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Abstract

Large language models (LLMs) have demon-001
strated remarkable capabilities across a wide002
range of tasks in various domains. Despite their003
impressive performance, they can be unreliable004
due to factual errors in their generations. As-005
sessing their confidence and calibrating them006
across different tasks can help mitigate risks007
and enable LLMs to produce better generations.008
There has been a lot of recent research aiming009
to address this, but there has been no compre-010
hensive overview to organize it and to outline011
the main lessons learned. The present survey012
aims to bridge this gap. In particular, we out-013
line the challenges and we summarize recent014
technical advancements for LLM confidence015
estimation and calibration. We further discuss016
their applications and suggest promising direc-017
tions for future work.018

1 Introduction019

Large language models (LLMs) have demonstrated020

a wide range of capabilities, such as world knowl-021

edge storage, sophisticated language-based reason-022

ing, and in-context learning (Petroni et al., 2019;023

Wei et al., 2022; Brown et al., 2020a). However,024

LLMs do not consistently achieve good perfor-025

mance (Wang et al., 2023a; Zhang et al., 2023b).026

Their generation still includes biases (Zhao et al.,027

2021; Wang et al., 2023c) and hallucinations that028

do not align with reality (Zhang et al., 2023b). Eval-029

uating the trustworthiness of responses from these030

models remains challenging (Liu et al., 2023c).031

Confidence (or uncertainty) estimation is crucial032

for tasks like out-of-distribution detection and se-033

lective prediction (Kendall and Gal, 2017; Lu et al.,034

2022), and it has been extensively studied and ap-035

plied in various contexts (Lee et al., 2018; DeVries036

and Taylor, 2018; Ren et al., 2022; Vazhentsev037

et al., 2023b). A related concept is that of model038

calibration, which focuses on aligning predictive039

probabilities (estimated confidence) to actual accu-040

racy (Guo et al., 2017). LLMs show unique prop- 041

erties in this regard, such as expressing confidence 042

in words (Lin et al., 2022; Xiong et al., 2023) and 043

the ability to perform zero-shot or few-shot learn- 044

ing (Brown et al., 2020a). However, their responses 045

can be sensitive to the prompts, e.g., the examples 046

provided and their order, which can cause a lot of 047

instability of the results. In view of this, confidence 048

estimation and calibration for LLMs is growing as 049

an emerging area of interest (Jiang et al., 2021; Lin 050

et al., 2022, 2023; Shrivastava et al., 2023). While 051

existing surveys mainly focused on issues such as 052

hallucination and factuality in LLMs (Zhang et al., 053

2023b; Wang et al., 2023b), there are no compre- 054

hensive surveys systematically discussing the tech- 055

nical advancements in LLMs, and here we aim to 056

bridge this gap. 057

We explore the unique challenges posed by 058

LLMs and examining the latest studies address- 059

ing these issues. We first discuss key concepts such 060

as confidence, uncertainty, and calibration in the 061

context of neural models, as detailed in Section 2. 062

This is followed by a focused discussion on the spe- 063

cific challenges associated with LLMs (Section 3). 064

We pursue two different directions: one addressing 065

confidence estimation and calibration techniques 066

for generation tasks in Section 4, and the other for 067

classification tasks in Section 5. We conclude by 068

exploring their practical applications (Section 6) 069

and looking at potential future research directions 070

(Section 7). 071

2 Preliminaries and Background 072

2.1 Basic Concepts 073

In machine learning, confidence and uncertainty 074

are two facets of a single principle: higher confi- 075

dence corresponds to lower uncertainty (Xiao et al., 076

2022; Chen and Mueller, 2023). Research on quan- 077

tifying model confidence has led to the develop- 078

ment of two key concepts: relative confidence score 079
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Study Model Proposed Methods

Duan et al. (2023) OPT (Zhang et al., 2022) SAR (Shifting Attention to Relevance): consider semantic relevance when evaluating
token and sentence-level uncertainty

Manakul et al. (2023b) GPT-3 (Brown et al., 2020b) Semantic uncertainty: evaluate the consistency of responses by various methods
Kuhn et al. (2023) OPT (Zhang et al., 2022) Cluster answers according to semantics and then computes the sum of probabilities

within each cluster to represent confidence
Kadavath et al. (2022) Anthropic LLM (Bai et al., 2022) P(True): the probability a model assigns to its answer as True, P(IK): probability a

model assigns to "I know" by leveraging a binary classifier

Xiong et al. (2023)
GPT3/3.5/4 (Brown et al., 2020b),
Vicuna (Chiang et al., 2023)

Hybrid methods combining linguistic confidence and consistency-based confidence

Lin et al. (2023) GPT-3.5 Estimate confidence by evaluating the lexical and semantic similarity among responses
Shrivastava et al. (2023) GPT-3.5/4, Claude Hybrid methods combing confidence from surrogate models and linguistic confidence

of target models

Table 1: Recent studies of LLM confidence estimation. These studies evaluate confidence estimation in question-
answering tasks, utilizing metrics such as ECE, AUROC, etc.

and absolute confidence score, offering different080

methods to assess and to interpret confidence lev-081

els (Kamath et al., 2020; Vazhentsev et al., 2023a).082

Given input x, ground truth y, and prediction ŷ,083

the model’s predictive confidence is denoted as084

conf(x, ŷ). Relative confidence scores emphasize085

the ability to rank samples, distinguishing correct086

predictions from incorrect ones. Ideally, for every087

pair of (xi, yi) and (xj , yj) and their corresponding088

predictions ŷi and ŷj , we have089

conf(xi, ŷi) ≤ conf(xj , ŷj)

