

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TAMING OOD ACTIONS FOR OFFLINE REINFORCEMENT LEARNING: AN ADVANTAGE-BASED APPROACH

Anonymous authors

Paper under double-blind review

ABSTRACT

Offline reinforcement learning (RL) learns policies from fixed datasets without online interactions, but suffers from distribution shift, causing inaccurate evaluation and overestimation of out-of-distribution (OOD) actions. Existing methods counter this by conservatively discouraging all OOD actions, which limits generalization. We propose Advantage-based Diffusion Actor-Critic (ADAC), which evaluates OOD actions via an advantage-like function and uses it to modulate the Q-function update discriminatively. Our key insight is that the (state) value function is generally learned more reliably than the action-value function; we thus use the next-state value to indirectly assess each action. We develop a PointMaze environment to clearly visualize that advantage modulation effectively selects superior OOD actions while discouraging inferior ones. Moreover, extensive experiments on the D4RL benchmark show that ADAC achieves state-of-the-art performance, with especially strong gains on challenging tasks. Our code is available at <https://anonymous.4open.science/r/adac-14D0>.

1 INTRODUCTION

Offline reinforcement learning (RL) (Lange et al., 2012; Levine et al., 2020) focuses on learning decision-making policies solely from previously collected datasets, without online interactions with the environment. This paradigm is particularly appealing for applications where online data collection is prohibitively expensive or poses safety concerns (Kalashnikov et al., 2018; Prudencio et al., 2023). However, offline RL often suffers from distribution shift between the behavior policy and the learned policy. The policy evaluation on out-of-distribution (OOD) actions is prone to extrapolation error (Fujimoto et al., 2019), which can be amplified through bootstrapping, leading to significant overestimation (Kumar et al., 2020).

To mitigate overestimation, a common strategy in offline RL is to incorporate conservatism into algorithm design. Value-based methods (Kumar et al., 2020; Kostrikov et al., 2021; Lyu et al., 2022) achieve this by learning a pessimistic value function that reduces the estimated value of OOD actions to discourage their selection. Alternatively, policy-based methods (Fujimoto & Gu, 2021; Fujimoto et al., 2019; Wang et al., 2022) enforce conservatism by constraining the learned policy to remain close to the behavior policy, thereby avoiding querying OOD actions. Similarly, conditional sequence modeling approaches (Chen et al., 2021; Janner et al., 2022; Ajay et al., 2022) inherently induce conservative behavior by restricting the policy to imitate the behavior contained in the offline dataset. In a distinct manner, model-based approaches (Kidambi et al., 2020; Yu et al., 2020; Sun et al., 2023) ensure conservatism by learning a pessimistic dynamics model where uncertainty-based penalization systematically underestimates the value of OOD actions.

While conservatism is celebrated in offline RL, existing methods achieve it by indiscriminately discouraging all OOD actions, thereby hindering their capacity for generalization. Offline datasets, in practice, are usually characterized by sub-optimal trajectories and narrow state-action coverage. Consequently, an effective offline RL algorithm should possess the ability to stitch sub-optimal trajectories to generate the best possible trajectory supported by the dataset, and even extrapolate beyond the dataset to identify potentially beneficial actions. Such indiscriminate discouragement, however, severely impedes the agent’s ability to generalize and achieve high performance. This naturally leads to a fundamental question: *How can we reliably distinguish between undesirable and beneficial OOD actions, and advance the trade-off between conservatism and generalization?*

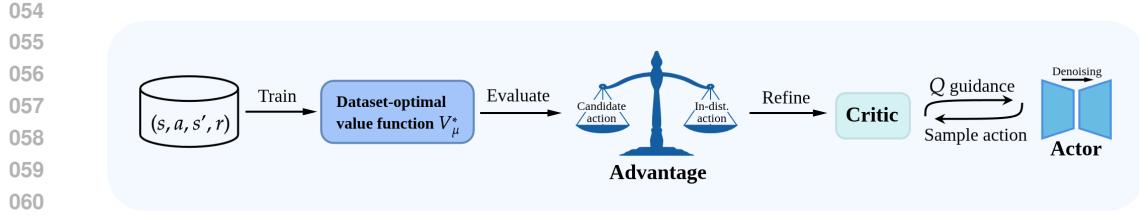


Figure 1: ADAC Architecture: We use an approximated optimal value function (learned with a batch data) as the measure to evaluate OOD actions. We use an approximate optimal value function (learned from batch data) to evaluate OOD actions. Its relative advantage over in-distribution actions is then used to modulate critic update.

To this end, we propose Advantage-based Diffusion Actor-Critic (ADAC), a novel method that more reliably assesses the quality of OOD actions, selectively encourages beneficial ones, and discourages risky ones. Our key insight is that the (state) value function is generally learned more reliably than the action-value function, given limited offline data; we thus use the next-state value to indirectly assess each action. Specifically, we regard an OOD action as advantageous if it can move the current state to a successor state whose value, under the optimal value function, exceeds that of any reachable state under the behavior policy. Since the true optimal value function is inaccessible from offline data, we adopt the dataset-optimal value function (optimal with respect to the offline dataset, see V^*_μ in Figure 1 and the definition in Eq. (5)) as an approximation. We provide theoretical insights showing that the dataset-optimal value function can be reliably approximated through expectile regression on the dataset. Based on this approximation, we define an advantage function to assess the desirability of actions. It is then used to modulate the temporal difference (TD) target more discriminatively during Q-function (critic) learning. To have a fair comparison, we parameterize the policy (actor) using diffusion models (Ho et al., 2020; Wang et al., 2022) and is updated under the guidance of the learned Q-function. Overall, ADAC evaluates OOD actions more reliably than prior works and achieves state-of-the-art (SOTA) performance on the majority of the D4RL (Fu et al., 2020) benchmark tasks.

2 PRELIMINARIES

Offline Reinforcement Learning. RL problems are commonly formulated within the framework of a Markov Decision Process (MDP), defined by the tuple $\mathcal{M} = (\mathcal{S}, \mathcal{A}, r, \rho_0, P, \gamma)$. Here, \mathcal{S} denotes the state space, \mathcal{A} represents the action space, and $r(\mathbf{s}, \mathbf{a}) : \mathcal{S} \times \mathcal{A} \rightarrow [-R_{\max}, R_{\max}]$ is a bounded reward function with R_{\max} being the maximum absolute value of the reward. $\rho_0(\mathbf{s})$ specifies the initial state distribution, $P(\mathbf{s}' | \mathbf{s}, \mathbf{a}) : \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}_+$ defines the transition dynamics, and $\gamma \in (0, 1)$ is the discount factor (Sutton & Barto, 2018).

A policy $\pi(\cdot | \mathbf{s})$ maps a given state \mathbf{s} to a probability distribution over the action space. The value function of a state \mathbf{s} under a policy π is the expected cumulative return when starting in \mathbf{s} and following π thereafter, i.e., $V^\pi(\mathbf{s}) = \mathbb{E}_{\mathbf{a}_t \sim \pi(\cdot | \mathbf{s}_t)} [\sum_{t=0}^{\infty} \gamma^t r(\mathbf{s}_t, \mathbf{a}_t) | \mathbf{s}_0 = \mathbf{s}]$, where the expectation takes over the randomness of the policy π and the transition dynamics P . The optimal state value function $V^*(\cdot)$ satisfies the following Bellman optimality equation:

$$V^*(\mathbf{s}) = \max_{\mathbf{a} \in \mathcal{A}} [r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\mathbf{s}' \sim P(\cdot | \mathbf{s}, \mathbf{a})} V^*(\mathbf{s}')]. \quad (1)$$

The action-value function (Q-function) is the expected cumulative return when starting from state \mathbf{s} , taking action \mathbf{a} , and following π thereafter: $Q^\pi(\mathbf{s}, \mathbf{a}) = \mathbb{E} [\sum_{t=0}^{\infty} \gamma^t r(\mathbf{s}_t, \mathbf{a}_t) | \mathbf{s}_0 = \mathbf{s}, \mathbf{a}_0 = \mathbf{a}]$. The goal of RL is to learn a policy $\pi(\cdot | \mathbf{s})$ that maximizes the following expected cumulative long-term reward:

$$J(\pi) = \int_{\mathcal{S}} \rho_0(\mathbf{s}) V^\pi(\mathbf{s}) d\mathbf{s} = \mathbb{E}_{\mathbf{s}_0 \sim \rho_0, \mathbf{a}_t \sim \pi, \mathbf{s}_{t+1} \sim P} \left[\sum_{t=0}^{\infty} \gamma^t r(\mathbf{s}_t, \mathbf{a}_t) \right]. \quad (2)$$

As shown in Eq. (2), the classical RL framework requires online interactions with the environment P during training. In contrast, the offline RL learns only from a fixed dataset $\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, r, \mathbf{s}')\}$ collected by the behavior policy $\mu(\cdot | \mathbf{s})$, where \mathbf{s} , \mathbf{a} , r , and \mathbf{s}' denote the state, action, reward, and next state, respectively. That is, it aims to find the best possible policy solely from \mathcal{D} without additional interactions with the environment.

108 **Diffusion Model.** Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020)
 109 consist of a forward process that corrupts data with noise and a reverse process that reconstructs data
 110 from noise. Specifically, the forward process is conducted by gradually adding Gaussian noise to
 111 samples \mathbf{x}_0 from an unknown data distribution $p_\theta(\mathbf{x}_0)$, formulated as:

$$112 \quad q(\mathbf{x}_{1:T} | \mathbf{x}_0) := \prod_{t=1}^T q(\mathbf{x}_t | \mathbf{x}_{t-1}), \quad q(\mathbf{x}_t | \mathbf{x}_{t-1}) := \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I}), \quad (3)$$

115 where T denotes the total number of diffusion steps, and β_t controls the variance of the added noise
 116 at each step t . The reverse process is modeled as $p_\theta(\mathbf{x}_0:T) := p(\mathbf{x}_T) \prod_{t=1}^T p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t)$, and is
 117 trained by maximizing the evidence lower bound (ELBO) (Blei et al., 2017): $\mathbb{E}_q \left[\log \frac{p_\theta(\mathbf{x}_0:T)}{q(\mathbf{x}_{1:T} | \mathbf{x}_0)} \right]$.
 118 After training, samples can be generated by first drawing $\mathbf{x}_T \sim p(\mathbf{x}_T)$ and then sequentially applying
 119 the learned reverse transitions to obtain \mathbf{x}_0 . For conditional generation tasks, the reverse process can
 120 be extended to model $p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t, c)$, where c denotes the conditioning information.

