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ABSTRACT

While modern deep neural networks play significant roles in many research areas,
they are also prone to overfitting problems under limited data instances. Partic-
ularly, this overfitting, or generalization issue, could be a problem in the frame-
work of active learning because it selects a few data instances for learning over
time. To consider the generalization, this paper introduces the first active learning
method to incorporate the sharpness of loss space in the design of the acquisition
function, inspired by sharpness-aware minimization (SAM). SAM intends to max-
imally perturb the training dataset, so the optimization can be led to a flat minima,
which is known to have better generalization ability. Specifically, our active learn-
ing, Sharpness-Aware Active Learning (SAAL), constructs its acquisition function
by selecting unlabeled instances whose perturbed loss becomes maximum. Over
the adaptation of SAM into SAAL, we design a pseudo labeling mechanism to
look forward to the perturbed loss w.r.t. the ground-truth label. Furthermore, we
present a theoretic analysis between SAAL and recent active learning methods, so
the recent works could be reduced to SAAL under a specific condition. We con-
duct experiments on various benchmark datasets for vision-based tasks in image
classification and object detection. The experimental results confirm that SAAL
outperforms the baselines by selecting instances that have the potentially maximal
perturbation on the loss.

1 INTRODUCTION

Recently, deep learning is widely utilized in many research areas, such as computer vision, natural
language processing, recommender systems, etc., but its success deeply depends on the large-scale
labeled dataset for training the deep neural networks. The importance of the dataset is related to the
generalization issue in deep learning, which refers that the model learned with the training dataset
suffers from the degradation of performance when the unseen test dataset is encountered for deploy-
ment. This degradation results from the neural networks that are prone to overfitting under the lack
of the training dataset (Keskar et al., 2016; Neyshabur et al., 2017; Kawaguchi et al., 2017).

The dependency on the dataset also invokes an adaptive data selection by acquisition functions, or
active learning, which aims at the efficient use of the limited budget for annotations from oracle
(Cohn et al., 1996; Tong, 2001; Settles, 2009). Recently, various methods for active learning have
been proposed; but the model trained with a small number of data from the adaptive selection is
often difficult to be generalized (Dasgupta & Hsu, 2008). Although there exist some prior works
that deal with the generalization issue in active learning; those methods solve the problem by either
proposing a new risk function (Farquhar et al., 2020) or adopting a new classifier network (Wan
et al., 2021), rather than by inventing a new acquisition function that considers the generalization.

In this paper, we propose a new active learning algorithm, named Sharpness-Aware Active Learning
(SAAL), that connects active learning and generalization ability to construct the acquisition function.
Specifically, we are inspired by Sharpness-Aware Minimization, or SAM (Foret et al., 2020), which
minimizes the maximally perturbed loss of training dataset, leading to minimizing the loss sharpness
as well as the task loss, itself. Such optimization leads to a flat minima of the loss landscape, which
is shown to have a strong correlation with the generalization performance (Jiang et al., 2019). Hence,
SAAL adopts the maximally perturbed loss as the acquisition score.

When calculating the acquisition score for SAAL, we cannot observe the labels for the unlabeled
instances, so it is infeasible to compute the perturbed loss. To overcome this challenge, we utilize
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pseudo labels predicted by the current model, and we theoretically show that our proposed pseudo
labeling conservatively estimates the maximally perturbed loss w.r.t. ground-truth label. Also, we
theoretically derive the upper bound of the acquisition score of SAAL, which includes the loss,
the norm of gradients, and the first eigenvalue of loss Hessian. Among the three terms of the up-
per bound, the loss and gradient terms are widely used metrics for active learning, which captures
the model change by acquiring the instance (Yoo & Kweon, 2019; Ash et al., 2020; Settles et al.,
2007). Meanwhile, the first eigenvalue, which is newly considered by SAAL, is connected to the
loss sharpness (Keskar et al., 2017). Therefore, the selected instances by SAAL might contribute to
the generalization of the model.

We summarize our contributions in three points. First, we propose Sharpness-Aware Active Learn-
ing (SAAL), which considers the loss sharpness for constructing the acquisition function. The loss
sharpness is related to the generalization of model, so selecting instances with a high value of loss
sharpness might lead to a model with a better generalization performance. Second, we theoretically
derive the upper bound of the acquisition score of SAAL and show the connection with the recent
active learning methods. Specifically, we find that the upper bound also contains the first eigenvalue
of loss Hessian, which is related to the generalization ability. Third, we empirically show that SAAL
outperforms the baselines in various vision-based tasks on the benchmark dataset.

2 PRELIMINARIES

2.1 NOTATIONS

Throughout this paper, we assume a classification problem and we represent our current deep learn-
ing model parameterized by θ as fθ : Rd → R|Y |; where d is the dimension of data instance, x,
and Y is the set of candidate classes that x can have. There are two datasets: a dataset with labels,
XL, and the other unlabeled dataset, XU . We denote the acquisition function of active learning as
facq : Rd → R, where facq receives a data instance as input, and calculates the informativeness, or
the acquisition score, of the instance as output. The loss of a data instance, x, w.r.t. the given label
y is represented as l(x, y; θ) := lCE(σ(fθ(x)), y), where σ(·) is a softmax function. The total loss
of a dataset, S, is represented as LS(θ) =

1
N

∑N
i=1 l(xi, yi; θ), where S = {(xi, yi)|i = 1, ..., N}.

