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Abstract
Multimodal Large Language Models (MLLMs)001
have demonstrated significant advances across002
numerous vision-language tasks. Due to003
their strong image-text alignment capability,004
MLLMs can effectively understand image-text005
pairs with clear meanings. However, effec-006
tively resolving the inherent ambiguities in007
natural language and visual contexts remains008
challenging. Existing multimodal benchmarks009
typically overlook linguistic and visual am-010
biguities, relying mainly on unimodal con-011
text for disambiguation and thus failing to012
exploit the mutual clarification potential be-013
tween modalities. To bridge this gap, we intro-014
duce MUCAR, a novel and challenging bench-015
mark designed explicitly for evaluating mul-016
timodal ambiguity resolution across multilin-017
gual and cross-modal scenarios. MUCAR in-018
cludes: (1) a multilingual dataset where am-019
biguous textual expressions are uniquely re-020
solved by corresponding visual contexts, and021
(2) a dual-ambiguity dataset that systematically022
pairs ambiguous images with ambiguous tex-023
tual contexts, with each combination carefully024
constructed to yield a single, clear interpreta-025
tion through mutual disambiguation. Exten-026
sive evaluations involving 19 state-of-the-art027
multimodal models—encompassing both open-028
source and proprietary architectures—reveal029
substantial gaps compared to human-level per-030
formance, highlighting the need for future re-031
search into more sophisticated cross-modal am-032
biguity comprehension methods, further push-033
ing the boundaries of multimodal reasoning.034

1 Introduction035

Multimodal Large Language Models (MLLMs;036

OpenAI 2023, 2024; Liu et al. 2023a; Dai et al.037

2023) have advanced significantly in handling di-038

verse inputs like text and images, with contextual039

understanding being key to their success in tasks040

such as question answering (Shao et al., 2023; Liu041

et al., 2023b; Antol et al., 2015), image caption-042

ing (Luo et al., 2023; Wang et al., 2023; Chen043

I'm 70 years old now. My wife 
and I met a couple on the boat. 

 Question: Who is my wife, the woman on the left or the right?

I'm 35 years old now. My wife 
and I met a couple on the boat. 

On the right On the leftOn the left On the right

Visual Scenario 1 Visual Scenario 2

Context 1 Context 1Context 2 Context 2

Figure 1: The interpretation of ambiguous text and visu-
als can be shaped by context and scenario. For instance,
in “My wife and I met a couple on the boat,” it is unclear
whether “on the boat” modifies “met” or “a couple,”
while the image leaves the identity of the wife uncertain.
Varying the visual setting (e.g., riverbank vs. cruise
deck) and textual cues (e.g., age of the speaker) yields
different resolutions. Each of the four context-image
combinations leads to a distinct answer, with reasoning
color-coded: purple (Context 1), red (Context 2).

et al., 2015), and multimodal reasoning (Gupta 044

and Kembhavi, 2023; Chen et al., 2023; Zellers 045

et al., 2019). As MLLMs evolve, the ability to 046

integrate multimodal context becomes crucial for 047

accurate responses, underscoring the need for thor- 048

ough evaluation of their contextual comprehension 049

in real-world settings. 050

Prior studies have largely emphasized tasks with 051

clear and unambiguous inputs (Fu et al., 2023a; 052

Ying et al., 2024; Li et al., 2023), frequently ne- 053

glecting the ambiguity that naturally arises in both 054

visual and textual modalities. Consider the exam- 055

ple in Figure 2, neither the context nor the image 056

alone can resolve the question “Who is my wife, 057

the woman on the left or the right?”, where a sin- 058

gle sentence or image can often support multiple 059

plausible interpretations depending on the specific 060

scenario or provided context. Figure 2 illustrates 061

this challenge clearly. Consider the sentence “My 062
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Benchmark Visual Ambiguity Context Ambiguity Multi-Languages Evaluator

MME (Fu et al., 2023a) % % % Metrics
MMBench (Liu et al., 2023c) % % % GPT
MMT-Bench (Ying et al., 2024) % % % GPT
MMStar (Chen et al., 2024a) % % % Metrics

HallusionBench (Guan et al., 2023) ! % % Metrics
CODIS (Luo et al., 2024) ! % % Human / GPT
Illusory VQA (Rostamkhani et al., 2024) ! % % Human
MHaluBench (Chen et al., 2024b) ! % % GPT

MMA (Wang et al., 2024a) % ! % Metrics
VAGUE (Nam et al., 2024) % ! % Metrics
3AM (Ma et al., 2024) % ! ! Metrics
UNPIE (Chung et al., 2024) % ! ! GPT

MUCAR (Ours) ! ! ! Human / GPT

Table 1: Comparison of our proposed MUCAR with recent vision-language benchmarks.