122 **Expectile Regression.** Expectile regression has been extensively studied in econometrics (Newey &
 123 Powell, 1987) and recently introduced in offline RL (Kostrikov et al., 2021). The τ -expectile (with
 124 $\tau \in (0, 1)$) of a real-valued random variable x is defined as the solution to the asymmetric least
 125 squares problem:

$$126 \quad \arg \min_{y \in \mathbb{R}} \mathbb{E}_x [L_2^\tau(x - y)], \quad (4)$$

128 where $L_2^\tau(u) = |\tau - 1(u < 0)|u^2$. Therefore, $\tau = 0.5$ corresponds to the standard mean squared
 129 error loss, while $\tau > 0.5$ downweights the contributions of x values smaller than y and assigns
 130 greater weight to larger values. Note that as $\tau \rightarrow 1$, the solution to Eq. (4) asymptotically approaches
 131 the maximum value within the support of x .

132 3 THEORETICAL INSIGHT FOR ADVANTAGE-BASED EVALUATION

135 Our high-level insight is that in offline learning based on limited dataset, the (state) value function is
 136 generally learned more reliably than the action-value function, since the data of the latter is a subset
 137 of the former. Therefore, we can better evaluate each action indirectly using the next-state value. We
 138 start with approximating the optimal value function in the subsection below.

139 3.1 DATASET-OPTIMAL VALUE FUNCTION

141 Since we only have limited data, we define the following *dataset-optimal value function* (Lyu et al.,
 142 2022):

$$143 \quad V_\mu^*(\mathbf{s}) := \max_{\mathbf{a} \sim \mu(\cdot | \mathbf{s})} [r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\mathbf{s}' \sim P(\cdot | \mathbf{s}, \mathbf{a})} [V_\mu^*(\mathbf{s}')]]. \quad (5)$$

145 It differs from the optimal value function Eq. (1) in that it restricts the maximization over actions
 146 from behavior policy, that is, the value function of the optimal policy in the dataset. In practice, it can
 147 be evaluated by maximizing over sampled data pairs in the offline dataset. Specifically, we adopt
 148 expectile regression to *approximate* the maximum operator, while replacing the expectation with
 149 empirical samples drawn from the offline dataset \mathcal{D} . Then we solve the following regression problem:

$$150 \quad \mathcal{L}(V) = \mathbb{E}_{(\mathbf{s}, \mathbf{a}, r, \mathbf{s}') \sim \mathcal{D}} [L_2^\tau(r(\mathbf{s}, \mathbf{a}) + \gamma V(\mathbf{s}') - V(\mathbf{s}))]. \quad (6)$$

151 The minimizer of $\mathcal{L}(V)$ is characterized in the following proposition.

152 **Proposition 3.1.** *The minimizer $V_\tau(\mathbf{s})$ of Eq. (6) is given by*

$$154 \quad V_\tau(\mathbf{s}) = \mathbb{E}_{\mathbf{a} \sim \mu(\cdot | \mathbf{s}), \mathbf{s}' \sim P(\cdot | \mathbf{s}, \mathbf{a})} [r(\mathbf{s}, \mathbf{a}) + \gamma V_\tau(\mathbf{s}')], \quad (7)$$

155 where $\mathbb{E}_x^\tau[x]$ denotes the τ -expectile of a real-valued random variable x .

157 The next proposition characterizes how $V_\tau(\mathbf{s})$ approximates the dataset-optimal value function $V_\mu^*(\mathbf{s})$.

158 **Proposition 3.2.** *The solution $V_\tau(\mathbf{s})$ to Eq. (6) is uniformly bounded and monotonically non-
 159 decreasing with respect to τ . Furthermore, $V_\tau(\mathbf{s}) \rightarrow \bar{V}(\mathbf{s})$ pointwisely as $\tau \rightarrow 1$, where $\bar{V}(\mathbf{s})$
 160 is given by*

$$161 \quad \bar{V}(\mathbf{s}) = \max_{\mathbf{a} \sim \mu(\cdot | \mathbf{s})} \left[r(\mathbf{s}, \mathbf{a}) + \gamma \max_{\mathbf{s}' \sim P(\cdot | \mathbf{s}, \mathbf{a})} \bar{V}(\mathbf{s}') \right]. \quad (8)$$

162 *In the case of deterministic transition dynamics, the limit coincides with the dataset-optimal value*
 163 *function Eq. (5), i.e., $\bar{V}(s) = V_\mu^*(s)$.*

165 Proposition 3.2 shows that for deterministic transition dynamics, $V_\tau(s)$ converges to $V_\mu^*(s)$ as $\tau \rightarrow 1$.
 166 For generic stochastic transition dynamics, since the limit $\bar{V}(s)$ involves a maximization over next
 167 states (see Eq. (8)), it is possible that $\bar{V}(s) \geq V_\mu^*(s)$. In practice, given that $V_\tau(s)$ is monotonically
 168 non-decreasing in τ , we have achieve a good approximation of $V_\mu^*(s)$ by choosing some $\tau < 1$.

169 Therefore, by solving the regression problem Eq. (6), we can approximate the (dataset-)optimal value
 170 function. It is subsequently used to evaluate the quality of OOD actions indirectly.

172 3.2 A NEW ADVANTAGE FUNCTION

173 Our idea is based on the observation that the quality of an action can be better assessed by whether
 174 it transitions to a next state with higher value. Specifically, denote the learned value function from
 175 solving Eq. (6) by $V(s)$, and we define the *advantage* of an action a (possibly OOD) over the
 176 behavior policy at state s as

$$177 A(a|s) := \mathbb{E}_{s' \sim P(\cdot|s, a)} V(s') - \text{Quantile}_\kappa \left(\left\{ \mathbb{E}_{s'_i \sim P(\cdot|s, a_i)} V(s'_i) \right\}_{i=1}^N \right), \quad a_i \sim \mu(\cdot|s), \quad (9)$$

178 where $\{a_i\}_{i=1}^N$ are N actions independently sampled from the behavior policy $\mu(\cdot|s)$. In our
 179 experiments, we fix $N = 25$ to balance performance and computational efficiency. $\text{Quantile}_\kappa(\cdot)$
 180 denotes the κ -th quantile of the expected next-state values induced by behavior policy actions.

181 **Remark.** The newly-defined advantage function is different from the more common one $A(s, a) :=$
 182 $Q(s, a) - V(s)$ which employs both the Q-function and V-function. However, relying on Q-function
 183 can typically cause over-estimation. In the offline setting, V-function is generally learned more
 184 reliably than the action-value function, which can provide better evaluation of an action indirectly.

185 Under this definition, an action a is considered advantageous if it leads to a next state with a higher
 186 expected value than the selective threshold defined by the κ -th quantile. A positive advantage indicates
 187 that the action is favored, while a negative advantage indicates that the action is penalized. The
 188 parameter κ controls the *level of conservatism*: larger values lead to higher thresholds and encourage
 189 conservatism, while smaller values promote optimism by more readily rewarding unseen actions.
 190 Notably, all the components in Eq. (9) are learned solely from the offline dataset.

191 Building on the preceding development, we now augment the standard Bellman operator using the
 192 advantage function. Specifically, we introduce the following *advantage-based Bellman operator*:

$$193 \mathcal{T}_A^{\pi_\theta} Q(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a), a' \sim \pi_\theta} [Q(s', a') + \lambda A(a'|s')], \quad (10)$$

194 where λ is a scaling coefficient that modulates the influence of the advantage function.

195 Offline RL algorithms based on the standard Bellman backup suffer from action distribution shift
 196 during training. This shift arises because the target values in Eq. (10) use actions sampled from
 197 the learned policy π_θ , while the Q-function is trained only on actions sampled from the behavior
 198 policy that produced the dataset $((s, a) \in \mathcal{D})$. By augmenting the standard Bellman operator with the
 199 advantage term $A(a'|s')$, we can effectively mitigate estimation errors in Q-function at OOD actions.

200 Moreover, we can show that the advantage-based Bellman operator $\mathcal{T}_A^{\pi_\theta}$ is still contractive.

201 **Proposition 3.3.** $\mathcal{T}_A^{\pi_\theta}$ is γ -contractive with respect to the L_∞ norm, which has a unique fixed point.

202 We denote the unique fixed point of Eq. (10) by $Q_{\pi_\theta}^A$, and the normal Q-function of π_θ by Q_{π_θ} . The
 203 following proposition provides the bound of their difference.

204 **Proposition 3.4.** The unique fixed point $Q_{\pi_\theta}^A$ of the advantage-based Bellman operator satisfies

$$205 \quad \|Q_{\pi_\theta}^A - Q_{\pi_\theta}\|_\infty \leq 2\lambda R_{\max}(1 - \gamma)^{-2}.$$

216 **Algorithm 1** Advantage-Based Diffusion Actor-Critic

217 1: **Input** Offline dataset \mathcal{D} , policy network π_θ , critic networks Q_ϕ

218 2: Train a behavior policy μ by minimizing Eq. (11)

219 3: Train a value function V by minimizing Eq. (12)

220 4: Train a transition model P by minimizing Eq. (13)

221 5: **for** each iteration **do**

222 6: Obtain $A(a'|s')$ according to Eq. (9) *// Advantage Calculation*

223 7: Update $\mathcal{L}_{\text{CRITIC}}(\phi)$ according to Eq. (14) *// Critic Update*

224 8: Update $\mathcal{L}_{\text{ACTOR}}(\theta)$ according to Eq. (15) *// Actor Update*

225 9: Soft update parameter ϕ and θ *// Target networks Update*

226 10: **end for**

227

228

229 We further illustrate the effectiveness of our
230 advantage-based evaluation in Figure 2, where
231 different line styles correspond to different evaluation
232 methods. In the offline RL setting, due to the prohi-
233 bition against interacting with the environment, directly
234 applying standard Bellman backup (dotted line in
235 Figure 2) results in an erroneous Q-function, which
236 tends to overestimate the value of OOD actions and
237 thus leads to an ineffective policy. Meanwhile,
238 conservative evaluation (dashed line) indiscriminately
239 penalizes all OOD actions, resulting in suppressed
240 Q-values across these actions and limiting the learned
241 policy to a sub-optimal policy near the support of the
242 dataset. By contrast, our advantage-based evalua-
243 tion (solid line) defines an advantage function that effec-
244 tively modulates the Q-function obtained from Bell-
245 man backup, enabling the policy to discover optimal
246 actions even beyond the support of the dataset. This
247 phenomenon is further validated by empirical results
248 on the PointMaze tasks, as shown in Section 5.2.

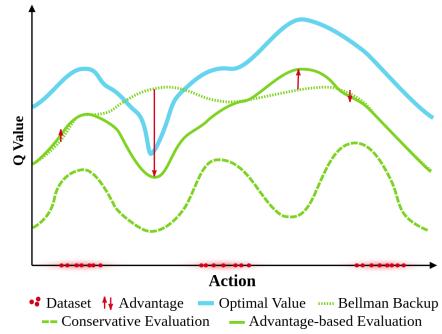


Figure 2: Comparison of prior evaluation methods against our advantage-based evaluation. We visualize the Q-function for a fixed state. The thick blue solid line denotes the optimal value function. The solid line denotes the Q-function learned via advantage-based evaluation. The dashed line denotes the Q-function learned via conservative evaluation. The dotted line denotes the Q-function learned via standard Bellman backup evaluation.