Lastly, we define the pseudo label, ŷ = argmaxj∈Y σ(fθ(x))j ; and we denote the ground-truth
label as ȳ.

2.2 ACTIVE LEARNING

There are several active learning scenarios that differ by the setting of data accessibility; which
include membership-query synthesis (Angluin, 1988; 2004), stream-based active learning (Atlas
et al., 1989; Cohn et al., 1994), and pool-based active learning (Lewis & Gale, 1994). In this paper,
we focus on pool-based active learning, where the unlabeled data instances are provided as a large
set of data pool, and the active learner sequentially selects the informative instances by a certain
criterion.

Pool-based active learning is categorized by the definition of informativeness, which includes the
uncertainty, diversity, and hybrid-based methods. Uncertainty-based active learning adopts the
acquisition function, facq , to calculate the uncertainty of each unlabeled instance with regard to the
current deep learning model, and an oracle provides the ground-truth label of the selected unlabeled
instances with the highest uncertainty. Since the acquisition score is usually calculated for an unla-
beled instance, xu ∈ XU , w.r.t. the current model, fθ, it is expanded as facq(xu; fθ), resulting in
the selection rule as the below.

XS = argmax
X

′
S⊂XU

∑
xu∈X

′
S

facq(xu; fθ) (1)

Entropy, which is denoted as fEnt
acq (xu; fθ) = H[fθ(xu)] = −

∑
j σ(fθ(xu))j log2 σ(fθ(xu))j , or

variation ratio, which is denoted as fV ar
acq = 1−maxj σ(fθ(xu))j , are the most widely used methods

for calculating uncertainty (Shannon, 1948; Freeman, 1965). These days, additional networks are
used to approximate the uncertainty of each instance. Learning Loss for Active Learning (LL4AL)
(Yoo & Kweon, 2019) trains the loss prediction module, fLPM , which takes the hidden feature maps
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as input and predicts the expected loss as output. Then, LL4AL constructs the acquisition functions
fLL4AL
acq (xu) = fLPM (fkθ (xu)|k=1,...,K), where fkθ is the k-th hidden feature map. Variational

Adversarial Active Learning (VAAL) (Sinha et al., 2019) trains a discriminator, fdis, which takes a
data instance as input and discriminates whether the instance belongs to the labeled dataset or the
unlabeled dataset. Then, VAAL calculates the probability of xu belonging to the unlabeled dataset,
XU , as the acquisition score, i.e., fV AAL

acq (xu) = fdis(xu). Diversity-based active learning, such
as Coreset approach (Sener & Savarese, 2018), selects instances that represent the whole distribution
of unlabeled instances, by solving a mixed integer programming. Recently, to make use of both
uncertainty and diversity methods, Hybrid-based active learning is proposed to select the uncertain
instances in a diverse way. In BADGE (Ash et al., 2020), the acquisition function is calculated as
the gradient embedding of xu w.r.t. the parameter of the last fully connected layer, θout, that is
fBADGE
acq (xu) = ∂

∂θout
l(xu, ŷu; θ), where ŷu is the pseudo label of xu. Then, this embedding

becomes an input to the k-means++ seeding algorithm (Arthur & Vassilvitskii, 2006).

Recently, pool-based active learning has been developed to deal with certain problematic scenarios.
Such development includes using random round-robin sampling to efficiently apply active learn-
ing in large-batch setting (Citovsky et al., 2021); actively selecting test samples to query (Kossen
et al., 2021); improving conventional active learning algorithm for high dimensional observational
data (Jesson et al., 2021); etc. Compared to those researches, our proposed SAAL deals with a
conventional scenario and focuses on how the proposed acquisition function selects the informative
instances.

2.3 SHARPNESS-AWARE MINIMIZATION (SAM)

As an independent research direction from active learning, there is an increasing investigation on the
flatness or sharpness of loss response surfaces, and their corresponding optimization. The flat min-
ima of loss landscape is analyzed in various research areas and is confirmed to have deep connection
to generalization of neural networks. A recent broad study on the various measures of generaliza-
tion has confirmed that sharpness-based measure has the strongest correlation to the generalization
(Jiang et al., 2019). Hence, the flat minima is utilized in various research areas where generalization
is important, such as domain generalization (Cha et al., 2021), adversarial robustness (Stutz et al.,
2021), or domain adversarial training (Rangwani et al., 2022).

Having said that, Sharpness-Aware Minimization (SAM) is an optimizer for training the deep neural
network (Foret et al., 2020) to weigh the importance of flat minima. Denoting the loss on the dataset
S w.r.t. the current parameter θ as LS(θ), the optimization objective of SAM is to minimize the
maximally perturbed loss with the regularization on the parameter, as below.

min
θ

max
∥ϵ∥≤ρ

LS(θ + ϵ) + γ∥θ∥22 (2)

Here, γ is a hyperparameter that controls the magnitude of the effect of regularization, ϵ is the
perturbation to the parameter, and ρ defines the size of the perturbation.