wife and I met a couple on the boat.” This sen-063

tence contains structural ambiguity: it is unclear064

whether “on the boat” modifies the verb “met” (in-065

dicating the location of the meeting) or the noun066

phrase “a couple” (specifying the location of the067

couple). Simultaneously, the accompanying image068

introduces visual ambiguity concerning the referent069

of “the wife” among the depicted women. Notably,070

the ambiguity cannot be resolved independently071

within either modality; instead, mutual disambigua-072

tion arises when different textual scenarios (e.g.,073

differing speaker ages) combine with different vi-074

sual contexts (riverbank vs. cruise deck scenarios).075

Each unique combination yields a single, unam-076

biguous interpretation, showing that textual and077

visual ambiguities can mutually clarify each other.078

To systematically evaluate the capabilities of079

MLLMs to resolve such complex multimodal am-080

biguities, we introduce MUCAR, a novel bench-081

mark specifically designed for MUltilingual Cross-082

modal Ambiguity Resolution. Table 1 summarizes083

recent benchmarks designed to evaluate MLLMs084

in terms of visual ambiguity, contextual ambigu-085

ity, multilinguality, and the type of evaluator used086

(e.g., metrics, GPT, or human annotations). While087

early benchmarks such as MMT-Bench (Ying et al.,088

2024), MMStar (Liu et al., 2023c), and MME-089

RealWorld (Li et al., 2023) focus on general mul-090

timodal tasks, they lack coverage of ambiguity-091

related phenomena. More recent benchmarks092

like HallusionBench (Guan et al., 2023), Illusory093

VQA (Rostamkhani et al., 2024), and CODIS (Luo094

et al., 2024) begin to explore visual ambiguity, but095

often overlook contextual disambiguation or multi- 096

lingual diversity. Notably, only a few benchmarks 097

incorporate human evaluation, which is essential 098

for assessing ambiguity understanding. To the best 099

of our knowledge, MUCAR is the first benchmark 100

to comprehensively address visual ambiguity, con- 101

textual ambiguity, and multilinguality, while in- 102

tegrating both human and GPT-based evaluation. 103

This design enables a more rigorous and realistic 104

assessment of ambiguity resolution capabilities in 105

multimodal large language models. 106

To summarize, our main contributions are: 107

• We construct MUCAR, the first multilin- 108

gual cross-modal ambiguity resolution bench- 109

mark, featuring 1278 manually curated sam- 110

ples in Chinese, English, and Malay, including 111

uniquely designed dual-ambiguity cases. 112

• We systemically evaluate 19 sota MLLMs 113

(both open-source and closed-source), reveal- 114

ing significant limitations in resolving multi- 115

lingual multimodal ambiguities. 116

• We propose a simple yet effective agent- 117

based framework for multimodal disam- 118

biguation, which improves performance 119

through explicit cross-modal reasoning. 120

2 Related Work 121

Context Ambiguity Ambiguity is an inherent 122

characteristic of linguistic text, emerging natu- 123

rally due to the potential for multiple interpreta- 124

tions, especially in open-domain question answer- 125

ing tasks (Min et al., 2020; Sun et al., 2023). Exist- 126

ing research on ambiguity resolution in language 127
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C:  “I’m going to the bank.” “Go fishing? Good Luck!”

Q:  Is there a misunderstanding between them?

Answer:  Yes.

Explanation: The “Bank” in this sentence means a 

bank where money can be deposited and withdrawn.

Answer:  No.

Explanation: The “Bank” in this sentence means the 

riverbank. 

Homonymy

C:  “I’m standing on the shoulders of giants now.”          

Q:  Does this sentence have a metaphor?

Answer: Yes.

Explanation: Each generation innovates and deve-

lops on the basis of the predecessors.

Answer:  No.

Explanation: This is a real scene from “Gulliver's 

Travels”.

Polysemy

C:  The chicken is ready to eat.

Q:  What is the subject in the sentence going to eat?

Answer:  Chicken feed.

Explanation: The chicken itself is hungry and ready 

to eat something. 

Answer:  Chicken.

Explanation: The chicken is cooked and prepared, so 

it is ready for someone to eat. 

Semantics

C:  我的门没有锁。
Q:  上文的“锁”是动词还是名词？

Answer:  名词。

Explanation: It means there’s no lock installed on 

my door.

Answer:  动词。

Explanation: It means that my door is unlocked. 

Maybe the lock is there but not engaged.

Grammar

C:  I’m cooking pasta, and my Italian friend says it’s unbelievable.

Q:  Do you think he is a little happy or unhappy about this?

Answer:  Maybe a little happy.

Explanation: My friend thinks that I respect Italian 

traditions.

Answer:  Maybe a little unhappy.

Explanation: In the Italian culture, breaking pasta is 

usually regarded as a disrespectful practice.

Cultural

C:  His brother is taller than him.

Q:  Which side is his brother standing on?

Answer:  Left.

Explanation: His brother is located at a place that is 

physically higher in elevation than where he is.

Answer:  Right.

Explanation: It means that his brother's body height 

is greater than his own.

Specialized

C:  I saw a younger friend by the river.

Q:  Is my friend on the left or the right of the picture?

Answer: On the left.

Explanation: This means that both my friend and I 

were by the river and I saw my friend.

Dual-ambiguity

C:  I saw an elderly friend by the river.

Q:  Is my friend on the left or the right of the picture?

Answer: On the right.

Explanation: This means that I saw my young friend 

by the river, but I myself was somewhere else.

Answer: On the right.

Explanation: This means that both my friend and I 

were by the river and I saw my friend.

Answer: On the left.

Explanation: This means that I saw my young friend 

by the river, but I myself was somewhere else.

Dual-ambiguity

我的门没有锁子Q:  Does Mary have pet?

Answer:  We don't know.

Explanation: “Her pet food" means the food owned 

by a pet, and Mary gave that food away.

Answer:  Yes.

Explanation: “Pet food" refers to the food intended 

for the pet, and Mary is feeding her pet. 

Figure 2: Taxonomy of our benchmark. We present one example for each category. Each example includes a context
(C), a question (Q), and two different images with their corresponding answers and explanations.