4 ADVANTAGE-BASED DIFFUSION ACTOR-CRITIC ALGORITHM

Building on the preceding analysis, we now introduce Advantage-based Diffusion Actor-Critic (ADAC).

Diffusion Policy. We model our policy as the reverse process of a conditional diffusion model (Wang et al., 2022):

$$\pi_\theta(a|s) = p_\theta(a^{0:T} | s) = \mathcal{N}(a^T; \mathbf{0}, \mathbf{I}) \prod_{i=1}^T p_\theta(a^{i-1} | a^i, s),$$

where the terminal sample a^0 is used as the action for RL evaluation. During training, we sample (s, a) pairs from the offline dataset \mathcal{D} and construct noisy samples $a^i = \sqrt{\bar{\alpha}_i}a + \sqrt{1 - \bar{\alpha}_i}\epsilon$ (Eq. (3)), where $\alpha_i = 1 - \beta_i$, $\bar{\alpha}_i = \prod_{j=1}^i \alpha_j$, and $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. Following DDPM (Ho et al., 2020), we train the following noise prediction model $\epsilon_\theta(a^i, s, i)$ to approximate the added noise, which determines the reverse process $p_\theta(a^{i-1} | a^i, s)$:

$$\mathcal{L}_{\text{BC}}(\theta) = \mathbb{E}_{i \sim \mathcal{U}, \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), (s, a) \sim \mathcal{D}} \left[\|\epsilon - \epsilon_\theta(\sqrt{\bar{\alpha}_i}a + \sqrt{1 - \bar{\alpha}_i}\epsilon, s, i)\|^2 \right], \quad (11)$$

where \mathcal{U} denotes the uniform distribution over $\{1, \dots, T\}$. $\mathcal{L}_{\text{BC}}(\theta)$ is a behavior cloning (BC) loss, and minimizing it enables the diffusion model to learn the behavior policy μ . At inference time, an action a^0 is generated by sampling $a^T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and iteratively applying the learned reverse process.

270 **Advantage.** In our practical implementation, the value function is parameterized by a neural network
 271 with parameters φ and trained by minimizing the following expectile regression loss:
 272

$$\mathcal{L}_{\text{VALUE}}(\varphi) = \mathbb{E}_{(s, a, r, s') \sim \mathcal{D}} [L_2^\tau(r + \gamma V_\varphi(s') - V_\varphi(s))]. \quad (12)$$

274 We parameterize the transition dynamics using a neural network and learn a deterministic transition
 275 model, which we find sufficiently accurate and computationally efficient in practice. The model is
 276 trained by minimizing the following mean squared error (MSE) loss:
 277

$$\mathcal{L}_{\text{MODEL}}(\psi) = \mathbb{E}_{(s, a, s') \sim \mathcal{D}} [\|P_\psi(s, a) - s'\|^2]. \quad (13)$$

278 Therefore, the behavior policy μ , the value function V , and the transition dynamics P can be learned
 279 by minimizing Eq. (11), Eq. (12), and Eq. (13), respectively. The advantage function $A(a | s)$ is then
 280 computed as defined in Eq. (9). All components are trained jointly using only offline data and then
 281 kept fixed during subsequent actor–critic updates, making this stage computationally inexpensive.
 282

283 **Actor-Critic.** Following the advantage-based Bellman operator defined in Eq. (10), we define the
 284 loss for learning Q-function (critic) as:
 285

$$\mathcal{L}_{\text{CRITIC}}(\phi) = \mathbb{E}_{(s, a, s') \sim \mathcal{D}, a' \sim \pi_\theta(\cdot | s')} \left[(r(s, a) + \gamma(Q_\phi(s', a') + \lambda A(a' | s')) - Q_\phi(s, a))^2 \right]. \quad (14)$$

287 Here, the advantage function $A(a | s)$ acts as an auxiliary correction term, learned once from offline
 288 data and held fixed during critic updates. To improve the policy, we incorporate Q-function guidance
 289 into the behavior cloning objective, encouraging the model to sample actions with greater estimated
 290 values. The resulting policy (actor) objective combines policy regularization and policy improvement:
 291

$$\mathcal{L}_{\text{ACTOR}}(\theta) = \mathcal{L}_{\text{BC}}(\theta) - \alpha \mathbb{E}_{s \sim \mathcal{D}, a \sim \pi_\theta} [Q_\phi(s, a)]. \quad (15)$$

292 We summarize our implementation in Algorithm 1. A central feature of our method is the incorporation
 293 of $A(a | s)$, which distinguishes it from prior approaches such as DQL (Wang et al., 2022) that
 294 rely solely on the standard Bellman backup.
 295

296 5 EXPERIMENTS

299 In this section, we begin by evaluating our method on the widely recognized D4RL benchmark (Fu
 300 et al., 2020). We then design a dedicated experiment on the D4RL task PointMaze to better visualize
 301 ADAC’s ability to identify beneficial OOD actions. Finally, we perform an ablation study to dissect
 302 the contribution of key components in our method.
 303

304 **Dataset.** We evaluate our method on four distinct domains from the D4RL benchmark: Gym,
 305 AntMaze, Adroit, and Kitchen. The Gym-MuJoCo locomotion tasks are widely adopted and relatively
 306 straightforward due to their simplicity and dense reward signals. In contrast, AntMaze presents more
 307 challenging scenarios with sparse rewards, requiring the agent to compose suboptimal trajectories to
 308 reach long-horizon goals. The Adroit tasks, collected from human demonstrations, involve narrow
 309 state-action regions and demand strong regularization to ensure desired performance. Finally, the
 310 Kitchen environment poses a multi-task control problem where the agent must sequentially complete
 311 four sub-tasks, emphasizing long-term planning and generalization to unseen states.
 312

313 **Baseline.** We consider a diverse array of baseline methods that exhibits strong results in each
 314 domain of tasks. For policy regularization-based method, we compare with the classic BC, TD3+BC
 315 (Fujimoto & Gu, 2021), BEAR (Kumar et al., 2019), BRAC (Wu et al., 2019), BCQ (Fujimoto
 316 et al., 2019), AWR (Peng et al., 2019), O-RL (Brandfonbrener et al., 2021), and DQL (Wang et al.,
 317 2022). For pessimistic value function-based approach, we include CQL (Kumar et al., 2020), IQL
 318 (Kostrikov et al., 2021), and REM (Agarwal et al., 2020). For model-based offline RL, we choose
 319 MoRel (Kidambi et al., 2020). For the classic online method, we include SAC (Haarnoja et al., 2018).
 320 For conditional sequence modeling approaches, we include DT (Chen et al., 2021), Diffuser (Janner
 321 et al., 2022), and DD (Ajay et al., 2022). We report the performance of baseline methods either from
 322 the best results published in their respective papers or from (Wang et al., 2022).
 323

324 5.1 BENCHMARK RESULTS

325 Our method is evaluated on four task domains, with results summarized in Table 1. We also provide
 326 domain-specific analysis to highlight key performance characteristics.
 327

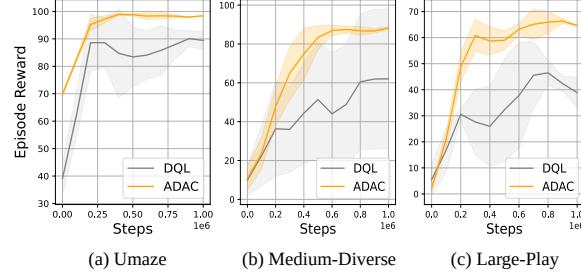
324 Table 1: Normalized average returns on D4RL tasks, averaged over the final 10 evaluations across 4 seeds.
325

Gym Tasks	BC	TD3+BC	CQL	IQL	MoRel	DT	Diffuser	DD	DQL	ADAC (Ours)
halfcheetah-medium	42.6	48.3	44.0	47.4	42.1	42.6	44.2	49.1	51.1	58.0±0.3
hopper-medium	52.9	59.3	58.5	66.3	95.4	67.6	58.5	79.3	90.5	93.5±4.2
walker2d-medium	75.3	83.7	72.5	78.3	77.8	74.0	79.7	82.5	87.0	87.6±2.0
halfcheetah-medium-replay	36.6	44.6	45.5	44.2	40.2	36.6	42.2	39.3	47.8	52.5±0.8
hopper-medium-replay	18.1	60.9	95.0	94.7	93.6	82.7	96.8	100.0	101.3	102.1±1.1
walker2d-medium-replay	26.0	81.8	77.2	73.9	49.8	66.6	61.2	75.0	95.5	96.0±1.6
halfcheetah-medium-expert	55.2	90.7	91.6	86.7	53.3	86.8	79.8	90.6	96.8	106.1±1.0
hopper-medium-expert	52.5	98.0	105.4	91.5	108.7	107.6	107.2	111.8	111.1	112.5±1.0
walker2d-medium-expert	107.5	110.1	108.8	109.6	95.6	108.1	108.4	108.8	110.1	112.3±0.9
Average	51.9	75.3	77.6	77.0	72.9	74.7	75.3	81.8	88.0	91.2
AntMaze Tasks	BC	TD3+BC	CQL	IQL	BEAR	DT	BCQ	O-RL	DQL	ADAC (Ours)
antmaze-umaze	54.6	78.6	74.0	87.5	73.0	59.2	78.9	64.3	93.4	98.2±4.5
antmaze-umaze-diverse	45.6	71.4	84.0	62.2	61.0	53.0	55.0	60.7	66.2	76.0±9.9
antmaze-medium-play	0.0	10.6	61.2	71.2	0.0	0.0	0.0	0.3	76.6	86.5±9.8
antmaze-medium-diverse	0.0	3.0	53.7	70.0	8.0	0.0	0.0	0.0	78.6	88.7±10.2
antmaze-large-play	0.0	0.2	15.8	39.6	6.7	0.0	6.7	0.0	46.4	69.8±12.4
antmaze-large-diverse	0.0	0.0	14.9	47.5	2.2	0.0	2.2	0.0	56.6	64.6±12.7
Average	16.7	27.3	50.6	63.0	23.7	18.7	23.8	20.9	69.6	80.6
Adroit Tasks	BC	BRAC-v	CQL	IQL	BEAR	REM	BCQ	SAC	DQL	ADAC (Ours)
pen-human	25.8	0.6	35.2	71.5	-1.0	5.4	68.9	4.3	72.8	74.4±18.6
pen-cloned	38.3	-2.5	27.2	37.3	26.5	-1.0	44.0	-0.8	57.3	80.5±14.3
Average	32.1	-1.0	31.2	54.4	12.8	2.2	56.5	1.8	65.1	77.5
Kitchen Tasks	BC	BRAC-v	CQL	IQL	BEAR	AWR	BCQ	SAC	DQL	ADAC (Ours)
kitchen-complete	33.8	0.0	43.8	62.5	0.0	0.0	8.1	15.0	84.0	87.9±6.7
kitchen-partial	33.8	0.0	49.8	46.3	13.1	15.4	18.9	0.0	60.5	65.2±7.0
kitchen-mixed	47.5	0.0	51.0	51.0	47.2	10.6	8.1	2.5	62.6	68.3±5.8
Average	38.4	0.0	48.2	53.3	20.1	8.7	11.7	5.8	69.0	73.8

351 **Results for AntMaze Tasks.** We follow
352 the D4RL evaluation protocol with *normalized*
353 scores, where 100 corresponds to an
354 expert policy (Fu et al., 2020). AntMaze
355 is particularly challenging due to sparse
356 rewards and the prevalence of suboptimal
357 trajectories, which makes controlled explo-
358 ration of OOD actions crucial. Under these
359 conditions, ADAC delivers over **15%** im-
360 provements across all baselines and task
361 variants. We further observe smoother
362 learning curves and fewer training col-
363 lapses compared to DQL (Figure 3), sug-
364 gesting that advantage-guided updates help
365 the agent discover and reliably exploit the
366 small set of reward-yielding behaviors de-
367 spite limited feedback.