The maximally perturbed loss can be decomposed as max∥ϵ∥≤ρ LS(θ + ϵ) = (max∥ϵ∥≤ρ LS(θ +
ϵ) − LS(θ)) + LS(θ), which is interpreted as the sharpness term (first term of the RHS) and the
classification loss term (second term of the RHS). Hence, SAM minimizes the sharpness of the loss
as well as the classification loss value, itself; that is SAM aims at seeking the flat minima among
the local minimas. This optimization is a max-min problem, which solves max∥ϵ∥≤ρ LS(θ + ϵ)
first than solves minθ max∥ϵ∥≤ρ LS(θ + ϵ). The inner maximization problem is solved by finding
ϵ∗ = argmax∥ϵ∥≤ρ LS(θ+ ϵ). By deriving Taylor expansion of LS(θ+ ϵ) w.r.t. θ around 0, and by
introducing a dual norm problem, the ϵ∗ is approximated as the follow, with 1

p + 1
q = 1.

ϵ∗ ≈ ρ · sign(∇θLS(θ))
|∇θLS(θ)|q−1

(∥∇θLS(θ)∥qq)1/p
(3)

After solving the inner maximization using ϵ∗, the minimization problem is solved by obtaining the
gradient, while excluding the Hessian term, as the below.

∇θ max
∥ϵ∥≤ρ

LS(θ + ϵ) ≈ ∇θLS(θ)|θ+ϵ∗ (4)
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3 METHOD

3.1 MOTIVATION

According to SAM (Foret et al., 2020), the loss of the population dataset, D , is upper bounded by
the maximally perturbed loss of the training dataset, X . From the perspective of active learning,
the training dataset is decomposed into the labeled dataset, XL, and the unlabeled dataset, XU , i.e.,
X = XL ∪ XU . Hence, the upper bound can be decomposed as the below, with πL = |XL|

|X | and

πU = |XU |
|X | .

LD(θ) ≤ max
∥ϵ∥≤ρ

LX (θ + ϵ) ≤ πL · max
∥ϵ∥≤ρ

LXL
(θ + ϵ) + πU · max

∥ϵ∥≤ρ
LXU

(θ + ϵ) =: LSAAL
X (5)

Since the population loss, LD(θ), is never accessible; we instead access the rightmost upper bound
denoted in Eq. 5, which is represented as LSAAL

X , and train our network to minimize the upper
bound. Among the two terms ofLSAAL

X , the first term, πL ·max∥ϵ∥≤ρ LXL
(θ+ϵ), will be minimized

if we use SAM optimizer. Then, the remaining second term, πU ·max∥ϵ∥≤ρ LXU
(θ + ϵ), becomes

the key component for our optimization in the sharpness-aware active learning scenario. During the
active learning iterations, we suppose that we select unlabeled instances, xu ∈ XU , with high values
of maximally perturbed loss. In other words, we query the label of such unlabeled instances, so that
the remaining XU consists of unlabeled instances whose maximally perturbed loss value is small.
Then, it leads to minimizing two terms of LSAAL

X simultaneously; which contributes to minimizing
the generalization error, LD(θ).

Comparison to Semi-Supervised Learning Our proposed active learning algorithm is not the
only way for decreasing the loss of unlabeled dataset, XU ; because traditional semi-supervised
learning (SSL) is another way that utilizes LXU

(θ) while training the model. However, it should
be noted that SSL does not guarantee to minimize the rightmost upper bound, LSAAL

X . SSL mini-
mizes the average of unlabeled dataset loss instead of the maximum perturbed loss. Hence, it is hard
to guarantee that SSL will contribute to minimizing the generalization error without prior knowl-
edge on label distribution (Ben-David et al., 2008). We can categorize the SSL approach as three
ways (Berthelot et al., 2019; Zhu, 2005), which are consistency regularization (Laine & Aila, 2016;
Sajjadi et al., 2016), entropy minimization (Cireşan et al., 2010; Lee et al., 2013), and traditional
regularization, such as weight decay (Zhang et al., 2018a;b). First, consistency regularization and
entropy minimization completely depend on the pseudo-label, and an incorrect pseudo-label might
increase the generalization error. Second, the worst-case or hardest instances might have incorrect
pseudo-label. In other words, SSL, training the model with an incorrect pseudo-label, might fail
to model the maximum perturbed loss. Third, the minimization of maximum perturbed loss is an
independent approach to the previous semi-supervised learning methods, such as traditional regular-
ization as well as consistency and entropy minimization. They are potentially compatible with our
active learning algorithm.

3.2 SHARPNESS-AWARE ACTIVE LEARNING

Motivated by the Sharpness-Aware Minimization (SAM), our active learning algorithm selects in-
stances with a high perturbed loss under some perturbation on the model parameters, θ. Hence, our
acquisition function is as follows:

fSAAL
acq (xu; fθ) = max

∥ϵ∥≤ρ
l(xu, ŷu; θ + ϵ), (6)

where l is the cross-entropy loss function for the model, and θ is the current parameter of the model.
Algorithm 1 describes the overall process of our Sharpness-Aware Active Learning. Since our ac-
quisition function is calculated for the unlabeled instances, there comes a problem when calculating
the maximally perturbed loss function, which requires label. Hence, we use a pseudo label, ŷu,
for the loss calculation. To provide the validity of utilizing pseudo label, we first provide Theorem
3.1, which explains the relation between the maximally perturbed losses which are calculated with
pseudo label and with ground-truth label, respectively.
Theorem 3.1. (Proof in Appendix A.2.1) For a data instance x, let ŷ be the pseudo label predicted by
the network fθ and ȳ be the ground-truth label. Then, the maximally perturbed loss calculated with
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Algorithm 1 Sharpness-Aware Active Learning