primarily follows two directions. One line lever-128

ages contextual cues from surrounding text to re-129

solve ambiguity, as seen in Gao et al. (2024); Lee130

et al. (2025), which uses in-context learning to dis-131

ambiguate textual inputs. Another line exploits132

visual information to disambiguate language, par-133

ticularly for polysemous word translation, such as134

in 3AM (Ma et al., 2024), which aligns ambiguous135

words with visual semantics.136

Aligned with the multimodal ambiguity setting137

in MMA (Wang et al., 2024a), our work focuses138

on using visual input to disambiguate multilingual139

expressions. Beyond standard NLP ambiguities,140

we also address those arising from domain-specific141

and cultural differences. In particular, we construct142

a benchmark featuring both textual and visual ambi-143

guity across multiple languages, aiming to evaluate144

the ability of MLLMs to resolve complex multi-145

modal ambiguities in realistic scenarios. 146

Visual Ambiguity Visual ambiguity often stems 147

from incomplete visual cues or interfering noise in 148

the scene (Denison et al., 2018). Most previous 149

vision-language benchmarks assume unambigu- 150

ous (Liu et al., 2023c; Fu et al., 2023a; Liu et al., 151

2023c; Li et al., 2023) input or highlight the vi- 152

sual ambiguities caused by optical illusions (Guan 153

et al., 2023; Rostamkhani et al., 2024; Cui et al., 154

2023; Fu et al., 2023b). Early Multimodal datasets 155

like MS-COCO (Chen et al., 2015) focus on literal 156

descriptions, while later works, e.g., CODIS (Luo 157

et al., 2024) highlight the need for diverse con- 158

text to reflect multiple valid interpretations. In- 159

spired by CODIS (Luo et al., 2024), we assess the 160

capability of MLLMs to disambiguate visual am- 161

biguity through textual modalities instead of just 162

recognizing ambiguities. Different from CODIS, 163

3



we construct challenging dual-ambiguity instances,164

combining ambiguous visuals and texts that jointly165

resolve into a single interpretation, further testing166

the limits of multimodal reasoning.167

3 MUCAR168

MUCAR is proposed for evaluating the capabil-169

ities of MLLMs in image-dependent context dis-170

ambiguation. Figure 2 presents several examples171

from our benchmark, highlighting the diversity of172

contexts covered. In this section, we first describe173

our taxonomy of context. Then, we delve into the174

instruction design. Finally, we introduce data col-175

lection procedures.176

3.1 Taxonomy177

Given the extensive and varied nature of context178

information, comprehensive cataloging of all forms179

of context is challenging. With the aim of establish-180

ing an outstanding benchmark for disambiguation,181

we identified seven representative types. The first182

six types are inspired by the information people183

require to understand context. When collecting the184

data, we surprisingly found that in some cases, the185

combination of ambiguous text and ambiguous im-186

ages led to mutual disambiguation. In other words,187

neither modality alone provided sufficient clarity,188

but together they resolved the ambiguity inherent in189

both. This observation inspired us to define the sev-190

enth type and collect the corresponding data. To the191

best of our knowledge, we are the first to construct192

data for this type. Figure 2 illustrates examples193

with corresponding classification explanations.194

Polysemy. Navigli (2009) defines the term, pol-195

ysemy, by referring to a word with two or more196

related meanings. These related meanings often197

share a conceptual core, with one meaning typi-198

cally being an extension or variation of the other.199

Some contexts can be interpreted both literally and200

metaphorically. The “Polysemy” part in Figure 2201

gives a good example.202

Homonymy. Homonymy is also defined in Navigli203

(2009). Opposite to polysemy, homonymy refers204

to a word having two or more unrelated meanings205

that stem from different historical origins, and the206

meanings of homonyms have no inherent connec-207

tion. Disambiguating homonyms relies on the other208

elements. The “Homonymy” part in Figure 2 serves209

as a good example.210

Grammar. This ambiguity occurs when sentence211

structures allow for multiple interpretations, often212

due to the placement of words or phrases. Such 213

structural issues can make it unclear which part 214

of the sentence a modifier applies to or the rela- 215

tionship between different clauses. The “Grammar” 216

part in Figure 2 provides a clear illustration. As 217

the “Grammar” part in the figure shows, in Chinese, 218

“我的门没有锁” can be interpreted as “My door 219

does not have a lock” or “My door has not been 220

locked”, here “锁” can be understood as a noun or 221

verb, which leads to ambiguity. 222

Semantics. Understanding the timing and se- 223

quence of events is crucial when we understand 224

a context. However, an isolated context can only 225

provide us with static information, which is insuf- 226

ficient for dynamic events. The disambiguation 227

can only be achieved when unambiguous image 228

gives us more information. The “Semantics” case 229

in Figure 2 provides a representative example. 230

Specialized. Context can be interpreted differently 231

depending on the circumstances of the viewer, in- 232

cluding their background knowledge, expertise, or 233

personal situation. What is clear and unambiguous 234

to someone with specialized training might be con- 235

fusing or misleading to a novice. The “Specialized” 236

part in Figure 2 presents a good example. 237

Cultural. Some context can be interpreted dif- 238

ferently depending on the cultural background of 239

the interpreter, as words, symbols, and actions 240

with specific meanings and connotations. Cultural 241

norms, values, and historical experiences shape 242

how individuals understand and react to informa- 243

tion. This can lead to significant textual ambiguities 244

where meaning is lost or distorted. The “Cultural” 245

part in Figure 2 offers a good example. 246

Dual-ambiguity. This data type highlights our 247

unique contribution. In this type, the context and 248

the image are both ambiguous, but their combined 249

information allows for clear disambiguation. Fig- 250

ure 2 gives a good example. The context ambiguity 251

covers the six former types. Regarding image am- 252

biguity, following CODIS (Luo et al., 2024), image 253

ambiguity can be further categorized into distinct 254

types, such as location and orientation, temporal 255

information, cultural background, attributes, and 256

relationships. However, for the purpose of this pa- 257

per, we group these various types under the general 258

term “image ambiguity”. Thus, dual-ambiguity 259

specifically denotes the situation where both the 260

context and the image exhibit ambiguity. 261
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Scenario Percentage
People 24%

Landscape 13%
Cartoons 10%
Food 10%
Scene 7%
Indoors 7%
Actions 7%
Objects 7%

Streetscape 4%
Others 4%
Animals 3%
Sports 2%
Plants 2%

Figure 3: Distribution of seven categories (left) and
scenarios (right) of our benchmark.

3.2 Instruction Design262

In order to ensure that model fully understands the263

context and image instead of making choices ran-264

domly, we organize our dataset in pairs. For the265

first six data types, the query can be represented266

as (C,Q, Ii). Each pair consists of an identical267

ambiguous context C and a question Q, which are268

presented alongside i different unambiguous im-269

ages (I1, I2, . . . , Ii).270

For the dual-ambiguity data type, we manually271

group queries that look similar. Even within a pair,272

the context Ci, the question Qi, and the image Ii273

may differ for each query instance. More formally,274

each pair can be represented as (Ci,Qi, Ii).275

We give MLLMs these i queries separately and276

get the model outputs (O1,O2, . . . ,Oi). These277

outputs are subsequently compared with the ground278

truth answers (A1,A2, . . . ,Ai).279

3.3 Data Collection280

In this section, we introduce our process for con-281

structing this dataset. Our data collection process282

includes three steps.283

Context Collection. We manually collected am-284

biguous contexts which can only be resolved with285

external images. Most of the contexts come from286

the Internet, while others are created manually.287

These contexts span three languages: Chinese, En-288

glish, and Malay. We meticulously reviewed every289

context to exclude any that were unambiguous. In290

total, we collected 1278 contexts. The first six291

types comprise 906 contexts, and the remaining292

372 contexts belong to the dual-ambiguity type.293

Design of Questions, Images and Answers. For294

each context, we manually wrote questions and295

answers. As for images, we also manually col-296

lected them from the Internet or designed them our-297

selves. Specifically, for the dual-ambiguity type,298

the majority of images are sourced from CODIS299

(Luo et al., 2024), a benchmark constructed using 300

ambiguous images. The data are compiled with 301

following rules: 302

(1) Questions are designed to target ambiguous 303

aspects within the contexts. Disambiguation of 304

these contexts is not possible without the inclusion 305

of external images. 306

(2) For each context and question, every unique 307

image associated with them should lead to a distinct 308

interpretation of the context, resulting in a unique 309

answer per image. Crucially, the answer cannot 310

be determined from the image or the context in 311

isolation. The answer can be determined only when 312

we give MLLMs the query in the format (C,Q, I). 313

(3) To balance the performance and evaluation ef- 314

ficiency, MLLMs were required to generate outputs 315

following a specific template with clear, predefined 316

options. This method ensures the objectivity of 317

responses and facilitates their efficient evaluation. 318

Data Verification. Five annotators participated in 319

this process. To ensure dataset quality, each sub- 320

mission was cross-checked by the remaining four 321

annotators. Data were retained only if they satis- 322

fied the following conditions: (1) correctness, (2) 323

distinctiveness from existing data, and (3) compli- 324

ance with all predefined criteria. Submissions that 325

did not meet these conditions were returned to the 326

annotator for revision. 327

Finally, our benchmark comprises 1278 queries 328

and 501 (C,Q, I) pairs, categorized into seven 329

types. The distribution of categories and scenarios 330

is illustrated in Figure 3. 331

3.4 Evaluation Method 332

For the k-th pair of queries, we decide to use 333

(Ok1,Ok2, . . . ,Oki) to denote model outputs of 334

a pair of queries, and (Ak1,Ak2, . . . ,Aki) to de- 335

note the groundtruth answers. The evaluation of 336

model outputs can be represented as follows: 337

Eval(Oki) =

{
1 if Oki matches Aki

0 otherwise
, i ∈ Z+ 338

Following Fu et al. (2023a), we leverage two 339

metrics, pair-wise accuracy Accp and query-wise 340

accuracy Accq for our evaluation metrics, which 341

are calculated as follows: 342

Accp =
1

np

np∑
k=1

nk∏
i=1

Eval(Oki), 343

344

Accq =
1

nq

np∑
k=1

nk∑
i=1

Eval(Oki). 345
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(a) Without confusing options