⇐⇒ P (ŷi = yi|xi) ≤ P (ŷj = yj |xj)
(1)090

An absolute confidence score indicates that a091

model’s score reflects its true accuracy in real-092

world scenarios. For example, if a model predicts093

an event with a 70% probability, that event should094

actually happen about 70% of the time under sim-095

ilar circumstances. The equation for this relation-096

ship is s follows:097

P (ŷ = y | conf(x, ŷ) = q) = q (2)098

When the model’s predicted confidence scores con-099

sistently align with this principle, the model is con-100

sidered to be well-calibrated.101

Kendall and Gal (2017) proposed categorizing102

uncertainty in machine learning into aleatoric and103

epistemic uncertainty. Aleatoric or data uncertainty104

emerges from the inherent randomness or variabil-105

ity of a system or a process. It is an intrinsic feature106

of the system and is typically irreducible. Epis-107

temic uncertainty, in contrast, is known as model108

uncertainty or systematic uncertainty. It arises from109

the lack of knowledge or information about the110

system being modeled and is reducible, as it can111

diminish with the acquisition of more data and im- 112

proved modeling techniques (Gal and Ghahramani, 113

2016; Lakshminarayanan et al., 2017). 114

2.2 Metrics and Methods 115

Metrics Due to the continuous nature of confi- 116

dence scores, it is impossible to accurately calcu- 117

late the probability as in Eq. 2. Expected calibra- 118

tion error (ECE; Guo et al. 2017) approximates 119

it by clustering instances with similar confidence. 120

The predicted probabilities are first segmented into 121

various bins. ECE is then calculated by taking 122

the weighted average of the discrepancies between 123

the mean predicted probability and the actual ac- 124

curacy across all bins. One drawback of the ECE 125

metric is its sensitivity to various factors such as 126

bucket width and the variance of samples within 127

these buckets. To overcome these issues, more so- 128

phisticated schemes have been developed, includ- 129

ing static calibration error (SCE), adaptive calibra- 130

tion error (ACE; Nixon et al. 2019), and classwise 131

ECE (Kull et al., 2019). ECE can also be visual- 132

ized as a reliability diagram, which plots predicted 133

probabilities against observed frequencies, with 134

points or lines above the diagonal indicating over- 135

confidence. Additionally, metrics such as F1 score, 136

area under receiver operating characteristic curve 137

(AUROC; Bradley 1997) and area under accuracy- 138

rejection curve (AUARC; Lin et al. 2023), can in- 139

dicate whether the confidence score can appropri- 140

ately differentiate between correct and incorrect 141

answers. 142

Methods in discriminative models Common 143

methods for confidence estimation include logit- 144

based methods (Pearce et al., 2021; Pereyra 145

et al., 2017), ensemble-based and Bayesian meth- 146

ods (Lakshminarayanan et al., 2017; Gal and 147
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Study Model Task Calibration Methods

Kumar and Sarawagi
(2019)

LSTM (Bahdanau et al., 2015),
Transformer (Vaswani et al., 2017)

Machine Translation TS with Learnable Parameters

Lu et al. (2022) Transformer (Vaswani et al., 2017) Machine Translation Confidence-Based LS
Wang et al. (2020) Transformer (Vaswani et al., 2017) Machine Translation LS, Dropout

Xiao and Wang (2021)
LSTM (Bahdanau et al., 2015),
Transformer (Vaswani et al., 2017)

Data2Text Generation,
Image Captioning

Uncertainty-Aware Decoding

van der Poel et al. (2022) BART (Lewis et al., 2020) Text Summarization CPMI-Based Decoding

Zablotskaia et al. (2023) T5 (Raffel et al., 2020) Text Summarization
MC-Dropout, BE, SNGP,
DeepEnsemble

Zhao et al. (2022) PEGASUS (Zhang et al., 2020a)
Text Summarization,
Question Answering

SLiC

Zhao et al. (2023a) T5 (Raffel et al., 2020) Text Summarization SLiC-HF
Mielke et al. (2022) BlenderBot (Roller et al., 2021) Dialogue Generation Linguistic Calibration
Lin et al. (2022) GPT-3 (Brown et al., 2020b) Math Question Answering Fine-Tuning

Zhao et al. (2021) GPT-3 (Brown et al., 2020b)
Text Classification, Fact Retrieval
Information Extraction

Contextual Calibration

Fei et al. (2023)
PALM-2 (Anil et al., 2023),
CLIP (Radford et al., 2021)

Text Classification Domain-Context Calibration

Han et al. (2022) GPT-2 (Radford et al., 2019) Text Classification Prototypical Calibration
Kumar (2022) GPT-2 (Radford et al., 2019) Multiple Choice Question Answering Answer-Level Calibration

Holtzman et al. (2021)
GPT-2(Radford et al., 2019),
GPT-3 (Brown et al., 2020b)

Multiple Choice Question Answering PMIDC

Zheng et al. (2023)
LLaMA (Touvron et al., 2023a),
Vicuna (Chiang et al., 2023),
Falcon (Penedo et al., 2023), GPT-3.5

Multiple Choice Question Answering PriDE

Table 2: Studies of LLM calibration. The first half is about generation tasks, and the second half is about
classification tasks. Calibration methods: LS: label smoothing, TS: temperature scaling, BE: Bayesian ensemble,
SNGP: spectral-normalized Gaussian process, MCDropout: Monte Carlo dropout, SLiC: sequence likelihood
calibration, HF: human feedback, FBC: feature-based calibrator, CPMI: conditional pointwise mutual information,
PMIDC: domain conditional pointwise mutual information, PriDE: debiasing with prior estimation.