Input: Labeled dataset X 0
L , Unlabeled dataset X 0

U , Classifier fθ
1: Initially train fθ by the cross-entropy loss of X 0

L
2: for j = 0, 1, 2, . . . do ▷ active learning
3: Randomly sample X pool

U ⊂ X j
U

4: for xu ∈ X pool
U do

5: Calculate fSAAL
acq (xu; fθ) as Eq. 6

6: end for
7: Select XS = argmaxX

′
S⊂X pool

U

∑
xu∈X

′
S
fSAAL
acq (xu; fθ)

8: Query the label of XS to oracle
9: Update the labeled dataset, X j+1

L = X j
L ∪ XS

10: Update the unlabeled dataset, X j+1
U = X j

U \ XS

11: Train fθ by the cross-entropy loss of X j+1
L

12: end for

(x, ŷ) is a lower bound of the maximally perturbed loss calculated with (x, ȳ); with a non-negative
margin, δx, as the below:

max
∥ϵ∥≤ρ

l(x, ŷ; θ + ϵ) ≤ max
∥ϵ∥≤ρ

l(x, ȳ; θ + ϵ) + δx. (7)

Next, Proposition 3.2 shows that the inequality 7 has zero margin under a mild condition.
Proposition 3.2. (Proof in Appendix A.2.2) For a data instance x and the corresponding pseudo
label ŷ, let ϵ̂ be the maximal perturbation over the parameters w.r.t. the loss l(x, ŷ; θ + ϵ). If
the perturbed network, fθ+ϵ̂, keeps the predicted label as the same as the label predicted from the
original network, fθ; then the maximally perturbed loss calculated with (x, ŷ) is a lower bound of
the maximally perturbed loss calculated with (x, ȳ), as the below:

max
∥ϵ∥≤ρ

l(x, ŷ; θ + ϵ) ≤ max
∥ϵ∥≤ρ

l(x, ȳ; θ + ϵ). (8)

Theorem 3.1 and Proposition 3.2 provide that the selected instances by acquisition score of SAAL
with pseudo label would also have high scores w.r.t. the ground-truth label. It indicates that we
conservatively estimate the maximally perturbed loss for the acquisition score.

3.3 CONNECTION TO RECENT ACTIVE LEARNING ALGORITHMS

Here, we theoretically derive the upper bound of the acquisition score of SAAL, and show the
connection to the recent active learning algorithms as well as the generalization ability. To begin
with, we provide Theorem 3.3 as below.
Theorem 3.3. (Proof in Appendix A.2.3) The acquisition function, fSAAL

acq , of Eq. 6 is upper
bounded by l(θ) + ρ∥∇θl(θ)∥2 + 1

2ρ
2λ1 + max∥v∥≤1O(ρ2v3); where l(θ) abbreviates the loss

of a data pair, (x, y), and λ1 is the first eigenvalue of the loss Hessian.

Theorem 3.3 derives the upper bound of the acquisition score of SAAL, which consists of the task
loss, the gradient norm, and the first eigenvalue of loss Hessian. Since we are selecting instances
which have high value of fSAAL

acq , the selection refers that we are also selecting instances which
have high values of the loss, l(θ), and the magnitude of the gradient embedding, ∥∇θl(θ)∥2; which
are connected to LL4AL (Yoo & Kweon, 2019) and BADGE (Ash et al., 2020), respectively. Fur-
thermore, SAAL considers the first eigenvalue of the loss Hessian w.r.t. the current model, denoted
as λ1. The importance of the first eigenvalue for generalization is widely studied, that is the first
eigenvalue is used as the indicator of the sharpness of the loss surface (Keskar et al., 2017; Zhuang
et al., 2022; Kaur et al., 2022). Hence, the selected instances by SAAL might contribute to the
generalization of the model.

Figure 1a shows that there exists a positive correlation between our acquisition score, fSAAL
acq , and

the three terms of upper bound. It should be noted that the upper bound is not our optimization
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objective, because we use the acquisition score for ranking the instances with top values of the
score. Hence, the correlation between the acquisition score and the upper bound is of our interest.
Having said that, by selecting the instances with the high acquisition score of SAAL, fSAAL

acq , we
are selecting instances that have high values of the loss, gradient norm, and the first eigenvalue.
Also, Figure 1b shows the value of the three terms of upper bound. Interestingly, as the acquisition
iterations proceed, not only the loss and the gradient value, but the first eigenvalue gets smaller. The
change of the value of the first eigenvalue is more noticeable in Figure 1c, which plots the value
of λ1 without the scaling term of 1

2ρ
2. This indicates that SAAL leads the model to a flat minima,

which results in better generalization performance.