Model Polysemy Homonymy Grammar Semantics Specialized Cultural Dual-ambiguity Overall
Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq

API-based Models

GPT-4V 35.23 55.87 32.48 53.20 43.93 65.89 37.21 60.71 29.55 60.00 19.05 38.82 20.62 42.74 30.39 52.70
GPT-4o 36.36 61.45 44.44 64.00 41.12 65.42 44.19 64.29 47.73 70.53 28.57 47.06 21.65 53.23 34.96 60.13
Gemini-2.0-flash 19.48 52.87 38.18 63.14 17.78 50.56 19.51 50.00 30.77 63.53 25.00 46.91 12.36 36.16 23.46 52.11
Claude-3.5-Sonnet 3.41 16.76 2.56 16.00 5.61 21.03 0.00 14.29 6.82 17.89 0.00 5.88 23.28 51.10 9.37 26.36

Open-source Models > 7B

Kimi-VL 3.37 36.31 5.13 46.40 5.56 43.46 2.38 40.48 2.27 36.84 0.00 47.06 14.08 52.27 4.74 45.15
Llama-3.2-Vision-11B 33.71 63.69 37.61 66.80 25.93 59.35 28.57 57.14 27.27 63.16 19.51 58.82 14.08 52.27 28.09 59.45
MiniCPM-o 2.6 38.20 66.48 38.46 66.40 33.33 63.55 28.57 60.71 40.91 69.47 55.29 29.27 4.23 20.53 34.00 53.10
Idefics3-8B-Llama3 39.33 67.04 37.31 62.80 31.48 62.62 35.71 65.48 31.32 56.84 24.09 56.47 19.72 49.87 32.38 58.91
InternVL2-8B 20.24 49.56 23.76 53.67 10.29 40.44 23.81 47.62 20.00 47.13 21.95 48.24 20.97 47.58 20.08 48.16
InternVL2.5-8B-MPO 42.26 69.32 43.56 68.81 25.00 60.29 42.86 69.05 37.50 58.62 19.51 57.65 24.19 51.88 35.73 61.68
InternVL2.5-8B-MPO-AWQ 42.86 69.91 46.53 70.18 30.88 64.71 33.33 61.90 37.50 60.92 21.95 60.00 25.81 54.30 37.32 63.32

Open-source Models ≤ 7B

Deepseek-VL-Tiny 0.00 44.69 5.98 51.20 0.00 48.60 2.33 48.81 6.82 47.37 0.00 49.41 16.49 54.03 6.77 50.12
LLaVA-v1.6-vicuna-7b 15.73 54.19 21.37 54.80 14.81 54.21 21.43 55.95 11.36 42.11 12.20 51.76 16.90 50.40 16.46 52.26
LLaVA-v1.6-mistral-7b 19.11 55.87 23.08 58.00 12.96 54.67 16.67 58.33 15.91 49.47 2.44 47.06 16.90 50.40 16.26 53.60
Qwen2.5-VL-3B-Instruct 33.93 64.60 27.72 56.88 17.65 53.68 19.05 50.00 22.50 56.32 12.20 55.29 20.97 40.86 25.55 53.56
Qwen2.5-VL-7B-Instruct 34.52 60.47 32.67 60.09 29.41 58.09 33.33 50.00 35.00 63.22 14.63 54.12 19.35 49.19 29.94 56.29
mPLUG-Owl3-7B-240728 32.74 63.42 35.64 63.30 22.06 58.82 28.57 61.90 22.50 55.17 48.24 14.63 27.42 52.96 28.74 58.25
mPLUG-Owl3-2B-241014 33.73 65.68 36.08 64.71 27.47 62.09 30.95 62.20 30.00 60.92 10.00 55.74 16.49 51.61 25.65 59.29
LLaVA-OneVision 30.33 61.45 38.46 64.80 30.56 61.22 28.57 58.33 27.27 55.79 21.95 60.00 9.86 47.20 28.37 57.20

(b) With confusing options

Model Polysemy Homonymy Grammar Semantics Specialized Cultural Dual-ambiguity Overall
Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq

API-based Models

GPT-4V 26.51 47.93 20.62 41.18 26.37 52.20 21.43 45.12 20.00 47.13 6.67 26.23 15.46 30.65 19.93 40.45
GPT-4o 32.53 50.30 25.77 45.10 31.87 56.04 23.81 46.34 22.50 51.72 13.33 29.51 17.53 36.29 23.92 44.51
Gemini-2.0-flash 8.06 36.80 8.82 32.41 14.06 44.53 8.70 40.91 4.76 25.58 6.67 32.26 11.02 31.23 10.00 34.85
Claude-3.5-Sonnet 3.61 22.49 4.12 22.55 4.40 23.08 2.38 20.73 2.50 27.59 3.33 13.11 15.59 35.64 7.56 26.50

Open-source Models > 7B

Kimi-VL 1.13 31.84 1.71 39.60 1.85 40.19 0.00 36.90 0.00 32.63 0.00 41.18 5.71 18.82 1.50 31.98
Llama-3.2-Vision-11B 21.35 56.98 37.61 63.60 13.89 43.93 14.29 45.24 11.37 48.42 17.07 54.12 5.71 34.67 19.87 48.00
MiniCPM-o 2.6 20.22 53.07 34.18 60.40 28.70 58.41 30.95 59.52 18.18 60.00 14.63 50.58 2.86 12.63 23.50 44.40
Idefics3-8B-Llama3 29.21 58.10 39.32 62.80 24.07 55.14 35.71 60.71 31.82 62.11 17.07 51.76 12.86 50.54 28.14 56.37
InternVL2-8B 13.48 35.20 8.55 33.20 7.41 34.58 7.14 36.90 20.45 41.05 7.32 36.47 8.06 31.45 9.78 34.24
InternVL2.5-8B-MPO 26.97 58.10 27.35 54.80 27.78 56.54 28.57 58.33 25.00 52.63 19.51 51.76 20.97 46.51 25.95 53.01
InternVL2.5-8B-MPO-AWQ 31.46 63.69 33.33 59.20 34.26 62.62 30.95 59.52 31.81 57.89 14.63 52.94 22.58 50.27 29.94 57.31