368 **Results for Gym Tasks.** In the dense-reward gym mujoco locomotion suite, ADAC provides
369 consistent gains on top of already strong baselines. HalfCheetah is the most challenging family in this
370 suite and exhibits the largest relative improvement at roughly **10%**, while Hopper and Walker2d also
371 benefit. Because scores are normalized (expert = 100, from a converged online policy), averages near
372 or above 90 indicate behavior approaching expert quality; ADAC pushes more tasks into this regime.
373 Qualitatively, we find that the advantage signal helps curb over-optimistic updates on hard-to-model
374 transitions while preserving high-value in-distribution behaviors, yielding both higher final returns
375 and more stable training.

376 **Results for Adroit and Kitchen Tasks.** Adroit involves dexterous hand manipulation and is
377 particularly prone to extrapolation error because human demonstrations cover a narrow region of
the state-action space. While both DQL and ADAC use policy regularization, adding the advantage



378 Figure 3: Performance comparison of DQL and ADAC on
379 three AntMaze tasks: Umaze, Medium-Diverse, and Large
380 Play. Each method was trained with 4 random seeds, and
381 the reward curves were smoothed with a running average
382 ($n = 10$). In this figure, the solid lines correspond to the mean
383 and the shaded regions correspond to the standard deviation.

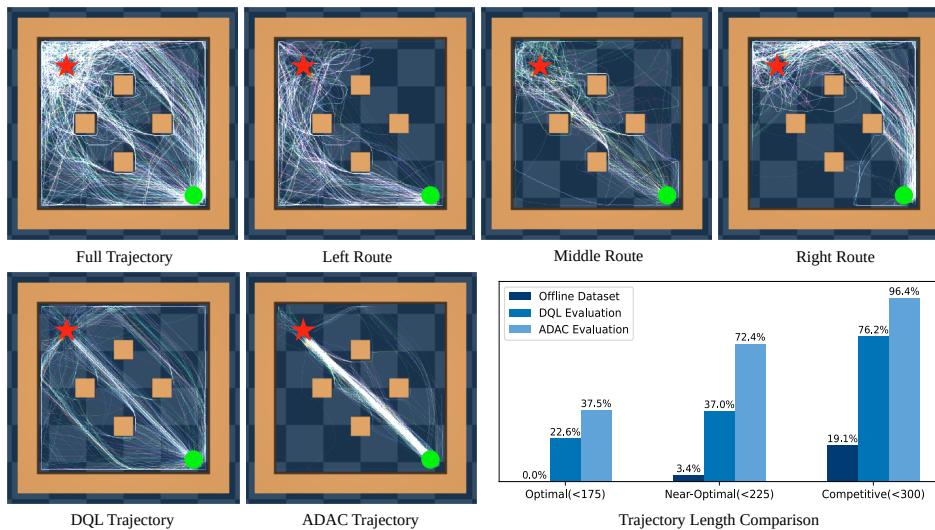


Figure 4: **Sparse reward PointMaze: dataset and method performance.** **Top:** 853 sub-optimal trajectories are gathered with only terminal reward. Three trajectory patterns—Left (33%), Middle (22%), Right (45%)—span lengths of 200 to 1000 steps (the optimal length is 142). **Bottom:** The first two subfigures illustrate the trajectories generated by DQL and ADAC after training on the dataset, respectively. The last subfigure summarizes the distribution of trajectory lengths for the offline dataset, DQL, and ADAC.

further curbs OOD over-optimism, yielding about **20%** improvement over strong baselines. Kitchen uses a Franka arm to execute long-horizon, compositional goals, and we observe consistent gains there as well.

Together, these results indicate that advantage-guided updates translate beyond locomotion and maze navigation, improving reliability in settings that stress dexterous manipulation and sequential goal completion.

5.2 VISUALIZING OOD ACTION SELECTION IN POINTMAZE

In the previous subsection, we demonstrated that our method achieves SOTA performance across a wide range of D4RL benchmark tasks, with particularly large gains on challenging sparse-reward environments. This improvement can be largely attributed to our newly designed advantage function, which enables the selection of beneficial OOD actions—a capability especially critical in sparse-reward tasks.

To better visualize the strength of ADAC in guiding the selection of beneficial OOD actions, we conduct a comparative experiment on PointMaze. Specifically, we construct a toy environment based on the latest `gymnasium-robotics` (de Lazcano et al., 2023) implementation of PointMaze, derived from the Maze2D environment in the D4RL suite. As shown in Figure 4, the green circle indicates the agent’s starting position, the red star denotes the goal, and the beige squares represent static obstacles. The task involves navigating a 2-DoF point agent through a maze with obstacles to a fixed goal using Cartesian (x, y) actuation. This is a sparse-reward task: the agent receives a reward of 1 only upon reaching the goal and zero at all other steps. We manually collect 853 trajectories of varying quality, as illustrated in the bar plot of Figure 4, which together yield 391,391 tuples of the form $(s, a, s', r, \text{done})$. Details of the dataset collection strategy and the trajectory quality analysis are provided in Appendix C.7.

We train both DQL (Wang et al., 2022) and ADAC for 50 000 steps using the constructed dataset to obtain their respective policies. Each policy is then evaluated in our environment, generating 300 trajectories per method, as illustrated in the bottom row of Figure 4.

Note that the original collected offline trajectories does not contain any optimal trajectories (of steps less than 175, see the bar plot of Figure 4). Nevertheless, ADAC effectively learns the optimal trajectories from these suboptimal datasets, which generated a substantial number of straight-line

(optimal) trajectories from the start to the goal—routes that are entirely absent in the dataset. This visual evidence strongly supports that ADAC is capable of identifying and selecting superior OOD actions. In contrast, the trajectories generated by DQL, while showing moderate improvement over the offline data, still largely follow left-, middle-, and right-pattern behaviors, indicating a strong tendency toward behavior cloning. Since the key distinction between DQL and ADAC lies in the introduction of advantage modulation, these visualizations clearly validate the effectiveness of the advantage function in enabling the selection of beneficial OOD actions. The last subfigure of Figure 4 provides quantitative evidence that ADAC substantially outperforms DQL in trajectory quality.

5.3 ABLATION ON THE ADVANTAGE COMPONENT

We assess the importance of the advantage by comparing models *with* and *without* this component on four representative domains: Gym Locomotion, AntMaze, Adroit, and Kitchen. The ablation results in Figure 5 show that introducing the advantage consistently strengthens performance across all settings, with relative improvements of **11.1%** on Gym Locomotion, **12.2%** on AntMaze, **10.9%** on Adroit, and **12.4%** on Kitchen. Beyond the overall gains, the pattern is consistent across domains with diverse dynamics and reward structures, indicating that the advantage contributes broadly rather than acting as a domain-specific tweak.

5.4 COMPUTATIONAL EFFICIENCY OF TRAINING AND INFERENCE

All experiments were conducted on a single NVIDIA RTX 4090, without any distributed training or model parallelism. This setup ensures that reported throughput reflects algorithmic and implementation efficiency rather than scale-out effects.

Building on the lightweight utilities of `jaxrl_m` (Flax/JAX), we reimplemented Diffusion QL in JAX and subsequently introduced advantage-centric components on top of it. The resulting codebase follows a flat, modular design that facilitates reproduction and portability across tasks. Under identical hardware and evaluation protocols, the implementation delivers consistent throughput, yielding a $2 \times$ improvement in training and a $1.64 \times$ improvement in inference over the original DQL implementation. In head-to-head comparisons with Efficient Diffusion Policy (EDP) (Kang et al., 2023), training throughput is comparable, while inference is faster (Fig. 6).

6 CONCLUSION

In this work, we propose ADAC, a novel offline RL algorithm that systematically evaluates the quality of OOD actions to balance conservatism and generalization. ADAC represents a pioneering attempt to explicitly assess OOD actions and to selectively encourage beneficial ones, while discouraging risky ones to maintain conservatism. We validate the effectiveness of advantage modulation through a series of custom PointMaze experiments and demonstrate state-of-the-art performance across almost all tasks in the D4RL benchmark. The empirical results further indicate that ADAC is particularly effective in more challenging tasks.

REFERENCES

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline reinforcement learning. In *International conference on machine learning*, pp. 104–114. PMLR,

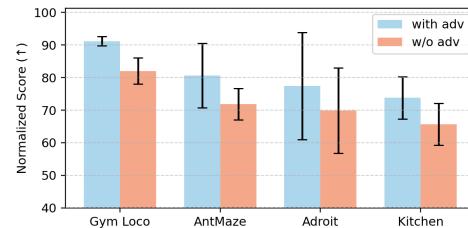


Figure 5: Ablation of the advantage component across four domains. Bars show domain-level mean normalized scores.

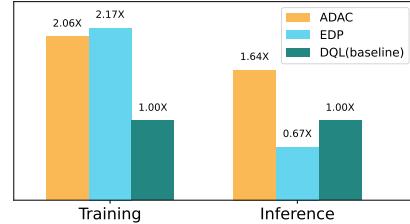


Figure 6: Training and inference speedups of ADAC compared to EDP and the DQL baseline.

486 2020.

487

488 Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is con-
489 ditional generative modeling all you need for decision-making? *arXiv preprint arXiv:2211.15657*,
490 2022.

491 Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
492 reinforcement learning with diversified q-ensemble. *Advances in neural information processing*
493 *systems*, 34:7436–7447, 2021.

494

495 Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and Zhaoran
496 Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. *arXiv*
497 *preprint arXiv:2202.11566*, 2022.