(a) Correlation between fSAAL
acq

and upper bound terms
(b) Magnitude of

the upper bound terms
(c) Detailed view of

the first eigenvalue, λ1

Figure 1: Correlation and magnitude of upper bound terms

4 EXPERIMENTS AND RESULTS

We examined the performance of SAAL in two vision-based tasks; which are image classification
and object detection. Specifically, for image classification, we quantitatively compared the test
accuracies among various active learning algorithms; and qualitatively analyzed the performance of
SAAL by examining the upper bound of population loss. Also, we analyze the effect of ρ, which
defines the size of the perturbation, ϵ.

4.1 IMAGE CLASSIFICATION

Experiment Setting We conduct our experiment on Fashion-MNIST (Fashion) (Xiao et al.,
2017), SVHN (Netzer et al., 2011), CIFAR-10, and CIFAR-100 (Krizhevsky et al., 2009) dataset.
We adopt the ResNet-18 (He et al., 2016) network for our classifier, and we train the network for
50 epochs after each acquisition step, using Adam optimizer (Kingma & Ba, 2015) with a learn-
ing rate of 1e-3; and SAM optimizer (Foret et al., 2020) with a learning rate of 1e-3 for Fashion,
SVHN, CIFAR-10 and 1e-1 for CIFAR-100. To simulate an experiment scenario with bad general-
ization cases, we followed the settings of the prior works (Kim et al., 2021), which assumes a very
low amount of allowed budget. For Fashion, SVHN, and CIFAR-10, we construct the initial labeled
dataset with 20 instances, which are random but balanced; and we select 10 additional instances with
the highest acquisition score among the randomly selected 2,000 unlabeled instances. For CIFAR-
100, the initial labeled dataset consists of 1,000 instances, and we select 100 additional instances for
100 repeated iterations. We repeat the acquisition for 100 iterations, and we report the results with
three repeated trials. Here, SAAL introduces the perturbation size, ρ, of the perturbation, ϵ, in Eq.
6, and we set the value of ρ as 0.05 for all the datasets.

Baselines We compared the performance of SAAL with Random, Entropy (Shannon, 1948),
Coreset (Sener & Savarese, 2018), Learning Loss for Active Learning (LL4AL) (Yoo & Kweon,
2019), Variational Adversarial Active Learning (VAAL) (Sinha et al., 2019), and BADGE (Ash
et al., 2020). Since our most relevant algorithm, BADGE, adopts k-means++ seeding algorithm to
introduce diversity on the acquisition; we also provide an experimental result with diversity follow-
ing the same practice from BADGE. Specifically, after calculating our acquisition function using
Eq. 6, we implement k-means++ seeding algorithm with the acquisition score as input.

Quantitative Analysis Table 1 indicates that SAAL outperforms the baselines in seven out of
eight combinations of experiments. The advantage of SAAL becomes obvious when we use the
Adam optimizer, rather than the SAM optimizer. We conjecture that this gain for Adam optimizer
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originates from Eq. 5, which motivates SAAL in modeling the expected flat local minima after
acquisitions. Recall that our inaccessible goal, LD(θ), is upper bounded by πL ·max∥ϵ∥≤ρ LXL

(θ+
ϵ) + πU ·max∥ϵ∥≤ρ LXU

(θ + ϵ), as we discussed in Section 3.1. When using Adam optimizer, the
first term, max∥ϵ∥≤ρ LXL

(θ + ϵ), in the upper bound is weakly optimized compared to using SAM
optimizer, which we will present qualitative analyses in the next section; because SAM optimizer
directly minimizes max∥ϵ∥≤ρ LXL

(θ + ϵ). Hence, the importance of the second term in the upper
bound, max∥ϵ∥≤ρ LXU

(θ + ϵ), becomes more significant for Adam optimizer.

We also provide the test accuracy along the acquisition iterations in Figure 6 of Appendix A.1. The
figures show that SAAL achieves higher accuracy more quickly than baselines in most cases, see
Figure 6a, 6d, or 6g.

Table 1: Comparison of test accuracy (%) using Adam optimizer and SAM optimizer. The best
performance is indicated as boldface. The results are replicated by three times.

Method
Adam optimizer SAM optimizer

Fashion SVHN CIFAR-10 CIFAR-100 Fashion SVHN CIFAR-10 CIFAR-100
Random 81.2 ± 0.5 72.4 ± 0.9 50.7 ± 1.5 43.3 ± 0.3 83.7 ± 0.3 78.1 ± 1.1 52.6 ± 2.8 44.0 ± 0.7
Entropy 81.5 ± 1.4 73.1 ± 1.0 51.9 ± 1.8 44.4 ± 0.7 84.1 ± 0.2 77.5 ± 3.2 54.6 ± 0.4 44.1 ± 1.0
Coreset 83.8 ± 0.7 75.3 ± 5.8 51.7 ± 1.0 44.4 ± 0.5 84.4 ± 0.6 78.9 ± 1.3 53.9 ± 1.3 47.6 ± 1.4

LL4AL 1 83.5 ± 1.8 75.1 ± 1.7 51.7 ± 0.4 43.9 ± 0.3 83.2 ± 1.4 72.2 ± 0.2 50.2 ± 1.1 35.7 ± .01
VAAL 83.4 ± 0.1 73.4 ± 1.3 52.0 ± 0.9 44.8 ± 0.3 84.1 ± 0.6 77.1 ± 0.8 53.1 ± 0.9 45.5 ± 0.4