Open-source Models ≤ 7B

Deepseek-VL-Tiny 0.00 21.30 0.00 21.08 0.00 30.77 0.00 24.39 5.00 31.03 0.00 27.87 9.28 35.48 3.47 28.61
LLaVA-v1.6-vicuna-7b 13.48 51.95 19.66 58.00 14.81 56.07 19.05 54.76 11.36 49.47 14.63 55.29 11.43 46.77 15.19 52.54
LLaVA-v1.6-mistral-7b 19.10 57.54 23.93 59.20 12.96 54.21 26.19 69.91 18.18 51.58 2.44 49.41 14.29 47.58 17.14 53.71
Qwen2.5-VL-3B-Instruct 25.84 56.42 28.21 58.00 25.00 57.94 19.05 53.57 11.36 50.53 14.63 42.35 24.19 45.43 22.95 52.23
Qwen2.5-VL-7B-Instruct 13.48 42.46 19.66 50.80 27.78 55.61 26.19 51.19 27.27 60.00 9.76 44.71 20.97 48.66 20.76 50.12
mPLUG-Owl3-7B-240728 21.35 56.42 30.77 60.00 22.22 56.54 26.19 59.52 18.18 53.68 9.76 43.53 24.19 47.85 23.35 53.79
mPLUG-Owl3-2B-241014 24.10 53.85 30.93 60.78 25.27 59.34 33.33 58.54 32.50 60.92 16.67 49.18 13.40 46.77 22.70 54.28
LLaVA-OneVision 40.44 68.16 39.32 65.60 34.26 63.08 33.33 64.29 31.82 60.00 17.07 55.29 8.57 41.67 31.40 57.39

Table 2: Results of MLLMs on MUCAR benchmark under two settings: (top) without confusing options and
(bottom) with confusing options.

where nk is the number of queries in each pair,346

np is number of data pairs, nq is the total number347

of individual queries. For Accp, models score only348

if their answers to a pair of queries are both correct.349

For Accq, models score for each single query they350

answer correctly.351

4 Experiments352

4.1 Models353

We evaluate a total of 19 models covering a range of354

scales and architectures. Our evaluated proprietary355

models include GPT-4V (OpenAI, 2023), GPT-356

4o (OpenAI, 2024), Gemini (Gemini Team et al.,357

2023), and Claude-3.5-Sonnet (Anthropic, 2024).358

For open-source models, we include Deepseek-VL-359

Tiny (Lu et al., 2024), Kimi-VL (Team et al., 2025),360

Llama-3.2-Vision-11B (Meta, 2024), MiniCPM-o 361

2.6 (Yao et al., 2024), InternVL2.5 series (Wang 362

et al., 2024b; Chen et al., 2024c), LLaVA-v1.6- 363

vicuna-7b (Liu et al., 2024), Qwen2.5-VL se- 364

ries (Team, 2025). Details of these models are 365

listed in Table 7 in Appendix B. 366

4.2 Main Results 367

Main experimental results on our benchmark of all 368

19 models are reported in Table 2. 369

Overall Performance. Across all evaluated mod- 370

els, InternVL2.5-8B-MPO-AWQ achieves the best 371

overall accuracy (Accq = 67.03%), followed closely 372

by MiniCPM-o 2.6 (66.48%) and InternVL2.5- 373

8B-MPO (65.71%). Among proprietary models, 374

GPT-4o outperforms the others, obtaining an over- 375

all accuracy of 53.91%, slightly higher than GPT- 376
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Figure 4: Accuracy under different input settings. C
= Context, Q = Question, I = Image. For example,
(C,Q, I) includes all three; (C,Q) and (C, I) include
only the specified components.

4V (52.70%). In contrast, Claude-3.5-Sonnet and377

Kimi-VL underperform, showing limited ability in378

disambiguation tasks.379

Results with Different Model Size. Open-source380

models with scales larger than 7B generally outper-381

form smaller ones, with all top-performing mod-382

els falling within this range of scale, which is383

likely to benefit from richer training data and more384

advancedadvanced architectures. In comparison,385

models smaller than or equal to 7B show a clear386

performance gap. Although certain models, such387

as LaVA-Onevision (61.30%) and mPLUG-Owl2-388

3B (58.21%), perform competitively, most smaller389

models struggle with complex ambiguities, particu-390

larly in semantic and cultural contexts.391

Results on Different Categories. We further392

break down the results by disambiguation cate-393

gories, and find that InternVL2.5-8B-MPO-AWQ394

consistently leads in most categories, especially in395

Homonymy (70.18%), Grammar (64.71%), and Se-396

mantics (61.90%). Notably, MiniCPM-o 2.6 excels397

in the Specialized category (69.47%), suggesting398

domain knowledge plays a key role. In the Cul-399

tural category, which requires understanding cross-400

cultural references, models like GPT-4o (34.12%)401

and InternVL2.5-8B-MPO-AWQ (60.00%) show402

relatively stronger performance. On the other hand,403

most models perform poorly in the Polysemy and404

Dual-Ambiguity categories, reflecting the inher-405

ent challenges in resolving subtle or cross-modal406

ambiguities.407

In summary, model size and architecture signif-408

icantly affect cross-modal disambiguation perfor-409

mance. Larger models and instruction-finetuned410

models usually demonstrate better generalization.411

The disparity across categories reveals the diverse412

challenges in context-dependent reasoning, partic-413

ularly in categories involving semantic, cultural, or414

compound ambiguities.415

Model Overall
Accp Accq

Qwen2.5-VL-7B-Instruct (w/) 20.73 50.72
Qwen2.5-VL-7B-Instruct (w/o) 7.06 (↓13.67) 12.57 (↓38.15)
InternVL2.5-8B-MPO-AWQ (w/) 30.98 60.20
InternVL2.5-8B-MPO-AWQ (w/o) 4.56 (↓26.42) 8.38 (↓51.82)
LLaVA-OneVision (w/) 34.62 63.84
LLaVA-OneVision (w/o) 0.00 (↓34.62) 0.66 (↓63.18)
MiniCPM-o 2.6 (w/) 26.42 57.44
MiniCPM-o 2.6 (w/o) 1.14 (↓25.28) 4.63 (↓52.81)

Table 3: Ablation study: Only input (Q, I), with con-
fusion options. Performance drop (↓) indicates the gap
compared to full input.