Ghahramani, 2016), density-based methods (Lee148

et al., 2018), and confidence-learning methods (De-149

Vries and Taylor, 2018). Model calibration (Guo150

et al., 2017) can either occur during the model’s151

training phase, for example, by improving loss152

functions (Szegedy et al., 2016), or be applied after153

the model has been trained, such as temperature154

scaling (TS; Guo et al. 2017) and feature-based155

calibrators (FBC; Jiang et al. 2021). Table 3 rep-156

resents significant research in the discriminative157

LMs, with a list of models, tasks, and calibration158

methods. Due to space limitation, please refer to159

the Appendix A for detailed principles and compar-160

isons.161

3 Challenges of Confidence Estimation162

and Calibration in LLMs163

This section elaborates on the challenges related to164

confidence estimation and calibration of LLMs.165

Exponential output space growth Discrimina-166

tive models readily provide probability scores for167

distinct categories. In contrast, LLMs encounter168

a significant challenge due to the exponential in-169

crease in their output space as the sentence length170

grows. This increase renders it impossible to assess171

all possible predictions. This complexity hinders 172

the effective calculation of confidence or uncer- 173

tainty metrics (Wang et al., 2023a). 174

Semantics Unlike fixed-category labels, the out- 175

puts of LLMs capture the diversity of natural lan- 176

guage, where the same words or sentences can have 177

varied meanings across different contexts, while at 178

the same time, superficially distinct phrases may 179

convey the same meaning (Kuhn et al., 2023). Ad- 180

ditionally, within the same sentence, different to- 181

kens have varying levels of semantic importance. 182

Some lengthy sentences can be almost entirely ex- 183

pressed using just a few keywords (Duan et al., 184

2023). 185

Emergent capabilities and diverse tasks The 186

emerging capabilities of LLMs, allow to evaluate 187

the truthfulness of their answers or to express un- 188

certainty when addressing unknown or ambigu- 189

ous questions, which presents new research di- 190

rections (Kadavath et al., 2022; Lin et al., 2022; 191

Amayuelas et al., 2023). Moreover, methods 192

and motivations are distinctly different when cal- 193

ibrating LLMs in generation and classification 194

tasks (Duan et al., 2023; Zhao et al., 2021; Kuhn 195
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et al., 2023). Most work on classification tasks fo-196

cuses on mitigating prior biases across different cat-197

egories (Zhao et al., 2021; Jiang et al., 2021). How-198

ever, it often involves enabling LLMs to produce199

better outputs or to express more precise confidence200

in generation tasks (Zhao et al., 2022; Mielke et al.,201

2022). Therefore, we further discuss recent ad-202

vances in generation tasks and classification tasks203

in Section 4 and Section 5, respectively.204

4 LLMs for Generation Tasks205

4.1 Confidence Estimation206

In this section, we generally divide the methods207

into white-box and black-box methods. We first208

provide a detailed overview of these methods and209

then summarize their strengths, weaknesses, and210

connections.211

Logit

Internal state Semantics

1 2

3

4

(a) White-box

Consistency

Linguistic
confidence

Surrogate
model

1 2

3

4

(b) Black-box

Figure 1: Venn diagram: the taxonomy of informa-
tion sources for white-box (Left) and black-box (Right)
confidence estimation methods. These two families of
methods can be categorized into the methods relying on
logit, internal state, or semantics, and those relying on
consistency, linguistic confidence, or surrogate model,
respectively. The intersections of these methods are
located in Zone 1 - 4.

4.1.1 White-Box Methods212

White-box methods operate on the premise that the213

state at every position of the LLMs is accessible214

during inference.215

Logit-based methods The logit-based method216

evaluates sentence uncertainty using token-level217

probabilities or entropy. Assuming that y =218

y1, · · · , yT denotes the sequence of generated to-219

kens (target sentence), and that x = x1, · · · , xS220

denotes the sequence of input tokens (source sen-221

tence), the sentence confidence can be represented222

by the factorized probability:
∏T

i=1 P (yi|x,y<i).223

To ensure an evaluation consistent across sentences224

of different lengths, the length-normalized likeli-225

hood probability is widely utilized (Murray and226

Chiang, 2018). Moreover, alternatives such as the 227

minimum or average token probabilities and the 228

average entropy are also widely used (Vazhentsev 229

et al., 2023b). Logit-based techniques readily adapt 230

to scenarios involving multiple sampling (Vazhent- 231

sev et al., 2023b) or ensemble models (Malinin and 232

Gales, 2021a). 233

To incorporate semantics, Duan et al. (2023) 234

introduced the concept of token-level relevance, 235

which evaluates the relevance of the token by com- 236

paring semantic change before and after moving 237

the token with a semantic similarity metric like Sen- 238

tence Transformer (Reimers and Gurevych, 2019). 239

Then, sentence uncertainty can be adjusted based 240

on the token’s relevance. Duan et al. (2023) fur- 241

ther proposed sentence-level relevance in multi- 242

ple sampling settings, considering the similarity 243

between the returned sentence and other sampled 244

ones. Kuhn et al. (2023) proposed semantic uncer- 245

tainty, which first clusters semantically equivalent 246

samples based on the bidirectional entailment be- 247

tween samples and then approximates semantic 248

entropy by summing probabilities in each cluster. 249

Kadavath et al. (2022) discovered that LLMs 250

can self-assess to differentiate between correct and 251

incorrect answers. They suggested a method called 252

P(True), where the LLM first generates responses 253

and then evaluates them as "True" or "False". The 254

probability the model assigns the confidence level 255

to "True” determines the confidence level. 256

Internal state-based methods Ren et al. (2022) 257

introduced a technique for out-of-distribution detec- 258

tion and selective generation. The method starts by 259

computing embeddings for both inputs and outputs 260

in the training data, fitting them to a Gaussian dis- 261

tribution. It then assesses the model’s confidence 262

in its generated data by calculating the relative Ma- 263

halanobis distance of the evaluated data pair from 264

this Gaussian distribution. 265

Recent studies have posited the existence of a di- 266

rection in activation space that effectively separates 267

true and false inputs (Kadavath et al., 2022; Burns 268

et al., 2023; Li et al., 2023; Azaria and Mitchell, 269

2023). Kadavath et al. (2022) proposed training 270

a classifier (the probe), named P(IK), on the acti- 271

vations of a network to predict whether an LLM 272

knows the answer. They sampled multiple answers 273

for each question at a consistent temperature, la- 274

beled the correctness of each answer, and then used 275

the question-correctness pair as the training data. 276

Similarly, Li et al. (2023) and Azaria and Mitchell 277
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(2023) employed linear probes to examine whether278