BADGE 85.4 ± 0.6 74.9 ± 1.1 52.3 ± 2.2 45.7 ± 0.6 86.2 ± 0.2 78.8 ± 0.9 56.8 ± 1.9 47.4 ± 0.7
SAAL 85.8 ± 0.8 76.8 ± 0.7 54.4 ± 0.9 47.6 ± 0.9 86.3 ± 0.5 78.8 ± 1.0 57.0 ± 1.1 48.4 ± 0.9

Figure 2: Comparison of time complex-
ity, in log-scale

Next, we compare the time complexity of SAAL and
baselines. We used the CIFAR-10 dataset and measured
the time for a single iteration of acquisition and training.
Figure 2 shows the time in seconds with a log scale. The
results of Random acquisition show that the SAM opti-
mizer takes twice longer time than the Adam optimizer,
because it takes two steps of gradient calculation. How-
ever, the gap between Adam and SAM becomes mere
when using other active learning algorithms, indicating
that the time for calculating acquisition score is the largest
bottleneck. SAAL calculates the perturbation, ϵ, for every
single unlabeled instance, instead of batch-wise calcula-
tion; so it takes longer than most of the other baselines.
The time complexity of SAAL can be reduced if we adopt
the improved SAM models (Du et al., 2021; 2022) that
have been proposed for an efficient calculation.

Qualitative Analysis Figure 3 supports the conjecture for the advantage of SAAL by anticipating
the flat local minima in the acquisition process. Figure 3 measures the maximally perturbed loss for
the labeled dataset, XL; the unlabeled dataset, XU ; and the total dataset, XL ∪ XU . We compare
the results between the models trained with either SAM optimizer or Adam optimizer. Since it is
computationally hard to calculate the corresponding perturbation for every single unlabeled instance,
xu ∈ XU , we uniformly sample 2,000 unlabeled instances from XU at each iteration; and we report
the averaged results for three independently repeated trials.

Figure 3a shows the maximally perturbed loss of XU when using SAM optimizer. If we compare
the result of SAAL with the results of baselines, SAAL shows the lowest value of the maximally
perturbed loss, because SAAL selected the instances with high values of perturbed loss; and because
SAAL removes such instances by passing those instances to the labeled dataset. Figure 3b shows the
maximally perturbed loss of XL when using SAM optimizer. This loss also indicates the flatness of
the model; the lower value of the maximally perturbed loss of XL indicates that the model does not
change the result even if the parameter is changed in a small range, which refers to the flat model
(Keskar et al., 2016; Neyshabur et al., 2017; Kawaguchi et al., 2017). Hence, SAAL results in a flat
network compared to the baselines. We conjecture that the flat model attained by SAAL is explained

1For LL4AL, we failed to reproduce the performance when using SAM optimizer.
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by the look-ahead concept (Roy & McCallum, 2001; Konyushkova et al., 2017; Kim et al., 2021).
If we are planning to minimize max∥ϵ∥≤ρ LX (θ + ϵ) by SAM optimizer, SAAL looks ahead the
high values of the max∥ϵ∥≤ρ LX (θ + ϵ) from unlabeled instances, and SAAL actively selects such
unlabeled instances to flatten the future response surface.

Finally, Figure 3c shows the maximally perturbed loss of the total dataset, which is equivalent to
the upper bound in Eq. 5. As confirmed in the figure, SAAL achieves the lowest upper bound,
which indicates that the model trained with SAAL is more likely to achieve a lower population loss,
which is our ultimate goal of minimization objective. When comparing the results of SAM (Figure
3a - Figure 3c) and the results of Adam (Figure 3d - Figure 3f), the gap between SAAL and other
baselines becomes clearer in Adam optimizer.

(a) Maximally perturbed loss of
XU with SAM

(b) Maximally perturbed loss of
XL with SAM

(c) Maximally perturbed loss of
XL ∪ XU with SAM

(d) Maximally perturbed loss of
XU with Adam

(e) Maximally perturbed loss of
XL with Adam

(f) Maximally perturbed loss of
XL ∪ XU with Adam

Figure 3: Maximally perturbed loss of the labeled dataset, unlabeled dataset, and total dataset during
the active learning iterations. (a) - (c) are the results of the model trained by SAM optimizer. (d) -
(f) are the results of the model trained by Adam optimizer.

Sensitivity Analysis on ρ SAAL introduces a hyperparameter, ρ, which represents the size of the
perturbation, ϵ. Hence, we conduct the sensitivity analysis on ρ with the CIFAR-10 dataset, and we
set the candidate values for ρ as 0.01, 0.05, and 0.10.

First, we examined the validity of Theorem 3.1 by investigating if the network with the max-
imally perturbed parameters keeps the predicted label as same as the original network. Fig-
ure 4a shows the proportion of unlabeled data instances whose predicted labels are remained
the same by the perturbed network during the active learning iterations; that is ψ(ρ) :=

1
|XU |

∑
x∈XU

1argmaxj fθ+ϵ̂(x)j=ŷ , where 1A is the indicator function that returns 1 if the condi-
tion A is satisfied. When the size, ρ, of the perturbation, ϵ, is zero, that is if we do not perturb the
network; then the inequality of Eq. 8 is satisfied for all instances, by the definition of the pseudo la-
bel, ŷ. As we increase the value of ρ, some instances fail to keep the predicted label as the same as ŷ,
because the parameter of the model changes drastically so that the model loses the prediction ability
that it has learned so far. Also, we examined the validity of Proposition 3.2 by investigating the value
of the margin, δx, for the unlabeled data instances in Figure 4b. It should be noted that δx is not our
hyperparameter, but a dependent variable subject to change by ρ. We only investigate δx to reveal the
characteristics of ρ, not for the hyperparameter optimizations. To show how the value of the margin,
δx, affects the inequality, we measure the relative value of the margin, δx, compared to the maxi-
mally perturbed loss, max∥ϵ∥≤ρ l(x, ȳ; θ + ϵ); that is r(ρ, δx) := 1

|XU |
∑

x∈XU

δx
max∥ϵ∥≤ρ l(x,ȳ;θ+ϵ) .