5 Analyses and Discussion 416

5.1 Ablation on Benchmark 417

Figure 4 reports the accuracy of four models under 418

three input settings: (C,Q, I), (C, I), and (C,Q). 419

All models achieve the highest accuracy with full 420

input, with LLaVA-OneVision reaching 63.84%, 421

followed by InternVL2.5 (60.20%), MiniCPM-o 422

2.6 (57.44%), and Qwen2.5 (50.72%). Remov- 423

ing the question while keeping context and im- 424

age (C, I) results in moderate drops—for exam- 425

ple, LLaVA drops to 55.58%, and InternVL2.5 to 426

21.41%. In contrast, removing the image (C,Q) 427

leads to drastic degradation: LLaVA drops to 428

0.00%, and Qwen2.5 to 3.42%. This highlights 429

the essential role of image information in resolving 430

multimodal ambiguity. 431

Table 3 presents the ablation results using only 432

question and image inputs, with confusing options 433

included. All models exhibit significant perfor- 434

mance degradation when context is removed. For 435

example, LLaVA-OneVision drops from 63.84% to 436

0.66% in Accq (↓63.18), and from 34.62% to 0.00% 437

in Accp (↓34.62). Similar trends are observed for 438

InternVL2.5 and MiniCPM-o, which also suffer 439

large drops in both metrics. These results under- 440

score the importance of contextual information in 441

resolving ambiguity, especially in the presence of 442

visually or semantically confusing alternatives. 443

5.2 Discussion 444

As shown in Figure 5, this example illustrates how 445

the interpretation of the phrase “666” is highly 446

dependent on cultural and visual context, highlight- 447

ing the necessity of cross-modal disambiguation. 448

Scenario 1: The accompanying image shows the 449

Forbidden City in Beijing, indicating a modern 450

Chinese cultural context. In this setting, “666” 451

is widely used as internet slang to express praise, 452

meaning “awesome” or “skillful.” Answer: Posi- 453

tive. Scenario 2: The image depicts a European 454
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Scenario:2
 

Q:  Is the emotion conveyed by this sentence positive or negative?
C:  “"666", in this cultural context.”          

Answer:  Positive.

Scenario:1

Answer:  Negative.

[INPUT]: Task Description, Q, C and Image
[OUPUT]: STEP I
 The meaning of "666" is highly dependent on cultural 
interpretations. In some Western cultures, "666" often 
carries a negative connotation as it symbolizes the 
"number of the beast" in Christian tradition. The 
cultural context determines the emotional association. 

[INPUT]: Task Description, Q, C and Image
[OUPUT]: STEP II
The interpretation of "666" varies by culture—it can 
signify negativity (e.g., the biblical "number of the 
beast") or positivity (e.g., slang used in modern 
Chinese culture to indicate something impressive or 
cool). 

Ambiguity Detected, Stage I

Contextual Evidence, Stage II
[INPUT]: Task Description, Q, C, Image, STEP I
[OUPUT]: STEP II
Image Suggests Chinese Setting: The visual depiction 
is of the Forbidden City in Beijing, China, a culturally 
iconic site that strongly points to a Chinese cultural 
context. This aligns the scene with modern Chinese 
interpretations. 

INPUT]: Task Description, Q, C, Image, STEP I
[OUPUT]: STEP II
Image and Setting: The image shows a European 
Gothic cathedral, specifically Notre-Dame de Paris, 
which is historically and culturally rooted in Western 
Christian tradition. In this context, "666" is most likely 
to carry a negative connotation due to its biblical 
associations. 

Logical Bridge, Stage III
[INPUT]: Task Description, Q, C, Image, STEP II
[OUPUT]: STEP III
G ive n  t he  C h i ne se  s e t t i ng  a nd  know i ng  t he 
contemporary usage of "666" in Chinese slang, where 
it is commonly used as praise, the emotion conveyed is 
positive. 
 Answer: Positive.

[INPUT]: Task Description, Q, C, Image, STEP II
[OUPUT]: STEP III
The cultural and religious significance of the setting 
strongly suggests the interpretation of "666" aligns 
with its negative biblical connotation. 

 Answer: Negative.

Figure 5: Pipeline of our proposed framework.

Gothic cathedral—Notre-Dame de Paris—evoking455

a Western Christian context. Here, “666” is tradi-456

tionally associated with the “number of the beast”457

from the Bible, conveying a negative connotation.458

Answer: Negative.459

5.3 Further Exploration: An Agent460

Framework for Ambiguity Resolution461

To better address the cross-modal ambiguity resolu-462

tion, we propose an agent-based framework, as463

shown in Figure 5. First, the model takes the464

task description, question, and ambiguous con-465

text/image as input to identify the ambiguity and466

its significance. Second, it generates contextual ev-467

idence to resolve the ambiguity. Finally, the model468

bridges the context and image through logical rea-469

soning to produce the final answer.470

Formally, given a task description D, a question471

Q, and a multimodal ambiguous context X (e.g.,472

an image and textual), the agent-based model M473

solves the task through a three-step process as il-474

lustrated in Figure 5:475

Step 1: Ambiguity Detection. The model first476

detects the ambiguity and explains its significance:477

478
A = M(D ⊕Q⊕X ⊕ T1),479

where T1 is a prompt guiding the model to iden-480

tify potential ambiguity and why it matters, and A481

denotes the ambiguity explanation.482

Step 2: Contextual Evidence Extraction. The483

model then extracts relevant contextual evidence to484

Model CODIS MMA MUCAR Overall
Accp Accq Acc Accp Accq Accp Accq

Vanilla 36.26 59.49 72.0 32.35 53.91 34.31 54.61
CoT 36.81 60.76 68.0 28.57 56.41 32.69 52.44
CODIS 36.80 60.30 71.0 28.29 56.96 32.55 53.19
OURS 42.49 63.46 84.0 44.87 66.78 43.68 64.11

Table 4: Results of our method on CODIS, MMA and
MUCAR based on GPT-4o-2024-11-20.

resolve the ambiguity: 485

E = M(D ⊕Q⊕X ⊕A⊕ T2), 486

where T2 instructs the model to generate explana- 487

tory evidence from the context, and E denotes the 488

extracted evidence. 489

Step 3: Logical Reasoning and Final Answer. 490

Finally, the model uses evidence to logically align 491

context and image, and generate the final answer: 492

R = M(D ⊕Q⊕X ⊕ E ⊕ T3), 493

where T3 prompts the model to conduct reasoning 494

and provide the answer R. 495

Unified Prompt Alternatively, the entire process 496

can be completed with a unified prompt: 497

A, E ,R = M(D ⊕Q⊕X ⊕ T ), 498

where T = T1 ⊕ T2 ⊕ T3. 499

To demonstrate the generality of our framework 500

across different types of ambiguity, we also report 501

performance of our framework on other wide dis- 502

cussed benchmarks, including CODIS (Luo et al., 503

2024) and MMA (Wang et al., 2024a). As shown 504

in Table 4, our method consistently outperforms all 505

baselines across benchmarks. Compared to CoT 506

and CODIS-specific prompting, our approach is 507

not only simple but also effective, demonstrating 508

strong potential across different types of ambiguity. 509

6 Conclusion 510

We present MUCAR, a benchmark designed to 511

evaluate MLLMs in resolving ambiguities across 512

visual, textual, and multilingual contexts. Un- 513

like prior benchmarks, MUCAR targets cross- 514

modal disambiguation through multilingual text 515

and image-text ambiguity cases. Evaluation of 19 516

state-of-the-art MLLMs reveals a clear gap from 517

human-level performance, highlighting the need for 518

more context-aware and cross-modally grounded 519

models. We also introduce a simple agent-based 520

framework that improves disambiguation through 521

explicit reasoning. MUCAR aims to guide future 522

research toward more robust and interpretable mul- 523

timodal systems in this direction. 524
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Limitations525