498 David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians.
499 *Journal of the American statistical Association*, 112(518):859–877, 2017.

500

501 David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without off-policy
502 evaluation. *Advances in neural information processing systems*, 34:4933–4946, 2021.

503

504 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
505 Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
506 modeling. *Advances in neural information processing systems*, 34:15084–15097, 2021.

507

508 Xuyang Chen, Guojian Wang, Keyu Yan, and Lin Zhao. Vipo: Value function inconsistency penalized
509 offline reinforcement learning. *arXiv preprint arXiv:2504.11944*, 2025.

510

511 Rodrigo de Lazcano, Kallinteris Andreas, Jun Jet Tai, Seungjae Ryan Lee, and Jordan Terry. Gymna-
512 sium robotics. *URL: http://github.com/Farama-Foundation/Gymnasium-Robotics*, 2023.

513

514 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
515 data-driven reinforcement learning. *arXiv preprint arXiv:2004.07219*, 2020.

516

517 Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
518 *Advances in neural information processing systems*, 34:20132–20145, 2021.

519

520 Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
521 exploration. In *International conference on machine learning*, pp. 2052–2062. PMLR, 2019.

522

523 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
524 maximum entropy deep reinforcement learning with a stochastic actor. In *International conference*
525 *on machine learning*, pp. 1861–1870. Pmlr, 2018.

526

527 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
528 *neural information processing systems*, 33:6840–6851, 2020.

529

530 Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
531 flexible behavior synthesis. *arXiv preprint arXiv:2205.09991*, 2022.

532

533 Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
534 Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforcement
535 learning for vision-based robotic manipulation. In *Conference on robot learning*, pp. 651–673.
536 PMLR, 2018.

537

538 Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies
539 for offline reinforcement learning. *Advances in Neural Information Processing Systems*, 36:
67195–67212, 2023.

540

541 Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
542 based offline reinforcement learning. *Advances in neural information processing systems*, 33:
543 21810–21823, 2020.

544

545 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
546 q-learning. *arXiv preprint arXiv:2110.06169*, 2021.

540 Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
 541 q-learning via bootstrapping error reduction. *Advances in neural information processing systems*,
 542 32, 2019.

543 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
 544 reinforcement learning. *Advances in Neural Information Processing Systems*, 33:1179–1191, 2020.

545 Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In *Reinforcement
 546 learning: State-of-the-art*, pp. 45–73. Springer, 2012.

547 Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
 548 review, and perspectives on open problems. *arXiv preprint arXiv:2005.01643*, 2020.

549 Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
 550 personalized news article recommendation. In *Proceedings of the 19th international conference on
 551 World wide web*, pp. 661–670, 2010.

552 Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. Mildly conservative q-learning for offline
 553 reinforcement learning. *Advances in Neural Information Processing Systems*, 35:1711–1724, 2022.

554 Whitney K Newey and James L Powell. Asymmetric least squares estimation and testing. *Economet-
 555 rica: Journal of the Econometric Society*, pp. 819–847, 1987.

556 Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
 557 Simple and scalable off-policy reinforcement learning. *arXiv preprint arXiv:1910.00177*, 2019.

558 Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colombini. A survey on offline
 559 reinforcement learning: Taxonomy, review, and open problems. *IEEE Transactions on Neural
 560 Networks and Learning Systems*, 2023.

561 Rafael Rafailov, Tianhe Yu, Aravind Rajeswaran, and Chelsea Finn. Offline reinforcement learning
 562 from images with latent space models. In *Learning for dynamics and control*, pp. 1154–1168.
 563 PMLR, 2021.

564 Marc Rigter, Bruno Lacerda, and Nick Hawes. Rambo-rl: Robust adversarial model-based offline
 565 reinforcement learning. *Advances in neural information processing systems*, 35:16082–16097,
 566 2022.

567 Avi Singh, Albert Yu, Jonathan Yang, Jesse Zhang, Aviral Kumar, and Sergey Levine. Cog:
 568 Connecting new skills to past experience with offline reinforcement learning. *arXiv preprint
 569 arXiv:2010.14500*, 2020.

570 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 571 learning using nonequilibrium thermodynamics. In *International conference on machine learning*,
 572 pp. 2256–2265. pmlr, 2015.

573 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 574 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint
 575 arXiv:2011.13456*, 2020.

576 Yihao Sun, Jiaji Zhang, Chengxing Jia, Haoxin Lin, Junyin Ye, and Yang Yu. Model-bellman
 577 inconsistency for model-based offline reinforcement learning. In *International Conference on
 578 Machine Learning*, pp. 33177–33194. PMLR, 2023.

579 Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*. MIT press, 2018.

580 Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
 581 class for offline reinforcement learning. *arXiv preprint arXiv:2208.06193*, 2022.

582 Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
 583 *arXiv preprint arXiv:1911.11361*, 2019.

584 Yueh-Hua Wu, Xiaolong Wang, and Masashi Hamaya. Elastic decision transformer. *Advances in
 585 neural information processing systems*, 36:18532–18550, 2023.

594 Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
595 and Tengyu Ma. Mopo: Model-based offline policy optimization. *Advances in Neural Information
596 Processing Systems*, 33:14129–14142, 2020.

597 Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
598 Combo: Conservative offline model-based policy optimization. *Advances in neural information
599 processing systems*, 34:28954–28967, 2021.

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 649 650 651 652 **Supplementary Material** 653

654 655 656 **Table of Contents** 657

656 A Related Work	13
657	
658 B Proof of Propositions	14
659	
660 C Experimental Details	16
661	
662 C.1 Advantage Function Characterization and Regularization	16
663	
664 C.2 Diffusion Actor and Residual-Critic Architecture Design	17
665	
666 C.3 Repeated Sampling for Value-Guided Diffusion Policies	18
667	
668 C.4 Hyperparameter Setup	19
669	
670 C.5 Sensitivity Analysis	19
671	
672 C.6 Computational Efficiency of Training and Inference	20
673	
674 C.7 Auxiliary Model Pretraining	20
675	
676 C.8 Dataset Construction for Offline RL in PointMaze	20
677	

678 **A RELATED WORK**

679 Offline RL focuses on learning effective policies solely from a pre-collected behavior dataset and has
680 demonstrated significant success in practical applications (Rafailov et al., 2021; Singh et al., 2020; Li
681 et al., 2010). The existing literature on offline RL can be classified into four main categories:

682 **Pessimistic value-based** methods achieve conservatism by incorporating penalty terms into the
683 value optimization objective, discouraging the value function from being overly optimistic on out-
684 of-distribution (OOD) actions. Specifically, CQL (Kumar et al., 2020) applies equal penalization to
685 Q-values for all OOD samples, whereas EDAC (An et al., 2021) and PBRL (Bai et al., 2022) adjust
686 the penalization based on the uncertainty level of the Q-value, measured using a neural network
687 ensemble.

688 **Regularized policy-based** methods constrain the learned policy to stay close to the behavior policy,
689 thereby avoiding OOD actions. For instance, BEAR (Kumar et al., 2019) constrains the optimized
690 policy by minimizing the MMD distance to the behavior policy. BCQ (Fujimoto et al., 2019) restricts
691 the action space to those present in the dataset by utilizing a learned Conditional-VAE (CVAE)
692 behavior-cloning model. Alternatively, TD3+BC (Fujimoto & Gu, 2021) simply adds a behavioral
693 cloning regularization term to the policy optimization objective and achieves excellent performance
694 across various tasks. IQL (Kostrikov et al., 2021) adopts an advantage-weighted behavior cloning
695 approach, learning Q-value functions directly from the dataset. Meanwhile, DQL (Wang et al., 2022)
696 leverages diffusion policies as an expressive policy class to enhance behavior-cloning. Our work falls
697 into this category as we also incorporate a behavior-cloning term.

698 **Conditional sequence modeling** methods induce conservatism by limiting the policy to replicate
699 behaviors from the offline dataset (Chen et al., 2021; Wu et al., 2023). This leads to a supervised
700 learning paradigm. Additionally, trajectories can be formulated as conditioned generative models and
701 generated by diffusion models that satisfy conditioned constraints (Janner et al., 2022; Ajay et al.,
2022).

Model-based methods incorporate conservatism to prevent the policy from overgeneralizing to regions where the dynamics model predictions are unreliable. For example, COMBO (Yu et al., 2021) extends CQL to a model-based setting by enforcing small Q-values for OOD samples generated by the dynamics model. RAMBO (Rigter et al., 2022) incorporates conservatism by adversarially training the dynamics model to minimize the value function while maintaining accurate transition predictions. Most model-based methods achieve conservatism through uncertainty quantification, penalizing rewards in regions with high uncertainty. Specifically, MOPO (Yu et al., 2020) uses the max-aleatoric uncertainty quantifier, MOREL (Kidambi et al., 2020) employs the max-pairwise-diff uncertainty quantifier, and MOBILE (Sun et al., 2023) leverages the Model-Bellman inconsistency uncertainty quantifier. Recently, (Chen et al., 2025) achieves conservatism by incorporating the value function inconsistency loss, enabling the training of a more reliable model.

B PROOF OF PROPOSITIONS

In this subsection, we provide comprehensive and complete proofs for our propositions listed in Section 3.

Proof of Proposition 3.1.

Proof. Denote $\delta(\mathbf{s}, \mathbf{a}, \mathbf{s}') = r(\mathbf{s}, \mathbf{a}) + \gamma V(\mathbf{s}') - V(\mathbf{s})$, the regression problem in Eq. (6) can be rewritten as

$$\mathcal{L}(V) = \mathbb{E}_{(\mathbf{s}, \mathbf{a}, r, \mathbf{s}') \sim \mathcal{D}} [L_2^\tau(\delta(\mathbf{s}, \mathbf{a}, \mathbf{s}'))].$$

To find the optimal $V(\mathbf{s})$, we take the derivative of $\mathcal{L}(V)$ with respect to $V(\mathbf{s})$ conditioning on \mathbf{s} :

$$\begin{aligned} \frac{\partial \mathcal{L}(V)}{\partial V(\mathbf{s})} &= \mathbb{E}_{\mathbf{a} \sim \mu(\cdot | \mathbf{s}), \mathbf{s}' \sim P(\cdot | \mathbf{s}, \mathbf{a})} \left[\frac{\partial L_2^\tau(\delta)}{\partial V(\mathbf{s})} \right] \\ &= \mathbb{E}_{\mathbf{a} \sim \mu(\cdot | \mathbf{s}), \mathbf{s}' \sim P(\cdot | \mathbf{s}, \mathbf{a})} \left[\frac{\partial L_2^\tau(\delta)}{\partial \delta} \cdot \frac{\partial \delta}{\partial V(\mathbf{s})} \right] \\ &= \mathbb{E}_{\mathbf{a} \sim \mu(\cdot | \mathbf{s}), \mathbf{s}' \sim P(\cdot | \mathbf{s}, \mathbf{a})} [2|1 - \mathbb{1}(\delta < 0)|\delta(\mathbf{s}, \mathbf{a}, \mathbf{s}') \cdot (-1)], \end{aligned}$$

where the exchange of partial derivative and expectation is due to dominated convergence theorem since both r and V are bounded.