From the analyses of Figure 4a and 4b, we adopted ρ = 0.05, because this value 1) keeps the pre-
dicted label of data instance from the original network with high probability and 2) keeps the value
of the margin relatively small compared to the max perturbed loss w.r.t. the ground-truth label; while
ρ = 0.05 is confirmed to perturb the parameters of the network effectively (Foret et al., 2020).
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The proper selection of ρ also affects the test accuracy, as shown in Figure 4c. If we select ρ with a
too small value, that is ρ = 0.01, the parameter of the model is not perturbed enough to measure the
sharpness, so SAAL cannot catch the informative instances. If we select ρ with a too large value,
that is ρ = 0.10, the maximally perturbed loss 1) does not satisfy Proposition 3.2, as confirmed in
Figure 4a, and 2) have too large value of margin, as confirmed in Figure 4b. Meanwhile, a proper
value of ρ = 0.05 for the perturbation, ϵ, shows the best performance.

(a) Proportion of unlabeled
instances satisfying the assumption
in Proposition 3.2; with varying ρ

(b) Averaged value of the margin,
δx, in Theorm 3.1 for the

unlabeled dataset; with varying ρ

(c) Test accuracy;
with varying ρ

Figure 4: Sensitivity analysis on ρ

4.2 OBJECT DETECTION

Figure 5: mAP of object detection task
with PASCAL VOC 2007+2012

To show the effectiveness of SAAL in a complex task, we
conduct an object detection task. Object detection returns
the locations of semantic objects and the corresponding
labels for a given input image, x. Hence, the loss for
training detection model consists of the bounding box re-
gression loss and the classification loss. We experiment
with PASCAL VOC 2007 and 2012 dataset (Everingham
et al., 2010), which contains 5,011 images and 4,952 im-
ages with 20 object classes, respectively. We adopt Single
Shot Multibox Detector (SSD) (Liu et al., 2016) as the
detection model. To apply SAAL for object detection,
we perturb the parameters to maximize the classification
loss; and use the summation of the perturbed loss from
every corresponding detection box in the image, x, as the
acquisition score for x. Afterward, we select the images
with the highest scores. We construct the initial labeled
dataset with 1,000 randomly selected images, and we se-
lect additional 1,000 instances at every acquisition itera-
tions, so that we attain 10,000 final instances with nine
repeated acquisitions. We train the model for 300 epochs
with a batch size of 32. Figure 5 reports the mean av-
erage precision (mAP) for three repeated trials of SAAL
and baselines. As shown in the figure, SAAL achieves
high performance at the earlier iterations and shows the highest mAP of 0.7541 at the last iteration;
while BADGE, Entropy, and Random show 0.7493, 0.7518, and 0.7403, respectively.

5 CONCLUSION AND FUTURE WORKS

We propose a new active learning method named Sharpness-Aware Active Learning, or SAAL.
SAAL considers the loss sharpness of data instances, which is strongly related to the generalization
performance of deep learning. Furthermore, we derive the upper bound of SAAL acquisition score
and find the connection to the recent active learning methods; as well as the connection to the first
eigenvalue of loss Hessian which is widely used as the indicator of loss sharpness. By various
experiments with benchmark datasets, SAAL shows better performance than baselines. As a future
work, we will improve the time complexity of SAAL by adopting recent SAM models.
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A APPENDIX

A.1 TEST ACCURACY

We provide the learning curve of SAAL and baselines along the acquisition iterations.

(a) Test accuracy on
Fashion, with Adam

(b) Test accuracy on
SVHN, with Adam

(c) Test accuracy on
CIFAR-10, with Adam

(d) Test accuracy on
CIFAR-100, with Adam

(e) Test accuracy on
Fashion, with SAM

(f) Test accuracy on
SVHN, with SAM

(g) Test accuracy on
CIFAR-10, with SAM

(h) Test accuracy on
CIFAR-100, with SAM

Figure 6: Test accuracy along the acquisition iteration; with Adam and SAM optimizers

A.2 PROOF DETAILS

A.2.1 PROOF OF THEOREM 3.1

Theorem A.1. For a data instance x, let ŷ be the pseudo label predicted by the network fθ and
ȳ be the ground-truth label. Then, the maximally perturbed loss calculated with (x, ŷ) is a lower
bound of the maximally perturbed loss calculated with (x, ȳ); with a non-negative margin, δx, as
the below:

max
∥ϵ∥≤ρ

l(x, ŷ; θ + ϵ) ≤ max
∥ϵ∥≤ρ

l(x, ȳ; θ + ϵ) + δx.