While MUCAR offers a novel and rigorous bench-526

mark for multilingual cross-modal ambiguity res-527

olution, it has several limitations. It covers only528

three languages, limiting generalizability to low-529

resource or typologically diverse languages. The530

curated examples may not capture the complexity531

and noise of real-world multimodal data. Its partial532

reliance on GPT-based evaluation introduces poten-533

tial biases, and the agent-based reasoning frame-534

work, though effective in structured tasks, may535

struggle with open-ended scenarios. Future work536

should address broader linguistic coverage, real-537

world settings, and more robust reasoning methods.538
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A Details of Datasets788

CODIS (Luo et al., 2024) A benchmark to assess789

the capabilities of MLLMs in context-dependent790

visual comprehension, consisting of 706 queries791

over 216 images across five categories.792

MMA (Wang et al., 2024a) A multiple-choice 793

VQA benchmark focused on ambiguity, including 794

261 questions paired with two divergent images 795

that yield different answers given the same textual 796

context. 797

MUCAR Table 5 summarizes the distribution of 798

seven ambiguity types across Chinese, English, 799

and Malay. English has the most annotated in- 800

stances (582), followed by Chinese (364) and 801

Malay (332). Homonymy is notably dominant 802

in English, while Dual-Ambiguity remains consis- 803

tently high across all languages. Cultural ambigu- 804

ity appears in Chinese and English but is absent 805

in Malay. Grammar and Polysemy are relatively 806

balanced, whereas Specialized and Semantics vary 807

more significantly. These trends reflect both shared 808

and language-specific ambiguity patterns. 809

Category Chinese English Malay Total

Polysemy 63 64 52 179
Homonymy 42 176 32 250
Grammar 64 72 78 214
Semantics 24 18 42 84
Specialized 26 60 8 94
Cultural 24 66 0 90
Dual-Amb 126 126 120 372

Overall 364 582 332 1278

Table 5: Distribution of ambiguity categories across
different languages.

Table 6 presents the detailed prompts used dur- 810

ing model testing. In the main experiments, we 811

employed English prompts; additionally, we con- 812

ducted ablation studies using Chinese and Malay 813

prompts to evaluate the impact of different evalu- 814

ation languages on the experimental results. The 815

table also separately shows the prompts used in the 816

three ablation settings: (Q, I), (C, Q), and C. 817

B Evaluated Models 818

We evaluate a total of 19 models covering a range of 819

scales and architectures. Our evaluated proprietary 820

models include GPT-4V (OpenAI, 2023), GPT- 821

4o (OpenAI, 2024), Gemini (Gemini Team et al., 822

2023), and Claude-3.5-Sonnet (Anthropic, 2024). 823

For open-source models, we include Deepseek-VL- 824

Tiny (Lu et al., 2024), Kimi-VL (Team et al., 2025), 825

Llama-3.2-Vision-11B (Meta, 2024), MiniCPM- 826

o 2.6 (Yao et al., 2024), InternVL2-8B (Chen 827

et al., 2024d), InternVL2.5-8B-MPO (Wang et al., 828

2024b), InternVL2.5-8B-MPO-AWQ (Chen et al., 829

2024c), LLaVA-v1.6-vicuna-7b (Liu et al., 2024), 830
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Prompt for Model Inference

Main experiment
In English

I’ll give you an image. Please answer my question based on the image. Directly select the correct
option (A, B, C, D, or E). Use the following format to answer:
Answer: [ONLY the option letter; not a complete sentence]
Only give me the reply according to this format, don’t give me any other words. Now, please
answer this question.
Question: [QUESTION HERE]
Options: [OPTIONS HERE]

Ablation Study
In Chinese

我会给你一张图片。请根据图片回答我的问题。直接选择正确选项(A, B, C, D,或E)。请
使用以下格式回答：
Answer: [仅为选项字母；不是完整句子]
请只按照此格式回复我，不要给出任何其他文字。现在，请回答这个问题。
问题：[QUESTION HERE]
选项：[OPTIONS HERE]

Ablation Study
In Malay

Saya akan berikan anda imej. Sila jawab soalan saya berdasarkan imej tersebut. Pilih terus pilihan
yang betul (A, B, C, D, atau E). Gunakan format berikut untuk menjawab:
Answer: [HANYA huruf pilihan; bukan ayat penuh]
Berikan saya jawapan mengikut format ini sahaja, jangan berikan perkataan lain. Sekarang, sila
jawab soalan ini.
Soalan: [QUESTION HERE]
Pilihan: [OPTIONS HERE]

Ablation Study
Only input (Q, I)

I’ll give you an image. Please answer my question based on the image. Directly select the correct
option (A, B, C, D, or E). Use the following format to answer:
Answer: [ONLY the option letter; not a complete sentence]
Only give me the reply according to this format, don’t give me any other words. Now, please
answer this question.
Question: [QUESTION HERE]
Options: [OPTIONS HERE]

Ablation Study
Only input (C,Q)

Please answer my question. Directly select the correct option (A, B, C, D, or E). Use the following
format to answer:
Answer: [ONLY the option letter; not a complete sentence]
Only give me the reply according to this format, don’t give me any other words. Now, please
answer this question.
Question: [QUESTION HERE]
Options: [OPTIONS HERE]

Ablation Study
Is C ambiguous?

Please determine whether this sentence is ambiguous. If the sentence is ambiguous, please answer
’Yes.’; otherwise, answer ’No.’.
Please respond directly with ’yes’ or ’no’, without any additional content.
Sentence: [SENTENCE HERE]

Table 6: Prompt for model inference.