attention heads in various layers can differentiate279

between correct and incorrect answers. Their em-280

pirical findings indicated that certain middle layers281

and a few attention heads exhibit strong perfor-282

mance in this task, although the layer positions283

vary across models. Burns et al. (2023) intro-284

duced an unsupervised approach to map hidden285

states to probabilities. It entails responding to ques-286

tions with "Yes" or "No," extracting and convert-287

ing model activations into truth probabilities, and288

optimizing unsupervised loss for consistency. It289

ultimately gauges the model’s confidence by esti-290

mating the likelihood of a "Yes" response.291

Summary White-box methods, as illustrated in292

Figure 1a, primarily utilize logits, internal states,293

and semantics as sources of information. Logit-294

based approaches, easy to implement during infer-295

ence, face a limitation in that low logit probabilities296

may reflect various properties of language. Meth-297

ods focusing on internal states (Kadavath et al.,298

2022; Li et al., 2023; Azaria and Mitchell, 2023)299

provide insights into the model’s linguistic under-300

standing, though they typically require supervised301

training on specially annotated data. Semantics are302

often used to complement other methods, provid-303

ing them with interpretability (Kuhn et al., 2023;304

Duan et al., 2023).305

To leverage their respective strengths, the cur-306

rent advanced methods tend to combine different307

dimensions during confidence estimation. Recent308

works (Kuhn et al., 2023; Duan et al., 2023) achieve309

outstanding performance on uncertainty estimation310

for open-domain question answering by combin-311

ing logit-based approaches with semantics, using312

tools like bi-directional entailment or sentence en-313

coders, aligning with Zone 2. Rephrasing and314

round-trip translation can also be considered as us-315

ing semantics to augment the remaining two meth-316

ods (Jiang et al., 2021; Zhao et al., 2023b), corre-317

sponding to Zones 2 and 3. P(True) leverages the318

self-evaluation capability of large language mod-319

els (Kadavath et al., 2022). While it primarily uses320

logit probability, it is clear that this probability is321

influenced by internal states and semantics, related322

to Zone 4. We anticipate better collaborative use of323

diverse information types in the future.324

4.1.2 Black-box Methods325

Black-box methods assume that all parameters dur-326

ing inference are unknown, allowing access only327

to the generations. 328

Linguistic confidence (verbalized method) 329

refers to prompting language models to express 330

uncertainty in human language. This involves dis- 331

cerning different levels of uncertainty from the 332

model’s responses, such as "I don’t know," "most 333

probably," or "Obviously" (Mielke et al., 2022) or 334

prompting the model to output various verbalized 335

words (e.g., "lowest", "low", "medium", "high", 336

"highest") or numbers (e.g., "85%"). Xiong et al. 337

(2023) demonstrated that prompting strategies like 338

CoT (Wei et al., 2022), top-k (Tian et al., 2023), 339

and their proposed multi-step method can improve 340

the calibration of linguistic confidence. 341

Consistency-based estimation assumes that a 342

model’s lack of confidence correlates with various 343

responses, often leading to hallucinatory outputs. 344

SelfCheckGPT (Manakul et al., 2023b) proposed 345

a simple sampling-based approach that uses con- 346

sistency among generations to find potential hal- 347

lucinations. Five variants are utilized to measure 348

the consistency: BERTScore (Zhang et al., 2020b), 349

question-answering, n-gram, natural language in- 350

ference (NLI) model (He et al., 2023), and LLM 351

prompting. Lin et al. (2023) proposed to calculate 352

the similarity matrix between generations and then 353

estimate the uncertainty based on the analysis of 354

the similarity matrix, such as the sum of the eigen- 355

values of the graph Laplacian, the degree matrix, 356

and the eccentricity. 357

Surrogate models Shrivastava et al. (2023) in- 358

troduced white-box models as surrogate models, 359

like LLaMA-2 (Touvron et al., 2023b) and then 360

employed logit-based methods to estimate the con- 361

fidence of the target model when prompted with the 362

same task. They also showed that integrating such 363

confidence with linguistic confidence from black- 364

box LLMs can provide better confidence estimates 365

across various tasks. 366

Summary Figure 1b illustrates the information 367

sources for confidence evaluation when model 368

states are not accessible: linguistic confidence, con- 369

sistency, including lexical and semantic similarity, 370

and surrogate models. Linguistic confidence can 371

be elicited through prompts, but in practice, a mis- 372

match between these has been observed (Lin et al., 373

2022; Liu et al., 2023c). Surrogate models (Shri- 374

vastava et al., 2023) facilitate white-box methods 375

on black-box LLMs. However, they rely on the 376

assumption of approximate parameter distribution 377

5



of models, necessitating further work to validate378

their effectiveness. Consistency methods are com-379

putationally intensive but have proven effective in380

various tasks. They can benefit the remaining two381

approaches (Zone 1 and 2), such as the hybrid382

method proposed by Xiong et al. (2023). Addi-383

tionally, integrating all three methods (Zone 4) has384

been explored by Shrivastava et al. (2023) to offer385

further benefits. Table 1 presents the latest repre-386

sentative works in confidence estimation for large387

language models, briefly describing their proposed388