From the fact that the solution $V_\tau(\mathbf{s})$ satisfies $\frac{\partial \mathcal{L}(V)}{\partial V(\mathbf{s})} \Big|_{V_\tau(\mathbf{s})} = 0$, we get

$$\mathbb{E}_{\mathbf{a} \sim \mu(\cdot | \mathbf{s}), \mathbf{s}' \sim P(\cdot | \mathbf{s}, \mathbf{a})} [|\tau - \mathbb{1}(r(\mathbf{s}, \mathbf{a}) + \gamma V_\tau(\mathbf{s}') - V_\tau(\mathbf{s}) < 0)| (r(\mathbf{s}, \mathbf{a}) + \gamma V_\tau(\mathbf{s}') - V_\tau(\mathbf{s}))] = 0.$$

In expectile regression, the τ -expectile μ_τ of a random variable X satisfies

$$\mathbb{E}[|\tau - \mathbb{1}(X - \mu_\tau < 0)| (Y - \mu_\tau)] = 0.$$

As a result, this implies that the solution $V_\tau(\mathbf{s})$ is the τ -expectile of the target $r(\mathbf{s}, \mathbf{a}) + \gamma V_\tau(\mathbf{s}')$. Therefore, we conclude that

$$V_\tau(\mathbf{s}) = \mathbb{E}_{\mathbf{a} \sim \mu(\cdot | \mathbf{s}), \mathbf{s}' \sim P(\cdot | \mathbf{s}, \mathbf{a})} [r(\mathbf{s}, \mathbf{a}) + \gamma V_\tau(\mathbf{s}')],$$

which finish our proof. \square

Proof of Proposition 3.2.

Proof. Define the τ -expectile Bellman operator as

$$\mathcal{T}_\tau V(\mathbf{s}) := \mathbb{E}_{\mathbf{a} \sim \mu(\cdot | \mathbf{s}), \mathbf{s}' \sim P(\cdot | \mathbf{s}, \mathbf{a})} [r(\mathbf{s}, \mathbf{a}) + \gamma V(\mathbf{s}')].$$

From Eq. (7), we know that $\mathcal{T}_\tau V_\tau(\mathbf{s}) = V_\tau(\mathbf{s})$, which means $V_\tau(\mathbf{s})$ is a fixed point for τ -expectile Bellman operator \mathcal{T}_τ .

Suppose there is another fixed point $W_\tau(\mathbf{s})$ for \mathcal{T}_τ . It holds that

$$\|V_\tau - W_\tau\|_\infty = \|\mathcal{T}_\tau V_\tau - \mathcal{T}_\tau W_\tau\|_\infty \leq \gamma \|V_\tau - W_\tau\|_\infty,$$

756 which means that $V_\tau = W_\tau$. Therefore, we have shown that V_τ is the unique fixed point for \mathcal{T}_τ .
 757

758 For $\tau_1 \leq \tau_2$ and a bounded random variable X , we have
 759

$$\mathbb{E}^{\tau_1}[X] \leq \mathbb{E}^{\tau_2}[X].$$

760 As a result, we get $\mathcal{T}_{\tau_1}V \leq \mathcal{T}_{\tau_2}V$. Therefore, for its fixed point, we have $V_{\tau_1} \leq V_{\tau_2}$.
 761

762 It can be shown that
 763

$$V_\tau(\mathbf{s}) = \mathcal{T}_\tau V_\tau(\mathbf{s}) \leq \max_{\mathbf{a} \in \mu(\cdot|\mathbf{s})} [r(\mathbf{s}, \mathbf{a}) + \gamma \|V_\tau\|_\infty] \leq \frac{2R_{\max}}{1 - \gamma}.$$

764 Therefore, we have demonstrated that $V_\tau(\mathbf{s})$ is bounded and monotonically non-decreasing in τ .
 765 Consequently, there exists a limit $\bar{V}(\mathbf{s})$ such that
 766

$$\lim_{\tau \rightarrow 1} V_\tau(\mathbf{s}) = \bar{V}(\mathbf{s}).$$

767 Define a random variable
 768

$$X^\tau = r(\mathbf{s}, \mathbf{A}) + \gamma V_\tau(\mathbf{S}'), \quad \mathbf{A} \sim \mu(\cdot|\mathbf{s}), \mathbf{S}' \sim P(\cdot|\mathbf{s}, \mathbf{A}),$$

769 and its limit $\bar{X} = r(\mathbf{s}, \mathbf{A}) + \gamma \bar{V}(\mathbf{S}')$. It follows that
 770

$$\lim_{\tau \rightarrow 1} V_\tau(\mathbf{s}) = \lim_{\tau \rightarrow 1} \mathbb{E}^\tau[X^\tau] \stackrel{(1)}{=} \lim_{\tau \rightarrow 1} \mathbb{E}^\tau[\bar{X}],$$

771 where (1) comes from
 772

$$|\mathbb{E}^\tau[X^\tau] - \mathbb{E}[\bar{X}]| \leq \mathbb{E}|X^\tau - \bar{X}|.$$

773 From Lemma 1 in (Kostrikov et al., 2021), which states that
 774

$$\lim_{\tau \rightarrow 1} \mathbb{E}^\tau[\bar{X}] = \max(\bar{X}).$$

775 Therefore, we get
 776

$$\bar{V}(\mathbf{s}) = \max_{\mathbf{a} \in \mu(\cdot|\mathbf{s})} [r(\mathbf{s}, \mathbf{a}) + \gamma \max_{\mathbf{s}' \sim P} \bar{V}(\mathbf{s}')].$$

777 For deterministic transition probability P , we have
 778

$$\bar{V}(\mathbf{s}) = \max_{\mathbf{a} \in \mu(\cdot|\mathbf{s})} [r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\mathbf{s}' \sim P(\cdot|\mathbf{s}, \mathbf{a})} \bar{V}(\mathbf{s}')].$$

779 Define the batch-optimal Bellman operator as
 780

$$\mathcal{T}_\mu^* V(\mathbf{s}) = \max_{\mathbf{a} \in \mu(\cdot|\mathbf{s})} [r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\mathbf{s}' \sim P(\cdot|\mathbf{s}, \mathbf{a})} V(\mathbf{s}')].$$

781 It follows that $\bar{V}(\mathbf{s})$ and $V_\mu^*(\mathbf{s})$ are both fixed point for \mathcal{T}_μ^* . By a similar argument for \mathcal{T}_τ , we know
 782 that \mathcal{T}_μ^* is γ -contractive and has a unique fixed point. As a result, it holds that
 783

$$\lim_{\tau \rightarrow 1} V_\tau(\mathbf{s}) = V_\mu^*(\mathbf{s})$$

784 for a deterministic transition probability. Overall, we finish our proof. \square
 785

786 Proof of Proposition 3.3.

787 *Proof.* Let Q_1 and Q_2 be two arbitrary Q -functions. We have
 788

$$\begin{aligned} \|\mathcal{T}_A^{\pi_\theta} Q_1 - \mathcal{T}_A^{\pi_\theta} Q_2\|_\infty &= \max_{\mathbf{s}, \mathbf{a}} |r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\mathbf{s}' \sim P, \mathbf{a}' \sim \pi_\theta} [Q_1(\mathbf{s}', \mathbf{a}') + \lambda A(\mathbf{a}'|\mathbf{s}')] \\ &\quad - r(\mathbf{s}, \mathbf{a}) - \gamma \mathbb{E}_{\mathbf{s}' \sim P, \mathbf{a}' \sim \pi_\theta} [Q_2(\mathbf{s}', \mathbf{a}') + \lambda A(\mathbf{a}'|\mathbf{s}')]| \\ &= \max_{\mathbf{s}, \mathbf{a}} |\gamma \mathbb{E}_{\mathbf{s}' \sim P, \mathbf{a}' \sim \pi_\theta} [Q_1(\mathbf{s}', \mathbf{a}') - Q_2(\mathbf{s}', \mathbf{a}')]| \\ &\leq \gamma \max_{\mathbf{s}, \mathbf{a}} \|Q_1 - Q_2\|_\infty \\ &= \gamma \|Q_1 - Q_2\|_\infty. \end{aligned}$$

800 Therefore, $\mathcal{T}_A^{\pi_\theta}$ is a γ -contraction operator which naturally implies any initial Q -function can converge
 801 to a unique fixed point by repeatedly applying this operator. \square
 802

810 **Proof of Proposition 3.4.**
811812 *Proof.* We first show that $\|A(\mathbf{a}'|\mathbf{s}')\|_\infty \leq 2R_{\max}/(1 - \gamma)$. From the proof of Theorem 3.2, we
813 know that
814

815
$$\mathcal{T}_\tau V(\mathbf{s}) := \mathbb{E}_{\mathbf{a} \sim \mu(\cdot|\mathbf{s}), \mathbf{s}' \sim P(\cdot|\mathbf{s}, \mathbf{a})} [r(\mathbf{s}, \mathbf{a}) + \gamma V(\mathbf{s}')].$$

816

817 Since the τ -expectile of a random variable cannot exceed its maximum, for any V , we have
818

819
$$\|\mathcal{T}_\tau V\|_\infty \leq R_{\max} + \gamma \|V\|_\infty.$$

820 From Eq. (7), we know that
821

822
$$\|V_\tau\|_\infty = \|\mathcal{T}_\tau V_\tau\|_\infty \leq R_{\max} + \gamma \|V_\tau\|_\infty.$$

823 It follows that
824

825
$$\|V_\tau\|_\infty \leq \frac{R_{\max}}{1 - \gamma}, \forall \tau.$$

826

827 Therefore, we get $\|V\|_\infty \leq R_{\max}/(1 - \gamma)$ and $\|A(\mathbf{a}'|\mathbf{s}')\|_\infty \leq 2R_{\max}/(1 - \gamma)$.
828829 From the advantage-based operator $\mathcal{T}_A^{\pi_\theta}$, we have
830

831
$$\begin{aligned} \mathcal{T}_A^{\pi_\theta} Q(\mathbf{s}, \mathbf{a}) &= r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\mathbf{s}' \sim P, \mathbf{a}' \sim \pi_\theta} [Q(\mathbf{s}', \mathbf{a}') + \lambda A(\mathbf{a}'|\mathbf{s}')] \\ &= r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\mathbf{s}' \sim P, \mathbf{a}' \sim \pi_\theta} [Q(\mathbf{s}', \mathbf{a}')] + \gamma \mathbb{E}_{\mathbf{s}' \sim P, \mathbf{a}' \sim \pi_\theta} [\lambda A(\mathbf{a}'|\mathbf{s}')] \\ &= \mathcal{T}^{\pi_\theta} Q(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\mathbf{s}' \sim P, \mathbf{a}' \sim \pi_\theta} [\lambda A(\mathbf{a}'|\mathbf{s}')], \end{aligned}$$