Qwen2.5-VL-3B-Instruct (Team, 2025), Qwen2.5-831

VL-7B-Instruct (Team, 2025). Details of these832

models are listed in Table 7. Table 7 presents a com-833

prehensive overview of the Multimodal Large Lan-834

guage Models (MLLMs) evaluated in our bench-835

mark. The models are categorized into two groups:836

API-based models and open-source models. For837

each model, we list its parameter size category838

(greater than or less than 7 billion), the vision en-839

coder architecture, the underlying language model840

(LLM) backbone, and the employed vision-to-841

language (V2L) adapter. API-based models such842

as GPT-4V and Gemini do not publicly disclose ar-843

chitectural details, while open-source models span844

a variety of encoders (e.g., SigLIP, CLIP ViT, In-845

ternViT), LLM backbones (e.g., Llama, Qwen, In-846

ternLM), and adapter types (e.g., MLP, Linear,847

XAttn LLM). This table highlights the diversity 848

in architectural design choices across MLLMs. 849

Table 8 presents the detailed experimental results 850

of multiple models with the language set to Chi- 851

nese, conducted without any interference options 852

enabled. 853

Table 9 shows the detailed experimental results 854

of multiple models evaluated with the language set 855

to Chinese, conducted with interference options 856

enabled. 857

Table 10 provides the detailed experimental re- 858

sults of multiple models evaluated with the lan- 859

guage set to Malay, conducted without any interfer- 860

ence options enabled. 861

Table 11 presents the detailed experimental re- 862

sults of multiple models evaluated with the lan- 863

guage set to Malay, conducted with interference 864
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Model Parameters Vision Encoder LLM Backbone V2L Adapter

GPT-4V (OpenAI, 2023)

-

- - -
GPT-4o (OpenAI, 2024) - - - -
Gemini (Gemini Team et al., 2023) - - -
Claude-3.5-Sonnet (Anthropic, 2024) - - -

Deepseek-VL-Tiny (Lu et al., 2024)

> 7B

SigLIP DeepSeek LLM MLP
Kimi-VL (Team et al., 2025) MoonViT Moonlight model MLP
Llama-3.2-Vision-11B (Meta, 2024) XAttn LLM Llama 3.1 XAttn LLM
MiniCPM-o 2.6 (Yao et al., 2024) SigLIP Qwen2.5-7B MLP
Idefics3-8B-Llama3 (Laurençon et al., 2024) SigLIP Llama-3.1-8B-Instruct XAttn LLM
InternVL2-8B (Chen et al., 2024d) InternViT internLM2.5-7b-chat MLP
InternVL2.5-8B-MPO (Wang et al., 2024b) InternViT-V2.5 internLM2.5-7b-chat MLP
InternVL2.5-8B-MPO-AWQ (Chen et al., 2024c) InternViT-V2.5 internLM2.5-7b-chat MLP

LLaVA-v1.6-vicuna-7b (Liu et al., 2024)

≤ 7B

CLIP ViT-L vicuna-7b-v1.5 MLP
LLaVA-v1.6-mistral-7b (Liu et al., 2024) CLIP ViT-L Mistral-7B-Instruct-v0.2 MLP
Qwen2.5-VL-3B-Instruct (Team, 2025) ViT Qwen2.5 LLM MLP
Qwen2.5-VL-7B-Instruct (Team, 2025) ViT Qwen2.5 LLM MLP
mPLUG-Owl3-7B-240728 (Ye et al., 2024) SigLIP Qwen2 LLM Linear
mPLUG-Owl3-2B-241014 (Ye et al., 2024) SigLIP Qwen2 LLM Linear
LLaVA-OneVision (Li et al., 2024) SigLIP Qwen2 LLM MLP

Table 7: API-based and open-source MLLMs selected for evaluation.

Model Polysemy Homonymy Grammar Semantics Specialized Cultural Overall
Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq

Qwen2.5-VL-7B-Instruct 28.57 56.34 28.71 56.88 17.65 49.26 19.05 38.10 25.00 55.17 17.07 50.59 25.06 53.91
InternVL2.5-8B-MPO-AWQ 41.07 68.44 44.55 68.35 30.88 63.24 33.33 64.29 37.50 59.77 24.39 60.00 38.04 65.82
LLaVA-OneVision 24.72 55.31 29.91 54.00 17.59 50.93 23.81 50.00 22.73 47.37 14.63 51.76 22.78 52.26
MiniCPM-o 2.6 20.22 55.31 40.17 66.40 34.25 64.49 33.33 60.71 31.82 61.05 14.63 45.88 30.52 60.75

Table 8: We input prompts in Chinese, and the options are without confusing elements.

options enabled.865

C More Cases866
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Model Polysemy Homonymy Grammar Semantics Specialized Cultural Overall
Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq

Qwen2.5-VL-7B-Instruct 12.36 42.46 17.95 50.40 20.37 51.40 21.43 44.05 25.00 51.58 12.20 41.18 17.77 47.74
InternVL2.5-8B-MPO-AWQ 29.21 60.89 29.91 58.40 26.85 56.54 26.19 58.33 31.82 57.89 21.95 55.29 28.25 58.10
LLaVA-OneVision 7.87 44.13 23.93 50.80 12.96 50.93 11.90 44.05 13.64 43.16 7.32 45.88 14.35 47.63
MiniCPM-o 2.6 19.97 48.61 27.35 54.80 26.85 55.14 28.57 55.95 13.64 46.47 12.20 35.29 22.78 51.38

Table 9: We input prompts in Chinese, and the options are with confusing elements.

Model Polysemy Homonymy Grammar Semantics Specialized Cultural Overall
Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq

Qwen2.5-VL-7B-Instruct 35.71 63.13 30.69 61.01 25.00 55.88 28.57 54.76 37.50 62.07 9.76 51.76 30.30 59.98
InternVL2.5-8B-MPO-AWQ 39.88 68.14 36.63 66.06 26.47 62.50 28.57 61.90 35.00 60.92 26.83 62.35 34.85 65.27
LLaVA-OneVision 20.22 20.28 25.64 56.00 17.60 49.53 26.19 53.57 15.91 46.32 19.51 50.58 20.73 51.60
MiniCPM-o 2.6 33.71 52.60 41.03 66.80 37.96 64.95 28.57 55.95 27.27 62.11 14.63 48.24 33.49 62.29

Table 10: We input prompts in Malay, and the options are without confusing elements.

Model Polysemy Homonymy Grammar Semantics Specialized Cultural Overall
Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq

Qwen2.5-VL-7B-Instruct 14.61 45.25 18.80 50.00 24.07 50.00 21.43 46.43 25.00 51.58 9.76 36.47 19.13 47.63
InternVL2.5-8B-MPO-AWQ 23.60 53.07 21.37 53.20 24.07 55.14 23.81 57.14 27.27 55.79 12.20 44.88 22.32 53.58
LLaVA-OneVision 15.73 46.93 27.35 56.00 15.74 51.41 21.43 52.38 1.37 40.00 12.20 51.76 18.45 50.72
MiniCPM-o 2.6 22.47 48.60 30.77 59.60 37.04 61.68 19.05 44.05 18.18 53.68 9.76 36.47 26.20 53.69

Table 11: We input prompts in Malay, and the options are with confusing elements.
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Figure 6: A case of the category of polysemy in Malay.
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Figure 7: A case of the category of grammar in Chinese.
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Figure 8: A case of the category of grammar in Malay.
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Figure 9: A case of the category of grammar in Malay.
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Figure 10: A case of the category of semantics in English.
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Figure 11: A case of the category of specialized in Chinese.

20



Figure 12: A case of the category of cultural in English.
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Figure 13: A case of the category of dual-ambiguity in English.
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