methods.389

4.2 Calibration Methods390

This section categories related work in terms of391

calibration objectives: to enhance the quality of392

generated text through calibration techniques and393

to improve the model’s handling of unknown or am-394

biguous issues by enabling it to express uncertainty395

more accurately. The first half of Table 2 presents396

recent work on calibrating LLMs over generation397

tasks.398

4.2.1 Improve the quality of generation399

Many studies (Kumar and Sarawagi, 2019; Wang400

et al., 2020; Lu et al., 2022) indicated that the mis-401

calibration of token-level logit probabilities dur-402

ing generation is one of the reasons for the de-403

cline in generation quality. Kumar and Sarawagi404

(2019) introduced a modified temperature scaling405

approach where the temperature value adjusts ac-406

cording to various factors, including the entropy407

of attention, token logit, token identity, and input408

coverage. Wang et al. (2020) noted a pronounced409

prevalence of over-estimated tokens compared to410

under-estimated ones. They introduced graduated411

label smoothing, applying heightened smoothing412

penalties to confident predictions. Xiao and Wang413

(2021) and van der Poel et al. (2022) calibrated the414

token probability separately by adding a weighted415

uncertainty estimated with model ensembles (Lak-416

shminarayanan et al., 2017) and pointwise mutual417

information between the source and the target to-418

kens. Zablotskaia et al. (2023) adapted diverse419

methods to improve model calibration in neural420

summarization tasks.421

Zhao et al. (2022) suggested that MLE training422

can result in poorly calibrated sentence-level con-423

fidence, as the model is only exposed to one gold424

reference. They proposed the sequence likelihood425

calibration (SLiC) technique to rectify this. It first426

generates m multiple sequences {ŷ}m from the427

initial model θ0, then calibrates the model’s confi- 428

dence with: 429∑
{x,ȳ}

Lcal(θ,x, ȳ, {ŷ}m) + λLreg(θ, θ0,x, ȳ)

(3) 430

where the calibration loss Lcal aims to align mod- 431

els’ decoded candidates’ sequence likelihood ac- 432

cording to their similarity to the reference ȳ, and 433

the regularization loss Lreg prevents models from 434

deviating strongly. They further introduced SLiC- 435

HF (Zhao et al., 2023a), which was designed to 436

learn from human preferences. 437

4.2.2 Improve the linguistic confidence 438

Mielke et al. (2022) proposed a calibrator- 439

controlled method for chatbots, which involves a 440

trained calibrator to return the model confidence 441

score and fine-tuned generative models to enable 442

control over linguistic confidence. Lin et al. (2022) 443

fine-tuned GPT-3 with the human-labeled dataset 444

containing verbalized words and numbers to ex- 445

press uncertainty naturally. Zhou et al. (2023) em- 446

pirically found that injecting expressions of un- 447

certainty into prompts significantly increases the 448

accuracy of GPT-3’s answers and the calibration 449

scores. 450

Different datasets (Amayuelas et al., 2023; Yin 451

et al., 2023; Wang et al., 2023d; Liu et al., 2023a) 452

have been presented on questions that language 453

models cannot answer or for which there is no clear 454

answer. Amayuelas et al. (2023) analyzed how dif- 455

ferent language models, including both smaller and 456

open-source models, classify a dataset of various 457

unanswerable questions. They observed that LLMs 458

show varying accuracy levels depending on the 459

question type, while smaller and open-source mod- 460

els tend to perform almost randomly. Liu et al. 461

(2023a) evaluated both open-source models like 462

LLaMA-2 (Touvron et al., 2023b), Vicuna (Chi- 463

ang et al., 2023), and closed-source models such 464

as GPT-3.5 and GPT-4, focusing on their refusal 465

rate, accuracy, and uncertainty in handling unan- 466

swerable questions. 467

5 LLMs for Classification Tasks 468

LLMs are recognized for their efficiency in classi- 469

fication tasks, enabling rapid task implementation 470

via prompts (Brown et al., 2020a; Zhao et al., 2021). 471

Although the underlying principles of confidence 472

estimation are similar to those in generation tasks, 473

the objectives of calibration and the approaches 474
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differ significantly.475

5.1 In-Context Learning476

In-context learning (ICL) is a new learning477

paradigm with LLMs, where the model learns478

to perform a task based on a few examples479

and the context in which the task is pre-480

sented. Assuming that k selected input-label pairs481

(x1, y1), · · · , (xk, yk) are given as demonstrations,482

with the predictive probability as the confidence,483

ICL makes predictions as follows:484

ŷ = argmax
y

P (y|x1, y1, · · · ,xk, yk,x) (4)485

When there are no demonstrations, the model per-486

forms zero-shot classification.487

Calibration methods We refer to the input-label488

pairs as C for context, and the original predictive489

probability is denoted as P (y|C,x). Zhao et al.490

(2021) introduced a method called contextual cal-491

ibration. It gauges the model’s bias with context-492

free prompts such as "[N/A]", "[MASK]" and an493

empty string. Then the context-free score is ob-494

tained by P̂cf = P (y|C, [N/A]). Subsequently, it495

transforms the scores with W = diag(p̂cf)
−1 to496

offset the miscalibration. Fei et al. (2023) proposed497

domain-context calibration, which estimates the498

prior bias for each class with n times model aver-499

age with random text of an average sentence length:500

P̄rd(y|C) = 1
n

∑n
i=1 P (y|C, [RANDOM TEXT]).501

The prediction is obtained with:502

ŷ = argmax
y

P (y|C,x)

