI(zi) }, Here, |I| denotes
the number of image samples in the minibatch. I is the batch
of image embeddings, T is the batch of text embeddings, and
M is the batch of metadata embeddings.

Intuition: The six cross-modal directions (image↔text,
image↔metadata, text↔metadata) form a closed triangle of
constraints. If image and text agree on class semantics and
image and metadata agree on geo-temporal context, then text
and metadata are also pulled into agreement. This transitive
consistency distributes learning signals across modalities and
yields compact, context-aware clusters while preserving the
original loss design.

For each modality pair, we compute losses in both directions
(row-wise and column-wise). Then, we back-propagate the
total loss, which is the summation of these six losses. The
formula for one of the six losses (image loss given text)
is provided above. The remaining five terms are defined
analogously.

The goal of cross-contrastive pre-training is to align the
meta, image, and text embedding vectors whose output labels
are the same, and push non-matching pairs apart. The cross-
contrastive learning works for fine-grained classification since
the loss between (text, image) and (meta, image) helps to
separate images of subcategories with very similar visual
features.

B. Model Fine-Tuning
In the first step, we pre-trained the meta, image, and text

encoder models using the cross-contrastive pre-training. Now,



Fig. 1. Proposed architecture—pre-training of text, metadata, and image encoders using cross-contrastive loss.

Fig. 2. Proposed architecture—fine-tuning and inference after pre-training using metadata and image encoders.



Fig. 3. Qualitative Results : (a) Resulting embeddings for each input location from our model architecture trained on NABirds [1] dataset. (b) Heat map of
plausible locations for the European Starling given a fixed image and mid-year date.

in the second step shown in Fig. III-B , we take the output of
the metadata encoder model and the ResNet-50 [16] model and
concatenate the embeddings. We use the concatenated 512-D
embedding as input to a 2-layer shallow classifier that outputs
555 classes [1]. We trained these models using cross-entropy
loss [21] applied on the class level in contrast to the batch
level while pre-training. We used Adam [22] as an optimizer
for both training procedures.

IV. EXPERIMENTS

In this section, we discuss dataset and experimentation de-
tails, followed by quantitative and qualitative results analysis.

A. Dataset

We conduct experiments on NABirds [1]. It is a collection
of 48,562 annotated photographs of the 555 species of birds
that are commonly observed in North America. The dataset has
23,929 training images and 24,633 testing images. It contains
the metadata such as latitude, longitude, and date.

B. Implementation Details

We compared our results with a state-of-the-art model [23].
Additionally, we conducted experiments using various training
settings. First, as a baseline, we trained the InceptionV3 [24]
model only using an image as an input. Then, we appended
metadata as an extra channel on the input. We ran experiments
using contrastive pre-training [17] and using the CLIP [18]
model, considering pseudo-text and image data. Batch size
is 32 with τ = log(0.007); training runs for 200 epochs. We
pre-trained meta, text, and image encoder models through
AdamW [25] with learning rates 5e-5, 1e-5, and 1e-4. We use
Adam [22] for fine-tuning. Our implementation is based on
PyTorch. To support future research, the code will be released
after the conference.

C. Quantitative Evaluation

We report top-1 accuracy after 200 epochs. Our method
reaches 84.44%, outperforming Geo-Prior [23] (81.50%) and
other metadata-based variants. Compared with our vision-only
baseline, the gain is +7.83%.

To isolate the effect of contrastive pre-training, we keep
the backbone and hyperparameters fixed and compare against

Model Metadata Top-1 (%) Mean ± SD (8 runs)

InceptionV3 [24] × 76.61 ± 0.49
InceptionV3 + Metadata ✓ 77.56 ± 0.46
InceptionV3
+ Contrastive Learning [17] × 79.84 ± 0.51

CLIP (ResNet-50) [18] × 81.66 ± 0.44
GeoPrior Model [23] ✓ 81.50 ± 0.52
Ours (6-term objective) ✓ 84.44 ± 0.37

TABLE I
MEAN ± STANDARD DEVIATION OVER EIGHT INDEPENDENT RUNS ON

NABIRDS.

a supervised contrastive setup [17]. Contrastive pre-training
yields a clear improvement.

To account for stochastic training variation, we repeated
each experiment across eight independent runs with different
random seeds and report the mean ± standard deviation of
top-1 accuracy in Table I. The low variance (±0.37% for
our model) demonstrates stable convergence and strong repro-
ducibility. Notably, relative to a CLIP-style two-term objective
that uses only image–text losses, our six-term objective with
metadata yields an additional +2.78% absolute improvement
in top-1 accuracy.

a) Ablation of Cross-Contrastive Losses.: Removing one
or more terms from the six-part cross-contrastive objective
weakens the transitive coupling among modalities and de-
grades both alignment and accuracy. Each loss direction
(e.g., image↔metadata, image↔text) anchors complementary
semantics in the shared embedding space; dropping even a
single term breaks geometric consistency and induces partial
modality drift. For example, omitting LI,M eliminates spatial
constraints on appearance features, leading to confused em-
beddings for visually similar classes, while removing LT,M

decouples textual priors from geo-temporal cues, flattening the
embedding topology and reducing class separability. Across
ablations, these omissions typically yield a 1–3% drop in top-1
accuracy and produce visibly less coherent clusters—evidence
that the full six-term objective is essential for stable tri-modal
alignment and fine-grained discrimination.



D. Qualitative Evaluation

To understand the impact of metadata on overall perfor-
mance, we plot Fig. 3(b) the probability value of a specific
class for each location (longitude and latitude) keeping the
input image constant with the constant date (mid of the year).
The heat map highlights plausible regions for the European
Starling, indicating that the model captures object–location
relationships. Our architecture captures the relationship be-
tween objects and locations. Fig. 3(a) illustrates the resulting
embeddings for each input location from our model trained
on NABirds [1] dataset. By applying the embedding function
to each location, we can generate a feature vector embedding.
After that, we use ICA [26] to project the embedded features
to three-dimensional space and mask out the ocean for visu-
alization.

V. CONCLUSION AND FUTURE WORK

We introduced a unified framework for fine-grained visual
classification that jointly models images, text, and spatio-
temporal metadata via cross-contrastive pre-training. By align-
ing all three modalities in a shared embedding space and
fine-tuning a lightweight classifier, our approach achieves
84.44% top-1 accuracy on NABirds [1], outperforming strong
baselines and underscoring the value of geo-temporal context
for disambiguating visually similar species.

Our approach still has limits: it depends on having reliable
metadata and adds pre-training cost compared to vision-only
setups. Next, we plan to (i) scale to larger and more diverse
datasets (e.g., iNaturalist), (ii) run careful ablations to measure
how much each modality and loss term helps, and (iii) build
stronger metadata encoders that include ecological signals
such as habitat, elevation, and seasonality. The same idea may
also help in areas like medical imaging and remote sensing,
where context is important at inference time.
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