832

833 where \mathcal{T}^{π_θ} is the standard Bellman operator. From the boundedness of $A(\mathbf{a}|\mathbf{s})$, we have
834

835
$$\mathcal{T}^{\pi_\theta} Q(\mathbf{s}, \mathbf{a}) - \gamma \frac{2\lambda R_{\max}}{1 - \gamma} \leq \mathcal{T}_A^{\pi_\theta} Q(\mathbf{s}, \mathbf{a}) \leq \mathcal{T}^{\pi_\theta} Q(\mathbf{s}, \mathbf{a}) + \gamma \frac{2\lambda R_{\max}}{1 - \gamma}.$$

836

837 Iteratively applying this operator to obtain the fixed point, we get
838

839
$$Q_{\pi_\theta} - \frac{2\lambda R_{\max}}{(1 - \gamma)^2} \leq Q_{\pi_\theta}^A \leq Q_{\pi_\theta} + \frac{2\lambda R_{\max}}{(1 - \gamma)^2}, \forall \mathbf{s}, \mathbf{a},$$

840

841 which implies our conclusion. \square
842843 **C EXPERIMENTAL DETAILS**
844845 **C.1 ADVANTAGE FUNCTION CHARACTERIZATION AND REGULARIZATION**
846847 To provide an overview of the learned advantage function, we report summary statistics computed
848 across 20 D4RL tasks using the best-performing hyperparameter setting (Appendix C.4). For each
849 task, we aggregate advantage values from four independent training runs and report: (1) the mean
850 and standard deviation of both positive and negative advantages, and (2) the proportion of samples
851 exhibiting positive advantages.
852853 The results in Table 2 reveal notable variability in the distribution of advantage values across tasks.
854 In particular, the proportion of positive advantages differs substantially between environments,
855 reflecting how often the learned value function favors alternative actions over those observed in the
856 dataset. We observe that some tasks display a low proportion of positive advantages—reflecting fewer
857 opportunities for improvement—whereas others show substantially higher positive ratios, indicating
858 greater diversity in action quality and more room for enhancement. These statistics are determined
859 by factors such as the quality of the behavior policy, hyperparameters like κ , and the learned value
860 function V , among others.
861

864
865

Table 2: Advantage statistics for 20 D4RL tasks.

866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888

Task Name	Positive	Negative	Pos. (%)
halfcheetah-medium	1.62 ± 0.2	-0.11 ± 0.3	32.8
halfcheetah-medium-replay	1.84 ± 0.3	-0.90 ± 0.0	30.4
halfcheetah-medium-expert	2.00 ± 0.2	-1.75 ± 0.3	38.7
hopper-medium	0.48 ± 0.1	-0.14 ± 0.0	22.1
hopper-medium-replay	1.25 ± 0.2	-0.83 ± 0.1	38.3
hopper-medium-expert	0.39 ± 0.2	-0.55 ± 0.0	10.1
walker2d-medium	0.70 ± 0.1	-0.06 ± 0.0	43.5
walker2d-medium-replay	1.87 ± 0.3	-0.13 ± 0.0	20.0
walker2d-medium-expert	2.33 ± 0.3	-2.20 ± 0.5	26.2
antmaze-umaze	1.70 ± 0.2	-1.05 ± 0.1	52.8
antmaze-umaze-diverse	0.03 ± 0.0	-0.04 ± 0.0	34.0
antmaze-medium-play	0.58 ± 0.1	-0.40 ± 0.1	44.7
antmaze-medium-diverse	0.48 ± 0.05	-0.26 ± 0.05	54.0
antmaze-large-play	0.58 ± 0.02	-0.28 ± 0.05	48.3
antmaze-large-diverse	0.42 ± 0.08	-0.23 ± 0.02	62.3
pen-human	2.34 ± 1.1	-1.74 ± 0.6	41.3
pen-cloned	1.14 ± 0.2	-1.01 ± 0.1	33.4
kitchen-complete	1.15 ± 0.2	-0.85 ± 0.1	42.3
kitchen-partial	0.47 ± 0.1	-0.44 ± 0.2	31.1
kitchen-mixed	0.52 ± 0.0	-0.74 ± 0.0	33.8

Advantage Soft Clipping. To prevent unstable learning dynamics caused by extreme advantage values, we apply a soft clipping transformation to all computed advantages. The function is defined as

$$\text{softclip}(x) = \begin{cases} \lambda_p \cdot \tanh\left(\frac{x}{\lambda_p}\right), & x \geq 0, \\ \lambda_n \cdot \tanh\left(\frac{x}{\lambda_n}\right), & x < 0, \end{cases}$$

where λ_p and λ_n serve as scaling factors for positive and negative values, respectively, replacing the single λ used in Eq. (10) to enhance empirical performance in our implementation.

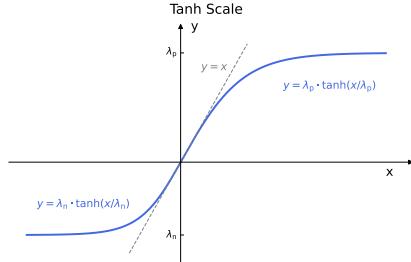
This formulation softly bounds the advantage values, with smooth saturation in the tails and a near-linear response around zero. Unlike hard clipping, it avoids sharp discontinuities while preserving the relative differences between actions, which is important for effective Q-function learning. A visualization of the softclip transformation is shown in Figure 7.

In practice, we observe that performance is largely insensitive to the precise values of λ_p and λ_n , as long as their ratio is maintained. Specifically, setting λ_p to approximately $1.5 \times \lambda_n$ (e.g., such as $\lambda_p = 6$ and $\lambda_n = 4$) consistently yields stable gradients and expressive advantage signals. These results indicate that the method is robust to the specific choice of these hyperparameters, provided the relative scaling is preserved.

C.2 DIFFUSION ACTOR AND RESIDUAL-CRITIC ARCHITECTURE DESIGN

Our method jointly optimizes three network modules during main training: a diffusion-based actor, a Q-function critic, and a value function V . This section describes the architecture of these components, excluding auxiliary networks used for advantage computation.

Diffusion Actor. The actor is instantiated as a denoising diffusion probabilistic model (DDPM) with a variance-preserving (VP) noise schedule. The noise predictor is a five-layer multilayer perceptron

Figure 7: Visualization of the $\text{softclip}(x)$.

(MLP) with Mish activations. We set the number of denoising steps to 10 across all tasks, balancing expressiveness with computational efficiency.

Critic Networks. Both the Q-function and value function are instantiated in two variants: a standard MLP and a residual architecture comprising 16 residual blocks. We observe that the residual networks significantly improve both training stability and final performance in complex tasks, particularly in sparse-reward environments such as AntMaze. We attribute this to the increased representational capacity of the residual architecture, which is better suited to capturing the fine-grained structure of value functions when learning targets are noisy or heterogeneous. In contrast, shallow MLPs tend to underfit in such regimes, leading to unstable or overly conservative estimates. An illustration of the residual block is provided in Figure 8.

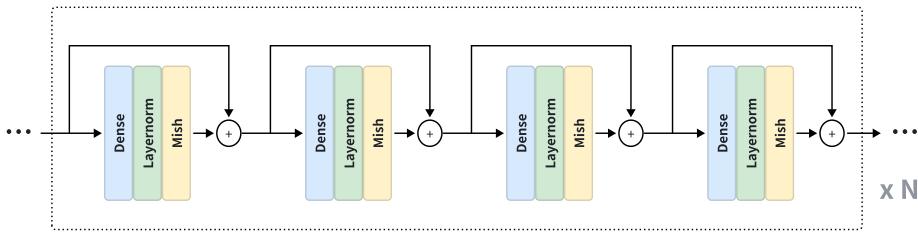


Figure 8: Residual block architecture used in critic networks.

C.3 REPEATED SAMPLING FOR VALUE-GUIDED DIFFUSION POLICIES

Diffusion-based policies are capable of modeling expressive, multimodal action distributions conditioned on state. However, this flexibility introduces sampling stochasticity, where single-sample rollouts may fall into suboptimal modes. To address this, we adopt a repeated sampling strategy guided by the learned Q-function, which enhances both training stability and evaluation performance by enabling more informed action selection.

Training-Time Sampling: Max-Q Backup. During critic updates, we widely employ a *Max-Q Backup* mechanism from CQL (Kumar et al., 2020): for each transition, multiple candidate actions are sampled from the policy at the next state, and the Q-target is computed using the maximum or softmax-weighted Q-value among them. This mitigates underestimation bias caused by poor single-sample rollouts and reduces the variance of the TD targets. We observe that modest sample counts (e.g., 3–5) already improve stability, while more complex tasks—such as `halfcheetah-medium-replay` and `antmaze-medium-diverse` benefit from larger sample sizes (e.g., 10). As shown in Figure 9, increasing the number of backup samples leads to higher predicted Q-values and improved empirical returns.

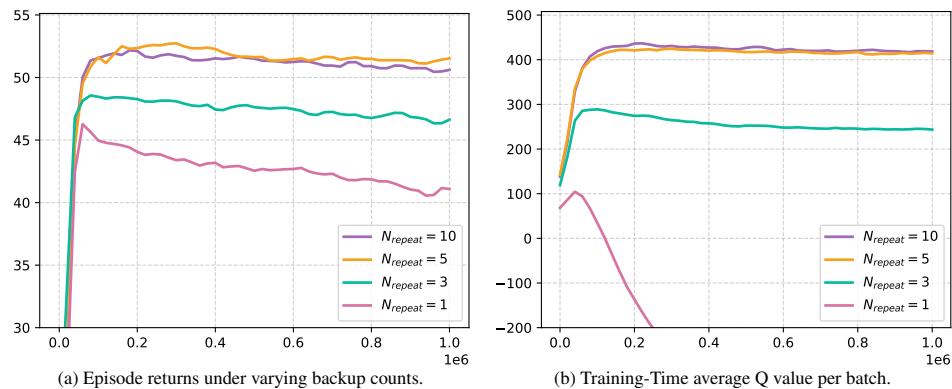


Figure 9: Impact of repeated sampling in both training and inference stages in `halfcheetah-medium-replay`.

972 **Evaluation-Time Sampling: Q-Guided Inference.** At evaluation time, we sample a large set of
 973 candidate actions (typically 50–200) from the diffusion model, and select actions via Q-weighted
 974 sampling. Specifically, Q-values are transformed into a softmax distribution, from which the final
 975 action is drawn. This Q-guided inference biases the policy toward high-value modes while retaining
 976 stochasticity. Across tasks, we consistently observe superior returns compared to single-sample
 977 decoding.