P̄rd(y|C)
(5)503

Some methods aim to improve few-shot learn-504

ing performance by combining classic statistical505

machine learning techniques. Nie et al. (2022)506

enhanced predictions by integrating a k-nearest-507

neighbor classifier with a datastore containing508

cached few-shot instance representations, while509

Han et al. (2022) introduced prototypical calibra-510

tion, which employs Gaussian mixture models511

(GMM) to learn decision boundaries.512

5.2 ICL Application: Multiple-Choice513

Question Answering514

Multiple-choice question answering (MCQA) is515

an application of ICL, which is used in evaluat-516

ing LLMs by prompting them to answer ques-517

tions with predefined choices. The context C518

contains the question q, and the set of options519

I(q) = {o1, · · · ,oK}, where each is prefaced 520

with an identifier such as "A", and, if available, 521

with a demonstration as an instruction. 522

It is worth noting that implementing the evalua- 523

tion protocols can significantly impact the ranking 524

of models. For instance, the original evaluation of 525

the MMLU (Hendrycks et al., 2021) ranks the prob- 526

abilities of the four option identifiers. The answer 527

is considered correct when the highest probabil- 528

ity corresponds to the correct option. The HELM 529

implementation (Liang et al., 2022) considers prob- 530

abilities over the complete vocabulary. The HAR- 531

NESS implementation1 prefers length-normalized 532

probabilities of the entire answer sequence. 533

Calibration methods Jiang et al. (2021) pro- 534

posed various fine-tuning loss functions and tem- 535

perature scaling for calibrating the performance 536

of MQCA datasets. Additionally, they proposed 537

techniques such as candidate output paraphrasing 538

and input augmentation to calibrate the confidence. 539

Holtzman et al. (2021) claimed that surface form 540

competition occurs when different valid surface 541

forms compete for probability. Thus, they intro- 542

duced domain conditional pointwise mutual infor- 543

mation (PMIDC), which reweighs each option ac- 544

cording to a term that is proportional to its prior 545

likelihood within the context of the specific zero- 546

shot task. To overcome the bias from the choice po- 547

sition, Zheng et al. (2023) proposed PriDe, which 548

first decomposes the observed model prediction 549

distribution into an intrinsic prediction over option 550

contents and a prior distribution over option iden- 551

tifiers and then estimates the prior by permuting 552

option contents on a small number of test sam- 553

ples. Kumar (2022) believed that under the neu- 554

tral context Cϕ, the probabilities of different op- 555

tions should be the same, but obviously, the LLM 556

cannot meet this condition, so they proposed us- 557

ing logP (ok|C) − sim(C,Cϕ) logP (ok|Cϕ) to 558

make the prediction. Given that C is very similar 559

to the neutral context Cϕ, the approach will assign 560

an equal score to each choice. 561

Summary The second half of Table 2 lists recent 562

calibration studies over classification tasks. Cur- 563

rent calibration methods primarily aim to mitigate 564

biases associated with labels or choice positions in 565

MCQA (Zhao et al., 2021; Jiang et al., 2021). A 566

growing trend in the field is to deepen the under- 567

standing of the ICL (Holtzman et al., 2021) and 568

1https://github.com/EleutherAI/lm-evaluation-
harness/tree/v0.3.0
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to integrate semantics (Kumar, 2022). Besides, a569