Proof. The cross-entropy loss, l(x, y; θ), is represented with the logit vector fθ(x) ∈ R|Y | as the
below:

l(x, y; θ) =− ln
exp(fθ(x)y)∑
j exp(fθ(x)j)

=− ln (exp(fθ(x)y)) + ln
∑
j

exp(fθ(x)j)

= ln
∑
j

exp(fθ(x)j)− fθ(x)y.

Then, the maximally perturbed loss of a data pair (x, y) is represented as the below:

max
∥ϵ∥≤ρ

l(x, y; θ + ϵ) = max
∥ϵ∥≤ρ

(ln
∑
j

exp(fθ+ϵ(x)j)− fθ+ϵ(x)y).

Since the pseudo label, ŷ, satisfies ŷ = argmaxj∈Y fθ(x)j by the definition, it holds that fθ(x)ŷ ≥
fθ(x)j for all j ∈ Y . Let ϵ̂ = argmax∥ϵ∥≤ρ l(x, ŷ; θ + ϵ). Define the margin, δx, as δx :=
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[maxj{fθ+ϵ̂(x)j − fθ+ϵ̂(x)ŷ}]+ where [·]+ = max{·, 0}. Then, the following holds.

max
∥ϵ∥≤ρ

l(x, ŷ; θ + ϵ) = ln
∑
j

exp(fθ+ϵ̂(x)j)− fθ+ϵ̂(x)ŷ

≤ ln
∑
j

exp(fθ+ϵ̂(x)j)− fθ+ϵ̂(x)ȳ + δx

≤ max
∥ϵ∥≤ρ

ln
∑
j

exp(fθ+ϵ(x)j)− fθ+ϵ(x)ȳ

+ δx

= max
∥ϵ∥≤ρ

l(x, ȳ; θ + ϵ) + δx

A.2.2 PROOF OF PROPOSITION 3.2

Proposition A.2. For a data instance x and the corresponding pseudo label ŷ, let ϵ̂ be the maximal
perturbation over the parameters w.r.t. the loss l(x, ŷ; θ + ϵ). If the perturbed network, fθ+ϵ̂,
keeps the predicted label as the same as the label predicted from the original network, fθ; then the
maximally perturbed loss calculated with (x, ŷ) is a lower bound of the maximally perturbed loss
calculated with (x, ȳ), as the below:

max
∥ϵ∥≤ρ

l(x, ŷ; θ + ϵ) ≤ max
∥ϵ∥≤ρ

l(x, ȳ; θ + ϵ).

Proof. Since the perturbed network, fθ+ϵ̂, keeps the predicted label as the same as the label pre-
dicted from the original network, fθ; it holds that argmax fθ+ϵ̂(x) = argmax fθ(x) = ŷ and
accordingly fθ+ϵ̂(x)j ≤ fθ+ϵ̂(x)ŷ for all j. Hence, maxj{fθ+ϵ̂(x)j − fθ+ϵ̂(x)ŷ} ≤ 0. Thus, by the
definition of the margin in Theorem 3.1, δx becomes zero.

A.2.3 PROOF OF THEOREM 3.3

Theorem A.3. The acquisition function, fSAAL
acq , of Eq. 6 is upper bounded by l(θ)+ρ∥∇θl(θ)∥2+

1
2ρ

2λ1 + max∥v∥≤1O(ρ2v3); where l(θ) abbreviates the loss of a data pair, (x, y), and λ1 is the
first eigenvalue of the loss Hessian.

Proof. Recall that our acquisition function is fSAAL
acq = max∥ϵ∥≤ρ l(xu, ŷu; θ + ϵ). Since we

limit the size of the perturbation as ∥ϵ∥ ≤ ρ, we can write ϵ = ρv with ∥v∥ ≤ 1, and
max∥ϵ∥≤ρ l(xu, ŷu; θ+ ϵ) = max∥ρv∥≤ρ l(xu, ŷu; θ+ ρv) = max∥v∥≤1 l(xu, ŷu; θ+ ρv). Then, by
Taylor expansion of l(xu, ŷu; θ + ρv) w.r.t. θ, the below holds, where we abbreviate l(xu, ŷu; θ) as
l(θ).

fSAAL
acq (xu; fθ) = max

∥ϵ∥≤ρ
l(θ + ϵ) = max

∥v∥≤1
l(θ + ρv)

= max
∥v∥≤1

{l(θ) + (ρv)T∇θl(θ) +
1

2
(ρv)T∇2

θl(θ)(ρv) +O((ρv)3)}

= l(θ) + max
∥v∥≤1

{(ρv)T∇θl(θ) +
1

2
(ρv)T∇2

θl(θ)(ρv) +O((ρv)3)}

≤ l(θ) + max
∥v∥≤1

(ρv)T∇θl(θ) + max
∥v∥≤1

1

2
(ρv)T∇2

θl(θ)(ρv) + max
∥v∥≤1

O((ρv)3)

= l(θ)︸︷︷︸
Loss

+ ρ∥∇θl(θ)∥2︸ ︷︷ ︸
Gradient Norm

+
1

2
ρ2λ1︸ ︷︷ ︸

1st Eigenvalue

+ max
∥v∥≤1

O((ρv)3)
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