978 This effect stems from the multimodal nature of diffusion policies: only a subset of modes yield high
 979 return, especially in sparse-reward settings. Without repeated sampling, the critic may overlook these
 980 high-reward regions, leading to pessimistic target estimates and suboptimal updates. Expanding the
 981 candidate set increases the likelihood of capturing valuable modes, thereby improving both value
 982 estimation and policy quality.

984 C.4 HYPERPARAMETER SETUP

985
 986 We highlight several key components of our approach, including the use of the κ quantile to define
 987 reward thresholds, the integration of residual blocks to enhance the expressiveness of the critic, and
 988 repeated sampling to exploit the multimodal capacity of the diffusion model. These components
 989 play a central role in achieving strong performance across tasks. Table 3 provides the full set of
 990 hyperparameters; all other parameters follow default configurations from DQL (Wang et al., 2022)
 991 without further modification.

992 Table 3: Hyperparameter configurations for all evaluated tasks. We report the quantile threshold κ , a boolean
 993 indicating whether max Q backups are applied, the number of backup times n , and the backbone used for the
 994 critic network.

995 Task	996 κ	997 Max Q Backup	998 n	999 Critic Net
997 halfcheetah-medium	0.75	True	5	ResNet
998 halfcheetah-medium-replay	0.75	True	5	ResNet
999 halfcheetah-medium-expert	0.75	True	10	ResNet
1000 hopper-medium	0.75	False	1	ResNet
1001 hopper-medium-replay	0.75	True	5	ResNet
1002 hopper-medium-expert	0.95	False	1	ResNet
1003 walker2d-medium	0.65	True	3	ResNet
1004 walker2d-medium-replay	0.85	False	1	ResNet
1004 walker2d-medium-expert	0.75	False	1	MLP
1005 antmaze-umaze	0.55	True	10	ResNet
1006 antmaze-umaze-diverse	0.65	True	10	ResNet
1007 antmaze-medium-play	0.65	True	10	ResNet
1008 antmaze-medium-diverse	0.65	True	10	ResNet
1009 antmaze-large-play	0.65	True	10	ResNet
1010 antmaze-large-diverse	0.55	True	10	ResNet
1011 pen-human	0.65	True	3	MLP
1012 pen-cloned	0.65	True	3	MLP
1013 kitchen-complete	0.65	False	1	MLP
1014 kitchen-partial	0.65	False	1	MLP
1015 kitchen-mixed	0.65	False	1	MLP

1018 C.5 SENSITIVITY ANALYSIS OF THE PARAMETER κ

1019
 1020 The key innovation of our method lies in the design of the advantage function defined in Eq. (9).
 1021 This formulation introduces a parameter κ to control the level of conservatism in our algorithm. We
 1022 investigate how κ interacts with key factors including dataset quality, task difficulty, and reward
 1023 sparsity. This investigation aims to provide guidance for tuning ADAC when applying it to new
 1024 tasks. We conduct ablation studies on six sparse-reward AntMaze environments with three levels of
 1025 difficulty. We also evaluate on nine Gym Locomotion tasks under three dataset quality settings. As
 1026 shown in Fig. 10, we vary κ over the range $\{0.55, 0.65, 0.75, 0.85, 0.95\}$ to assess its impact.

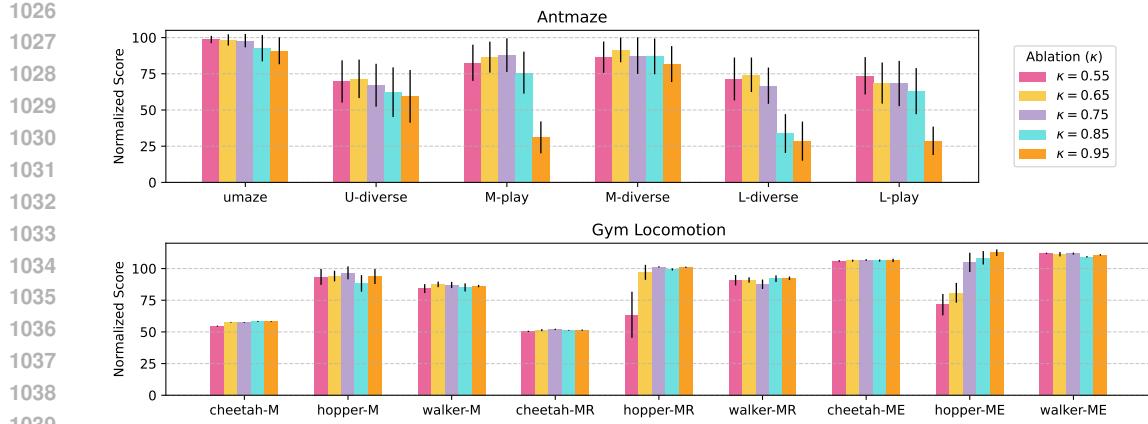


Figure 10: Ablation studies on the effect of κ , the quantile defining the threshold for positive advantage, in AntMaze and Gym Locomotion domains. Higher values of κ (approaching 1) correspond to using the value of the optimal action under the behavior policy as the threshold, while lower κ values relax this criterion. All results are averaged over 4 independent random seeds.

We find that in sparse-reward AntMaze tasks, smaller values of κ (e.g., 0.55 and 0.65) yield superior performance, whereas in dense-reward Gym tasks, larger values (e.g., 0.75) lead to better results. This observation aligns with the intended design of our method: smaller κ values promote the selection of OOD actions, which is essential for achieving high returns in sparse-reward settings.

One potential limitation of our method is the need to sample multiple actions ($N \equiv 25$ in this paper) from the behavior policy to compute the advantage function. However, our ablation study shows that in each task domain, competitive performance can be achieved across at least three different values of κ , indicating that the algorithm is relatively insensitive to κ . This suggests that the number of candidate actions can be reduced without significantly affecting performance. We implement our algorithm using the JAX/Flax framework, which offers faster training and inference speed than the DQL method and is comparable to the optimized EDP (Kang et al., 2023) implementation as shown in Figure 6.

C.6 AUXILIARY MODEL PRETRAINING

To facilitate offline reinforcement learning, we pretrain two models: a transition model that predicts the next state from a state-action pair, and a behavior cloning model based on a diffusion probabilistic model (DDPM) that learns the action distribution conditioned on the current state. The transition model and the DDPM’s noise predictor are both implemented as MLPs with 256 neurons per layer, using the Mish activation. As shown in Table 4, we use a 95%/5% split, batch size 256, and 300 000 gradient steps, optimized with weight-decayed Adam (3×10^{-4} learning rate). Each model trains in under 10 minutes on an NVIDIA RTX 4090. Once trained on a dataset, these models can be reused across experiments, improving efficiency and ensuring consistency regardless of main training hyperparameters.

Table 4: Hyperparameters for Transition and Behavior Cloning Model Pretraining

Hyperparameter	Transition Model	Behavior Cloning Model
Architecture	4-layer MLP	5-layer MLP
	256 neurons per layer	256 neurons per layer
Activation Function	Mish	Mish
Optimizer	AdamW	AdamW
Learning Rate	3×10^{-4}	3×10^{-4}
Batch Size	256	256
Gradient Descent Steps	300 000	300 000
Train/Test Split	95% / 5%	95% / 5%

1080
1081

C.7 DATASET CONSTRUCTION FOR OFFLINE RL IN POINTMAZE

1082
1083
1084
1085
1086

We utilize the PointMaze environment from Gymnasium Robotics, a refactored version of D4RL’s Maze2D. In this environment, an agent navigates a closed maze using 2D continuous force control (bounded (x, y) forces applied at 10 Hz). For our specific experiments focusing on sparse reward spatial navigation, we simplify the state space by omitting goal-related fields. This results in a compact 4-dimensional observation vector comprising only the agent’s position and velocity.

1087
1088
1089
1090
1091

To construct the offline dataset, we collect trajectories across multiple runs of online SAC (Haarnoja et al., 2018) training. We employed a staged sampling strategy during online training (Algorithm 2). This strategy involved periodically performing trajectory rollouts using the current policy, allowing us to collect a diverse set of behaviors as the policy evolved throughout training. This collection process spanned 10 independent runs of online SAC training, each for up to 250 000 steps.

1092
1093
1094
1095
1096
1097
1098
1099

We manually collected 853 successful yet sub-optimal trajectories to construct the offline training dataset, each shorter than 1000 steps but significantly longer than the shortest length of approximately 142 steps, which corresponds to a straight-line path from the start to the goal. As shown in the last subfigure of Figure 4, the offline dataset includes no optimal trajectories (length < 175), only 3.4% near-optimal (length < 225), and 19.1% competitive trajectories (length < 300). These trajectories fall into three distinct modes—Left, Middle, and Right routes—depending on which corridor the agent takes to bypass the obstacles (see corresponding subfigures in Figure 4). The dataset the bar plot of Figure 4 comprises 391 391 Q-learning-style tuples of the form $(s, a, s', r, \text{done})$.

1100

Algorithm 2 Trajectory Sampling for Offline Dataset Construction1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114

```

1: Initialize: policy  $\pi$ , environment  $\mathcal{E}$ , replay buffer  $\mathcal{B}$ 
2: Define: a staged sampling schedule alternating coarse- and fine-grained rollouts
3: for each training step do
4:   Interact with  $\mathcal{E}$  using  $\pi$  and store transitions  $(s_t, a_t, r_t, s_{t+1})$  into  $\mathcal{B}$ 
5:   Periodically update  $\pi$  using mini-batches sampled from  $\mathcal{B}$ 
6:   if sampling interval is triggered then
7:     Execute coarse-grained or fine-grained trajectory rollout according to schedule
8:     Store resulting trajectories in  $\mathcal{D}$ 
9:   end if
10: end for
11: Filter suboptimal trajectories based on return and length heuristics
12: Return: offline dataset  $\mathcal{D}_{\text{offline}}$ 

```

1115
1116
1117
1118
1119
1120
1121

As detailed in Table 5, the dataset exhibits a distribution heavily skewed towards suboptimal behavior, consistent with our collection strategy. Specifically, it contains no optimal trajectories, a very small number of near-optimal paths (3.4%), and a modest proportion (15.7%) of competitive paths, which we consider to be acceptably successful for the task. The vast majority of the dataset (80.9%) consists of trajectories categorized as Sub-Optimal based on their length, defined as exceeding 300 steps.

Table 5: Distribution of trajectory quality based on length in the collected offline dataset.

1122
1123
1124
1125
1126
1127
1128
1129

Category	Length Range	Proportion
Optimal	< 175	0.0%
Near-Optimal	$[175, 225]$	3.4%
Competitive	$[225, 300]$	15.7%
Sub-Optimal	≥ 300	80.9%

1130
1131

D DECLARATION

I declare that Large Language Models (LLMs) were used solely for language polishing in this paper. No other usage of LLMs was involved.