systematic benchmark for evaluating different cali-570

bration methods is still missing.571

6 Applications572

Confidence estimation and calibration can be effec-573

tively employed in the following applications as an574

indispensable component in ensuring reliable AI.575

Hallucination detection and mitigation Confi-576

dence or uncertainty can be applied as a signal for577

the detection and mitigation generated by LLMs.578

SelfCheckGPT (Manakul et al., 2023a) and SAC3579

(Zhang et al., 2023a) both explored hallucinations580

in the generation with self-consistency, while the581

latter also checked cross-model response consis-582

tency by taking generations from other models as583

the reference. Varshney et al. (2023) proposed a584

method that leverages the model’s logits to iden-585

tify potential hallucinations, checks their correct-586

ness through a validation procedure, appends the587

repaired sentence to the prompt, and continues to588

generate.589

Ambiguity detection and selective generation590

When identifying ambiguity in data or unanswer-591

able questions, reliable LLMs are anticipated to592

refrain from providing answers rather than gener-593

ating responses arbitrarily (Kamath et al., 2020).594

Ren et al. (2022) proposed a selective generation595

method based on relative Mahalanobis distance.596

Zablotskaia et al. (2023) provided a comprehen-597

sive benchmark study that evaluates various cal-598

ibration methods in neural summarization. Cole599

et al. (2023) and Hou et al. (2023) respectively em-600

ployed a disambiguate-and-answer approach and601

input clarification ensembling to measure data un-602

certainty for detecting ambiguous questions.603

Uncertainty-guided data exploitation Through604

measuring data uncertainty, the most representa-605

tive instances will be selected for few-shot learning606

(Yu et al., 2022) or human annotation (Su et al.,607

2022). Regarding the knowledge enhancement to608

LLMs, Jiang et al. (2023) proposed an adaptive609

multi-retrieval method that first forecasts future610

content and retrieves relevant documents stimu-611

lated by low-confidence tokens within upcoming612

sentences.613

7 Future Directions614

Multi-modal LLMs By employing additional615

pre-training with image-text pairings or by fine-616

tuning on specialized visual-instruction datasets, 617

LLMs can be transited into the multimodal do- 618

main (Dai et al., 2023; Liu et al., 2023b; Zhu et al., 619

2023). However, it remains unclear whether these 620

confidence estimation methods are effective for 621

multimodal large language models (MLLMs) and 622

whether these models are well-calibrated. We look 623

forward to more efforts in detecting hallucinations 624

in MLLMs through confidence estimation and in 625

calibrating these models to discern events that are 626

impossible in the real world. 627

Calibration to human variation Plank (2022) 628

clarified the prevalent existence of human varia- 629

tion, i.e., humans have different opinions when la- 630

beling the same data. Human disagreement (Jiang 631

and de Marneffe, 2022) can be attributed to task 632

ambiguity (Tamkin et al., 2022), annotator’s sub- 633

jectivity (Sap et al., 2022), and input ambiguity 634

(Meissner et al., 2021). Recent work (Baan et al., 635

2022; Lee et al., 2023) demonstrated the misalign- 636

ment between LLM calibration measures and hu- 637

man disagreement in various learning paradigms. 638

Expressing the concern regarding different types 639

of ambiguity (Xiong et al., 2023), abstaining from 640

answering ambiguous questions (Yoshikawa and 641

Okazaki, 2023), and further resolving ambiguity 642

(Varshney and Baral, 2023) are necessary for trust- 643

worthy and reliable LLMs aligned with human vari- 644

ation. 645

8 Conclusion 646

This survey highlights the critical role of confi- 647

dence estimation and calibration in addressing er- 648

rors and biases in large language models (LLMs). 649

The evolution of LLMs has paved the way for novel 650

research opportunities and presented distinctive 651

challenges. We first introduced the fundamental 652

concepts of confidence and uncertainty, along with 653

common metrics, estimation methods, and calibra- 654

tion techniques used in traditional discriminative 655

models. We then identified the challenges these 656

methods face in LLMs. Next, we delved into the 657

latest research, introducing the principles, advan- 658

tages, and drawbacks of various methods in gen- 659

eration and classification tasks. We concluded by 660

discussing the current applications and future re- 661

search directions. 662
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Limitations663

This survey mainly has the following limitations:664

No experimental benchmarks Without original665

experiments, this paper cannot offer empirical vali-666

dation of the theories or concepts. This limits the667

paper’s ability to contribute new, verified knowl-668

edge to the field.669

Potential omissions We have made our best ef-670

fort to compile the latest advancements. Due to671

the rapid development in this field, there is still672

a possibility that some important work may have673

been overlooked.674

Ethical Considerations and Potential Risks675

We anticipate no significant ethical concerns in our676

work. Our review surveys the latest developments677

in this research field, and as we did not conduct678

experiments, nor did we engage with risky datasets;679

we also did not employ any workers for manual680

annotation.681
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Study Model Task Calibration Methods

(Desai and Durrett, 2020) BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019)

Nature Language Inference,
Paraphrase Detection,
Commonsense Reasoning

TS, LS

(Kim et al., 2023) RoBERTa (Liu et al., 2019) Text Classification
BL, ERL, MixUp, DeepEnsemble,
MCDropout, MIMO

(Park and Caragea, 2022) BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019)

Nature Language Inference,
Paraphrase Detection,
Commonsense Reasoning

TS, LS, MixUp, Manifold-MixUp,
AUM-guided MixUp

(Zhang et al., 2021)
BERT-based Span Extractor
(Zhang et al., 2021)

Extractive Question Answering FBC

(Si et al., 2022)
BERT-based Span Extractor
(Si et al., 2022)

Extractive Question Answering LS, TS, FBC

Table 3: Studies of discriminative LM calibration. Calibration methods: LS=label smoothing, TS=temperature
scaling, BL=brier loss, ERL=entropy regularization loss, BE=Bayesian Ensemble, SNGP: spectral-normalized
Gaussian process, FBC=feature-based calibrator

A Appendix1450

A.1 Confidence Estimation Methods1451

The methods for confidence estimation have been1452

extensively studied and can generally be catego-1453

rized into the following groups:1454

Logit-based estimation Given the model input1455

x, the logit z, along with the prediction ŷ (i.e.,1456

the class with the highest probability emitted by1457

softmax activation σ), the model confidence is esti-1458

mated directly using the probability value:1459

confsp(x, ŷ) = P (ŷ|x) = σ(z)ŷ (6)1460

There are methods for estimating confidence based1461

on transformations of the logit probabilities, such1462

as examining the gap between the two highest prob-1463

abilities (Yoshikawa and Okazaki, 2023) or utiliz-1464

ing entropy, which indicates the uncertainty with a1465

larger value.1466

Ensemble-based & Bayesian methods Deep-1467

Ensemble methods (Lakshminarayanan et al., 2017)1468

train multiple neural networks independently and1469

estimate the uncertainty by computing the variance1470

of the outputs from these models. Monte Carlo1471

dropout (MCDropout, Gal and Ghahramani 2016)1472

methods extend the dropout techniques to estimat-1473

ing uncertainty. As in the training phase, dropout1474

is also applied during inference, and multiple for-1475

ward passes are performed to obtain predictions.1476

The final prediction is obtained through averaging1477

predictions, with the variability of the predictions1478

reflecting the model uncertainty.1479

Methods such as deep-ensemble and MC-1480

Dropout introduce a heavy computational overhead,1481

especially when applied to LLMs (Malinin and1482

Gales, 2021b; Shelmanov et al., 2021; Vazhentsev 1483

et al., 2022), and there is the need to optimize the 1484

computation. For example, determinantal point pro- 1485

cess (Kulesza and Taskar, 2012) can be applied to 1486

facilitate MCDropout by sampling diverse neurons 1487

in the dropout layer (Shelmanov et al., 2021). 1488

Density-based estimation Density-based ap- 1489

proaches (Lee et al., 2018; Yoo et al., 2022) are 1490

based on the assumption that regions of the in- 1491

put space where training data is dense are regions 1492

where the model is likely to be more confident in its 1493

predictions. Conversely, regions with sparse train- 1494

ing data are areas of higher uncertainty. Lee et al. 1495

(2018) first proposed a Mahalanobis distance-based 1496

confidence score, which calculates the distance be- 1497

tween one test point and a Gaussian distribution 1498

fitting test data. The confidence estimation is ob- 1499

tained by exponentiating the negative value of the 1500

distance. 1501

Confidence learning employs a specific network 1502

branch to learn the confidence of model predictions. 1503

DeVries and Taylor (2018) leveraged a confidence 1504

estimation branch to forecast scalar confidence, and 1505

the original probability is modified by interpolating 1506

the ground truth according to the confidence to pro- 1507

vide “hints” during the training process. Addition- 1508

ally, it discourages the network from always asking 1509

for hints by applying a small penalty. Corbière et al. 1510

(2019) empirically demonstrated that confidence 1511

based on true class probability (TCP) is better for 1512

distinguishing between correct and incorrect pre- 1513

dictions. Given the ground truth y, TCP can be 1514

represented as P (y|x). However, y is not available 1515

when estimating the confidence of the predictions. 1516

Hence, Corbière et al. (2019) used a confidence 1517
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learning network to learn TCP confidence during1518

training.1519

A.2 Model Calibration1520

Calibration methods can be categorized based on1521

their execution time as in-training and post-hoc1522

methods.1523

A.2.1 In-Training Calibration1524

Research indicates that model generalization meth-1525

ods can be used for calibration (Kim et al., 2023),1526

and calibration methods can enhance model per-1527

formance, particularly in out-of-domain genera-1528

tion (Desai and Durrett, 2020).1529

Novel loss functions Many studies considered1530

the cross-entropy (CE) loss to be one of the causes1531

leading to model miscalibration (Mukhoti et al.,1532

2020; Kim et al., 2023). Mukhoti et al. (2020)1533

demonstrated that focal loss (Lin et al., 2017), de-1534

signed to give more importance to hard-to-classify1535

examples and to down-weight the easy-to-classify1536

examples, can improve the calibration of neural net-1537

works. The correctness ranking loss (CRL; Moon1538

et al. 2020) calibrated models by penalizing in-1539

correct rankings within the same batch and by us-1540

ing the difference in proportions as the margin to1541

differentiate sample confidence. Besides, entropy1542

regularization loss (ERL; Pereyra et al. 2017) and1543

label smoothing (LS; Szegedy et al. 2016) were1544

introduced to discourage overly confident output1545

distributions.1546

Data augmentation involves creating new train-1547

ing examples by applying various transformations1548

or perturbations to the original data. It has been1549

widely used for calibration of discriminative LMs1550

by alleviating the issue of over-confidence, such1551

as MixUp (Zhang et al., 2018), EDA (Wei and1552

Zou, 2019), Manifold-MixUp (Verma et al., 2019),1553

MIMO (Havasi et al., 2021) and AUM-guided1554

MixUp (Park and Caragea, 2022).1555

Ensemble and Bayesian methods were initially1556

introduced to quantify model uncertainty. However,1557

both can also be valuable for model calibration, as1558

they can enhance accuracy, mitigate overfitting,1559

and reduce overconfidence (Kong et al., 2020; Kim1560

et al., 2023).1561

A.2.2 Post-Hoc Calibration1562

Scaling methods are exemplified by matrix scal-1563

ing, vector scaling and temperature scaling (Guo1564

et al., 2017). Using a validation set, they fine- 1565

tune the predicted probabilities to better align with 1566

the true outcomes, leveraging the negative log- 1567

likelihood (NLL) loss. Among them, temperature 1568

scaling (TS) is popular due to its low complexity 1569

and efficiency. It involves re-weighting the logits 1570

before the softmax function by a learned scalar τ , 1571

known as the temperature. 1572

Feature-based calibrator leverages both input 1573

features and model predictions to refine the pre- 1574

dicted probabilities. To train the calibrator, one 1575

first applies a trained model on a validation dataset. 1576

Subsequently, both the original input features and 1577

the model’s predictions from this dataset are passed 1578

to a binary classifier (Jagannatha and Yu, 2020; 1579

Jiang et al., 2021; Si et al., 2022). 1580

A.3 Summary 1581

Confidence estimation Logit-based methods 1582

stand out as the most straightforward to implement 1583

and interpret. Reducing computational cost and 1584

improving the sampling efficiency pose challenges 1585

to ensemble-based and Bayesian methods. Density- 1586

based estimation can be used to identify which data 1587

points are associated with different types of un- 1588

certainties. However, it requires assumptions of 1589

data distribution (Baan et al., 2023) and can also 1590

be computationally intensive when dealing with 1591

large datasets (Sun et al., 2022). Confidence learn- 1592

ing can acquire task-relevant confidence; however, 1593

it requires modifying the neural network and per- 1594

forming specific training. 1595

Model calibration Post-hoc methods are gen- 1596

erally model-independent and can calibrate prob- 1597

abilities without impacting the model’s perfor- 1598

mance (Guo et al., 2017). Desai and Durrett 1599

(2020) empirically found that temperature scal- 1600

ing effectively reduces calibration error in-domain, 1601

whereas label smoothing is more beneficial in out- 1602

of-domain settings. Kim et al. (2023) found that 1603

augmentation can enhance both classification ac- 1604

curacy and calibration performance. However, en- 1605

semble methods may sometimes degrade model 1606

calibration if individual members produce similar 1607

predictions due to overfitting. Table 3 represents 1608

significant work in calibrating discriminative LMs. 1609

We have comprehensively listed the models, tasks, 1610

and calibration methods they employed. 1611
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